
RJ 10337 (A0501-006) January 13, 2005
Computer Science

IBM Research Report

SANFS Maestro: A SAN File System Planner

Aameek Singh, Kaladhar Voruganti, Sandeep Gopisetty, Aki Fleshler*,
Ramani Routray, Chung-hao Tan

IBM Research Division
Almaden Research Center

650 Harry Road
San Jose, CA 95120-6099

*IBM Beaverton

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

SANFS Maestro: A SAN File System Planner

Aameek Singh∗ Kaladhar Voruganti‡ Sandeep Gopisetty‡ Aki Fleshler§

Ramani Routray‡ Chung-hao Tan‡

Abstract

Manual planning of storage infrastructures that are large and
that utilize heterogeneous devices has become a time con-
suming and error prone process. This problem becomes even
more complex when one is designing storage area network
file system (SAN FS) based storage solutions. SAN FS sys-
tems that combine the benefits of both SAN and network
attached (NAS) systems have been proposed as a mecha-
nism for designing scalable storage infrastructures. This pa-
per proposes a SAN FS capacity planning tool that takes ap-
plication level requirements, best practices, and other types
of policy input to design the necessary SAN FS logical and
physical constructs. The planning tool can be used to de-
sign both new SAN FS deployments or extend existing SAN
FS deployments. By automating the design process, this tool
helps to cut down on the amount of time and the number of
designers required to design large scale storage infrastruc-
tures. Finally, there currently do not exist any planning tools
for SAN file systems, and thus, this is the first paper in this
regard.

1 Introduction

The storage needs of most organizations are growing at a
rapid pace driving them to scalable storage infrastructure
solutions. This, in turn, is prompting many organizations
to move away from direct attached storage (DAS) solutions
towards storage area network (SAN) and network attached
storage (NAS) solutions. Organizations are making this
move primarily due to a) the distance and connectivity limi-
tations of direct-attached storage transport protocols such as
parallel SCSI b) the tight coupling between servers and stor-
age (i.e. one needs to purchase more servers in order to add
more storage, even if there is no need for the extra computa-
tion power) c) ease of management and sharing.
However, in order to make the transition from DAS environ-
ments to NAS/SAN environments one has to deal with the
following issues:

1. NAS versus SAN Debate: Both NAS and SAN solu-
tions have their respective strengths and weaknesses,
and so most organizations need to perform a detailed
analysis to choose the solution that best satisfies their
needs.

2. Design Complexity: Manual design of scalable, appli-
cation aware and heterogeneous solutions is a long and
in many cases error-prone process. Most organizations

∗Work done while visiting IBM Almaden. Current affiliation - Georgia
Tech, aameek@cc.gatech.edu

‡IBM Almaden Research Center, sandeep@almaden.ibm.com,
{kaladhar, routrayr, chungtan}@us.ibm.com

§IBM Beaverton, akif@us.ibm.com

are finding it difficult to design a scalable NAS or SAN
solution due to the following reasons:

• They need to consider the application require-
ments with respect to performance, availability,
disaster recovery, security, and future growth for
numerous existing applications and new to-be-
deployed applications.

• They have to utilize the devices present in their ex-
isting DAS environments and integrate them in the
newly proposed NAS or SAN solutions. This, in
turn, can potentially raise numerous device inter-
operability issues.

• They need to ensure that they adhere to the numer-
ous known best design practices to have an opti-
mum design.

• They have to examine numerous design choices to
come up with an optimized design plan. For ex-
ample, the output design plans can be optimized
based on cost, or physical space or power utiliza-
tion etc.

3. Organization Structure: Even when migrating from
DAS solutions to NAS/SAN solutions, some organiza-
tions fundamentally still maintain the notion of informa-
tion technology (IT) department islands. That is, each
large department performs a separate transition from
their current DAS environment to a new NAS/SAN en-
vironment. Thus, in essence, the separate departments
have their own private NAS/SANs, and hence, do not
fully realize the benefits of storage consolidation.

SAN file systems (FS) that combine both NAS and SAN
technologies have been proposed in order to realize the com-
bined benefits of both these technologies [5, 8, 7, 4]. Hence,
SAN FS technology is trying to address the SAN versus NAS
debate. It is important to note that the focus of this paper is
not on evaluating SAN FS technology, but instead is on de-
veloping a SAN FS capacity planning tool. Briefly, SAN FS,
like NAS systems, provides a single file namespace across
multiple hosts and, like SANs, it allows hosts to directly ob-
tain storage from the storage controllers.
Many storage management vendors are introducing storage
infrastructure capacity planning tools to specifically address
the second problem. The storage capacity planning tools, are
for designing SANs, and there do not exist any tools for de-
signing SAN FS solutions. Finally, it is necessary for organi-
zations to restructure their IT departments in order to address
the third problem. Organizations are beginning to realize the
importance of their organization structure and its impact on
the overall utilization of their IT resources.

This paper specifically addresses the problem of how to au-
tomate the design of storage solutions that utilize SAN file
systems. Hence, it is addressing a combination of the first
two problems listed above. We have implemented the SAN
FS capacity planning tool, and this paper is describing the
architecture details and the unique design aspects of our im-
plementation. Some novel aspects of our design are:

• The introduction of the necessary planning constructs to
allow for the layering of the SAN FS planner on top of
a SAN planner. The existing SAN planning tools do not
have the necessary notions to facilitate this layering.

• The introduction of the notion of application level tem-
plates, and the mapping of these templates to logical
SAN FS constructs, physical SAN FS constructs, and
the underlying SAN constructs. Existing SAN planning
tools do not have the notion of application templates.

• The use of policy engine to guide and validate the SAN
FS deployment plans.

It is important to note that the goal of this tool is not to re-
place human designers, but instead to aid them with the de-
sign process. Thus, the generated output plans can be modi-
fied by the system designers.

2 Background Information

Many of the performance and cost related differences be-
tween NAS and SAN solutions are disappearing due to the
following reasons:

• With the emergence of IP SANs the cost disadvantage
of SANs is not an issue.

• With the emergence of TCP offload engines, the per-
formance disadvantage of NAS solutions are less of an
issue.

• With the emergence of NFSv4, many of the network
storage protocol issues related to the presence of multi-
ple sub-protocols, lack of maintenance of state, and the
absence of compound operations that coalesce multiple
commands have been resolved.

However, the routing of NAS requests via an intermediate
NAS server versus the direct access of storage by hosts in
SANs is still considered as a key disadvantage of NAS. Sim-
ilarly, the ability of multiple hosts to share a file system name
space is still considered an advantage of NAS in comparison
to hosts running a local file system, and using a SAN proto-
col to communicate with the storage controllers. Hence, the
notion of SAN FS has been proposed to realize the benefits
of both NAS and SAN approaches .
In SAN file systems, like in SANs, the hosts directly access
storage from multiple storage controllers using block proto-
col access. Moreover, like in a NAS system, multiple hosts
still share a single file system namespace. In SAN file sys-
tems, the hosts use a network file system protocol to retrieve
and cache file meta data from a file system meta data server.
Subsequently the hosts directly access storage using a block
level protocol from the storage controllers.
The files in the file name space are grouped into file sets.
Each file set is managed by a primary metadata server. The

Engine
Policy

Catalog
Inventory

Existing

ConfigurationService Class

Application

Logical Planner

Policy
Database

SAN FS

Meta−Data Server Planner
SANFS

Planner
SAN

Templates

Figure 1: SAN FS planner architecture

notion of filesets is also useful for making file level repli-
cation operations. The files in the file set obtain their stor-
age from storage pools. Different files in a file set can ob-
tain their storage from different storage pools. Each stor-
age pool can be thought of as contiguous logical piece of
storage with certain performance, availability, security etc
properties. For replication purposes, multiple file sets can
be placed in a replication consistency group. A replication
consistency group preserves the write operation order across
file sets (useful in database environments with write-ahead
logging feature).
Currently, not much work has been done with respect to SAN
FS planning tools. However, a lot of work has been done
with respect to SAN planning tools. SAN Architect from
EMC [1], SAN Designer from Computer Associates[6], Ap-
pia [9] and Ergastulum [3] research prototypes from HP are
all trying to automate the SAN design process. The SAN FS
planning tool being proposed in this paper performs SAN FS
specific planning tasks, and it delegates the SAN planning
activities to an underlying SAN planning tool. This paper
also proposes how the interfaces to the existing SAN plan-
ning tools need to be modified in order to build a SAN FS
planner on top of them.

3 SAN File System Planner Architecture
This section describes the SAN FS planning architecture il-
lustrated in Figure 1. In summary, the SAN FS planner gets
various types of requirements as its input, it performs the
SAN FS construct specific planning, and it then passes on
control to the SAN planner to perform SAN related planning.
This section is organized into three subsections describing a)
planner input b) planner output c) planner engine details.

3.1 Planner Input

The SAN FS planner gets the following types of input:

• Application Service Class Templates: These pre-
defined customized templates allow users to select the
desired level of service for an application type. For ex-
ample,Gold class of service for an application implies
a certain level of performance, availability, security, and
future growth for that application. The application tem-
plate also indicates the number of data containers and
their corresponding service class, that are associated
with a particular application template. Data container is
a storage construct that corresponds to contiguous logi-
cal storage of a particular type. For example, a database
application could have a log data container, a user ta-
ble space data container, and a data container for tem-
porary data. Thus,Gold level OLTP DB2 application

could haveFast level log data container,Express level
user table space data container andAverage level data
container for temporary data. There are concrete set of
attributes associated with performance, availability, se-
curity, future growth, and backup/recovery. The details
of the attributes will be provided in the long version of
the paper.

• Catalog and Device Inventory: Every organization has
a preferred list of hardware/software (e.g. switches,
storage arrays, HBAs etc) that they want to use. In ad-
dition, there can be a inventory of new and old devices
that need to be used as part of the design process. Both
the catalog and the inventory databases need to be kept
up to date in order to be useful.

• Policy Specification: The termpolicy is an over-loaded
term, and it can be used to refer to best practices, in-
teroperability constraints, scheduling information, secu-
rity information etc. The different types of policies are
specified as a tuple with the following fields: 1) if con-
dition 2) then clause 3) scope of the policy 4) priority
of the policy (to resolve policy conflicts). The policy
information is stored in XML format in a local policy
repository, and this local repository can be periodically
updated from a centralized policy store.

• Discovered Resources: In cases where one is not de-
signing new storage infrastructures but instead is ex-
tending existing infrastructures one needs to discover
the existing resources, and also be aware of how the re-
sources are getting utilized. For example, one discovers
that the existing infrastructure has three storage arrays
from company X that capacity wise 50 percent utilized,
and only two of these arrays have the ability to support
iSCSI SANs.

• Optimization Criteria: System designers can use dif-
ferent types of optimization criteria during the design
process. For example, one could want a SAN design
that uses the least amount of physical space, or power or
money. System designers can also specify the number
of alternative plans that they would like to be generated
by the planner.

• Physical and Middleware Templates: System design-
ers can decide to use replication boxes, virtualization
boxes, security boxes etc as part of their design process.
In this paper, these different types of boxes are referred
to as middleware templates. Physical templates refer to
a combination of resources that are known to success-
fully interoperate with each other. For example, HBA
from vendor A, switch from vendor B, and a storage
array from vendor C are known to successfully interop-
erate with each other.

3.2 Planner Output

The planner generates an output data structure that can be
thought of as a graph of logical and physical constructs. For
example, the graph nodes correspond to physical constructs
such as switches, storage arrays, hosts, HBAs, disks, etc and
logical constructs such as volumes, zones, filesets, consis-
tency groups etc. Moreover, the graph edges correspond to
fabric interconnectivity, and the device container relation-
ships. For example, HBA x belongs to Host y, or volume

x has been created out of storage pool y, which resides on
storage array z. We have taken care to ensure that the graph
is SNIA SMI-S standard compliant for those notions which
currently are present in the SMI-S model. The base SMI-
S model has been extended to accommodate SAN FS no-
tions. The output plan graph can be used to provide topology
viewing capability, generate bill of materials, generate stor-
age provisioning workflows, or generate SAN FS installation
scripts.

3.3 Planner Engine

We have divided the entire SAN FS planning process into
three phases. In phase 1, the logical SAN FS construct plan-
ning related to filesets, consistency groups, storage pools is
performed. In phase 2, the physical SAN FS metadata server
related planning is performed. Finally, in phase 3, the physi-
cal SAN related planning is performed.

3.3.1 Phase-1: Logical Planning

In this phase, we determine the file system consistency
groups, filesets and storage pools. This phase is the most
interactive phase of the planner. The templates based design
is augmented with intermediate steps to allow modifications
to the planner recommendations. The flow of this phase is as
follows:
1. The user describeslocations at which the file system in-
stance is to be deployed - this facilitates multi-site planning∗.

2. The user describes theapplication workload. As men-
tioned earlier, this is achieved through application templates,
embedded within the planner. In addition, we use theappli-
cation service class attributes, which define the criticality of
the application and thus help in determining the recommen-
dations for logical constructs. For example, for a mailserver
application withplatinum service class, the planner advo-
cates using two consistency groups - one for the mail data
and another for attachments, with 4 filesets, containing vari-
ous user mail files andFAST storage pool for mail data and
Express for attachments and theFAST storage pool for meta-
data storage. These templates are obtained by running a num-
ber of benchmarks and are pre-packaged with the planner.
It is important to describe the features that ”define” a certain
workload. For a SAN FS, we look at operations that gener-
ate metadata transactions. For example, the fraction ofread,
lookup, write, commit, map/unmap, dirwalk etc. operations
will determine the amount of communication between hosts
and metadata servers. This will impact the number of meta-
data servers and memory requirements at metadata servers.
While a certain amount of knowledge can be determined
from the template, the ”size” of the workload will differ from
deployment to deployment. Thus, we require certain inputs
from users that characterize this metric. For example, ap-
plication data capacity, the working set size - the number of
objects being accessed simultaneously, thus requiring state
information to be maintained at the metadata servers; esti-
mates for backups - to determine the amount to extra storage
to be provisioned.
For a completely customized application, we require the user
to specify more information in order to determine the meta-

∗Current prototype implementation only does a single-site planning

data workloads. We plan to automate this process using a
monitoring engine, as part of our future work. Currently, we
do include the automation of determining appropriate file-
sets, given the application data. For example, a user can only
specify the data and let the planner figure out filesets from
that data. There are a number of benefits for automating this
process:

• Filesets are the granularity of metadata workloads. A
wrong fileset design can significantly impact system
performance.

• Fileset creation can be a tedious process, requiring
many different parameters to be filled like quota, quota-
type etc. An automated planner, integrated with the
best-practices policy engine can significantly reduce
user involvement in the process.

In our prototype implementation, we use the fileset quota size
as the limiting factor. Based on the application future growth
requirements, captured within service class attributes, we de-
sign filesets occupying appropriate fractions of the quota.
This can be easily configured to operate on the number of ob-
jects (in a fileset) limits as well. Also, the design of the file-
sets is validated against best practices and other defined poli-
cies - for example, a usual good practice is to avoid nested
filesets of depth more than three.
Note that at every intermediate stage of this step, the user can
modify the recommendations by deleting certain consistency
groups, moving contents of one group to another, modifying
filesets and storage pools. This fits the desired goal of the
planner toaid a human operator instead of replacing one.

3. Finally, the user describes its clienthosts workload,
which details the number and kind of hosts running vari-
ous applications. This step is separated from the applica-
tion workloads step, in order to allow a more generic work-
loads description, in which certain hosts can run more than
one applications. This hosts information is used to determine
the metadata workloads (objects simultaneously accessed by
different hosts require distributed locking state to be main-
tained at the metadata server) and zoning/LUN masking re-
quirements (hosts of one applications are zoned together and
LUN masking is also done to prevent hosts from accessing
unauthorized storage).

3.3.2 Phase-2: Metadata Server Planning

Based on various Phase-1 inputs, Phase-2 determines all
metadata server related information. Specifically:

• Size of Metadata Server Cluster: Based on application
workload, we first determine the size of the metadata
servers. We first calculate the rate of file operations for
that workload - based on the selection of a template†.
It depends on both the kind of workload and the ”size”
of the workload. Next, we calculate the rate of meta-
data operations for the workload. For each application
workload, the template contains the mapping of the rate
of file operations to metadata operations. This mapping
is based on the caching ability of metadata at clients.

†For a customized application, its operations are mapped to the closest
template available. In future, the monitoring engine can evaluate it precisely

For example, for a read-majority workload, subsequent
read operations will not result into metadata operations
due to caching at the client. Thus, the template mapping
takes this into account. Finally, the rate of metadata op-
erations divided by the transaction rate of the metadata
servers (available from device catalogs) gives us the re-
quired number of metadata servers.

• Filesets to Metadata Servers Mapping: In this phase,
we also distribute filesets amongst metadata servers. In
SAN FS, metadata servers are responsible for holding
metadata information and other state information like
locking for data in the filesets assigned to them. The
planner can distribute the filesets based on general best
practices (retrieved from the best-practices policy en-
gine) - eg round robin in a homogeneous metadata clus-
ter, or appropriate load sharing for a heterogeneous one.

• Metadata Server Memory Configuration: There are two
main components to the memory utilization at metadata
servers - caching disk structures and caching distributed
state of memory. For IBM SAN FS, assuming an av-
erage file name length to be 15 ASCII characters, it
typically takes (560+3*15=) 605 bytes to maintain the
disk structure for each object. In addition, to maintain
the distributed memory state, it requires 676 bytes for a
single non-shared object. This distributed state is mul-
tiplied by the number of users sharing the object due
to distributed lock state information that needs to be
maintained. These numbers are multiplied by the num-
ber of objects in the file system to obtain total mem-
ory requirements. Finally, a constant factor is added
to each of these numbers for the file system require-
ments, maintenance operations and other requirements
like CIM clients. These constants are different for mas-
ter and subordinate metadata servers.

• Metadata Storage Planning: We also need to plan for
extra storage required to maintain the system pool of
file metadata. Empirically it has been found that 5%
of the total current data capacity (including metadata)
suffices for the metadata storage in a SAN File System
(as opposed to 3% in a local file system). This also takes
into consideration the need for fileset level point-in-time
copies (eg. IBM SAN FS FlashCopy).

3.3.3 Phase-3: Physical Planning

In this phase, the SAN FS planner leverages underlying SAN
planning tools. There are existing tools which can design
the complete fabric - hosts, HBAs, switches, storage arrays
etc. Thus the primary task of the SAN planner drops down
to mapping SAN FS requirements to the SAN planner tools
inputs. This is achieved in the following ways:

• Based on storage pool requirements, the SAN planning
tools directly provision appropriate storage. The meta-
data storage is also provisioned in this manner. In our
implementation, as shown in Figure-2, the notion of
SAN FS storage pool maps to the notion of a SAN plan-
ner data container. The SAN planner data container, in
turn, gets mapped to storage controller pool(s). The
notion of a logical flow is associated with each data
container and it captures the data flow requirements of

each data container. The notion of storage service class
(that captures performance, availability, security, future
growth requirements) is associated with each data con-
tainer. Each logical flow, in turn, can get mapped to
multiple flow requirements, and multiple flow require-
ments get mapped to a physical flow.

• The metadata servers are treated as regular hosts, SMI-
S ComputerSystem, withdedicated field set to “Meta-
dataServer”. This allows for SAN planning tools to ap-
propriately configure HBAs for the metadata servers.

• A new application is created with metadata servers as
hosts and metadata storage as its underlying storage.
This allows for application based zoning (done by SAN
planners), thus zoning out all other hosts from the meta-
data storage, preventing unauthorized access to meta-
data storage by any client.

• For the IP based connectivity of hosts to metadata
servers, existing networking tools are used to obtain full
connectivity. The Fibre Channel (or IP) connectivity be-
tween hosts and storage arrays is directly obtained us-
ing the SAN planner. The remaining metadata server
to storage connectivity is obtained by adding metadata
servers to all applications as hosts, thus directing under-
lying SAN planners to connect and zone/LUN mask the
metadata servers to all storage.

Fileset1

Storage Pool 1

Data Container 1

Fileset 2

Storage Pool 2

Data Container 2

Logical Flow 1 Logical Flow 2

SSC

Flow Req 1 Flow Req 2

Physical Flow

Storage Controller Pool 2Storage Controller Pool 1

Figure 2: Mapping SAN FS planner to Block Planner

3.4 Policy Processing

System designers can specify policies that are relevant for
each of the above planning phases. For example, they can
specify policies to describe files to storage pools mapping, to
enforce compatible metadata server hardware and software
configuration, to decide which filesets and storage pools be-
long to a consistency group, to ensure that the proper multi-
pathing software exists at the appropriate hosts etc. The de-
tailed listing of the different types of SAN FS policies will be
provided in the detailed version of the paper. There are nu-
merous known SAN design policies in addition to SAN FS
layer specific policies [2]. The capturing of policy semantics
in the design process can be performed either as a validation
mechanism post the design process, or as a guidance mech-
anism during the design process [10]. That is, most policy
types can be specified and tested either in guidance mode
or in the validation mode. In the guidance mode, at various
points in the planner implementation, calls are made to the

policy repository to retrieve the necessary guidance inputs
and the planner then tries to ensure that those policies are
satisfied. In the validation mode, the planner sends the gener-
ated plan to the policy engine, and the engine, after retrieving
the relevant policies from the policy repository, checks to see
whether any of the pre-defined policies have been violated. If
the plan violates any of the specified policies, then currently
in our implementation, we log the error and expect the de-
signer to rectify the input and re-plan. In future we want to
establish a feedback loop to automate this process. Currently,
for a specific implemented version of the planner, all known
policy types are specified and tested in the guidance mode
in order to ensure that the plans do not violate policies. All
new policy types (post a specific planner implementation) are
implemented in the validation mode.

4 Conclusion and Future Work

Manual planning of large scale and heterogeneous storage
infrastructures has become a time consuming and error-
prone design process. With the advent of SAN file sys-
tems this planning process has become even more complex.
Hence, currently system designers usually take in the order
of months to design and deploy a SAN FS system that is not a
pre-packaged one size fits all type of solution. This paper has
proposed a SAN FS planning tool that uses the notions of ap-
plication templates and a planning engine to assist a system
designer with the design process. SAN file systems have also
been advocated as one approach that allows multiple NAS
servers to share a single underlying SAN. In future, we want
to extend our planning tool to provide planning support for
this hybrid NAS and SAN FS environment.

References

[1] SAN Architect. EMC.
[2] D. Aggrawal, J. Giles, K. Lee, K. Voruganti, and K. Fi-

lali. Policy-Based Validation of SAN Configuration. In
POLICY, 2004.

[3] E. Anderson, M. Kallahalla, S. Spence, R. Swami-
nathan, and Q. Wang. Ergastulum: quickly finding
near-optimal storage system designs.HPL-SSP-2001-
05, 2001.

[4] C. Brooks, A. Ansari, M. Rosichini, L. Stehlik, and
E. Wong. Introducing the SAN File System. InIBM
Redbook SG24-7057-01, 2004.

[5] R. Burns. Data Management in Distributed File System
for storage area networks.PhD Thesis, UCSC, 2000.

[6] T. Cromelin. BrightStor SAN Designer: Storage Life
Cycle Management. InWhite Paper, Computer Asso-
ciates, 2003.

[7] G. Gibson, B. Halevy, and B. Welch. NFS Extensions
for Parallel Storage. InPanasas Position Paper, 2003.

[8] J. Menon, D. Pease, B. Rees, L. Duyanovich, and
B. Hillsberg. IBM Storage Tank–A heterogeneous scal-
able SAN file system. InIBM Systems Journal, Vol. 42.
No. 2, 2003.

[9] J. Ward, M. O’Sullivan, T. Shahoumian, and J. Wilkes.
Appia: Automatic Storage Area Network Fabric De-
sign. InFAST, 2002.

[10] Kang won Lee. .Personal Communication, 2004.

