
RJ 10338 (A0502-006) February 4, 2005
Computer Science

IBM Research Report

UVC: A Universal Virtual Computer for Long-term
Preservation of Digital Information

Raymond A. Lorie
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Raymond J. van Diessen
IBM Business Consulting Services

Transistorstraat 7
Almere, 1322 CJ, Netherlands

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

UVC: A Universal Virtual Computer for Long-Term Preservation
of Digital Information

Raymond A. Lorie

IBM Research Division
Almaden Research Center
San Jose, CA 95120-6099

Raymond J. van Diessen

IBM Business Consulting Services
Transistorstraat 7
Almere, 1322 CJ, Netherlands

ABSTRACT

The preservation of digital data for the long term presents a variety of challenges. But one of the
most difficult of these challenges is to maintain the interpretability of files created long ago. A
sequence of bits is meaningless if it cannot be decoded and transformed into an intelligible
representation. Since the decoding and transformation are generally specified through a computer
program, the loss of that program translates into a loss of valuable information.

In 2000, a project in IBM Research proposed the use a Universal Virtual Computer (UVC) to
specify today a process that will be executed on a – still unknown – machine of the future. The
UVC is a general purpose computer, complete yet basic enough as to remain relevant for a very
long time. The method consists of archiving, with any file of a specific data format, a program P
which can decode the data and return the information to a future client, according to a logical
view (a la XML). The novelty is that P is written for the UVC. In the future, the only thing
required is an emulator of the UVC, which will be able to run the program P and return all data
according to an easy to understand, logical view.

The initial specifications of the UVC were published in 2001 [1]. This report describes a more
advanced – and, in some respects, simpler – version of the UVC, that has been fully implemented
and is now considered to be the UVC Convention, version 0.

1. Introduction: the preservation problem

Preserving bit strings (or files) is a basic requirement of any data processing system. The problem
has existed since the beginning of the computer era. The classical solution consists of copying the
information periodically from an old medium to a new one. This solves both medium and device
obsolescence problems at the same time. In addition, it takes advantage of the new technologies
providing higher data densities at lower costs. Today, the tremendous increase in data volume has
triggered many developments in storage hardware and storage management systems. New
approaches are being introduced at the research and product levels. But being able to read the bits
correctly in the future is only one part of the solution.

Another challenge concerns the interpretability of files created long ago. A sequence of bits is
meaningless if it cannot be decoded and transformed into an intelligible representation. Since, the
decoding and transformation are generally specified through a computer program, the loss of that
program translates into the loss of valuable information. In the past - and present - the industry
managed to avoid disasters (in most cases) by periodically converting data to newer formats and
rewriting programs. But such conversion methods come with many dangers and they will not be
able to support the huge increase in multimedia data that applications will want in the future.

Alternatives have been proposed but none has been implemented in full-fledged systems.

For example, a lot of attention has been given to the use of XML as a technology-independent
format. The idea is to extract from the original format all data elements and to tag them
appropriately. The complete information is then encoded in an XML string. The argument is that
the XML string will remain readable in the future. It must be noted that identifying the data
elements is not sufficient. The semantic information on what to do with each element must still be
specified as metadata1. However, the presence of tags facilitates the association of semantic
information with the data elements. A drawback of the technique is that XML may not be the
most appropriate storage format for certain document types, since it brings with it a potentially
huge increase in file size.

On the other hand of the spectrum, the emulation of old machines makes it possible to run old
software on new machines. This may be both good and bad: good because it will run the old
program and present the data as seen in the past; bad because if forces the user to go through old
interfaces and does not allow for reusing the data in different ways, making re-purposing all but
impossible.

This paper refers to a different approach, using a Universal Virtual Computer (UVC) to specify
processes that have to run in the future. The method was initially proposed in [1] and reference
[2] described an initial version of the UVC architecture. This paper describes the version that has
been fully implemented as part of a joint study between IBM and the KB (Koninklijke
Bibliotheek, the National Library of the Netherlands) [3].

1 Many of the current applications provide some form of functionality to translate their internal proprietary
formats into an XML format. However, the tags and data elements are often cryptic and still heavily
dependent on the semantics encoded in the application.

2. The Universal Virtual Computer (UVC) solution.

A virtual computer can be used to specify today processes that will need to be executed on a
future, still unknown, real machine. The only requirement is that a UVC emulator be always
available (a relatively simple task compared to an emulator of a real machine.)

When a file of a certain format F is archived, a program P is also archived which can decode the
data and return the information to a future client, according to a logical view (a la XML). The
definition of the logical view can be archived in a similar way. The novelty is that P is written for
the UVC. In the future, the only thing required is an emulator of the UVC, which will be able to
run the program P and return all data in an easy to understand, logical view. The UVC is a
general purpose computer, complete yet basic enough as to remain relevant for a very long time.
Given the simplicity of the UVC, writing a program that emulates it is reasonably easy.

This method provides all the advantages of XML. But it has the additional – and very significant -
advantage of keeping the data in its original form instead of forcing an XML representation for
the stored document. In principle, keeping the original format should always be possible. For
example, for PDF it is possible to write a decoder of the PDF format. But it may sometimes be
simpler to immediately convert the original format, once, into another one, and then preserving
that representation as if it were the original. The choice of an “intermediate format” must be
guided by a good balance between efficiency of storage and decoding complexity. The same
logical view can often be used for a multitude of internal formats (for example, one logical view
would support a color image independently of its original format). This greatly simplifies the
writing of Restore Applications in the future.

3. The system components

The design goal for the UVC was not to define a minimal general-purpose computer. Instead, the
idea was to develop an intuitive computer with powerful and flexible instructions for handling bit
strings, and to take advantage of the fact that it is virtual and that performance is of secondary
importance. The architecture relies on concepts that have existed since the beginning of the
computer era: memory, registers, basic instructions, without secondary features often introduced
for improving the execution performance and the memory usage. It also tries to be natural; for
example, a negative number is a positive number with a sign (no 2-complement); there is no
notion of byte, simply bits that can be used at will.

For ease of explanation, we consider the various components shown in Fig. 1. The emulator and
the new Restore Application are both written in the future. The UVC being emulated is composed
of a CPU that executes instructions, a status (conditional flag and error indicator), an instruction
counter, and a memory. All of this is part of the UVC Convention and will not change in time2.
The UVC program is a sequence of UVC instructions in machine language, with very little glue
that holds the various pieces together (this is also part of the Convention). The instruction set
includes an Input/Output facility to exchange data between the UVC emulator and the Restore
Application (through explicit I/O instructions in the UVC program).

2 It would be unrealistic to claim that the proposed UVC will never change. The version being described
here is Version 0. Any archived document will always contain such a UVC version number to
accommodate for rare modifications.

The next sections go through these components in detail.

Restore
Application

UVC
Emulator

 CPU

status UVC

 program
 Instruction
 Counter Data

 Segments

 UVC

Figure 1: Global architecture

3.1 The memory model

The memory model is that of a segmented store. A segment contains an arbitrarily large set of
registers and a bit-addressable sequential memory. A register may contain a value or a pointer to
a particular bit of the sequential memory (actually the displacement from the beginning of the
segment). There is an unlimited number of registers and registers are of unlimited length. An
integer value occupies as many bits as necessary at the right of the register. The sign is a separate
bit (0 for plus, 1 for minus). The UVC itself maintains the length of the value internally. The only
operations on the sequential memory of a segment are designed to move information from the
memory to registers and vice-versa or to communicate with the external world. Note the bit –
rather than byte or word – orientation; this is very convenient for handling bit streams and it
increases independence from real machine architectures. A segment is uniquely identified by a
Physical Segment Number.

A UVC program is composed of sections that interact between themselves. Each section is stored
in a segment. An individual section can address all segments that are in its address space
(conversely, the segments belong to the section). Each segment is uniquely identified by a
Logical Segment Number. During an execution, the UVC emulator will assign physical segments
to logical segments and will keep track of the mapping. The address space of a section always
contains segments 0, 1, and 2, plus a segment that contains the section code, plus an arbitrary
number of segments containing variables and data. If a section is called recursively, the code is
stored only once, but each instantiation will have its own address space.
The different types of segments are now explained (Note that, in the remainder of this
publication, all segment numbers are logical segment numbers).

Segment 0
Segment 0 is accessible by any section (it belongs to all address spaces). It contains a collection
of shared constants and variables. There is a mechanism to load the constants initially (see
archive module, below).

Segment 1
The segment is accessible by the section to which it belongs. If the section is invoked recursively,
segment 1 can be addressed by all instantiations; it acts as a shared memory to communicate
between multiple activations of the same section.

Segment 2
There is one such segment per address space; its function is to handle data exchange during
invocations (calls) among sections. If a section A invokes a section B, A will see the results of B
in A’s segment 2. (The UVC will adjust the mapping, avoiding a need to copy the results from
one segment to another).

Segment 3 to 999
Segments in that range are shared.
They belong to the address spaces of all sections. For example, if two sections refer to a segment
4, both see the same segment 4.

Segments >= 1000
Segments in that range are private. If two sections refer to segment 1000, they see different
segments; the emulator maps them onto different physical segments. When the section is invoked
recursively, each invocation will see its own instance of a segment in that range.

In the remainder of this paper, Reg1 stands for a pair (s1, r1), denoting the content of register r1
in segment s1. As mentioned above, s1 is a logical segment. The content of a register may be a
value or an address (a displacement) in the sequential memory, if that is what the instruction
expects.

In any instruction, the specification of a register R may include an indirection flag (R*). When the
emulator encounters a register R*, the content of R* is a register number which identifies the
register containing the operand. The various cases are illustrated in Fig. 2.

3.2 Status indication

The status of the UVC after an operation is conveyed by the following indicators:

1. The condition flag reflects the result of the last comparison operation. It can only be changed
by a comparison instruction.

2. The error indicator is a 32-bit number identifying the error that occurred. The possible values
are determined by the specific implementation of the UVC emulator and are useful for debugging
that implementation.

Low Address High Address

Register 1
signlength

Register 2
signlength

Register 3*
signlength

Register 3*
signlength

value

displacement

sequential memory

reference to register

 Figure 2: The possible contents of registers in UVC instructions

3.3 Instruction Counter

The instruction counter contains the address of the next instruction. This address is updated by the
CPU each time an instruction completes. The address is composed of two integers (32 bits): the
segment number of the segment containing the section, and the bit-displacement of the instruction
inside that segment. Most instructions update the counter to the address of the bit that
immediately follows it in the sequential memory. A few instructions modify the counter in a
different way, altering the sequential flow (see individual instructions, below).

3.4 Instruction formats

The majority of instructions have the same format: an 8-bit operation code (opcode) followed by
zero, one, two, or three 64-bit strings. Each 64-bit string designates a register: the first 32 bits
identify a segment; the next 32 bits are decomposed into an indirection flag and a 31-bit value
that identifies a register in that segment.

In the example that follows, the opcode expects two operands: Reg1 and Reg2. The specification
of an operand is a 64-bit string, composed of a segment number (seg) and a register number (reg)
with its indirection flag. If that flag is 0, the register contains the operand; if it is 1, the register
contains the number of the register (in the same segment) that contains the operand (the lengths
are shown in parentheses):

segment
(32 bits)

register
(31 bits)

flag
(1 bit)

op
(8 bits)

segment
(32 bits)

flag
(1 bit)

register
(31 bits)

Only a very few instructions have formats that differ from the one shown above. A list of all
instructions and their operands is provided in the next section

3.5 Instruction set

The UVC instructions are shown in the various following sections, arranged in some meaningful
groups. The binary values corresponding to each opcode are given in the summary table in
Appendix B.

A general note on bit order semantics and bit order transfer:

In a register, the rightmost bit is the least significant. When the register length is automatically
updated as the result of an operation, leftmost bits appear or disappear (the length is updated
accordingly). When a register is transferred to memory, the leftmost bit of the register is copied at
the bit position indicated in the instruction; the next bit in the register is copied to the next bit
(higher bit address) in the memory, etc. The inverse operation is clearly defined. The process is
graphically depicted in Fig 3.

1 0 0 1 1 1 0 1 0 Register

Memory Inside a Segment

Start Address

Register Growth Direction

Register-to-Memory

Low Address High Address1 0 0 1 1 1 0 1 0

Memory-to-Register

Figure 3: Bit Order Semantics

When data is transferred from memory to the communication channel (details below), the bit at
the address specified in the instruction is sent first, then the bit at that address+1, +2, etc. The
inverse operation stores the first bit received on the channel at the address supplied in the
instruction, the next bit at the address+1, etc.

Instructions to move data between the memory and the registers.

load Reg1, Reg2, Reg3,

Load from memory to register.
Insert into Reg1 a k-bit string from memory, starting at address in Reg2; the length k
is in Reg3.
The length of Reg1 is set to k.

store Reg1, Reg2, Reg3

Store from register into memory.
Store the rightmost k bits from Reg1 into memory at address in Reg2.
The length k is given in Reg3.

lsign Reg1, Reg2
Load sign.
Set the sign of Reg1 to 0 (or 1) if the single memory bit at address in Reg2 is 0 (or 1).

ssign Reg1, Reg2

Save sign.
Set the memory bit at address in Reg2 to 0 (or 1) if the sign of Reg1 is 0 (or 1).

Operations on registers only

loadr Reg1, Reg2

Load register.
Copy the content of Reg2 into Reg1 (including the sign).
After the operation, the lengths of Reg1 and Reg2 are identical.

psign Reg1

Set sign to positive.
Set sign of Reg1 to 0.

nsign Reg1

Set sign to negative.
Set sign of Reg1 to 1.

loadc Reg1, k, string

Inserts in Reg1, right justified, the k bits of the given string;
k is a 32-bit integer denoting the length of the string.
The length of the register is set to k. The sign of Reg1 is unaffected.

Since some of instructions change the length of a register, the following instruction provides
access to the length.

rlen Reg1, Reg2

Get register length.
Store the length of Reg2 into Reg1. 3

Numeric instructions

These instructions may cause the lengths of registers to change to accommodate the result.
The sign is set to the result sign; if the result is zero, the sign is set to 0 (positive). All numeric
instructions are performed according to the laws of binary arithmetic.

add Reg1, Reg2

Addition
The sum of the values in Reg1 and Reg2 is computed and stored in Reg1.
The size of the register r1 is set to the order of the leftmost 1 bit in Reg1.

3 If an operand is expected to be a 32-bit integer but is actually shorter, it is padded with zero’s on the left;
if it is actually larger, an error condition is raised.

subt Reg1, Reg2
Subtraction
The value in Reg2 is subtracted from the value in Reg1 and the result is stored in
Reg1.
The size of the register r1 is set to the order of the leftmost 1 bit in Reg1.

mult Reg1, Reg2

Multiply
The product of the values in Reg1 and Reg2 are computed and stored in Reg1.
The sign of Reg1 is also updated.
The size of Reg1 is set to the order of the leftmost 1 bit in Reg1.

div Reg1, Reg2, Reg3

Divide
The division of the value in Reg1 by the value in Reg2 is computed;
the quotient is stored in Reg1.
The size of Reg1 is set to the order of the leftmost 1 bit in Reg1.
The remainder is stored in Reg3. The sign of Reg1 is also updated,
and the sign of Reg3 is set to the original sign of Reg1.

Comparison instructions

grt Reg1, Reg2

Greater than
Set the condition flag to 1 if the value in Reg1 is larger than the value in Reg2.
(the signs are taken into account).

equ Reg1, Reg2

Equal
Set the condition flag to 1 if the value in Reg1 is equal to the value in Reg2;
(the signs are taken into account).

Logical instructions

not Reg1

Negation
All bits are inverted in Reg1.
The post-execution length of Reg1 is the same as the pre-execution one.

or Reg1, Reg2

Or
The bits in Reg1 and Reg2 are or’ed bit by bit and the result is stored in Reg1.
- If the pre-execution length of Reg2 is less than that of Reg1, Reg2 is virtually

left-padded with 0’s (the post-execution length of Reg2 remains unchanged).
- If the pre-execution length of Reg2 is larger than that of Reg1, Reg1 is left-

padded with 0’s (the post-execution length of Reg1 becomes equal to the length
of Reg2).

and Reg1, Reg2
And
The bits in Reg1 and Reg2 are and’ed bit by bit and the result is stored in Reg1.
- If the pre-execution length of Reg2 is less than that of Reg1, Reg2 is virtually

left-padded with 1’s (the post-execution length of Reg2 remains unchanged).
- If the pre-execution length of Reg2 is larger than that of Reg1, Reg1 is left-

padded with 1’s (the post-execution length of Reg1 becomes equal to the length
of Reg2).

Instructions that alter the flow of execution

br Reg1

Branch to a given address,
Set the instruction pointer to the displacement of the target instruction in the same
section.

brc Reg1

Branch conditionally.
The instruction acts as the previous one (br) if the condition flag is on.
Otherwise, the execution proceeds sequentially.

call Reg1, Reg2, Reg3

Call a subroutine (another section).
Invoke code section identified by Reg1;
Reg2 identifies the starting address of the first instruction to be executed;
Reg3 identifies the segment used to submit parameter(s).

break (no operand)

Return control to the calling section at instruction following the call.

stop (no operand)

Stop execution and return the emulator to its initial state, waiting for a new input.

The sequential memory can be initialized by first loading a value in a register and then storing the
register value in the memory through a store instruction. Of course, a register can also be
initialized by loading an already initialized value from the sequential memory.

Communication with the outside world (I/O)

The communication makes use of a simple channel abstraction. The abstract channel behaves as a
half-duplex communication channel. Any “message” of data traveling on the channel is
composed of three components:

1) Message Type (a 32-bit integer)
The types and their semantics are chosen by the application. They identify the different
roles of the data being transferred. It may be a tag for a piece of data or simply a code
that is used for synchronization between the UVC program and the application.

2) Message Length (a 32-bit integer)
 It is the length of the data being transferred (in bits).

3) Message Body
It is the actual bit string to be transferred.

There are two UVC instructions to interact with the communication channel: In and Out.

In Reg1, Reg2, Reg3

 The contents of Reg1 and Reg2 before the operation are irrelevant.
 Reg1 will be set to the message type received.
 Reg2 will be set to the length of the message
 Reg3 specifies the starting memory address where the data will be stored.

Out Reg1, Reg2, Reg3

 Reg1 contains the message type.
 Reg2 contains the length of the data to be transferred.
 Reg3 contains the starting memory address where the data resides.

The UVC convention does not impose any additional requirement on the use and/or specific
implementation of the channel. For instance, if the piece of data to be transferred is larger than
the maximum allowed, it can be split into multiple messages; the exchange can be controlled by
introducing message types such as message start, message continuation and message end.
Similarly, synchronization between the UVC emulator and the outside application can be
established by sending specific user defined messages types with no data (When the message
length is zero the memory address specified in Reg3 is ignored).

Clearly, the UVC convention requires a half-duplex abstract channel that must be enforced by all
specific implementations. Figure 4 illustrates the only two valid communication patterns.

UVC
Emulator

Program
Using

UVC Emulator

Communication Channel

Message
Type

Message
Length

Message
Data

Message
Type

Message
Length

Message
Data

OUTIN

UVC
Emulator

Program
Using

UVC Emulator

Communication Channel

Message
Type

Message
Length

Message
Data

Message
Type

Message
Length

Message
Data

OUT IN

Valid Communication Patterns

Figure 4: Valid communication patterns

An invalid communication patterns should raise an error flag in the UVC emulator; the emulator
will interrupt the execution and notify the application. As mentioned before, the UVC Convention
does not enforce any specific implementation of the channel: actual transfer can occur when both
sides are executing their respective IN or OUT operations or the message can be temporarily
buffered.

3.6 Organization of the archived module

A program is built out of multiple sections that call each other. Sections can be written
independently, using symbolic names for segments. A classical compile and link process
transforms these symbolic references into segment numbers that obey the numbering conventions
described above. The module is then obtained by concatenating several items as governed by the
following hierarchical structure:

 Stream: Nconstants, Constant*, Nsections, Section*
 Constant: Reg#, Sign, Length, string
 Section: Segment#, Length, Code

Nconstants (a 32-bit integer) is the number of constants that have to be loaded in segment 0; it is
followed by Nconstants structures of type Constant, followed by Nsections (a 32-bit integer), the
number of program sections to be loaded, followed by Nsections structures of type Section .

The structure of type Constant is the concatenation of a register number (a 32-bit integer), a sign
bit, a string length L (a 32-bit integer), and the L-bit string itself.

A structure of type Section is the concatenation of a segment number (a 32-bit integer), the length
of the code in bits (a 32-bit integer), and the code itself. The segment number indicates in which
segment the section code must be loaded. By definition, the first section in the archived module is
the starting section of the program.

3.7 Remarks

The UVC described in this report has been fully implemented. The implementation is being used
at the National Library of the Netherlands (KB) [5] and by a publicly available demo on the IBM
AlphaWorks site [6].

An important question is “how can we be sure that an archived program is bug free?”. There are
two correctness issues. The first one is making sure that a given UVC implementation is correct.
To that effect, an extensive UVC test program has been developed that covers the whole
functionality of the machine:

• Initial loading
Testing whether sections and global constants are loaded correctly in the UVC

• Activation of sections
Invoking a section, passing arguments and results, and returning control to the invoking
section.

• Bit addressability
Extensive testing of different bit oriented and segment/memory mechanism memory.

• Instruction Set
Extensive testing of all instructions, making sure that no unwanted side effect (such as
overflow) occurs.

• Communication
Testing the behavior of the communication channel through the usa of the IN and OUT
instructions.

The second correctness issue concerns the UVC program itself. Here, more than an absolute
correctness, we need to “proof” that the program handles correctly all instances actually ingested
in the system. An exhaustive approach consists of applying the program to all instances, at ingest
time or at least before obsolescence of the original viewer or application. In some cases, the
results can be compared automatically with those obtained originally. If the UVC program is
interactive, exhaustive checking is not possible; then the best verification techniques available at
that time should be used, together with checking the results for a reasonably large sample of
instances.

Finally, this paper was supposed to be exclusively a “Principle of Operation” manual. To learn
more about the preservation issues in general and more particularly about the UVC approach, the
reader should consider the references [1], [2] and [4], and for particular applications, [3] and [5].

3.8 Acknowledgments

To Henry Gladney for his useful comments on a draft of this paper.

To the technical staff from IBM who developed the "proof of concept" and the supporting tools:
Sidney Huiskamp, Paul Brunckhorst, Jeffrey van der Hoeven, and Nanda Kol.

To Johan Steenbakker, Hilde van Wijngaarden and Erik Oltmans from the KB, and Jacqueline
Slats and Remco Verdegem from the ICTU – “Testbed Digitale Bewaring”, for providing
concrete testing environments and feedback.

3.9 References

[1] Lorie, R. A.: Long term preservation of digital information. Presented at JCDL

2001, Roanoke, VA, 2001.
[2] Lorie, R. A.: A Methodology and System for Preserving Digital Data. Presented at

JCDL 2002, Portland, Oregon, 2002.
[3] Lorie, R. A.: The UVC: A Method for Preserving Digital Documents: Proof of

Concept. The Hague, IBM and Koninklijke Bibliotheek (KB), 2002.
www.kb.nl/hrd/dd/dd_onderzoek/reports/4-uvc.pdf

[4] Gladney, H. M. and Lorie, R. A. Evidence after Every Witness is Dead, ACM
Trans. Office Information Systems 22(3), 2004.

[5] van Wijngaarden, H. and Oltmans, E.: Digital Preservation and Permanent
Access: the UVC for images. Proceedings of IS&T Archiving Conference, San
Antonio, TX., 2004.

[6] IBM Alphaworks emerging technologies, Digital Asset Preservation tool.
Available at: www.alphaworks.ibm.com/tech/uvc

http://www.kb.nl/hrd/dd/dd_onderzoek/reports/4-uvc.pdf

Appendix: An example

In many applications of the UVC technology, the function of the UVC program will be to decode
the internal format of a file and return the results according to a predefined logical view. In more
general cases, the UVC program can also implement any arbitrary logic, using some input
parameters and/or some input file(s). The following program is very simple but still illustrates the
more general case. Instead of processing a file, it generates the results by (a recursive)
computation.

 int a = 10; // introduced to illustrate sharing

void main ()

 {
 int x, y, w;
 scanf ("%d", &x);
 y = factorial(x);
 w = a * y;
 printf ("%d\n", w);
 }

int factorial (int x)
 {
 int z;
 if (x == 1) return (1);
 z = x * factorial(x-1);
 printf ("%d %d\n", a, z);
 return (z);
 }

 }

The execution of the C program produces the following results:

 10 2
 10 6
 10 24
 240

For a simple output, the documentation may easily explain to the future user what the output
represents. But, in general, the future user will want to process the data and it is therefore
preferable to return the data elements, one by one, and tagged. If tag=1 identifies the output for a,
tag=2 identifies the output for z, and tag=3 identifies the output for w, the results would be:

 1 10
 2 2
 1 10
 2 6
 1 10
 2 24
 3 240

This is actually what is implemented in the UVC program below. The documentation
may easily explain the format by using a simple specification (such as a DTD in XML):

 Result: Line*, W
 Line: A, Z
 A (1)
 Z (2)
 W (3)

where the values in parentheses indicate the tag values.

Constants.asm

Constants to be defined in segment 0
Entry format:
register sign (plus: 0, minus: 1) length (in bits) value (in hex)

Constants used for communication
0 0 1 0x0 # default entry address into a section
1 0 1 0x1 # constant 1 = the message tag for a
2 0 2 0x2 # constant 2 = the message tag for z
3 0 2 0x3 # constant 3 = the message tag for w
4 0 16 0xFFFF # constant is memory address of message to be output

Global variables
5 0 4 0xA # a = 10

Main.asm

Main
1001 # segment number for Main section
0,1002,1003 # segments this section references (for assembler only)

Program: Main, to compute the factorial of a given number
This program computes the factorial of a value received over the
communication channel. It outputs the result as binary values.
These values are tagged as mentioned in the simple specification above;
the tags themselves are communicated as message types.

By convention, the argument to the factorial section is loaded in register
1 of the segment containing the argument. The result is communicated back in
register 2 of the same segment.

section uses 1002 as working segment
Set input address in register (1002,12): 255
LOADC 1002 1 8 0xFF

Get argument and load it in argument section (1003)
IN 1002 2 1002 3 1002 1 # only (1002,1) is an input argument
LOAD 1003 1 1002 1 1002 3 # save input value x in (1003,1)

Set up arguments to call Factorial (seg 1010) with arguments (seg 1003)
LOADC 1002 4 12 0x3F2 # set (1002, 4) to value 1010
LOADC 1002 5 12 0x3EB # set (1002, 5) to value 1003

Call the factorial section
CALL 1002 4 0 0 1002 5

z = a * factorial(x)
LOADR 1002 6 0 5 # copy value of a in (1002,6)
MULT 1002 6 1003 2 # multiply a by the result of factorial
RLEN 1002 3 1002 6 # store length of result in (1002,3)
STORE 1002 6 0 4 1002 3 # store result in output area - at address
 # specified in (0,4)
OUT 0 3 1002 3 0 4 # message type = 3 (0, 3)

STOP

Factorial.asm

Factorial
1010 # segment number for Main section
0,1,2,1002,1003 # segments this section references (for assembler only)

Computes the factorial of the value given in register (2,1)
The result is placed in register (2,2)

Set (1002,2) equal to 1
LOADC 1002 2 1 0x1

Move the arguments in segment 2 to local segment 1002
LOADR 1002 1 2 1

if (1002,1) > 1, jump to recursion
GRT 1002 1 1002 2 # compare argument to 1
LOADC 1 1 RECURSION # constant (address) computed by Assembler
BRC 1 1 # greater than 1, needs more

else jump to base
LOADC 1 1 BASECASE
BR 1 1 # equal to 1, we have got everything

label: RECURSION
call argument segment (1003) with segment new argument
LOADR 1003 1 1002 1

subtract one (1002,2) from argument in (1003,1)
SUBT 1003 1 1002 2

call section factorial (1010 = 0x03F2) with segment (1003=0x3EB)
LOADC 1002 3 16 0x3F2 # set (1002, 3) to value 1010
LOADC 1002 4 16 0x3EB # set (1002, 4) to value 1003

CALL 1002 3 0 0 1002 4

compute factorial
multiply factorial(x-1) by x.
MULT 1002 1 1003 2 # multiply result by (1002,1)
LOADR 2 2 1002 1 # and store in (2,2)

Return value of global var a
RLEN 1002 5 0 5
STORE 0 5 0 4 1002 5
OUT 0 1 1002 5 0 4 # message type = 1 (0,1)

Return result of this factorial call
RLEN 1002 5 2 2
STORE 2 2 0 4 1002 5
OUT 0 2 1002 5 0 4 # message type = 2 (0,2)
BREAK

label: BASECASE
base case of recursive routine n=1
LOADR 2 2 1002 2
BREAK

Appendix B: UVC opcodes

Opcode Dec. Hex Operands Function
 Move information between registers and memory
Load 10 0A Reg1 (dest), Reg2 (address), Reg3 (length) Load from memory to register
Store 11 0B Reg1 (src), Reg2 (address), Reg3 (length) Store from register into memory
Lsign 12 0C Reg1 (dest), Reg2 (address) Load sign
Ssign 13 0D Reg1 (src), Reg2 (address) Save sign
 Operations on registers
Loadr 20 14 Reg1 (dest), Reg2 (src) Load register
Psign 21 15 Reg1 (positive) Set sign to positive
Nsign 22 16 Reg1 (negative) Set sign to negative
Loadc 23 17 Reg1 (dest), Reg2 (length), bit string Load constant
Rlen 24 18 Reg1 (length), Reg2 (src) Get register length
 Numeric instructions
Add 30 1E Reg1 (dest), Reg2 (arg) Add
Subt 31 1F Reg1 (dest), Reg2 (arg) Subtract
Mult 32 20 Reg1 (dest), Reg2 (arg) Multiply
Div 33 21 Reg1 (quotient), Reg2 (arg), Reg3 (remainder) Divide
 Comparison instructions
Grt 40 28 Reg1 (arg1), Reg2 (arg2) Greater than (arg1 > arg2)
Equ 41 29 Reg1 (arg1), Reg2 (arg2) Equal (arg1 = arg2)
 Logical instructions
Not 50 32 Reg1 (dest), Negation
Or 51 33 Reg1 (dest), Reg2 (arg1) Or
And 52 34 Reg1 (dest), Reg2 (arg1) And
 Instructions that alter the flow of execution
Br 60 3C Reg1 (address) Branch
Brc 61 3D Reg1 (address) Branch on condition
Break 62 3E Return to calling section
Call 63 3F Reg1 (section), Reg2 (address), Reg3 (argument) Call another segment
Stop 64 40 Stop execution
 Communication with the outside world (I/O)
In 70 46 Reg1 (msg type), Reg2 (length), Reg3 (address) Input
Out 71 47 Reg1 (msg type), Reg2 (length), Reg3 (address) Output

	�
	3.1The memory model
	A general note on bit order semantics and bit order transfer:
	Operations on registers only
	3.6 Organization of the archived module
	Nconstants (a 32-bit integer) is the number of constants that have to be loaded in segment 0; it is followed by Nconstants structures of type Constant, followed by Nsections (a 32-bit integer), the number of program sections to be loaded, followed by
	The structure of type Constant is the concatenation of a register number (a 32-bit integer), a sign bit, a string length L (a 32-bit integer), and the L-bit string itself.
	3.7 Remarks
	An important question is “how can we be sure that
	Initial loading�Testing whether sections and global constants are loaded correctly in the UVC
	Activation of sections�Invoking a section, passing arguments and results, and returning control to the invoking section.
	Bit addressability�Extensive testing of different bit oriented and segment/memory mechanism memory.
	Instruction Set�Extensive testing of all instructions, making sure that no unwanted side effect (such as overflow) occurs.
	Communication�Testing the behavior of the communication channel through the usa of the IN and OUT instructions.
	The second correctness issue concerns the UVC pro
	Finally, this paper was supposed to be exclusivel
	3.8 Acknowledgments
	To Henry Gladney for his useful comments on a draft of this paper.
	To the technical staff from IBM who developed the "proof of concept" and the supporting tools: Sidney Huiskamp, Paul Brunckhorst, Jeffrey van der Hoeven, and Nanda Kol.
	To Johan Steenbakker, Hilde van Wijngaarden and E
	3.9 References

