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ABSTRACT 
 
The preservation of digital data for the long term presents a variety of challenges. But one of the 
most difficult of these challenges is to maintain the interpretability of files created long ago. A 
sequence of bits is meaningless if it cannot be decoded and transformed into an intelligible 
representation. Since the decoding and transformation are generally specified through a computer 
program, the loss of that program translates into a loss of valuable information. 
 
In 2000, a project in IBM Research proposed the use a Universal Virtual Computer (UVC) to 
specify today a process that will be executed on a – still unknown – machine of the future. The 
UVC is a general purpose computer, complete yet basic enough as to remain relevant for a very 
long time. The method consists of archiving, with any file of a specific data format, a program P 
which can decode the data and return the information to a future client, according to a logical 
view (a la XML). The novelty is that P is written for the UVC. In the future, the only thing 
required is an emulator of the UVC, which will be able to run the program P and return all data 
according to an easy to understand, logical view.  
 
The initial specifications of the UVC were published in 2001 [1]. This report describes a more 
advanced – and, in some respects, simpler – version of the UVC, that has been fully implemented 
and is now considered to be the UVC Convention, version 0.  



 
1.  Introduction: the preservation problem  
 
Preserving bit strings (or files) is a basic requirement of any data processing system. The problem 
has existed since the beginning of the computer era. The classical solution consists of copying the 
information periodically from an old medium to a new one. This solves both medium and device 
obsolescence problems at the same time. In addition, it takes advantage of the new technologies 
providing higher data densities at lower costs. Today, the tremendous increase in data volume has 
triggered many developments in storage hardware and storage management systems. New 
approaches are being introduced at the research and product levels. But being able to read the bits 
correctly in the future is only one part of the solution. 
 
Another challenge concerns the interpretability of files created long ago. A sequence of bits is 
meaningless if it cannot be decoded and transformed into an intelligible representation. Since, the 
decoding and transformation are generally specified through a computer program, the loss of that 
program translates into the loss of valuable information. In the past - and present - the industry 
managed to avoid disasters (in most cases) by periodically converting data to newer formats and 
rewriting programs. But such conversion methods come with many dangers and they will not be 
able to support the huge increase in multimedia data that applications will want in the future.  
  
Alternatives have been proposed but none has been implemented in full-fledged systems.  
 
For example, a lot of attention has been given to the use of XML as a technology-independent 
format. The idea is to extract from the original format all data elements and to tag them 
appropriately. The complete information is then encoded in an XML string. The argument is that 
the XML string will remain readable in the future. It must be noted that identifying the data 
elements is not sufficient. The semantic information on what to do with each element must still be 
specified as metadata1. However, the presence of tags facilitates the association of semantic 
information with the data elements. A drawback of the technique is that XML may not be the 
most appropriate storage format for certain document types, since it brings with it a potentially 
huge increase in file size.   
   
On the other hand of the spectrum, the emulation of old machines makes it possible to run old 
software on new machines. This may be both good and bad: good because it will run the old 
program and present the data as seen in the past; bad because if forces the user to go through old 
interfaces and does not allow for reusing the data in different ways, making re-purposing all but 
impossible. 
 
This paper refers to a different approach, using a Universal Virtual Computer (UVC) to specify 
processes that have to run in the future.  The method was initially proposed in [1] and reference 
[2] described an initial version of the UVC architecture. This paper describes the version that has 
been fully implemented as part of a joint study between IBM and the KB (Koninklijke 
Bibliotheek, the National Library of the Netherlands) [3].  
 
 

                                                 
1 Many of the current applications provide some form of functionality to translate their internal proprietary 
formats into an XML format. However, the tags and data elements are often cryptic and still heavily 
dependent on the semantics encoded in the application.    



2.  The Universal Virtual Computer (UVC) solution.   
 
A virtual computer can be used to specify today processes that will need to be executed on a 
future, still unknown, real machine. The only requirement is that a UVC emulator be always 
available (a relatively simple task compared to an emulator of a real machine.) 
 
When a file of a certain format F is archived, a program P is also archived which can decode the 
data and return the information to a future client, according to a logical view (a la XML). The 
definition of the logical view can be archived in a similar way. The novelty is that P is written for 
the UVC. In the future, the only thing required is an emulator of the UVC, which will be able to 
run the program P and return all data in an easy to understand, logical view.  The UVC is a 
general purpose computer, complete yet basic enough as to remain relevant for a very long time. 
Given the simplicity of the UVC, writing a program that emulates it is reasonably easy.  
 
This method provides all the advantages of XML. But it has the additional – and very significant - 
advantage of keeping the data in its original form instead of forcing an XML representation for 
the stored document. In principle, keeping the original format should always be possible. For 
example, for PDF it is possible to write a decoder of the PDF format. But it may sometimes be 
simpler to immediately convert the original format, once, into another one, and then preserving 
that representation as if it were the original. The choice of an “intermediate format” must be 
guided by a good balance between efficiency of storage and decoding complexity. The same 
logical view can often be used for a multitude of internal formats (for example, one logical view 
would support a color image independently of its original format). This greatly simplifies the 
writing of Restore Applications in the future. 
 
 
3.  The system components 
 
The design goal for the UVC was not to define a minimal general-purpose computer. Instead, the 
idea was to develop an intuitive computer with powerful and flexible instructions for handling bit 
strings, and to take advantage of the fact that it is virtual and that performance is of secondary 
importance. The architecture relies on concepts that have existed since the beginning of the 
computer era: memory, registers, basic instructions, without secondary features often introduced 
for improving the execution performance and the memory usage. It also tries to be natural; for 
example, a negative number is a positive number with a sign (no 2-complement); there is no 
notion of byte, simply bits that can be used at will.  
 
For ease of explanation, we consider the various components shown in Fig. 1. The emulator and 
the new Restore Application are both written in the future. The UVC being emulated is composed 
of a CPU that executes instructions, a status (conditional flag and error indicator), an instruction 
counter, and a memory. All of this is part of the UVC Convention and will not change in time2. 
The UVC program is a sequence of UVC instructions in machine language, with very little glue 
that holds the various pieces together (this is also part of the Convention). The instruction set 
includes an Input/Output facility to exchange data between the UVC emulator and the Restore 
Application (through explicit I/O instructions in the UVC program). 

                                                 
2 It would be unrealistic to claim that the proposed UVC will never change. The version being described 
here is Version 0. Any archived document will always contain such a UVC version number to 
accommodate for rare modifications. 
 



The next sections go through these components in detail. 
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Figure 1: Global architecture 

 
 

3.1 The memory model 
 
The memory model is that of a segmented store. A segment contains an arbitrarily large set of 
registers and a bit-addressable sequential memory. A register may contain a value or a pointer to 
a particular bit of the sequential memory (actually the displacement from the beginning of the 
segment). There is an unlimited number of registers and registers are of unlimited length. An 
integer value occupies as many bits as necessary at the right of the register. The sign is a separate 
bit (0 for plus, 1 for minus). The UVC itself maintains the length of the value internally. The only 
operations on the sequential memory of a segment are designed to move information from the 
memory to registers and vice-versa or to communicate with the external world. Note the bit – 
rather than byte or word – orientation; this is very convenient for handling bit streams and it 
increases independence from real machine architectures. A segment is uniquely identified by a 
Physical Segment Number.   
 
A UVC program is composed of sections that interact between themselves. Each section is stored 
in a segment. An individual section can address all segments that are in its address space 
(conversely, the segments belong to the section). Each segment is uniquely identified by a 
Logical Segment Number. During an execution, the UVC emulator will assign physical segments 
to logical segments and will keep track of the mapping. The address space of a section always 
contains segments 0, 1, and 2, plus a segment that contains the section code, plus an arbitrary 
number of segments containing variables and data. If a section is called recursively, the code is 
stored only once, but each instantiation will have its own address space. 
The different types of segments are now explained (Note that, in the remainder of this 
publication, all segment numbers are logical segment numbers). 



 
Segment 0 
Segment 0 is accessible by any section (it belongs to all address spaces). It contains a collection 
of shared constants and variables. There is a mechanism to load the constants initially (see 
archive module, below).  
 
Segment 1 
The segment is accessible by the section to which it belongs. If the section is invoked recursively, 
segment 1 can be addressed by all instantiations; it acts as a shared memory to communicate 
between multiple activations of the same section. 
 
Segment 2 
There is one such segment per address space; its function is to handle data exchange during 
invocations (calls) among sections. If a section A invokes a section B, A will see the results of B 
in A’s segment 2. (The UVC will adjust the mapping, avoiding a need to copy the results from 
one segment to another). 
 
Segment 3 to 999 
Segments in that range are shared. 
They belong to the address spaces of all sections. For example, if two sections refer to a segment 
4, both see the same segment 4. 
 
Segments >= 1000 
Segments in that range are private. If two sections refer to segment 1000, they see different 
segments; the emulator maps them onto different physical segments. When the section is invoked 
recursively, each invocation will see its own instance of a segment in that range. 
 
In the remainder of this paper, Reg1 stands for a pair (s1, r1), denoting the content of register r1 
in segment s1. As mentioned above, s1 is a logical segment. The content of a register may be a 
value or an address (a displacement) in the sequential memory, if that is what the instruction 
expects. 
  
In any instruction, the specification of a register R may include an indirection flag (R*). When the 
emulator encounters a register R*, the content of R* is a register number which identifies the 
register containing the operand. The various cases are illustrated in Fig. 2. 
 
 
3.2 Status indication 
 
The status of the UVC after an operation is conveyed by the following indicators: 
 
1. The condition flag reflects the result of the last comparison operation. It can only be changed 
by a comparison instruction. 
 
2. The error indicator is a 32-bit number identifying the error that occurred. The possible values 
are determined by the specific implementation of the UVC emulator and are useful for debugging 
that implementation.  
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 Figure 2: The possible contents of registers in UVC instructions 
 
 
3.3 Instruction Counter 
 
The instruction counter contains the address of the next instruction. This address is updated by the 
CPU each time an instruction completes. The address is composed of two integers (32 bits): the 
segment number of the segment containing the section, and the bit-displacement of the instruction 
inside that segment. Most instructions update the counter to the address of the bit that 
immediately follows it in the sequential memory. A few instructions modify the counter in a 
different way, altering the sequential flow (see individual instructions, below). 
 
 
3.4 Instruction formats 
 
The majority of instructions have the same format: an 8-bit operation code (opcode) followed by 
zero, one, two, or three 64-bit strings. Each 64-bit string designates a register: the first 32 bits 
identify a segment; the next 32 bits are decomposed into an indirection flag and a 31-bit value 
that identifies a register in that segment. 
 
In the example that follows, the opcode expects two operands: Reg1 and Reg2. The specification 
of an operand is a 64-bit string, composed of a segment number (seg) and a register number (reg) 
with its indirection flag. If that flag is 0, the register contains the operand; if it is 1, the register 
contains the number of the register (in the same segment) that contains the operand (the lengths 
are shown in parentheses):  
    

segment
(32 bits)

register
(31 bits)

flag
(1 bit)

op
(8 bits)

segment
(32 bits)

flag
(1 bit)

register
(31 bits)  

 



Only a very few instructions have formats that differ from the one shown above. A list of all 
instructions and their operands is provided in the next section 
 
 
3.5 Instruction set 
 
The UVC instructions are shown in the various following sections, arranged in some meaningful 
groups. The binary values corresponding to each opcode are given in the summary table in 
Appendix B. 
 

A general note on bit order semantics and bit order transfer: 

In a register, the rightmost bit is the least significant. When the register length is automatically 
updated as the result of an operation, leftmost bits appear or disappear (the length is updated 
accordingly). When a register is transferred to memory, the leftmost bit of the register is copied at 
the bit position indicated in the instruction; the next bit in the register is copied to the next bit 
(higher bit address) in the memory, etc. The inverse operation is clearly defined. The process is 
graphically depicted in Fig 3. 
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Figure 3: Bit Order Semantics 

When data is transferred from memory to the communication channel (details below), the bit at 
the address specified in the instruction is sent first, then the bit at that address+1, +2, etc. The 
inverse operation stores the first bit received on the channel at the address supplied in the 
instruction, the next bit at the address+1, etc. 
 
Instructions to move data between the memory and the registers. 
 
load Reg1, Reg2, Reg3, 

Load from memory to register. 
Insert into Reg1 a k-bit string from memory, starting at address in Reg2; the length k 
is in Reg3. 
The length of Reg1 is set to k. 

 
store Reg1, Reg2, Reg3 

Store from register into memory. 
Store the rightmost k bits from Reg1 into memory at address in Reg2. 
The length k is given in Reg3. 
 



lsign Reg1, Reg2 
Load sign.      
Set the sign of Reg1 to 0 (or 1) if the single memory bit at address in Reg2 is 0 (or 1). 

    
 
ssign  Reg1, Reg2 

Save sign. 
Set the memory bit at address in Reg2 to 0 (or 1) if the sign of Reg1 is 0 (or 1).       

   

Operations on registers only 
 
loadr Reg1, Reg2 

Load register. 
Copy the content of Reg2 into Reg1 (including the sign).  
After the operation, the lengths of Reg1 and Reg2 are identical. 

 
psign    Reg1 

Set sign to positive. 
Set sign of Reg1 to 0.  

 
nsign    Reg1 

Set sign to negative. 
Set sign of Reg1 to 1.  

 
 
loadc Reg1, k, string 

Inserts in Reg1, right justified, the k bits of the given string;  
k is a 32-bit integer denoting the length of the string. 
The length of the register is set to k. The sign of Reg1 is unaffected. 

 
Since some of instructions change the length of a register, the following instruction provides 
access to the length. 
 
rlen Reg1, Reg2 

Get register length. 
Store the length of Reg2 into Reg1. 3 

 
Numeric instructions 
 
These instructions may cause the lengths of registers to change to accommodate the result. 
The sign is set to the result sign; if the result is zero, the sign is set to 0 (positive). All numeric 
instructions are performed according to the laws of binary arithmetic. 
 
add  Reg1, Reg2 

Addition 
The sum of the values in Reg1 and Reg2 is computed and stored in Reg1. 
The size of the register r1 is set to the order of the leftmost 1 bit in Reg1. 

                                                 
3 If an operand is expected to be a 32-bit integer but is actually shorter, it is padded with zero’s on the left; 
if it is actually larger, an error condition is raised. 



subt Reg1, Reg2 
Subtraction 
The value in Reg2 is subtracted from the value in Reg1 and the result is stored in 
Reg1. 
The size of the register r1 is set to the order of the leftmost 1 bit in Reg1. 

  
mult Reg1, Reg2 

Multiply 
The product of the values in Reg1 and Reg2 are computed and stored in Reg1.  
The sign of Reg1 is also updated. 
The size of Reg1 is set to the order of the leftmost 1 bit in Reg1. 

 
div  Reg1, Reg2, Reg3 

Divide 
The division of the value in Reg1 by the value in Reg2 is computed; 
the quotient is stored in Reg1. 
The size of Reg1 is set to the order of the leftmost 1 bit in Reg1. 
The remainder is stored in Reg3. The sign of Reg1 is also updated,  
and the sign of Reg3 is set to the original sign of Reg1. 

   
Comparison instructions 
 
grt       Reg1, Reg2 

Greater than 
Set the condition flag to 1 if the value in Reg1 is larger than the value in Reg2. 
(the signs are taken into account). 

 
equ       Reg1, Reg2 

Equal 
Set the condition flag to 1 if the value in Reg1 is equal to the value in Reg2;  
(the signs are taken into account). 

 
Logical instructions 
 
not       Reg1 

Negation 
All bits are inverted in Reg1. 
The post-execution length of Reg1 is the same as the pre-execution one.  

 
or  Reg1, Reg2 

Or 
The bits in Reg1 and Reg2 are or’ed bit by bit and the result is stored in Reg1. 
- If the pre-execution length of Reg2 is less than that of Reg1, Reg2 is virtually 

left-padded with 0’s (the post-execution length of Reg2 remains unchanged). 
- If the pre-execution length of Reg2 is larger than that of Reg1, Reg1 is left-

padded with 0’s (the post-execution length of Reg1 becomes equal to the length 
of Reg2). 

 



and  Reg1, Reg2 
And 
The bits in Reg1 and Reg2 are and’ed bit by bit and the result is stored in Reg1. 
- If the pre-execution length of Reg2 is less than that of Reg1, Reg2 is virtually 

left-padded with 1’s (the post-execution length of Reg2 remains unchanged). 
- If the pre-execution length of Reg2 is larger than that of Reg1, Reg1 is left-

padded with 1’s (the post-execution length of Reg1 becomes equal to the length 
of Reg2). 

  
Instructions that alter the flow of execution 
 
br           Reg1 

Branch to a given address, 
Set the instruction pointer to the displacement of the target instruction in the same 
section. 

 
brc          Reg1 

Branch conditionally. 
The instruction acts as the previous one (br) if the condition flag is on.  
Otherwise, the execution proceeds sequentially.  

 
call        Reg1, Reg2, Reg3 

Call a subroutine (another section). 
Invoke code section identified by Reg1; 
Reg2 identifies the starting address of the first instruction to be executed; 
Reg3 identifies the segment used to submit parameter(s). 

  
break    (no operand) 

Return control to the calling section at instruction following the call. 

 
stop       (no operand) 

Stop execution and return the emulator to its initial state, waiting for a new input. 

 
The sequential memory can be initialized by first loading a value in a register and then storing the 
register value in the memory through a store instruction. Of course, a register can also be 
initialized by loading an already initialized value from the sequential memory. 

 
Communication with the outside world (I/O) 
 
The communication makes use of a simple channel abstraction. The abstract channel behaves as a 
half-duplex communication channel. Any “message” of data traveling on the channel is 
composed of three components: 
 

1) Message Type (a 32-bit integer) 
The types and their semantics are chosen by the application. They identify the different 
roles of the data being transferred. It may be a tag for a piece of data or simply a code 
that is used for synchronization between the UVC program and the application.  

2) Message Length  (a 32-bit integer) 
 It is the length of the data being transferred (in bits). 



3) Message Body 
It is the actual bit string to be transferred. 

 
There are two UVC instructions to interact with the communication channel: In and Out. 
 
In    Reg1, Reg2, Reg3 

 The contents of Reg1 and Reg2 before the operation are irrelevant. 
 Reg1 will be set to the message type received.  
 Reg2 will be set to the length of the message  
 Reg3 specifies the starting memory address where the data will be stored.  

  
Out    Reg1, Reg2, Reg3 

 Reg1 contains the message type. 
 Reg2 contains the length of the data to be transferred. 
 Reg3 contains the starting memory address where the data resides.  

    
The UVC convention does not impose any additional requirement on the use and/or specific 
implementation of the channel. For instance, if the piece of data to be transferred is larger than 
the maximum allowed, it can be split into multiple messages; the exchange can be controlled by 
introducing message types such as message start, message continuation and message end. 
Similarly, synchronization between the UVC emulator and the outside application can be 
established by sending specific user defined messages types with no data (When the message 
length is zero the memory address specified in Reg3 is ignored). 
 
Clearly, the UVC convention requires a half-duplex abstract channel that must be enforced by all 
specific implementations. Figure 4 illustrates the only two valid communication patterns. 
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Figure 4: Valid communication patterns 
 
An invalid communication patterns should raise an error flag in the UVC emulator; the emulator 
will interrupt the execution and notify the application. As mentioned before, the UVC Convention 
does not enforce any specific implementation of the channel: actual transfer can occur when both 
sides are executing their respective IN or OUT operations or the message can be temporarily 
buffered. 
 



 

3.6 Organization of the archived module 
 
A program is built out of multiple sections that call each other. Sections can be written 
independently, using symbolic names for segments. A classical compile and link process 
transforms these symbolic references into segment numbers that obey the numbering conventions 
described above. The module is then obtained by concatenating several items as governed by the 
following hierarchical structure: 
 
 Stream:    Nconstants, Constant*, Nsections, Section* 
 Constant: Reg#, Sign, Length, string   
 Section:  Segment#, Length, Code  
  

Nconstants (a 32-bit integer) is the number of constants that have to be loaded in segment 0; it is 
followed by Nconstants structures of type Constant, followed by Nsections (a 32-bit integer), the 
number of program sections to be loaded, followed by Nsections structures of type Section . 

The structure of type Constant is the concatenation of a register number (a 32-bit integer), a sign 
bit, a string length L (a 32-bit integer), and the L-bit string itself. 

A structure of type Section is the concatenation of a segment number (a 32-bit integer), the length 
of the code in bits (a 32-bit integer), and the code itself. The segment number indicates in which 
segment the section code must be loaded. By definition, the first section in the archived module is 
the starting section of the program. 
 
 

3.7 Remarks 
 

The UVC described in this report has been fully implemented. The implementation is being used 
at the National Library of the Netherlands (KB) [5] and by a publicly available demo on the IBM 
AlphaWorks site [6].  

An important question is “how can we be sure that an archived program is bug free?”. There are 
two correctness issues. The first one is making sure that a given UVC implementation is correct. 
To that effect, an extensive UVC test program has been developed that covers the whole 
functionality of the machine: 

• Initial loading 
Testing whether sections and global constants are loaded correctly in the UVC 

• Activation of sections 
Invoking a section, passing arguments and results, and returning control to the invoking 
section.    

• Bit addressability 
Extensive testing of different bit oriented and segment/memory mechanism memory. 

• Instruction Set 
Extensive testing of all instructions, making sure that no unwanted side effect (such as 
overflow) occurs. 



• Communication 
Testing the behavior of the communication channel through the usa of the IN and OUT 
instructions. 

The second correctness issue concerns the UVC program itself. Here, more than an absolute 
correctness, we need to “proof” that the program handles correctly all instances actually ingested 
in the system. An exhaustive approach consists of applying the program to all instances, at ingest 
time or at least before obsolescence of the original viewer or application. In some cases, the 
results can be compared automatically with those obtained originally. If the UVC program is 
interactive, exhaustive checking is not possible; then the best verification techniques available at 
that time should be used, together with checking the results for a reasonably large sample of 
instances. 

Finally, this paper was supposed to be exclusively a “Principle of Operation” manual. To learn 
more about the preservation issues in general and more particularly about the UVC approach, the 
reader should consider the references [1], [2] and [4], and for particular applications, [3] and [5]. 
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Appendix: An example  

 

In many applications of the UVC technology, the function of the UVC program will be to decode 
the internal format of a file and return the results according to a predefined logical view. In more 
general cases, the UVC program can also implement any arbitrary logic, using some input 
parameters and/or some input file(s). The following program is very simple but still illustrates the 
more general case. Instead of processing a file, it generates the results by (a recursive) 
computation.  

 
 int a = 10;  // introduced to illustrate sharing 

 
void main ( ) 

      { 
  int x, y, w; 
  scanf ("%d", &x); 
  y = factorial(x); 
  w = a * y; 
  printf ("%d\n", w); 
      } 
  

int factorial (int x) 
      { 
  int z;  
  if (x == 1) return (1); 
  z = x * factorial(x-1); 
  printf ("%d %d\n", a, z); 
   return (z); 
      } 

 } 

 
The execution of the C program produces the following results: 
 
 10 2 
 10 6 
 10 24 
 240 
 
For a simple output, the documentation may easily explain to the future user what the output 
represents. But, in general, the future user will want to process the data and it is therefore 
preferable to return the data elements, one by one, and tagged. If tag=1 identifies the output for a, 
tag=2 identifies the output for z, and tag=3 identifies the output for w, the results would be:  

  
 1 10 
 2 2 
 1 10 
 2 6 
 1 10 
 2 24 
 3 240 
 



This is actually what is implemented in the UVC program below. The documentation 
may easily explain the format by using a simple specification (such as a DTD in XML):  
 
 Result: Line*, W 
 Line: A, Z 
 A (1)    
 Z (2)    
 W (3) 
 
where the values in parentheses indicate the tag values. 
 

Constants.asm 
 
# Constants to be defined in segment 0 
# Entry format:  
# register   sign (plus: 0, minus: 1)   length (in bits)   value (in hex) 
 
# Constants used for communication 
0 0 1 0x0         # default entry address into a section 
1 0 1 0x1         # constant 1 = the message tag for a 
2 0 2 0x2         # constant 2 = the message tag for z 
3 0 2 0x3         # constant 3 = the message tag for w 
4 0 16 0xFFFF     # constant is memory address of message to be output  
 
# Global variables 
5 0 4 0xA         # a = 10 

Main.asm  
 
Main 
1001                # segment number for Main section 
0,1002,1003         # segments this section references (for assembler only) 
 
# Program: Main, to compute the factorial of a given number 
# This program computes the factorial of a value received over the 
# communication channel. It outputs the result as binary values. 
# These values are tagged as mentioned in the simple specification above;  
# the tags themselves are communicated as message types. 
# 
# By convention, the argument to the factorial section is loaded in register 
# 1 of the segment containing the argument. The result is communicated back in 
# register 2 of the same segment. 
 
# section uses 1002 as working segment 
# Set input address in register (1002,12): 255 
LOADC 1002 1 8 0xFF 
 
# Get argument and load it in argument section (1003) 
IN 1002 2 1002 3 1002 1            # only (1002,1) is an input argument 
LOAD 1003 1 1002 1 1002 3          # save input value x in (1003,1)   
 
# Set up arguments to call Factorial (seg 1010) with arguments (seg 1003) 
LOADC 1002 4 12 0x3F2              # set (1002, 4) to value 1010  
LOADC 1002 5 12 0x3EB              # set (1002, 5) to value 1003 
 
# Call the factorial section 
CALL 1002 4 0 0 1002 5 
 
# z = a * factorial(x) 
LOADR 1002 6 0 5                    # copy value of a in (1002,6) 
MULT 1002 6 1003 2                  # multiply a by the result of factorial 
RLEN 1002 3 1002 6                  # store length of result in (1002,3)  
STORE 1002 6 0 4 1002 3             # store result in output area - at address 
                                    # specified in (0,4)                        
OUT 0 3 1002 3 0 4                  # message type = 3 (0, 3) 
 
STOP 

 



Factorial.asm 
 
Factorial 
1010                    # segment number for Main section 
0,1,2,1002,1003         # segments this section references (for assembler only) 
 
 
# Computes the factorial of the value given in register (2,1) 
# The result is placed in register (2,2) 
 
# Set (1002,2) equal to 1 
LOADC 1002 2 1 0x1 
 
# Move the arguments in segment 2 to local segment 1002  
LOADR 1002 1 2 1 
 
# if (1002,1) > 1, jump to recursion 
GRT 1002 1 1002 2                # compare argument to 1 
LOADC 1 1 RECURSION              # constant (address) computed by Assembler  
BRC 1 1                          # greater than 1, needs more 
 
# else jump to base 
LOADC 1 1 BASECASE     
BR 1 1                           # equal to 1, we have got everything 
 
label: RECURSION 
# call argument segment (1003) with segment new argument 
LOADR 1003 1 1002 1 
 
# subtract one (1002,2) from argument in (1003,1) 
SUBT 1003 1 1002 2 
 
 
# call section factorial (1010 = 0x03F2) with segment (1003=0x3EB) 
LOADC 1002 3 16 0x3F2               # set (1002, 3) to value 1010 
LOADC 1002 4 16 0x3EB               # set (1002, 4) to value 1003 
 
CALL 1002 3 0 0 1002 4 
 
# compute factorial 
# multiply factorial(x-1) by x. 
MULT 1002 1 1003 2                   # multiply result by (1002,1)  
LOADR 2 2 1002 1                     # and store in (2,2) 
 
# Return value of global var a 
RLEN 1002 5 0 5 
STORE 0 5 0 4 1002 5 
OUT 0 1 1002 5 0 4                   # message type = 1 (0,1) 
 
# Return result of this factorial call 
RLEN 1002 5 2 2 
STORE 2 2 0 4 1002 5 
OUT 0 2 1002 5 0 4                   # message type = 2 (0,2) 
BREAK 
 
label: BASECASE 
# base case of recursive routine n=1 
LOADR 2 2 1002 2 
BREAK 
  



Appendix B: UVC opcodes 
 
 
    

Opcode Dec. Hex Operands Function 
 Move information between registers and memory 
Load 10 0A Reg1 (dest),  Reg2 (address),  Reg3 (length) Load from memory to register  
Store 11 0B Reg1 (src),  Reg2 (address),  Reg3 (length) Store from register into memory 
Lsign 12 0C Reg1 (dest), Reg2 (address) Load sign 
Ssign 13 0D Reg1 (src), Reg2 (address) Save sign 
 Operations on registers 
Loadr 20 14 Reg1 (dest),  Reg2 (src) Load register 
Psign 21 15 Reg1 (positive) Set sign to positive 
Nsign 22 16 Reg1 (negative) Set sign to negative 
Loadc 23 17 Reg1 (dest),  Reg2 (length),  bit string Load constant 
Rlen 24 18 Reg1 (length),  Reg2 (src) Get register length 
 Numeric instructions 
Add 30 1E Reg1 (dest), Reg2 (arg) Add 
Subt 31 1F Reg1 (dest), Reg2 (arg) Subtract 
Mult 32 20 Reg1 (dest), Reg2 (arg) Multiply 
Div 33 21 Reg1 (quotient), Reg2 (arg), Reg3 (remainder) Divide 
 Comparison instructions 
Grt 40 28 Reg1 (arg1), Reg2 (arg2) Greater than (arg1 > arg2) 
Equ 41 29 Reg1 (arg1), Reg2 (arg2) Equal (arg1 = arg2) 
 Logical instructions 
Not        50 32 Reg1 (dest), Negation 
Or 51 33 Reg1 (dest), Reg2 (arg1) Or 
And 52 34 Reg1 (dest), Reg2 (arg1) And 
 Instructions that alter the flow of execution 
Br 60       3C Reg1 (address) Branch 
Brc 61 3D Reg1 (address) Branch on condition  
Break 62 3E  Return to calling section 
Call 63 3F Reg1 (section), Reg2 (address), Reg3 (argument) Call another segment  
Stop 64 40  Stop execution  
 Communication with the outside world (I/O) 
In 70 46 Reg1 (msg type), Reg2 (length), Reg3 (address) Input 
Out 71 47 Reg1 (msg type), Reg2 (length), Reg3 (address) Output 
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