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ABSTRACT
We study the dynamics of information propagation in environments
of low-overhead personal publishing, using a large collection of
WebLogs over time as our example domain. We characterize and
model this collection at two levels. First, we present a macroscopic
characterization of topic propagation through our corpus, formal-
izing the notion of long-running ”chatter” topics consisting recur-
sively of ”spike” topics generated by outside world events, or more
rarely, by resonances within the community. Second, we present
a microscopic characterization of propagation from individual to
individual, drawing on the theory of infectious diseases to model
the flow. We propose, validate, and employ an algorithm to induce
the underlying propagation network from a sequence of posts, and
report on the results.

1. INTRODUCTION
Over the course of history, the structure of societies and the rela-
tions between different societies have been shaped to a great ex-
tent by the flow of information in them [11]. More recently, over
the last 15–20 years, there has been interest not just in observing
these flows, but also in influencing and creating them. Doing this
requires a deep understanding of the macro- and micro-level struc-
tures involved, and this in turn has focused attention on modeling
and predicting these flows.
The mainstream adoption of the Internet and Web has changed the
physics of information diffusion. Until a few years ago, the major
barrier for someone who wanted a piece of information to spread
through a community was the cost of the technical infrastructure
required to reach a large number of people. Today, with widespread
access to the Internet, this bottleneck has largely been removed. In
this context,personal publishingmodalities such as weblogs have
become prevalent.
Weblogs, unlike earlier mechanisms for spreading information at
the grassroots level, offer the opportunity for direct, frequent, and
low-cost observation of information flow at the individual level.
This in turn enables applications that were not previously possible.
Given the huge sums of effort and money spent by corporations and
political organizations to spread their message, timely feedback and
monitoring are vital to maximizing the impact of a marketing, polit-
ical, or other campaign. On the other side, users are inundated with
organizations clamoring for their attention. We want to leverage the
blogging community to identify newsworthy events, as evidenced

by spikes in postings of the relevant communities.
We are interested in the dynamics of information propagation in
environments of low-overhead personal publishing, such as web
pages, Weblogs, bulletin boards, and netnews. We focus in this pa-
per onBlogspace, the space of all weblogs. Of course, personal
publishing doesn’t occur in isolation. It is influenced by, and in-
fluences, the older more mainstream media sources. Thus, in our
analysis, we include both Weblog postings and news articles from
sources such as Reuters and the AP Newswire.
An obvious course of analysis of blogspace would be based on
the link structure manifested in blogrolls and such. We posit that
blogspace exhibits distinct structures when examined at different
temporal granularities. At a coarse granularity, we find the kind of
structure described in [22]. Our focus is not so much on this struc-
ture of blogspace as in the diffusion of information, as reflected in
who influences whom, which is a much more dynamic structure. In
doing this, we find that traditional media sources such as Reuters
and AP (who do not typically appear in blogrolls) still have an enor-
mous influence. Thus, we believe that our study applies more gen-
erally to the diffusion of information in environments of personal
publishing and not just to blogspace.
There are many dimensions along which information diffusion can
be characterized. In this paper, we explore the following:

Topics: We are interested in first identifying the set of postings that
areabout some topic, and then characterizing the different
patterns into which the collection of postings about the topic
may fall. We propose that topics are mostly composed of a
union ofchatter(ongoing discussion whose subtopic flow is
largely determined by decisions of the authors) andspikes
(short-term, high-intensity discussion of real-world events
that are relevant to the topic). We develop a generative model
to capture this observed structure.

Individuals: Though the advent of personal publication gives ev-
eryone the same reach, not all individuals have the same
grasp. We observe in our data that there are several distinct
categories of individuals, as viewed by their impact on infor-
mation diffusion through blogspace. This characterization
allows us to predict the pattern of postings (about a topic)
based on historical observations about the behavior of indi-
viduals in other contexts. We develop a model for propaga-
tion based on previous work in the area, and an algorithm for
learning model parameters from observations. We apply this
model to a large dataset, and report the findings.

2. RELATED WORK



The propagation of information has been studied extensively in the
context ofgossipingandbroadcasting[18] in networks of a variety
of forms, but the focus of that literature is essentially algorithmic in
nature. Here, we are interested in models of information dispersion
in which nodes in the network may or may not be interested in the
information, and thus may or may not pass along the information
to their neighbors.
The problem of understanding diffusion through a population has
been studied in a number of communities, ranging from thermo-
dynamics to epidemiology to marketing. Maxwell and others were
the first to provide a rigorous analysis of this problem, in the con-
text of thermodynamics. In that and subsequent work, statistical
mechanics has looked at various models for the diffusion of par-
ticles of one gas in an other. Though this setting is superficially
different, we find much that we can borrow from that field if we
look at information as a kind of particle.

2.1 Information propagation and epidemics
Much previous research investigating the flow of information through
networks has been based upon the observation of a deep analogy
between the spread of disease and the spread of information in net-
works. The analogy between infection and information allows one
to bring results of centuries of study of epidemiology to bear on
questions of information diffusion. (See, for example, the book of
Bailey [4] for some of the extensive work in this field.)
The classical disease-propagation models in epidemiology are based
upon the cycle of disease in a host: a personu is first susceptible
(S) to the disease, and, ifu is then exposed to the disease by an
infectious contact, thenu herself becomesinfected (I)(and infec-
tious) with some probabilityp. The disease then runs its course
in hostu, andu is thenrecovered (R)(or removed, depending on
the virulence of the disease). A recovered individual isimmuneto
the disease for some period of time, but the immunity may eventu-
ally wear off, leavingu once again susceptible. ThusSIRmodels
diseases in which recovered hosts are never again susceptible to
the disease—as with a disease conferring lifetime immunity, like
chicken pox, or a highly virulent disease from which the host does
not recover—whileSIRSmodels the situation in which a recov-
ered host eventually becomes susceptible again—as with influenza,
e.g. An important parameter of a network is itsepidemic threshold:
what is the minimum transmission probabilityρ so that a disease
spreads to infect a constant fraction of the network if a single seed
node is initially infected? (In the model we consider in Section 5.2,
unlike the typical model in epidemiology, the transmission proba-
bility p = p(u, v) varies from edge to edge in the network.)
In blogspace, one might interpret the SIRS model as follows: ini-
tially, personu is not interested in topicx, but may become inter-
ested (S);u is actively interested in and posting on topicx (I); u
has tired of topicx and is no longer posting on it (R); andu has
forgotten her boredom, and now may potentially become interested
in topic x again (S). For example, Girvan et al. [13] study a SIR
modelwith mutation, in which a nodeu is immune to any strain
of the disease which is sufficiently close to a strain with whichu
was previously infected. They observe that (with appropriate set-
tings of parameters) it is possible to generate periodic outbreaks,
where the disease oscillates between periods of epidemic outbreak
and periods of calm while it mutates into a sufficiently new form
that it can cause another major outbreak. In blogspace, one could
imagine a blogger writing about Arnoldqua movie star, growing
bored of the topic, and then, after the topic of Arnold has evolved
sufficiently, beginning to blog again about Arnoldqua governor.
(We observe this kind of ebb and flow in the popularity of various

“spiky chatter”-type memes. See Section4.2.1.)
The majority of the epidemiology literature, including the work of
Girvan et al. [13], focuses on the case of “fully mixed” or “ho-
mogeneous” networks, in which a node’s contacts at any time step
are chosen randomly from all other nodes in the population—i.e.,
there is no underlying network defining the contacts of each node.
More recently, as the importance of network structure has become
more clear, studies have begun to explore disease and information
propagation on models of realistic networks.
In a model of small-world networks defined by Watts and Strogatz
[31], Moore and Newman [24] calculate the epidemic threshold.
However, this model does not account for some interesting and
seemingly very important properties of real networks. Apower-
law network is one in which the probability that the degree of a
node isk is proportional tok−α, for a constantα typically be-
tween2 and3. Power laws have been observed in many important
real-world networks [23], including the social network defined by
blog-to-blog links [22]. We now review some previous research on
epidemic spreading on networks that follow a power law.
Pastor-Satorras and Vespignani [28] analyze an SIS model of (com-
puter) virus propagation in power-law networks, showing that—in
stark contrast to random or regular networks—the epidemic thresh-
old is zero. (In other words, for any probabilityε > 0 of disease
transmission across an edge of the network, an epidemic will oc-
cur!) The epidemic threshold of power-law networks has also an
interpretation in terms of the robustness of the network to random
edge failure. Suppose that each edge in the network is deleted in-
dependently with probability(1−ε); we consider the network “ro-
bust” if most of the nodes are still connected. It is easy to see that
nodes that remain in the same component as some initiatorv0 after
the edge deletion process are exactly the same nodes thatv0 infects
according to the disease transmission model above. This question
has been considered from the perspective oferror toleranceof net-
works like the Internet: what happens to the network if a random
(1− ε)-fraction of the links in the Internet fail? Many researchers
have observed that power-law networks exhibit extremely high er-
ror tolerance [2; 7].
These results suggest that modeling information dispersion in blogs
using this kind of transmission model is insufficient, since this
falsely predicts that almost every node in the network will become
“infected” with a topic if there is a non-zero probability of pick-
ing up a topic from a neighbor. One refinement is to consider a
more accurate model of power-law networks. Eguı́luz and Klemm
[12] have demonstrated a non-zero epidemic threshold under the
SIS model in power-law networks produced by a certain generative
model that takes into account the highclustering coefficient—the
proportion of triangles that are “closed,” i.e., the probability that
two peoplev andw will be friends if they have a common friend
u—found in real social networks [31].
One can also resolve this discrepancy by a modification to the model
of transmission. Wu et al. [33] consider the flow of information
through real and synthetic email networks (generated according to a
power-law distribution) under a model in which the probability that
a nodeu will forward a meme to a neighborv of u decays as the
graph distanced(s, u) from the original source nodes of the meme
increases. (The model is inspired by the observation ofhomophily
in social networks: a person is biased towards having friends with
similar interests to her own.) They observe that meme outbreaks
under this model are typically limited in scope—unlike in the cor-
responding model without decay, where the epidemic threshold is
zero—exactly as one observes in real data. Newman et al. [27] have
also empirically examined the simulated spread of email viruses by
examining the network defined by the email address books of a user



community.

2.2 The diffusion of innovation
The spread of a piece of information through a social network can
also be viewed as the propagation of aninnovationthrough the net-
work. (For example, the URL of a website that provides an new,
valuable service is such a piece of information.) Thus we can speak
of bloggersadoptinga topict, analogous to adopting a new tech-
nology like, for example, blogs themselves.
In the field of sociology, there has been extensive study of thedif-
fusion of innovationin social networks, examining the role of the
process ofword of mouthin spreading innovations. At a particular
point in time, some nodes in the network have adopted the innova-
tion, and others have not. Two fundamental models for the process
by which new nodes adopt have been considered in the literature:

• Threshold models [15]. Each nodeu in the network chooses
a thresholdtu ∈ [0, 1], typically drawn from some proba-
bility distribution. Every neighborv of u has a nonnegative
connection weightwu,v so that

∑
v∈Γ(u) wu,v ≤ 1, andu

adopts if and only iftu ≤
∑

adopters v∈Γ(u) wu,v.

• Cascade models [14]. Whenever a social contactv ∈ Γ(u)
of a nodeu adopts, thenu adopts with some probability
pv,u. (In other words, every time a person close to a per-
sonu adopts, there is a chance thatu will decide to “follow”
v and adopt as well.)

In theIndependent Cascade modelof Goldenberg, Eitan, and Muller
[14], we are given a set ofN nodes, some of which have already
adopted. At the initial state, some non-empty set of nodes are “acti-
vated.” At each successive step, some (possibly empty) set of nodes
become activated. The episode is considered to be over when no
new activations occur. The set of nodes are connected in a directed
graph with each edge(u, v) labeled with a probabilitypu,v. When
nodeu is activated in stept, each nodev that has an arc(u, v)
is activated with probabilitypu,v. This influence is independent
of the history of all other node activations. (Ifv is not activated
in that time step, thenu will never activatev.) TheGeneral Cas-
cade modelof Kempe, Kleinberg, and Tardos [19] generalizes the
Independent Cascade model—and also simultaneously generalizes
the threshold models described above—by discharging the inde-
pendence assumption.
Kempe et al. are interested in a related problem on social networks
with a marketing motivation: assuming that innovations propagate
according to such a model, and given a numberk, find thek “seed”
nodesS∗k that maximize the expected number of adopters of the
innovation ifS∗k adopt initially. (One can then give free samples of
a product toS∗k , for example.)

3. CORPUS DETAILS
One of the challenges in any study involving tens of thousands of
publishers is the tracking of individual publications. Fortunately
for us, most of the publishers, including the major media sources,
now provide descriptions of their publications usingRSS(rich site
summary, or, occasionally,really simple syndication) [20]. RSS,
which was originally developed to support the personalization of
the Netcenter portal, has now been adopted by the weblog commu-
nity as a simple mechanism for syndication. In the present work,
we focus on RSS because of its consistent presentation of dates—a
key feature for this type of temporal tracking.
Our corpus was collected by daily crawls of 11,804 RSS blog feeds.
We collected 2K–10K blog postings per day—Sundays were low,

Figure 1: Number of blog postings (a) by time of day and (b) by
day of week, normalized to the local time of the poster.

Wednesdays high—across these blogs, for a total of 401,021 post-
ings in our data set. (Each posting corresponds to an “item” entry in
RSS.) Complementing this, we also crawled 14 RSS channels from
rss.news.yahoo.com hourly, to identify when topics were be-
ing driven by major media or real-world events, as opposed to aris-
ing within blogspace itself. The blog entries were stored as par-
ent/child entities in WebFountain [32] and analyzed with a half-
dozen special-purpose blog annotators to extract the various date
formats popular in RSS, convert to UTF8, detag, etc.
See Figure 1 for the profile of blog postings within a day and from
day-to-day, normalized by the poster’s time zone. The most fre-
quent posting is at 10AM. There is a pronounced dip at 6 and 7PM
(the commute home? dinner? Must-See-TV?), an odd plateau be-
tween 2 and 3AM and a global minimum at 5AM. Posting seems
to peak midweek, and dips considerably on weekends.

4. TOPIC CHARACTERIZATION AND MOD-
ELING

In this section, we explore thetopics discussed in our data. We
differentiate between two families of models: (i)horizonmodels,
which aim to capture the long-term changes (over the course of
months, years, or even decades) in the primary focus of discussion
even as large chatter topics—like Iraq and Microsoft, as of this
writing—wax and wane; and (ii)snapshotmodels, which focus
on short-term behavior (weeks or months) while the background
“chatter” topics are assumed to remain fixed. This paper explores
snapshot models; we do not address horizon models, but instead



raise the issue as an interesting open problem.

4.1 Topic Identification and Tracking
To support our goal of characterizing topic activity, we must first
find and track topics through our corpus. The field oftopic detec-
tion and trackinghas studied this problem in depth for a number
of years—NIST has run a series of workshops and open evalua-
tion challenges [30]; see also, for example, [3]. Our requirements
are somewhat different from theirs; we require schemes that pro-
vide views into a number of important topics at different levels
(very focused to very broad), but rather than either high precision
or high recall, we instead require that our detected set contain good
representatives of all classes of topics. We have thus evaluated a
range of simple techniques, chosen the ones that were most effec-
tive given our goals, and then manually validated different subsets
of this broader set for use in particular experiments.
Our evaluations of these different techniques revealed some unex-
pected gaps in our intuition regarding blogspace; we give a brief
walkthrough here. First, we treated references to particular web-
sites as topics, in the sense that bloggers would read about these
“interesting” sites in another blog and then choose to write about
them. However, while there are over 100K distinct links in our
corpus, under 700 of them appear 10 times or more—not enough
to chart statistically significant information flows. Next, we con-
sidered recurring sequences of words using sequential pattern min-
ing [1]. We discovered under 500 such recurrent sequences, many
of which represented automatically generated server text, or com-
mon phrases such as “I don’t think I will” and “I don’t understand
why.” We then turned to references to entities defined in the TAP
ontology [16]. This provided around 50K instances of references
to 3700 distinct entities, but fewer than 700 of these entities oc-
curred more than 10 times. The next two broader sets provided
us with most of the fodder for our experiments. We began with
a naive formulation of proper nouns: all repeated sequences of up-
percase words surrounded by lowercase text. This provided us with
11K such features, of which more than half occurred at least 10
times. Finally, we considered individual terms under a ranking de-
signed to discover “interesting” terms. We rank a termt by the
ratio of the number of times thatt is mentioned on a particular day
i (the term frequencytf (i)) to the average number of timest was
mentioned on previous days (the cumulative inverse document fre-
quency). More formally,tfcidf (i) = (i− 1)tf (i)/

∑i−1
j=0 tf (j ).

Using a threshold oftf (i) > 10 and tfcidf (i) > 3 we generate
roughly 20,000 relevant terms.
All features extracted using any of these methods are then spot-
ted wherever they occur in the corpus, and extracted with metadata
indicating the date and blog of occurrence.

4.2 Characterization of Topic Structure
To understand the structure and composition of topics, we man-
ually studied the daily frequency pattern of postings containing a
large number of particular phrases. We analyzed the 12K individ-
ual words most highly ranked under the tfcidf ranking described
above. Most of these graphs do not represent topics in a classi-
cal sense, but many do. We hand-identified 340 classical topics, a
sample of which is shown in Table 1.
Next, based on our observations, we attempt to understand the
structure and dynamics of topics by decomposing them along two
orthogonal axes:chatter, internally driven, sustained discussion;
andspikes, externally induced sharp rises in postings. We then re-
fine our model by exploring the decomposition of these spikes into
subtopics, so that a topic can be seen as the union of chatter and
spikes about a variety of subtopics.

apple arianna ashcroft astronaut
blair boykin bustamante chibi
china davis diana farfarello
guantanamo harvard kazaa longhorn
schwarzenegger udell siegfried wildfires
zidane gizmodo microsoft saddam

Table 1: Example topics identified during manual scan.

Figure 2: Three types of topic patterns: the topic “Chibi” (green) is
Just Spike; “Microsoft” (blue) is Spiky Chatter; and “Alzheimer’s”
(red) isMostly Chatter.

4.2.1 Topic = Chatter + Spikes
There is a community of bloggers interested in any topic that ap-
pears in postings. On any given day, some of the bloggers express
new thoughts on the topic, or react to topical postings by other blog-
gers. This constitutes thechatteron that topic.
Occasionally, an event occurring in the real world induces a reac-
tion from bloggers, and we see aspikein the number of postings
on a topic. Spikes do not typically propagate through blogspace, in
the sense that bloggers typically learn about spikes not from other
blogs, but instead from a broad range of channels including main-
stream media. Thus, we can assume all informed authors are aware
of the topical event and have an opportunity to write about it.
On rare occasions, the chatter reachesresonance, i.e., someone
makes a posting to which everyone reacts sharply, thereby caus-
ing a spike. The main characteristic of resonance is that a spike
arises from either no external input or a very small external input.
The formation of order (a spike) out of chaos (chatter) has been
observed in a variety of situations [29], though observation of our
data reveals that this happens very rarely in blogspace. In fact, the
only sustained block re-posting meme that we observed in our data
consisted of the “aoccdrnig to rscheearch at an elingsh uinervtisy
it deosn’t mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is taht the frist and lsat ltteer is at the rghit pclae”
story which came out of nowhere, spiked and died in about 2 weeks
(with most postings over a four-day period).
Depending on the average chatter level and pertinence of the topic
to the real world, topics can be roughly placed into one of the fol-
lowing three categories, with examples shown in Figure 2:

Just Spike: Topics which at some point during our collection win-
dow went from inactive to very active, then back to inactive.
These topics have a very low chatter level. E.g., Chibi.



windows server services longhorn
exchange ie office msdn
outlook msn gates redmond
eolas xp netscape powerpoint
scoble pdc motorola avalon
ms vb acrobat xaml

Table 2: Top coverage terms for Microsoft spikes.

Spiky Chatter: Topics which have a significant chatter level and
which are very sensitive to external world events. They react
quickly and strongly to external events, and therefore have
many spikes. E.g., Microsoft.

Mostly Chatter: Topics which were continuously discussed at rel-
atively moderate levels through the entire period of our dis-
cussion window, with small variation from the mean. E.g.,
Alzheimer’s.

Spiky Chatter topics typically have a fairly high level of chatter,
with the community responding to external world events with a
spike; their persistent existence is what differentiates Spiky Chat-
ter from spikes. They consist of a superposition of multiple spikes,
plus a set of background discussion unrelated to any particular cur-
rent event. For example, the Microsoft topic contains numerous
spikes (for example, a spike towards the end of our window around
a major announcement about Longhorn, a forthcoming version of
Windows) plus ongoing chatter of people expressing opinions or
offering diatribes regarding the company and its products.

4.2.2 Topic = Chatter + Spiky Subtopics
In this section, we refine our model of Topic = Chatter + Spikes
by examining whether the spikes themselves are decomposable.
Intuitively, the community associated with a topic can be seen as
randomly choosing a subtopic and posting about it. When an ex-
ternal world event occurs, it is often particular to something very
specific—that is, a subtopic—especially for complex topics. In
this section, we consider a subtopic-based analysis using the spikes
in the complex, highly posted topic “Microsoft” as a case study.
Microsoft was especially appropriate for this analysis, as several
Microsoft-related events occurred during the collection of our data
set, including the announcement of blog support in Longhorn.
We used a multi-step process to identify some key terms for this ex-
periment. First, we looked at every proper nounx that co-occurred
with the target term “Microsoft” in the data. For each we com-
pute the supports (the number of times thatx co-occurred with the
target) and the reverse confidencecr := P (target |x).
Thresholds fors andcr were manipulated to generate rational term
sets. As is common with these cases, we do not have a hard-and-
fast support and confidence algorithm, but found thats in the range
of 10 to 20 andcr in the range of0.10 to 0.25 worked well. For the
target “Microsoft,” this generates the terms found in Table 2. Of
course, this is not a complete list of relevant subtopics, but serves
rather as a test set. For these terms, we looked at their occurrences,
and defined a spike as an area where the posts in a given day ex-
ceededµ + 2σ. We then extended the area to either side until a
local minimum less than the mean was reached. We refer to posts
during these intervals asspike posts.
Now, having identified the top coverage terms, we deleted spike
posts related to one of the identified terms from the Microsoft topic.
The results are plotted in Figure 3. The de-spiked posts line shows
a considerable reduction in the spikes of the Microsoft graph, with
minor reduction elsewhere. Note that even in the spiky area we

Figure 3: The topic density for posts on Microsoft, both before and
after spike removal.

series server os longhorn

pc ie mac gui
apple jobs dell ui
ram xp explorer drm
unix pcs linux apples
ms macs quicktime macintosh

Table 3: Top coverage spike terms for Windows. Terms on a grey
background are also spike terms for Microsoft (Table 2).

are not getting a complete reduction, suggesting we may not have
found all the synonymous terms for those spike events, or that
subtopic spikes may be correlated with a latent general topic spike
as well.
This analysis in no way implies that the topics in Table 2 are atomic.
We also explored the subtopic “Windows”—one of the subtopics
with better coverage—and looked at its decomposition. The proper
noun selection was performed as before, generating the term set in
Table 3. There is some duplication of terms from Table 2, as the
topics “Microsoft” and “Windows” overlap significantly. However,
some terms unique to Windows appear, especially the comparison
to Apple (Apple, Steve Jobs, Quicktime, Mac, Macs, Macintosh).
Applying these terms to the Windows posting frequency, we see
the results in Figure 4. Again, we see a similar reduction in spikes,
indicating that we have found much of the spiky behavior of this
topic. As might be expected with a more focused topic, the top
24 spike terms have better coverage for “Windows” than for “Mi-
crosoft,” leaving a fairly uniform chatter.
This case study strongly supports our notion of a spike and chatter
model of blog posting. While not presented here, similar behavior
was observed in a number of other topics (terrorism, Linux, the
California recall election, etc.).

4.2.3 Characterization of Spikes
Having presented a qualitative decomposition of topics into chatter
and spikes, we now present measurements to quantify the nature
of these spikes. Each chatter topic can be characterized by two
parameters corresponding to the chatter level (distribution of the
number of posts per day) and the spike pattern (distribution of the
frequency, volume, and shape of spikes).
To perform these evaluations, we hand-tagged a large number of
topics into the categories given in Section4.2.1. Of those hand-



Figure 4: The topic density for posts on Windows, both before and
after spike removal.

Figure 5: Distribution of spike duration and period within chatter
topics.

tagged topics, 118 fell into the chatter category; we performed this
characterization study on those topics. We used the simple spike
definition of Section4.2.2to determine where the spikes occurred
in each chatter topic; an examination of the spikes found by this
algorithm led us to believe that, while simple, it indeed captures
our intuition for the spikes in the graph.
To begin, the average number of posts per day for non-spike re-
gions of our collection of chatter topics ranges between 1.6 to 106.
The distribution of non-spike daily average is well-approximated
by Pr[average number of posts per day> x] ∼ ce−x.
Next, we focus on characteristics of spike activity. Figure 5 shows
the distribution of spike durations and periods. Most spikes in our
hand-labeled chatter topics last about 5–10 days. The median pe-
riod between spike centers is about two weeks.
Figure 6 shows the distribution of average daily volume for spike
periods. The median spike among our chatter topic peaks at 2.7
times the mean, and rises and falls with an average change of 2.14
in daily volume.

5. CHARACTERIZATION AND MODELING
OF INDIVIDUALS

We have covered the high-level statistical “thermodynamic” view
of the data in terms of aggregates of posts at the topic level; now

Figure 6: Average daily volume of spikes within chatter topics.

Region Fraction of topics
RampUp 3.7%
RampDown 5.1%
MidHigh 9.4%
Spike 18.2%

Table 4: Fraction of topics containing each region type.

we turn to a view more akin to particle dynamics, in which we
attempt to uncover the path of particular topics through the various
individualswho make up blogspace. We begin in Section 5.1 by
characterizing individuals into a small number of classes, just as
we did for topics in the previous section. Next, in Section 5.2 we
formulate a model for propagation of topics from person to person
through blogspace, and we present and validate an algorithm for
inducing the model. Finally, we apply the model to real data, and
give some preliminary applications.
Our model is akin to traditional models of disease propagation, in
which individuals become “infected” by a topic, and may then pass
that topic along to others with whom they have close contact. In
our arena, close contact is a directed concept, sincea may read the
blog ofb, but not vice versa. Such a model gives a thorough under-
standing of how topics may travel from person to person. Unfortu-
nately, we do not have access to direct information about the source
that inspired an author to post a message. Instead, we have access
only to the surface form of the information: the sequence in which
hundreds, thousands, or tens of thousands of topics spread across
blogspace. Our algorithm processes these sequences and extracts
the most likely communication channels to explain the propaga-
tion, based on the underlying model.

5.1 Characterizing Individuals
We begin with a quick sense of the textual output of our users.
Figure 7 shows the distribution of the number of posts per user for
the duration of our data-collection window. The distribution closely
approximates the expected power law [23].
We now wish to classify these users. We adopt a simple set of
predicates on topics that will allow us to associate particular posts
with parts of the lifecycle of the topic. Given this information,
we will ask whether particular individuals are correlated with each
section of the lifecycle. The predicates are defined in the context
of a particular time window, so a topic observed during a different
time window might trigger different predicates. See Table 6 for the
definitions of these predicates.
Table 4 shows the fraction of topics that evince each of these re-



Figure 7: Distribution of number of posts by user.

Region Up Down Mid Spike
Users with> 4 posts 20 55 157 310
and> µ + 3σ
Total posts this region 1733 3300 12453 55624

Table 5: Number of users associated with each region.

gions. We can then attempt to locate users whose posts tend to
appear in RampUp, RampDown, MidHigh, or Spike regions of
topics. However, we must exercise caution in tracking this cor-
respondence: for example, we wish to avoid capturing users who
simply happened to post more frequently during the early part of
our data-collection window, and thus are more likely to post during
regions identified as RampUp by our predicates. To overcome this
difficulty, we consider the probabilitypi that a post on dayi falls
into a given category (e.g., RampUp). For any given user, we then
consider the pair(ti, ci) of total posts on dayi and posts in the
category on dayi, respectively. The total number of posts in the
category isC =

∑
i ci. We can then define a “random” user who

contributes the same number of posts each day, but does so without
bias for or against the category. The expected number of posts in
the category for the random user is then

∑
i piti. Because the ran-

dom user produces a sum of independent random variables, each of
which is simply a series of Bernoulli trials with some bias depend-
ing on the day, we can determine the probability that the random
user would produceC or more posts in the category, and therefore
determine the extent to which we should be surprised by the be-
havior of the given user. We set our threshold for surprise when
the number of occurrences is more than three standard deviations
beyond the mean of the random user.
Using this technique, we give the number of users who are unusu-
ally strong contributors to each region in Table 5. In some cases,
as for the Up region, the numbers are relatively low, but the total
number of posts in the region is also quite small. The correlation
is quite strong, leading us to suggest that evaluating broader defini-
tions of a “ramp up” phase in the discussion of a topic may identify
a larger set of users correlated with this region. For regions such
as Mid or Spike, the number of associated users is quite substan-
tial, indicating that there are significant differing roles played by
individuals in the lifecycle of a topic.

5.2 Model of Individual Propagation
We derive our formal model from the Independent Cascade model
of Goldenberg et al. [14] and generalized to the General Cascade

Predicate Algorithm Region
RampUp All days in first 20% of

post mass below mean,
and average day during
this period belowµ−σ/2.

First 20% of post
mass.

RampDown All days in last 20% of
post mass below mean,
and average day during
this period belowµ−σ/2.

Last 20% of post
mass.

MidHigh All days during middle
25% of post mass above
mean, and average day
during this period above
µ + σ/2.

Middle 25% of
post mass.

Spike For some day, number of
posts exceedsµ + 2σ.

From spike to in-
flection point be-
low µ, both direc-
tions.

Table 6: Lifecycle predicates on topics.

Model by Kempe et al. [19]. We are given a set ofN nodes, corre-
sponding to the authors. At the initial state of each episode, some
(possibly empty) set of nodes have written about the topic. At each
successive state, some (possibly empty) set of authors (including
possibly some who have already written before) write about the
topic. The episode is considered to be over when no new articles
appear for some number of time steps, theTimeout Interval.
With the Independent Cascade Model, the set of authors are con-
nected in a directed graph with each edge labeled with a probability.
When authorv writes an article at timet, each nodew that has an
arc fromv to it writes an article about the topic with the probabil-
ity κ(v, w), thecopy probability. This influence is independent of
history whether any other neighbors ofw have written an article.
The General Cascade Model can be seen as generalizing this by
eliminating the assumption of independence.
We introduce the notion that a user may visit certain blogs fre-
quently, and other blogs infrequently; we capture this with an edge
propertyru,v, denoting the probability thatu readsv on any given
day. We also introduce the notion ofstickinessof a topic,S—more
sticky topics are more likely to infect the reader.1

Formally, propagation in our model occurs as follows. If a topic
exists at vertexu on a given day, then we compute the probability
that it will propagate fromu to a neighboring vertexv as follows.
Nodev reads the topic from nodeu on any given day with reading
probabilityru,v, so we choose a delay from an exponential distri-
bution with parameterru,v. With probabilityS, the stickiness of
the topic, the topic will “stick” withv. And finally, with probabil-
ity κu,v, thecopy probability, the author ofv will choose to write
about it. Ifv reads the topic and it does not stick, or is not copied,
thenv will never choose to copy that topic fromu; there is a single
opportunity for the topic to propagate down any given edge.
Alternately, one may imagine that onceu is infected,v will become
infected with probabilitySκu,vru,v on any given day, but once the
ru,v coin comes up heads, no further trials are made.
Thus, given the transmission graph (and, in particular, the reading
frequencyr and the copy probabilityκ for each edge), and given
the stickinessS of a particular meme, the distribution of propaga-
tion patterns is now fully established. Given a community and a
timeout interval, our goal is therefore to learn the arcs and associ-

1Stickiness of a topic is analogous tovirulencein the disease prop-
agation literature.



ated probabilities from a set of episodes. Using these probabilities,
given a new episode, we would like to estimate the stickiness of
the new episode from an initial fragment of the episode. Then, we
would like to be able to predict the propagation pattern that will be
associated with the episode.
We now present a few possible extensions to the model:

• Most topics do not travel exclusively through blogspace; rather,
they are real-world events that are covered to some extent in
the media. During online coverage of the topic, certain blog-
gers may read about the topic in other blogs and respond,
while others may read about the topic in the newspaper and
write without reference to other weblogs. Our model can be
extended by introducing a node corresponding to the “real
world” which we view as writing about a topic whenever the
topic is covered sufficiently in the media. Transmission prob-
abilities and delays are handled as they are elsewhere in the
model, but it is assumed that essentially all bloggers may re-
ceive input from this “real world” node.

• In the real world, communities can become quite large, and
most people do not have the time to read more than a few
blogs on any regular basis. This phenomenon can be mod-
eled either by limiting the indegree of nodes, or by allowing
only some small number of in-edges to influence a particular
node at any time step. The model can be extended by adding
an additionalAttention Threshold(AT) parameter.

More sophisticated models can capture the fact that the at-
tention threshold is a function of the other episodes (in the
same or other communities) that are occurring at the same
time—the more concurrent episodes, the lower the attention
threshold for each episode. This can explain the phenomenon
that during high-chatter events such as the Iraq war or the
California elections, many other topics that would otherwise
have received a lot of attention in fact received little.

5.3 Induction of the Transmission Graph
In the following, we make aclosed world assumptionthat all occur-
rences of a topic other than the first one are the result of communi-
cation via edges in the model. As described above, this assumption
can be weakened by introducing an “outside world” node with ap-
propriate parameters into the model.
A topic in the following is a URL, phrase, name, or any other
representation of a meme that can be tracked from page to page.
We gather all blog entries that contain a particular topic into a list
[(u1, t1), (u2, t2), . . . , (uk, tk)] sorted by publication date of the
blog, whereui is the universal identifier for blogi, andti is the
time at which blogui contained a reference to the topic. We refer
to this list as thetraversal sequencefor the topic.
We shall make critical use of the following observation: we wish to
induce the relevant edges among a candidate set ofΘ(n2) edges,
and we have only limited data, but the fact that bloga appears in
a traversal sequence, and blogb does notappear later in the same
sequence gives us evidence about the(a, b) edge—that is, ifb were
a regular reader ofa’s blog with a reasonable copy probability, then
sometimes memes discussed bya should appear inb’s blog. Thus,
we gain information from both the presence and absence of entries
in the traversal sequence.
We present an iterative algorithm to induce the transmission graph.
Assume that we have an initial guess at the value of(r, κ) for each
edge, and we wish to improve our estimate of these values. We
adopt a two-stage process:

Step 1: Using the current version of the transmission graph, com-
pute for each topic and each pair(u, v) the probability that
the topic traversed the(u, v) edge.

Step 2: For fixedu andv, recompute(r, κ) based on the posterior
probabilities computed above.

5.3.1 Step 1
We are given as input the traversal sequence for a particular topic.
For eachv in the sequence, we consider all previous verticesu in
the sequence, and computePr(u → v), the probability that the
topic would have traversed fromu to v given the delay betweenu
andv in the sequence. We then normalize by the sum of these prob-
abilities to compute posteriors over all nodesu of the probability
that each wasv’s source of inspiration. That is, settingr = ru,v,
κ = κu,v, andδ to be the delay in days betweenu andv:

pu,v =
r(1− r)δκ∑

w<v rw,v(1− rw,v)δw,v κw,v

In practice, for efficiency reasons, we consider only the 20 values
of w closest tov, and require propagation to occur within 30 days.

5.3.2 Step 2
We perform the following operation for each fixedu, v.
First, we require a sequenceS1 of triples(p, δ, s), each correspond-
ing to some topic appearing inu and thenv, wherep is the posterior
probability that the topic traveled fromu to v as computed above,
δ is the delay in days between the appearance of the topic inu and
in v, ands is the stickiness of the topic. We also require a sequence
S2 of pairs(∆, s) for topics with stickinesss in whichu appeared,
v did not appear later in the sequence, and∆ days elapsed between
the appearance ofu and the end of our snapshot.
We can then estimate an updated version ofr, κ as follows:

r =

∑
i pi∑

i piδi

κ =

∑
i pi∑

i∈S1
Pr[r ≤ δi] +

∑
i∈S2

Pr[r ≤ ∆i]

wherePr[a ≤ b] = (1− a)(1− (1− a)b) is the probability that a
geometric distribution with parametera has value≤ b.

5.3.3 Iteration and Convergence
We now have an improved guess at the transmission graph, so we
can return to step 1 and recompute posteriors, cycling through the
process until convergence. During step 1, we use our model of the
graph to guess how data traveled. During step 2, we use our guess
about how data traveled to improve our model of the graph.
For our data sets, the values ofr andκ converge within between 2
and 5 iterations, depending on the data, to a vector of values within
1% of the limiting value under theL2 norm.

5.3.4 Synthetic Validation of the Algorithm
In order to validate the algorithm, we created a synthetic series of
propagation networks, ran each synthetic network to generate ob-
servable sequences of infection by particular topics, and then ran
our mining algorithm to extract back the underlying propagation
network. The synthetic graphs are modified Erdös-Renyi random
graphs:2 a number of verticesn is fixed, as is a target degreed.
2In the full version of this paper, we will also present synthetic
benchmarks based on power law random graphs [6; 21].



Topics per node µr σr µκ σκ

2 0.718 0.175 0.141 0.455
4 0.703 0.157 0.107 0.039
6 0.694 0.134 0.103 0.034

Table 7: Mean and standard deviation forr andκ in low-traffic
synthetic benchmark. Correct values:µ = 0.66, σ = 0.1.

Each vertex selectsd out-neighbors uniformly with replacement
from the vertex set; all parallel edges and self-loops are then re-
moved. Each edge is then given a(r, κ) value; we usedr = 2/3
andκ = 1/10 for our tests.
We began with a series of graphs withn = 1000 andd = 3. For
such graphs, we seeded a number of topics at each vertex, ranging
from 20 to 60. Due to the small value ofκ, we saw on average
between2 and6 topics originating from each vertex. We consid-
ered only edges that were traversed by at least three topics with
probability at least 0.1. We then compared the resulting edge set
against the edge set from the original propagation network. An
edge was counted as erroneous if it appeared in only one of those
two graphs—in other words, in this benchmark we penalize for
both missing edges and unnecessary edges. Of 3000 edges, the
algorithm requires little data to infer the correct edges: once it saw
6 topics per node on average, it correctly inferred 2663 of the 3000
edges, plus 4 erroneous additional edges. For this benchmark, the
algorithm converges in two iterations. The mean and standard de-
viation of the inferred values ofr andκ for this experiment are
shown in Table 7.
Next, we turn to a propagation model with higher degrees in which
topics tend to take off and propagate throughout the graph, making
it more difficult to learn exactly how the information had traveled.
The parameters aren = 500, d = 9, and we take 20 topics per
node. Topic sizes range from 1 to slightly over 200. The estimated
r values have mean0.73 and standard deviation0.12; theκ values
have mean0.08 and standard deviation0.03. The system identifies
almost all relevant edges (to within1%), and identifies a further
almost9% spurious edges due to the more complex structure of
this task. Thus, both the edges and the estimated parameters of the
edges are very close to the underlying model.

5.4 Validation and Analysis of Learned Pa-
rameters

Now that we have validated the algorithm on synthetic data, we val-
idate the model itself against our data. We run the graph induction
algorithm as described above on all the ProperName sequences in
our dataset. As we have seen, roughly 20% of these sequences con-
tain spikes, and fewer than 10% contain RampUp and RampDown
areas. So the dataset consists of both signal and noise. Rather
than introducing a “real world” node to modeling communication
through the general media, we restrict our attention to topics for
which at least 90% of the occurrences are in blogspace, rather than
in our RSS media content. This focuses on about 7K topics.
To validate that the model has in fact discovered the correct edges,
we performed two experiments. First, we downloaded the top 100
blogs as reported byhttp://blogstreet.com . Of the 100
blogs, 70 of them were in our RSS-generated dataset. We then
used the model to rank individual nodes of the network based on
the amount of traffic flowing through those nodes. Of the 70 nodes
in our dataset, 49 were in the top 10% of blogs in our analysis; 40
were in the top 5%, and 24 were in the top 1.2%.
As a second validation, we ranked all edges in the final model by
the expected number of topics that flowed down the edge, and pro-

Figure 8: Distribution of Inverse Mean Propagation Delay (r) and
Copy Probability (κ).

Figure 9: Expected Traffic.

duced the top 200. We hand-examined a random sample of this
set, and in 90% of the cases were able to find a link between the
two blogs. Note that we were able to make use of the structure of
blogspace in the discovery of these links (i.e., blogrolls, and userids
appearing inline), while the algorithm did not have access to these
mechanisms, and made its determinations based on topics alone.

5.4.1 Parameters Learned by the Algorithm
Figure 8 shows the distributions ofr andκ as learned by the algo-
rithm on the approximately 7K topics described above. Most edges
have an expected propagation delay (1/r) of fewer than 5 days; the
mean is 0.28 and the standard deviation is 0.22. Copy probabilities
are quite low, with mean 0.04 and standard deviation 0.07, indicat-
ing that even bloggers who commonly read from another source are
selective in the topics they choose to write about.
Figure 9 shows the distribution of expected traffic along each edge;
i.e., over the set of 11K given topics, for a particular edge(a, b),
how many times doesb read about something ona and conse-
quently write about it? The iteration converges to about 4000 edges
with traffic. Popular edges might have 50 expected copies; the me-
dian edge has 1–2 total expected messages that traverse it.

6. CONCLUSIONS
Blogspace, by virtue of its fine grained observability, offers a fertile



testbed for developing and testing models of information diffusion,
especially through the medium of personal publishing. In this pa-
per, we showed how by using macro (topical) and micro (individ-
ual) models, various structures and behaviors can be understood,
ranging from the strong driving effect of outside world events on
what is being discussed to the applicability of traditional socio-
logical models of influence to bloggers. Employing such charac-
terizations allows applications to take advantage of these rapidly
emerging web phenomena.
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[12] Vı́ctor M. Egúıluz and Konstantin Klemm. Epidemic thresh-
old in structured scale-free networks.Physical Review Letters,
89(108701), 2002.cond-mat/0205439 .

[13] Michelle Girvan, Duncan S. Callaway, M. E. J. Newman,
and Steven H. Strogatz. A simple model of epidemics with
pathogen mutation.Phys. Rev. E, 65(031915), 2002.nlin.
CD/0105044 .

[14] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the
network: A complex systems look at the underlying process
of word-of-mouth.Marketing Letters, 12(3):211–223, 2001.

[15] Mark Granovetter. Threshold models of collective behavior.
American Journal of Sociology, 83(6):1420–1443, 1987.

[16] R. V. Guha and Rob McCool. TAP: A system for integrating
web services into a global knowledge base.

[17] Hans Haller and Sudipta Sarangi. Nash networks with het-
erogeneous agents. Working Paper Series E-2001-1, Virginia
Tech, 2003.

[18] Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L.
Liestman. A survey of gossiping and broadcasting in commu-
nication networks.Networks, 18:319–349, 1988.

[19] David Kempe, Jon Kleinberg, and́Eva Tardos. Maximiz-
ing the spread of influence through a social network. In
Proc. KDD, 2003.

[20] Andrew King. The evolution of RSS.http://www.
webreference.com/authoring/languages/
xml/rss/1/ .

[21] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar,
A. Tomkins, and E. Upfal. Stochastic models for the web
graph. InProc. FOCS, 2000.

[22] Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and An-
drew Tomkins. On the bursty evolution of blogspace. In
Proc. WWW, pages 568–576, 2003.

[23] M. Mitzenmacher. A brief history of lognormal and power law
distributions. InAllerton Commun. Control Comput., 2001.

[24] Cristopher Moore and M. E. J. Newman. Epidemics and
percolation in small-world networks.Physical Review E,
61:5678–5682, 2000.cond-mat/9911492 .

[25] Stephen Morris. Contagion.Review of Economic Studies, 67,
2000.

[26] M. E. J. Newman. The spread of epidemic disease on
networks. Phys. Rev. E, 66(016128), 2002.cond-mat/
0205009 .

[27] M. E. J. Newman, Stephanie Forrest, and Justin Balthrop.
Email networks and the spread of computer viruses.Phys.
Rev. E, 66(035101), 2002.

[28] Romauldo Pasto-Satorras and Alessandro Vespignani. Epi-
demic spreading in scale-free networks.Phys. Rev. Letters,
86(14):3200–3203, April 2001.

[29] Steven Strogatz.Sync: The emerging science of spontaneous
order. Hyperion, 2003.

[30] Topic Detection and Tracking (TDT-2003).http://www.
nist.gov/TDT .

[31] D. Watts and S. Strogatz. Collective dynamics of ‘small-
world’ networks.Nature, 393:440–442, 1998.

[32] WebFountain. http://www.almaden.ibm.com/
WebFountain/ .

[33] Fang Wu, Bernardo A. Huberman, Lada A. Adamic,
and Joshua R. Tyler. Information flow in social groups.
manuscript, 2003.

[34] H. Peyton Young. The diffusion of innovation in social net-
works. Sante Fe Institute Working Paper 02-04-018, 2002.


