RJ10344 (A0504-002) April 1, 2005
Computer Science

IBM Research Report

Multiagent System for Dynamic Web Services Selection

E. Michael Maximilien
IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

Munindar P. Singh
North Carolina State University

Department of Computer Science
Raleigh, NC 27695

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Multiagent System for Dynamic Web Services Selection

E. Michael Maximilien Munindar P. Singh
IBM Almaden Research Center North Carolina State University
650 Harry Road Department of Computer Science
San Jose, CA 95120 Raleigh, NC 27695
maxim@us.ibm.com singh@ncsu.edu
Abstract more broadly in computing, including for business services.

SOAs enable the flexible binding of services—i.e., well-

Service Oriented Architectures (SOAs) promise to enableencapsulated modules of functionality—to construct appli-
the creation of business applications from independently de-cations and systems that best meet user needs.
veloped and deployeservices—roughly, software compo- The SOA vision is that, first, providers will offer sev-
nents that encapsulate and pI’OVide business fUnCtionaIityera| (potent|a||y Competing) services and, Second, prospec-
through standardized interfaces. A key advantage of SOAsijve users of services will dynamically choose the best offer-
is that they enable services to be dyﬂamica”y selected anqngs for their own purposes. For examp|e, you m|ght choose
integrated at runtime, thus enabling system flexibility and the best hotel booking service or the best bookseller, where
adaptiveness—autonomic attributes that are key for mod-yoy alone decide what is best for you. Likewise, you might
ern business needs. However, current techniques provide Nn¢hoose the best component services (such as logging, back-
SuppOI’t for aCtUa”y making rational SeleCtionS, which are |ng up, and so On) to construct and dep|0y an app"cation
key to accomplishing autonomic behavior. that meets your needs. Viewed over multiple episodes, such

We develop a multiagent framework based on an ontol- dynamic selection is a key prerequisite for autonomic com-
ogy for QoS and a new model of trust. The ontology pro- pyting (AC), because it would enable an application or sys-
vides a basis for providers to advertise their offerings, for tem to continually evolve to maintain or improve its perfor-
consumers to express their preferences, and for ratings ofmance along the axes of interest.

services to be gathered and shared. The ratings are essen- However, current approaches only partially address the

tial, k_JecauTsre]: thei’. give mplrul:_?lbass f?r thedselectlgiw (_)f q SOA vision. They enable services to be described and listed
Services. The ralings are qualily-specilic and are obtaned;, public registries (analogous to telephone directories). But
via automatic monitoring or, if appropriate, user input.

. . they provide no means of selecting among multiple services
The agents thus form an ecosystem in which they help yp g g P

h other. We show how thi h matches th I that appear to perform the same function. In other words,
gach other. Yve show how this approach maiches the we ‘you are forced to make an ad hoc decision about which
knownself-* traits of autonomic computing, and introduce

th i fself-adiusting trust W iricall luat of the many hotel booking services or booksellers to use.
€ notion ofself-adjusting trust We empirically evaiuale - peoqq s tens of thousands of specialized and not widely

the resulting system via siml_JIation. Qur res_ults show _that known services are involved, a practical approach cannot
the agents are able to dynamically adjust their trust assign- merely pre-select a few famous companies such as Ama-

ments and thus continually select the best available services,Zon com, but must apply at a much larger scale. Further

for their consumers’ needs. when we consider not only business services but also com-
ponent services, the choices can become quite subtle be-
cause the same provider may offer multiple alternatives.

1. Introduction The thesis of this paper is that service selection can be
rationally carried out only on aempirical basis—that is,
Service-oriented architectures (SOASs) offer an essentialhow a given service has behaved, not only how it was ad-
ingredient of autonomic computing (AC). This is especially vertised. Given the large number of services, users must
so when AC is understood generally as producing contin- share information about their experiences—in effect, mul-
ual automatic adjustment to all aspects of a system, includ-tiplying the benefit of their empirical evaluations by shar-
ing its software configuration. To our way of thinking, the ing them. Traditional, proprietary reputation systems (such
power of AC lies not just in managing data centers but as those maintained by eBay) and proprietary recommender

systems (such as those maintained by Amazon.com) are not Our evaluation shows that the agents are able to dynami-
suitable for services. In particular, they do not allow a cus- cally adjust their trust assignments and thus continually se-
tomizable schema in terms of the qualities of interest to dif- lect the best available services for their consumers’ needs.
ferent users, interject themselves into each transaction, and
own the Qata that |s.gathered. _ 1.2. Organization

What is needed is a means to allow service consumers
to share quallty opinions, .Wh'Ch presuppose an agreed upon - rpe remaining of the paper is as follows. Section 2 gives
set of QoS definitions. Using these quality opinions, service

. . o an overview of our trust model and how it is used to solve
consumers can derive the reputation of service implemen- . : . . .
. . o . the service selection problem. Section 3 briefly discusses
tations on these qualities. By knowing its quality needs for

S) . the technical framework including highlighting previous re-
an application, a service consumer can derivust value g highiighting p

. - . . sults. Section 4 gives a conceptual evaluation of our model
for each available service implementation. Thus, selecting . .
o . : and presents the framework in the realm of autonomic com-
the best service implementation simply corresponds to se-_ g :
puting. Section 5 gives a detail empirical evaluation show-

lecting the most trusted implementation. We can automate; S .)
.)) . ing the emergence of self-adjusting trust. Section 6 high-
the service selection task with software agents acting on be-. : .) .
: lights various related work in the field and Section 7 con-

half of service consumers.

cludes and gives some directions for future work.

1.1. Contribution
2. Background
An important characteristic of automatic selection by us-

ing trust in open environments, such as the Web, is that e developed an agent-based approach for service se-
trust should beself-adjusting That is, service implementa- |ection that includes a flexible notion of trust based on rep-
tions that behave incorrectly should (in essence) be purged,tation. The agents transparently attach to existing services
from the system by virtue of not being selected. Poor serviceand enable their dynamic selection. We introduce a com-
implementations should accumulate a low reputation. Con-prehensiveontology (roughly, a taxonomy with some ad-
versely, when a once awry service implementation starts toditional features) for qualities of services (QoS). This on-
behave correctly, we would like the agents to increasingly tology includes the well-known computing qualities such
consider it for selection. This dynamic and self-adjusting as throughput and latency, but provides hooks to include
consideration of trust for selection matches the goals of au-any application-specific or even idiosyncratic qualities that
tonomic computing [19]. users may need, such as shipping delay. Our agent-based
Self-adjusting trust. The autonomic characteristic of a framework enables users to share information about any of

multiagent system whereby the levels of trust be- the qualities. We developed algorithms by which user pref-

tween the interacting parties are dynamically estab- €rences regarding which qualities they consider more or

lished and adjusted to reflect recent interactions. less important can be applied (using the reputation data) to
help each user select services that best meet his needs. The
tology for QoS to support self-adjusting trust. The ontol- fr_amework also hgs the ability. to continually monitor ser-

. . . - . vices so that services that begin to perform poorly (relative
ogy provides a basis for providers to advertise their offer- to a particular user’s preferences) are de-selected and those

ings, for consumers to express their preferences, and forthat begin to perform well are re-selected.

ratings of services to be gathered and shared. The ratings We now give an overview of how we model the service

yield anemplrlcal basis for the trust placed in different im- selection problem, our QoS-based trust model, and show
plementations. Moreover, the agents thus form an ecosys-

tem in which they help each other identify the best imple- how our model can be used as a solution to the service se-
. . . lection problem.

mentations. Poorly performing implementations can thus be

avoided. The converse challenge is to introduce new ser-

vices or revive services that behaved poorly but are now2.1. Service Selection

functioning well again. To this end, this paper introduces

what we termexplorer agentsThe explorer agents provide We model each Web serviee= (:,¢) as a pair, where

a means to monitor different service implementations, es-. € Y is the interface and < I, is an implementation of the

pecially those that are new or currently out of favor. Thus, service.T represents the set of all URIs andC T is the

they provide a basis for consumers to select implementa-set of all service implementations of interface~or each

tions that are predicted to perform well along the qualities services we associate an application doméir A where

of interest to them, even if there is inadequate positive ex- A is the set of all application domains. An example of an

perience with such implementations. application domain idath representing Web services for

We develop a multiagent framework that uses an on-

mathematical calculations; another domaifiisancewith particular quality Q. More specifically, we denotea =
services such as loan and stock quote. (Qmins Qiypical; ¥maz), Where ey, is the minimum ad-
With each application domaid we associate qualities vertised value for the qualityy,,,,, the maximum, and
Q € @, representing nonfunctional attributes common to ayicq IS the typical value promised for the quali€y by
the Web services in the application domdin® is the set the provider. We requiréu,;, < typical < Qmag-
of all qualities. For each quality) and services we let
@ ={q,-.., g} bethe setof collected opinions, on qual-
ity . These opinions correspondsitselection of service
S.
We assume without loss of generality that for each selec-
tion of services we obtain quality opinions (from the selec- 2.3. Trust Model
tion agent) for each quality in the domaihof s. We can

A provider’s service advertisement for a service imple-
mentation is a collection of quality advertisements, one for
each quality applicable to the service.

now formulate the service selection problem. To provide a solution to Equation 1 we need to pro-
Definition 1 (Service Selection)Let P be the set of all ~ Vide atrust() function that uses the collected quality val-
providers with implementations for interfaceOur prob- ues while taking into acco_unt the quality prefere_:nces of the
lem is to select the service implementation I, of service ~ consumer and the advertisements of the provider. The re-
s from all service providerg € P such that: sulting trust value for a service implementation would en-
able us to rank different service implementations according
1= arg max {trust(i, ®q)} 1) to how well they meet the consumer’s quality needs.
f Let us assume that the collected quality opinions values
Wheretrust() : I, x ® — R is a service trust function. are normally distributed with minimum, maximum, mean,
and variance which are inferred from domain experts and
2.2. QoS Preferences and Advertisements attached to the QoS ontology. We can then assume that the

collected values@ for each qualityQ can be normalized
Each service consumerc C, whereC is the set of all as Z statistics values [35, p. 173]. This enables us to mean-
consumers, will have service quality needs that are specificingfully compare qualities and aggregate them into a single
to its application. For instance, the consumer dbtack- value.
Quoteservice used to give C]UiCk Security quotes on finan- With this asgumption, we start by deﬁning an aggrega-
cial Web sites has different quality needs than for a con- tion of the collected quality values for a qualifythat rep-

sumer of this same quote service but within a brokerage apresents the general opinions of all agents that have selected
plication used to buy and sell securities. The latter's need forthe given service implementation.

fast response time, high availability, and accuracy are criti-

cal to the brokerage application’s success. Definition 4 (Service Quality Reputation) We denote the
In order to accurately select services for consumers WereputauonR(of a service implementation, with respect to

first need a means to represent the consumer’s needs foguality (), as the aggregation of the quality opinions (i.e.,

each quality exposed by the service. quality values) for the service implementatioof services

Definition 2 (Consumer Quality Preferences)A con- ©Ver some time interval. Specifically,

sumer's preferences for a quality) are given by Lo
T = (Tmins Tprefs Tmaz), Where m,;, is the mini- RS) — ,qu(;*t(qk) @)
mum value acceptable for the quality,,,.. the maximum n.4

acceptable, andr,,.; is the preferred value for qual-

ity @ all from the perspective of the consumer. We require wheren is the number of collected quality valua@, =
Tmin < Tpref < Tmaz- {qr}?_, is the set of quality values collected from service
agents as they selected the service implementatibe R

is the qualityQ’s dampening factor, and() : ® — ZT

is the time for which the quality value was collected.
t(¢) = 1 for the most recent collected value at{@) > 1
FIor all other values.

A consumer’s preference for a servigés a collection
of quality preferences, one for each quality needed by the
consumer.

Since service providers may offer different services with
specific targeted consumers, we also need a means to re
resent the providers’ advertisements for each quality in the

set of qualities exposed by a service with B we have a representation of the general opin-

ion on how well service implementatianperforms for a
Definition 3 (Provider Quality Advertisement) A quality quality Q. We now need a means to derive the trust value
advertisementy is a proclamation by a provider for a that a prospective consumer of servicshould assign to

WSAF Server

<<uses>>

each service implementatiarof interface: using the qual-
ity reputations for implementatiof) the consumer’s qual-
ity preferences, and the quality advertisements of provider
p of implementation.
Since the quality advertisements and preferences are de] m |
fined as points on the quality line @f, we can calculate I
the moment of these points with respect to thg., of Conjsun]er
the consumer preferences. In essence, the closer the advefPPlication == e Providers
tised values and reputation are to the preferred value, the /[-—————=——=———————
[Servicey Servicez
(== |

Servicey
Interface

Policy, |

Selection
is achieved C
partly by using
agencies data

Service,
Interface

)

— —_— — — —

Service,
Implementation,

greater the degree of match (and of the resulting trust). Gen- Implementations Implomentations
erally, Equation 3 shows the second moment of a vector
Z = (x1,22,...,2,) about some point.

n
> (a—x)?
=1

We formulate the consumer’s trust assignment for an im- 3. Framework

plementation using Equation 3. However, since we want to

match service implementations whose advertisement match To evaluate our trust model and hypothesis of self-
the need of a service consumer, we start by defining aadjusting trust, we created a framework that augments
matching operator between quality preferences and advera typical SOA with agents. The principal idea is to in-

1 Figure 1. Architecture overview.
n—1

3

moment(Z,a) =

tisements.

Definition 5 (Preference Matching Operatorr) For
each@ € ¥4 let ag = (min, Quypical, ¥maz) 1S the ad-
vertisement of providep of service implementatiof for
quality @ and mq (Tmin, Tpref, Tmaz) D€ the con-
sumer’s preferences for quality.

Let Qmin min(amin; 7Tmin) and Qmaw
max(a’fzafﬂ7 7T77L(l.’lj)')

Let@; = <Qmina Qtypicals Tpref 5 Qmazs R8)>

We define the preference matching operatéor @ as:

(ﬂ'ma;z < a'maz) /\ (ﬂ'pref > O‘min)/\
(Tpref < Qmaz) If dir(Q) =1, and

or
(Wmin S Somzn) A (ﬂ—pref S amin)/\

(ﬂ-p?‘(if Z amam) WhEndl’f’(Q) :l

Wheredir(Q) : ® — {1,]} is associated with each
quality @, such thatdir(Q) =1 indicates that the quality
Q is directionally increasing which means that higher val-
ues for Q are generally preferred by service consumers. And
dir(Q) =] indicates that lower values are generally pre-
ferred.

Using the> operator we can derive theust function of
Definition 1 as follows.

Definition 6 (Service Trust Function)

=~ =~ 1
qTrUSt(Qiy Qpref) moment(Qia Qpref) 2

Wheremoment(gi7 Qpref) # 0
Z qTTUSt(Qh Qp'r'ef)

QED,,
Qe
service Trust (i,)

service Trust (i)

trust(ip, c)

stall software agents between service consumers and
each service that they consume. These service agents ex-
pose the same interface as the service. However, they
augment the service interface with agent-specific meth-
ods. An example of such a methodsstWsPolicywhich
allows consumers to communicate their QoS prefer-
ences. By exposing the same interface as the service
these agents are able to transparently and dynamically se-
lect the actual service implementation by considering the
service consumer’s quality needs. The consumer commu-
nicates its need via the augmented agent interface. Ser-
vice method invocations are done via the service agent who
in turn monitors and forwards all calls to the selected ser-
vice.

Figure 1 shows a high-level view of the architecture; the
details and runtime operation are described at length in [21].
Briefly, the consumer application makes useSefrvice 1
which has three implementations (two by provideand
one by providerA). Instead of selecting the implementa-
tion directly, the application uses a service agent which ex-
pose the same interface @ervice land selects, on the con-
sumer’s behalf, the implementation which best matches the
consumer’s policy. It is worthwhile to note that the service
agents can be co-located with the service consumers or dis-
tributed to an agent server (application server) as shown in
Figure 1. The advantage of decoupling the agents and the
service consumers is to move the agents’ processing from
the consumer’s applications and importantly to allow cross-
platform consumer-to-agent interactions.

In addition, the service agents participate in common
agenciesvhere they share their quality opinions on the se-
lected service implementations. An agency is simplgra
dezvousnode on the network where quality opinions are

shared and aggregated. 1. Self-configuring The system dynamically configures
The agents share a conceptualization of quality in the and reconfigures itself as its environment changes.

form of an ontology. The ontology is partitioned into three

parts. Theupper QoS ontologgontains basic definitons 2. Self-optimizing The system tries to achieve optimal

for all qualities, including modeling relationships between operational characteristics vésvis the current condi-
qualities. Themiddle QoS ontologgxtends the upper on- tions.

tology and defines qualities that are applicable across dif-

ferent domainsLower QoS ontologieare defined for spe- 3. Self-protectingThe system protects itself from inter-
cific domains by extending qualities in the middle ontol- nal or external threats.

ogy or creating new ones from the upper ontology. Service)))
agent behaviors for quality monitoring can also be attached 4- Self-healingThe system takes corrective actions to ad-
to the ontology and dynamically bootstrapped in the agents. dress, as well as prevent, failures during its operations.
Maximilien and Singh [21] give an overview of the upper
and middle QoS ontology as well as discussing examples of A system that achieves some or all of the above traits
lower ontology qualities and example usages of the frame-is said to be autonomic and achieves some levededf-
work. managementSuch a system adjusts itself to be more re-
We implemented this architecture in the Web Service silient to its environment and to better support the goals and
Agent Framework (WSAF) and used simulation experi- Policies of its owners.
ments on simple services as an initial evaluation [22]. The From the above descriptions we can say that our ser-
initial results showed that the service agents are able tovice agents exhibit dynamic configuration during runtime,
accurately select service implementations according to thein essence merging the traditional phases of configuration
consumer’s preferences and adjust the selection as servicand execution. Using the preferences of its service con-
implementations’ quality degrade. We further enhance this sumer, a service agent is able to reselect and rebind to a new
evaluation in Section 4 by conceptually showing how our service provider and implementation, thereby reconfiguring
notion of self-adjusting trust fits the challenges and goals the consumer’s application. Since the agents participate in
of autonomic computing. In Section 5, we evaluate an ap- agencies that allow them to improve subsequent choices and
proach to enable the service agents to adjust their service secollect overall historical perspectives on the various service
lection when a well-behaved service implementation startsproviders and implementations, the system as a whole en-
degrading its exposed qualities and then again providescourages good services while purging the ones that misbe-
good qualities (or vice versa). have. This degree of self-regulation, self-optimization, and
therefore self-management are key desired overall traits of
AC systems. Our approach enables a new AC trait that we
nameself-adjusting trustThis emerges from the system as
a result of the automatic adjustments to the trust levels that
service consumers assign to service providers and imple-
mentations.

4. Conceptual Evaluation

A characteristic of our system as a whole is the emer-
gence of a certain level of autonomy. This autonomy is the
result of the shared knowledge of the consumers which al-
lows them to make selections appropriate to their prefer-
ences and at the same time biasing their choices towards . .
well-behaved services by taking into account the opinions - Empirical Evaluation
of other consumers. Once a service starts behaving in a fash-
ion that is not in accordance with its advertised QoS, iteven- Our empirical evaluation consists of a series of simula-
tually collects low QoS values (low ratings) and therefore a tions tailored to show the emergence of self-adjusting trust.
low overall reputation. Unless that service starts behaving The simulations results reveal how, empirically, our trust
correctly, we expect consumer agents to be biased againsinodel yields a system that autonomically adjusts the level
selecting it. That is, our approach mimics social structures of trust for the service implementations depending on their
where experiences, knowledge sharing, and reputation argyast quality behaviors. Previous experiments showed that
used to make decisions. The entire system regulates itselts service qualities drop, the consumers’ agents select other
and therefore exhibits autonomy. service implementations and eventually converge to clean

This emerging behavior of the system falls perfectly into service implementations [22]. In the current experiment we
the autonomic computing paradigm, as promoted by Horn expand on the previous one by addexplorer agentsThe
[12]. According to Kephart and Chess [19] as well as Ganek simulations reveal the importance of the explorer agents in
and Corbi [9] an AC system manifests four maialf-* the agent community and also how recent quality informa-
traits: tion can be captured and be benefited from.

5.1. Setup Summary

Briefly, we created three sets of a simple mathemati-
cal integer sorting service with one method to sort an ar-
ray of integers. Each set contains five identical service im-
plementations. Each implementation exposes the qualities:
MethodFaultRatePercentAvailability andMethodRespon-
seTimeThe qualities represent the average fault-rate of ser-
vice methods, the average service availability (as a per-
centage), and the average response-time of the service's
method. In addition the implementations of each set have
identical quality advertisement. We created three groups of
five consumers; each group has quality preferences biasing
the members to one of the set of service implementations.
We named the groups of consumeCareful Mellow, and
Rushedindicating their general preferences biased for the
three qualities.

We ran various simulations attaching a service agent to
each consumer and collected the agent’s selection. The ser-
vice implementations in each group are numbered. , 4
as are the service consumers. In some of the simulations, we
artificially forced all service implementations of group, ex-
cept the last one (hnumbered 4), to have its quality degrade.
We term thisdopingthe implementations. Our results show
that the service agent is able to find and select the clean ser-
vice implementation in a group after some number of itera-
tions to build the necessary reputation of service implemen-
tations.

For this experiment we run simulations with a simi-
lar setup of service implementations and consumer service
agents as in the previous experiment; however, for each sim-
ulation we:

ter theexecution frequencyf the explorer agent. Es-
sentially, this value denotes the wait period between
each execution of the exploring task. Another control-
ling factor is the number of explorer agents as a ratio
of the total number of agents in the community.

Varied the servicaloping policy As in the previous
simulations we artificially control the qualities of cer-
tain service implementations with a quality doping
mechanism. This allows us to have knowledge (as an
oracle) to which service implementation should be se-
lected by a service agent at any given time during the
simulation. To show the effect of the explorer agents,
we also control the duration of the doping. We intro-
duce two new doping parameters:

1. Stop doping afterSpecifies the number of times
a service will be selected and be under the effect
of the quality doping. After the specified number
of selections, the service doping will be turned
off.

2. Restart doping afterindicates the number of
times the service will be selected before qual-
ity doping is resumed. The restart of doping typ-
ically occurs in conjunction with stopping dop-
ing afterward to simulate the effect of a service
that starts out with its quality doped, then stops
having its quality affected, and then restarts with
a poor quality period. In essence, this simulates
a service that behaves incorrectly, then correctly,
and then incorrectly once again.

To show the emergence of self-adjusting trust, we con-

duct six simulations, varying the number of explorer agents
e Added explorer agentsThese are service agents de- and their execution frequency. We also simultaneously vary
ployed for a specific service interface that periodically the above doping parameters to enable us to better predict
run an exploring task on the service implementations. and measure the effects of the explorer agents. Tables 1
These agents’ primary purpose is to explore the com-shows an overview of the simulations with regard to the ex-
munity of services regardless of a service’s trustwor- plorer agents and related parameters.
thiness. That is, these agents would select a service Table 3 shows the doping policy variation for each sim-
implementation whose quality reputation has dropped ulation. TheDoping column indicates the overall service
to a point where it is no longer selected by regular doping policy usedFull doping refers to the same ser-
consumer agents, even though more recently its qual-vice doping policy as in the previous experiment and sum-
ity characteristics may have improved. The explorer marized in Table 2. Th&top dopingcolumn indicates the
agents do not discriminate and have no preset qual-number of service selections after which service doping is
ity preferences. They select the available service im- stopped. Thekestart dopingcolumn indicates the number
plementations in a round-robin fashion. For each im- of service selections after which service doping is resumed
plementation, they execute the same exploring task.after being stopped.

They monitor the selected service for all of its adver-

tised qualities and participate in appropriate agencies5.2. Results

for these qualities. The net effect is that if a service im-
plementation quality has improved, the explorer agents
will help it gain positive reputation. The primary con-

We now further describe each simulation and its ex-
pected results. For each simulation we also show the results

trolling factor for an explorer agent is how frequently obtained in the form of service selection graphs. The simu-
it performs its exploring tasks. We name this parame- lations are designed to progressively show the impact of the

| Doped quality nameg Provider sets

|

Parameters

MethodIinvokeTime

{0,1,2,3}.{5,6,7,8},{10, 11, 12, 13}

Random delay wherd0 ms < delay < 20 ms

FaultRate

{0,1,2,3}.{5,6,7,8},{10, 11,12, 13}

Random periodic witlperiod = 3

PercentAvailability

{0,1,2,3}.{5,6,7,8},{10, 11, 12, 13}

Random periodic wittperiod = 4

Table 2. Full-doping. Doped quality names, doped provider sets, and any other additional doping pa-

rameters.

| Sim | Iter. [Is doped?| No. | Ratio | Exe freq. (ms)]
1'0’ 11 15 NO 0 00 NA Service selection (full doping)
12 15 Yes 3 02 4500 ‘—Q—Rushed —— Mellow Careful ‘
1.3 10 Yes 3 0.2 6000 b
1.4 10 Yes 3 0.2 5000 ol
15,16| 10 Yes 3 0.2 4500
= 12 - 99
Table 1. Simulations’ explorer agents param- é 10 “’l u
eters. The columns show the simulation num- f 8 (P — —
ber, the number of iterations, whether the S 6 \ / . v
service implementations are doped or not, a3, - L i
the number of explorer agents, the explorer ,
agents ratio to the total number of agents in o
the simulation, and the explorer agents’ exe- 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
cution frequency_ Execution sequence (normalized)
Figure 2. Selection with full doping.
| Simulation | Doping | Stop doping| Restart doping
1.0 NA NA NA
1.1,1.2 Full doping Never Never
1.3,1.4,1.5| Full doping After 6 Never
1.6 Full doping After 6 After 15
Service selection (full dopings & no explorer agents)
Table 3. Simulations’ doping policy parame-
ters. The columns show the simulation num- [——Rushed —— Mellow Careful
ber, the doping policy, the number of selec- ®
tions after which to stop doping, and the "
number of selections after which doping is to 5 2 M %
restart when stopped. R = ¢
z . ﬁ—
explorer agents on the system as well as the emergence of

self-adjusting trust.

Simulations 1.0, 1.1, and 1.2: Base line service selection.
These simulations establish the base line service selec

ol

al

13 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

Execution sequence (normalized)

tion with and without explorer agents. As in the pre-
vious experiment we expect each group of consumers
to eventually converge to the sole clean service im-
plementation [22]. Our expected results for both sim-

Figure 3. Full service doping and no explorer
agents (Simulation 1.0).

ulations, with and without explorer agents, should be
similar to Figure 2.
Figures 3, 4, and 5 show the results obtained. These

Service number

Service selection (0 explorer agents & stop after 6)

‘—Q—Rushed —l— Mellow Careful ‘

13 5 7 9 1113 1517 19 21 23 25 27 20 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

Execution sequence (normalized)

Service number

Service selection (stop doping after 6 and 3 explorer agents with
6000 ms
execution frequency)

‘ —&— Rushed —il— Mellow Careful

ol

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Execution sequence (normalized)

Figure 4. Full doping, stop doping after six
selections, and no explorer agents (Simula-
tion 1.1).

Figure 6. Full service doping stopped after
six and three explorer agents with 6000 ms
execution frequency (Simulation 1.3).

Service number

Service selection (full dopings and 3 explorer agents)

—&— Rushed —ill— Mellow Careful

13 5 7 911131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67

Execution sequence (normalized)

Figure 5. Full doping and three explorer
agents (Simulation 1.2).

are in agreement with our expectations. The consumer
agents, after a period of trying all service implemen-
tations in the same pool, eventually find the sole clean
service implementation and converge to it. This comes
about when no explorer agents are present and the
doping lasts the entire simulation (Figure 3) and also
when the doping stops (Figure 4). This occurs because
the consumer agents never select any of the newly
well-behaved service implementations—which accu-
mulated a low reputation already and are never con-
sidered.

In Figure 5, even though there are explorer agents

present, since the doping never stops, the sole clean
service implementation remains the best alternative for
selection during the entire simulation.

Simulations 1.3, 1.4, and 1.5: Explorer agents (EAgents).

There are two principal goals for simulations 1.3 to

1.5. First, show that when we stop doping the ser-
vice implementations pool, the use of explorer agents
will eventually cause the consumer agents to re-
select services that were avoided when they were
doped. Second, understand the impact of the ex-
plorer agents’ execution frequency on the reselec-
tion of these newly cleaned service implementa-
tions.

Figures 6, 7, and 8 show the service selection results
with three explorer agents and execution frequency re-
duced progressively from 6000, 5000, and then 4500
ms. The first thing to notice is that in each case, the
consumer agents first converge to the sole clean ser-
vice implementation (as in simulations 1.0 and 1.1).
Then as the stop doping takes effect—the service im-
plementations start to have good quality—the effect of
the explorer agents takes hold and the service imple-
mentations start to be selected randomly again. This is
the emergence of self-adjusting trust—as these service
implementations behave correctly (they are not doped)
they are reconsidered for selection.

We also notice that with higher execution fre-
guency, after the service doping is stopped, the newly
well-behaved service implementations are more of-
ten selected than with lower execution frequency.
This can be noticed by comparing Figure 8 with Fig-
ure 6 in the part of the graph where reselection is

Service selection (stop doping after 6 and 3 explorer agents with
5000 ms
execution frequency)

Service selection (3 explorer agents, stop doping after 6, and
restart after 15)

‘—Q—Rushed —— Mellow Careful ‘ —¢—Rushed —ili— Mellow Careful
5 12 i ; ; Q Q SOCCCOOY o] 12
g 10 'E 10
‘:: 8 g 8
g 3
2 [: - [
wn 44— _— n 4 L 4 v L 4 —
° 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 u71 3 5 7 9 11 1315 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71
Execution sequence (normalized) Execution sequence (normalized)
Figure 7. Full service doping stopped after Figure 9. Three explorer agents with full ser-
six and three explorer agents with 5000 ms vice doping stopped after six selections and
execution frequency (Simulation 1.4). restarted after 15 (Simulation 1.6).
clean service implementation.
Service selection (stop doping after 6 and 3 explorer agents with Figure 9 shows the results of this simulation. As ex-
4500 ms . ’
execution frequency) pected, the consumer agents first converge to the sole
Fushed —m—neion po— service |mp!ementat|on. Then as the doplng stops .they
B start selecting other service implementations—since
y the explorer agents help these service implementations
5 v rebuild their quality reputation and thus their trustwor-
§ » thiness. As the services doping restart, the consumer
S 8 agents again gradually converge to the sole clean ser-
o
S s vice implementation. This result is in complete agree-
[. . .
N ment with the emergence of self-adjusting trust.
2
° 13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 6 Related Work
Execution sequence (normalized)

We divide the works related to ours into three broad cat-
egories: QoS-based service selection, trust and trustwor-
thiness, and autonomic computing and multiagent systems
(MAS). For each category we discuss the ones that are clos-
est to ours.

Figure 8. Full service doping stopped after
six and three explorer agents with 4500 ms
execution frequency (Simulation 1.5).

occurring. We conjecture that this is due to faster posi- 6.1. QoS-Based Service Selection

tive reputation accumulation for the well-behaved ser-
vice implementations due to frequent explorer agent
selection.

Service selection approaches fall into two primary cat-
egories: design-time and runtime. In design-time selection,
the application designer or architect use service registries

Simulation 1.6: EAgents with doping stopped and restarted.coupled with service descriptions to select and test binding

In this simulation, we use the best setup from Sim- to a service. Nonfunctional characteristics are considered
ulations 1.3 to 1.5, but in addition we use a doping during trial and error tests of the selected services. Newer
restart policy. That is, we simulate service implemen- techniques using richer semantic descriptions of services
tations behaving incorrectly again. The restart is set up can help in the discovery of service interfaces. OWL-S [30]

to occur after the 15th selection. We expect the con- is an example of a rich service ontology used for seman-
sumer agents to begin again converging to the soletic service discovery.

In runtime service selection, which is of greater rele- 6.2. Trust and Trustworthiness
vance to our work, the service interface is already discov-
ered, but the service implementations must be discovered, The literature on trust in the context of Web systems and
selected, and bound to, based on nonfunctional service atweb services has been growing lately. The literature closest
tributes. Work in this area encompasses QoS requirementsio our work is summarized in [11]. Though a bit dated, most
models and metrics, and middleware. The W3C QoS Re-of the techniques described are applicable to our frame-
quirements for Web Services [34] gives an overview of the work. It is well-known that no security techniques can apply
requirements. The QoS UML profiles described in [1] and in a purely open environment where identities can be readily
[6] are examples of QoS models. Various brokering and created and discarded. In such cases, the best we can do is
middleware architectures [27, 24, 25, 31, 37] have been pro-to use social approaches based on open reputation manage-
posed for using QoS in Web services. Also, in the realm of ment. Yu and Singh have examined the robustness of such
Grid Services, QoS is an important characteristic used forapproaches under certain threats [40].

differentiating the available services on the Grid [2]. Other relevant trust approaches are the Pretty Good Pri-
Interestingly, van Moorsel et al. also consider higher vacy (PGP) Web of Trust and the Platform for Internet
level of qualities such as Quality of Experience (QoE, the Content Selection (PICS) [33]. However, these works are
subjective quality perception of the end user) and Quality mainly in the realm of creating trust systems and platforms
of Business (QoBiz, the economic characteristic of the ser-for human users and human-facing applications. Our goal is
vice to the service provider) [32]. This work also stresses to create trust where human involvement is limited or com-
the importance of relationships among qualities. Similarly, pletely absent.
we model relationships between qualities and use such rela- \Work on reputation systems is also closely related to our
tionships to improve service selection by better computing work. Our proposed reputation calculation extends that of
the preferences of the consumers. Zacharia and Maes [41] and applies it in the world of Web
Other researchers have also proposed using QoS for serservices by making considerations of QoS explicit. Huynh
vice selection [24, 31, 16, 42]. However, whereas theseet al. [14] calculate interaction trust as a reputation value
works address some form of service selection, they do notbut their approach is limited when applied to service se-
address it adequately for open environments, such as usindgection (they do not consider nonfunctional characteristics
trust and reputation and a decentralized multiagent architec-of services) and they also have limited prospect to creating
ture as we are proposing. Wohlstadter et al. [37] propose aa system that is autonomic. Giorgini et al. [10] present an
policy language for advertising the QoS needs of clients andagent-based social and individual trust model. Their model
to allow the middleware to match servers and clients. How- is mainly in the realm of requirements engineering and gath-
ever, their work lacks a complete conceptualization of non- ering; however, the resulting model is a step in the right di-
functional attributes for Web services. Further, their match- rection to achieving a formal agent-based trust model and
making techniques is not geared to enable dynamic evolu-could be used to completement our own. Kalepu et al. [16]
tion of the QoS exposed by the services. In other words, it extend our own approach to consider variance in collected
does not exhibit autonomic characteristics. ratings values and it is also specific to reputation for quali-

Casati et al. [5] present a dynamic service selection us-1ies that are subjectively rated.
ing a data mining approach on the service conversation Kashyap [17] argues that trust models for information
logs. They assume that conversation logs are collected forsystems and service composition must have a verification
each business process execution and that service consumepsocess. He gives a partial taxonomy of trust that includes
specify quality goals that can be measured from the logs.transitive trust (endorsements), reputation (indirect trust),
Using data mining they provide a middleware that can dy- and a priori beliefs. Kashyap sketches how a composed
namically analyze the logs of various conversations and de-trust quality value can be computed from the various trust
termine the services best matching the service consumer'giotions. We differ primarily with this work in that we com-
goals. Though similar in intent, our approach differs in two pute an aggregate trust value from QoS but agree with the
respects. First, in our architecture, we use a multiagent sysfact that a complete model for trust must be multidimen-
tem with an agreed upon QoS ontology, whereas Casatisional.
et al. use a centralized middleware and their definitions of ~ Sloman [29] gives a trust definition that can be used in
qualities is derived from conversation logs. Second, our se-decision making. Like in our approach, Sloman considers
lection is based on the trust value assigned to a service im+eputation a basic component of trust. He observes that trust
plementation, which itself is based of a combination of the is dynamic and context specific and argues that contextual
reputation of the consumer’s quality needs. Casati et al.’s seinformation should be included in the trust model. Sloman'’s
lection is based on a service ranking which is derived from work differs from our approach primarily in that he does not
the decision trees constructed from the conversation logs. consider qualities as a basis for determining the trustor’s

needs. Further, since our quality ontology allows domain- Further aspects of the emergence of self-adjusting trust
specific qualities to be included in the trust calculation, our remain to be studied. These include, for instance, under-
trust model addresses the contextual requirement that Slostanding the density of explorer agents needed to achieve

man raises. a certain level of self-adjusting trust in the presence of ser-
vices advertising some qualities. Since explorer agents con-
6.3. Autonomic Computing and MAS sume precious resources, an analytical model of their be-

havior in the community with respect to the resulting per-

The overall goal of autonomic computing is outlined by ceived level of self-adjusting trust would be highly valuable.
the Autonomic Computing Manifesto [12]. Five levels of Such a model would depend upon a characterization of the
AC are outlined with the goal of eventually building sys- variability in practice in the behavior of service implemen-
tems reaching the highest level: self-management. Section 4ations.
summarizes this vision as it applies to our approach. The full exploitation of explorer agents may require the

Though AC has a well documented vision, actual results €mergence of new standards. Specifically, explorer agents
in the field remain somewhat scarce. Yellin [39] describes Would not automatically be able to use services that re-
an algorithm to dynamically choose between software com- quire a consumer’s private data or require payments. Agents
ponent implementations. However, Yellin's approach is lim- that can perform such tests would be difficult to set up and
ited to closed systems and only considers the case of twosPecialized agencies may emerge to evaluate expensive ser-
competing implementations. Ours is applicable for open Vices on the behalf of prospective consumers. However, if
systems with a potentially large number of alternative im- SUCh services expose amploration interfacehat enables
plementations. exploration and evaluation of their offerings but without re-

Our agents are decision-theoretic in design [26, Quiring payment, they would facilitate explorer agents. An
pp. 413—419]. They extend and apply decision the- €Xploration interface would be useful to a provider, because
ory as documented in [8]. Our approach determines com-it would yield greater exposure to their offerings. An asso-
plex consumer preferences and utility drawing on the ciated aspect is that the consumers will have to trust that
seminal work by [18] on making decisions with multi- the behavior obtained during exploration is representative
ple objectives. We make use of this work in the modern ©Of the behavior to be expected during the actual interaction.
landscape of Web services. Finally, a directior_1 for our work is_to improve the_

The literature on agents and multiagent systems is vastfust model to take into account provider's trustworthi-
and varied. Works by [13, 7, 36, 38] give good introduc- "€SS- P_ro_wders can be t“_JSt_ed by consunaepsiort us-
tions to agency. More recently [23] and [28] discuss agency "9 implicit trust as well as |nd|reqt and tr_ansmve trust such
in the context of Web services and are thus closest to our®S €ndorsements from trusted third parties [20].
framework and approach.

Other multiagent frameworks are also being con- References
sidered in the Web services arena. These include the]
well-established JADE platform [15, 3] and the lesser [‘;'ng' }?asagl(ﬁ, 'l\J/IM/?_ gfomlegft:)erl;vl% dlzeifr:);g]szl)i(& '\gf 26';\;122
known Bond [4] MAS framework. We see two key differ- and Fault Tolerance Characteristics and Mechanisms. Tech-
ences betyveen thgse works an_d ours. Fl_rst, our agents are .., Report 2004-06-01, Object Management Group, June
solely designed with Web services in mind, as such, the 2004.

Web services infrastructure is built-in. In fact, the Web ser- [2] R. J. A-Ali, O. F. Rana, D. W. Walker, S. Jha, and S. So-
vices infrastructure constitutes the core of our framework. hail. G-QoSM: Grid Service Discovery Using QoS Prop-
Second, our framework and agents are geared toward cre- erties. Computing and Informatics Journa21(4):363-382,
ating a trust model that achieves intelligent selection where 2002.

autonomy is an emergent property. This is a novel ap- [3] F. Bellifemine, A. Poggi, and G. Rimassa. JADE: A FIPA-

proach to service selection and novel application of compliant agent framework. IRractical Application of In-
agency. telligent Agents and Multi-Agent Technology (PAAbBges
97-108, 1999.

[4] Bond. Bond: A Multi-agent System, 2002.
[5] F. Casati, M. Castellanos, U. Dayal, and M.-C. Shan. Prob-

. L . . abilistic, Contex-Sensitive, and Goal-Oriented Service Se-
The autonomic characteristic sglf-adjusting trusts lection. InProceedings of 2nd International Conference on

crucial in open systems. We showed how explorer agents Service Oriented Computing (ICSQ@pges 316-321, New
enable our trust model and multiagent system to exhibit this York, Nov. 2004. ACM Press.

characteristic. In this manner, we can enable the benefits of [6] V. Cortellessa and A. Pompei. Towards a UML Profile for
autonomic computing for a wide range of settings. QoS: A Contribution in the Reliability Domain. IRroceed-

7. Conclusions

[7

—

8

—_

9]

(10]

(11]

(12]
(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]
(24]

ings of the fourth International Workshop on Software and [25] S. Ran. A Model for Web Services Discovery with QoS.

Performancepages 197-206. ACM Press, 2004.

J. Ferber, editor. Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence Addison-Wesley, Great
Britain edition, 1999.

S. French.Decision Theory: An Introduction to the Mathe-
matics of Rationality John Wiley and Sons Inc., West Sus-
sex, England, 1986.

A. G. Ganek and T. A. Corbi. The Dawning of the Auto-
nomic Computing Era.IBM Systems Journa#2(1):5-18,
Jan. 2003.

P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone.
Modeling Social and Individual Trust in Requirements En-
gineering Methodologies. [fhird International Conference
on Trust Managemenkecture Notes on Computer Science.
Springer Verlag, 2005. To appear.

T. Grandison and M. Sloman. A Survey of Trust in Inter-
net Application. IEEE Communications Surveys & Tutori-
als, 3(4):2-16, 2000.

P. Horn. Autonomic Computing: IBM'’s Perspective on the
State of Information Technology, 2001.

M. Huhns and M. P. Singh, editoBeadings in Agent$/or-
gan Kaufmann, San Francisco, CA, 1998.

D. Huynh, N. R. Jennings, and N. R. Shadbolt. Developing

[26]

[27]

(28]

[29]

(30]

(31]

SlGecom Exchange4(1):1-10, 2003.

S. Russell and P. NorvigAtrtificial Intelligence: A Modern
Approach Prentice Hall, Upper Saddle River, NJ, 1st edi-
tion, 1995.

A. Sheth, J. Cardoso, J. Miller, and K. Kochut. QoS for
Service-Oriented Middleware. |Rroceedings of the 6th
World Multiconference on Sytemics, Cybernetics, and Infor-
matics (SCI02)volume 8, pages 528-534, Orlando, FL, July
2002.

M. P. Singh and M. N. HuhnsService-Oriented Computing:
Semantics, Processes, Agengohn Wiley & Sons, Chich-
ester, UK, 2005.

M. Sloman. Trust Management in Internet and Pervasive
SystemsIEEE Intelligent System49(5):77-79, Sept. 2004.
K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan.
Automated Discovery, Interaction, and Composition of Se-
mantic Web ServicesJournal on Web Semantic$(1):27—
46, Sept. 2003.

M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller.
A Concept for QoS Integration in Web Services Proceed-
ings of the Fourth International Conference on Web Infor-
mation Systems Engineering Workshops (WISEW{28)es
149-155, Rome, Dec. 2003. IEEE Computer Society.

an Integrated Trust and Reputation Model for Open Multi- [32] A.van Moorsel. Metrics for the Internet Age: Quality of Ex-

Agent Systems. IfProceedings of 7th International Work-
shop on Trust in Agent Societigsages 66—74, New York,
July 2004. ACM Press.

JADE. Java Agent DEvelopment Framework (JADE), 1999.

perience and Quality of Business. Technical Report HPL-
2001-179, Hewlett-Packard, Erlangen, Germany, July 2001.

[33] W3C. Platform for Internet Content Selection (PICS), 1998.

Recommendation.

S. Kalepu, S. Krishnaswamy, and S. W. Loke. Verity: A [34] W3C. QoS for Web Services: Requirements and Possible

QoS Metric for Selecting Web Services and Providers. In

Approaches, Nov. 2003. Note.

Proceedings of the Fourth International Conference on Web [35] D. D. Wackerly, W. M. 1ll, and R. L. ScheaffeMathemati-

Information Systems Engineering Workshops (WISEW'03)
pages 131-139, Rome, Dec. 2003. IEEE Computer Society.
V. Kashyap.
Quality in Intelligent Systems.IEEE Intelligent Systems
19(5):85-87, Sept. 2004.

R. L. Keeney and H. RaiffaDecisions with Multiple Objec-
tives: Preferences and Value Tradeoff®hn Wiley & Sons,
Hoboken, NJ, 1976.

J. O. Kephart and D. M. Chess. The Vision of Autonomic
Computing.IEEE Computer36(1):41-50, Jan. 2003.

Trust, But Verify: Emergence, Trust, and [36]

[37]

E. M. Maximilien and M. P. Singh. Reputation and Endorse- [38]

ment for Web Services.SIGecom Exchange8(1):24-31,
Dec. 2001.

E. M. Maximilien and M. P. Singh. A Framework and On-
tology for Dynamic Web Services SelectiolEEE Internet
Computing 8(5):84-93, Sept. 2004.

E. M. Maximilien and M. P. Singh. Toward Autonomic Web
Services Trust and Selection. Rroceedings of 2nd Interna-
tional Conference on Service Oriented Computing (ICSOC)
pages 212-221, New York, Nov. 2004. ACM Press.
OWL-S. OWL-Service Ontology 1.0, 2004.

S. Ran. A Framework for Discovering Web Services with
Desired Quality of Service Attributes. In L.-J. Zhang, ed-
itor, Proceedings of the International Conference on Web
Servicespages 208-213, Las Vegas, NV, June 2003. IEEE
Computer Society.

(39]

[40]

[42]

cal Statistics with Application®uxbury, Pacific Grove, CA,
6th edition, 2002.

G. Weiss, editor.Multiagent Systems: A Modern Approach
to Distributed Atrtificial IntelligenceMIT Press, Cambridge,
MA, 1999.

E. Wohlstadter, S. Tai, T. Mikalsen, |. Rouvellou, and P. De-
vanbu. GlueQoS: Middleware to Sweeten Quality-of-Service
Policy Interactions. InProceedings of 26th International
Conference on Software Engineering (ICSE 20Q#Hges
189-199, Edinburgh, May 2004. IEEE Computer Society.
M. Wooldridge.An Introduction to Multiagent Systemkhn
Wiley & Sons, West Sussex, England, 2002.

D. M. Yellin. Competitive Algorithms for the Dynamic Se-
lection of Component ImplementationdB8M Systems Jour-
nal, 42(1):85-97, Jan. 2003.

B. Yu and M. P. Singh. An Evidential Model of Distributed
Reputation Management. IRroceedings of Autonomous
Agents and Multi Agent Systems (AAMA®)ges 294-301.
ACM Press, 2002.

G. Zacharia and P. Maes. Trust Management Through Repu-
tation MechanismsApplied Artificial Intelligence14:881—
907, 2000.

L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-Aware Middleware for
Web Services CompositiohEEE Transactions on Software
Engineering 30(5):311-327, May 2004.

