
RJ10344 (A0504-002) April 1, 2005
Computer Science

IBM Research Report

Multiagent System for Dynamic Web Services Selection

E. Michael Maximilien
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Munindar P. Singh
North Carolina State University

Department of Computer Science
Raleigh, NC 27695

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Multiagent System for Dynamic Web Services Selection

E. Michael Maximilien
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120
maxim@us.ibm.com

Munindar P. Singh
North Carolina State University

Department of Computer Science
Raleigh, NC 27695

singh@ncsu.edu

Abstract

Service Oriented Architectures (SOAs) promise to enable
the creation of business applications from independently de-
veloped and deployedservices—roughly, software compo-
nents that encapsulate and provide business functionality
through standardized interfaces. A key advantage of SOAs
is that they enable services to be dynamically selected and
integrated at runtime, thus enabling system flexibility and
adaptiveness—autonomic attributes that are key for mod-
ern business needs. However, current techniques provide no
support for actually making rational selections, which are
key to accomplishing autonomic behavior.

We develop a multiagent framework based on an ontol-
ogy for QoS and a new model of trust. The ontology pro-
vides a basis for providers to advertise their offerings, for
consumers to express their preferences, and for ratings of
services to be gathered and shared. The ratings are essen-
tial, because they give anempiricalbasis for the selection of
services. The ratings are quality-specific and are obtained
via automatic monitoring or, if appropriate, user input.

The agents thus form an ecosystem in which they help
each other. We show how this approach matches the well-
knownself-* traits of autonomic computing, and introduce
the notion ofself-adjusting trust. We empirically evaluate
the resulting system via simulation. Our results show that
the agents are able to dynamically adjust their trust assign-
ments and thus continually select the best available services
for their consumers’ needs.

1. Introduction

Service-oriented architectures (SOAs) offer an essential
ingredient of autonomic computing (AC). This is especially
so when AC is understood generally as producing contin-
ual automatic adjustment to all aspects of a system, includ-
ing its software configuration. To our way of thinking, the
power of AC lies not just in managing data centers but

more broadly in computing, including for business services.
SOAs enable the flexible binding of services—i.e., well-
encapsulated modules of functionality—to construct appli-
cations and systems that best meet user needs.

The SOA vision is that, first, providers will offer sev-
eral (potentially competing) services and, second, prospec-
tive users of services will dynamically choose the best offer-
ings for their own purposes. For example, you might choose
the best hotel booking service or the best bookseller, where
you alone decide what is best for you. Likewise, you might
choose the best component services (such as logging, back-
ing up, and so on) to construct and deploy an application
that meets your needs. Viewed over multiple episodes, such
dynamic selection is a key prerequisite for autonomic com-
puting (AC), because it would enable an application or sys-
tem to continually evolve to maintain or improve its perfor-
mance along the axes of interest.

However, current approaches only partially address the
SOA vision. They enable services to be described and listed
in public registries (analogous to telephone directories). But
they provide no means of selecting among multiple services
that appear to perform the same function. In other words,
you are forced to make an ad hoc decision about which
of the many hotel booking services or booksellers to use.
Because tens of thousands of specialized and not widely
known services are involved, a practical approach cannot
merely pre-select a few famous companies such as Ama-
zon.com, but must apply at a much larger scale. Further,
when we consider not only business services but also com-
ponent services, the choices can become quite subtle be-
cause the same provider may offer multiple alternatives.

The thesis of this paper is that service selection can be
rationally carried out only on anempirical basis—that is,
how a given service has behaved, not only how it was ad-
vertised. Given the large number of services, users must
share information about their experiences—in effect, mul-
tiplying the benefit of their empirical evaluations by shar-
ing them. Traditional, proprietary reputation systems (such
as those maintained by eBay) and proprietary recommender

systems (such as those maintained by Amazon.com) are not
suitable for services. In particular, they do not allow a cus-
tomizable schema in terms of the qualities of interest to dif-
ferent users, interject themselves into each transaction, and
own the data that is gathered.

What is needed is a means to allow service consumers
to share quality opinions, which presuppose an agreed upon
set of QoS definitions. Using these quality opinions, service
consumers can derive the reputation of service implemen-
tations on these qualities. By knowing its quality needs for
an application, a service consumer can derive atrust value
for each available service implementation. Thus, selecting
the best service implementation simply corresponds to se-
lecting the most trusted implementation. We can automate
the service selection task with software agents acting on be-
half of service consumers.

1.1. Contribution

An important characteristic of automatic selection by us-
ing trust in open environments, such as the Web, is that
trust should beself-adjusting. That is, service implementa-
tions that behave incorrectly should (in essence) be purged
from the system by virtue of not being selected. Poor service
implementations should accumulate a low reputation. Con-
versely, when a once awry service implementation starts to
behave correctly, we would like the agents to increasingly
consider it for selection. This dynamic and self-adjusting
consideration of trust for selection matches the goals of au-
tonomic computing [19].

Self-adjusting trust. The autonomic characteristic of a
multiagent system whereby the levels of trust be-
tween the interacting parties are dynamically estab-
lished and adjusted to reflect recent interactions.

We develop a multiagent framework that uses an on-
tology for QoS to support self-adjusting trust. The ontol-
ogy provides a basis for providers to advertise their offer-
ings, for consumers to express their preferences, and for
ratings of services to be gathered and shared. The ratings
yield anempiricalbasis for the trust placed in different im-
plementations. Moreover, the agents thus form an ecosys-
tem in which they help each other identify the best imple-
mentations. Poorly performing implementations can thus be
avoided. The converse challenge is to introduce new ser-
vices or revive services that behaved poorly but are now
functioning well again. To this end, this paper introduces
what we termexplorer agents. The explorer agents provide
a means to monitor different service implementations, es-
pecially those that are new or currently out of favor. Thus,
they provide a basis for consumers to select implementa-
tions that are predicted to perform well along the qualities
of interest to them, even if there is inadequate positive ex-
perience with such implementations.

Our evaluation shows that the agents are able to dynami-
cally adjust their trust assignments and thus continually se-
lect the best available services for their consumers’ needs.

1.2. Organization

The remaining of the paper is as follows. Section 2 gives
an overview of our trust model and how it is used to solve
the service selection problem. Section 3 briefly discusses
the technical framework including highlighting previous re-
sults. Section 4 gives a conceptual evaluation of our model
and presents the framework in the realm of autonomic com-
puting. Section 5 gives a detail empirical evaluation show-
ing the emergence of self-adjusting trust. Section 6 high-
lights various related work in the field and Section 7 con-
cludes and gives some directions for future work.

2. Background

We developed an agent-based approach for service se-
lection that includes a flexible notion of trust based on rep-
utation. The agents transparently attach to existing services
and enable their dynamic selection. We introduce a com-
prehensiveontology (roughly, a taxonomy with some ad-
ditional features) for qualities of services (QoS). This on-
tology includes the well-known computing qualities such
as throughput and latency, but provides hooks to include
any application-specific or even idiosyncratic qualities that
users may need, such as shipping delay. Our agent-based
framework enables users to share information about any of
the qualities. We developed algorithms by which user pref-
erences regarding which qualities they consider more or
less important can be applied (using the reputation data) to
help each user select services that best meet his needs. The
framework also has the ability to continually monitor ser-
vices so that services that begin to perform poorly (relative
to a particular user’s preferences) are de-selected and those
that begin to perform well are re-selected.

We now give an overview of how we model the service
selection problem, our QoS-based trust model, and show
how our model can be used as a solution to the service se-
lection problem.

2.1. Service Selection

We model each Web services = (ι, i) as a pair, where
ι ∈ Υ is the interface andi ∈ Iι is an implementation of the
service.Υ represents the set of all URIs andIι ⊆ Υ is the
set of all service implementations of interfaceι. For each
services we associate an application domaind ∈ ∆ where
∆ is the set of all application domains. An example of an
application domain isMath representing Web services for

mathematical calculations; another domain isFinancewith
services such as loan and stock quote.

With each application domaind we associate qualities
Q ∈ Φd representing nonfunctional attributes common to
the Web services in the application domaind. Φ is the set
of all qualities. For each qualityQ and services we let
Q̂s = {q1, . . . , qn} be the set of collected opinions, on qual-
ity Q. These opinions corresponds ton selection of service
s.

We assume without loss of generality that for each selec-
tion of services we obtain quality opinions (from the selec-
tion agent) for each quality in the domaind of s. We can
now formulate the service selection problem.

Definition 1 (Service Selection)Let P be the set of all
providers with implementations for interfaceι. Our prob-
lem is to select the service implementationi ∈ Iι of service
s from all service providersp ∈ P such that:

i = arg max
i∈Iι

{trust(i,Φd)} (1)

Wheretrust() : Iι × Φ 7→ R is a service trust function.

2.2. QoS Preferences and Advertisements

Each service consumerc ∈ C, whereC is the set of all
consumers, will have service quality needs that are specific
to its application. For instance, the consumer of aStock-
Quoteservice used to give quick security quotes on finan-
cial Web sites has different quality needs than for a con-
sumer of this same quote service but within a brokerage ap-
plication used to buy and sell securities. The latter’s need for
fast response time, high availability, and accuracy are criti-
cal to the brokerage application’s success.

In order to accurately select services for consumers we
first need a means to represent the consumer’s needs for
each quality exposed by the service.

Definition 2 (Consumer Quality Preferences)A con-
sumer’s preferences for a qualityQ are given by
π = (πmin, πpref , πmax), where πmin is the mini-
mum value acceptable for the quality,πmax the maximum
acceptable, andπpref is the preferred value for qual-
ity Q all from the perspective of the consumer. We require
πmin ≤ πpref ≤ πmax.

A consumer’s preference for a services is a collection
of quality preferences, one for each quality needed by the
consumer.

Since service providers may offer different services with
specific targeted consumers, we also need a means to rep-
resent the providers’ advertisements for each quality in the
set of qualities exposed by a service.

Definition 3 (Provider Quality Advertisement) A quality
advertisementα is a proclamation by a provider for a

particular quality Q. More specifically, we denoteα =
(αmin, αtypical , αmax), whereαmin is the minimum ad-
vertised value for the quality,αmax the maximum, and
αtypical is the typical value promised for the qualityQ by
the provider. We requireαmin ≤ αtypical ≤ αmax.

A provider’s service advertisement for a service imple-
mentation is a collection of quality advertisements, one for
each quality applicable to the service.

2.3. Trust Model

To provide a solution to Equation 1 we need to pro-
vide a trust() function that uses the collected quality val-
ues while taking into account the quality preferences of the
consumer and the advertisements of the provider. The re-
sulting trust value for a service implementation would en-
able us to rank different service implementations according
to how well they meet the consumer’s quality needs.

Let us assume that the collected quality opinions values
are normally distributed with minimum, maximum, mean,
and variance which are inferred from domain experts and
attached to the QoS ontology. We can then assume that the
collected valueŝQ for each qualityQ can be normalized
as Z statistics values [35, p. 173]. This enables us to mean-
ingfully compare qualities and aggregate them into a single
value.

With this assumption, we start by defining an aggrega-
tion of the collected quality values for a qualityQ that rep-
resents the general opinions of all agents that have selected
the given service implementation.

Definition 4 (Service Quality Reputation) We denote the
reputationR

(i)
Q of a service implementation, with respect to

quality Q, as the aggregation of the quality opinions (i.e.,
quality values) for the service implementationi of services
over some time interval. Specifically,

R
(i)
Q =

1
n

n∑

k=1

qkδ−t(qk) (2)

wheren is the number of collected quality values,Q̂i =
{qk}n

k=1 is the set of quality values collected from service
agents as they selected the service implementationi, δ ∈ R
is the qualityQ’s dampening factor, andt() : Φ 7→ Z+

is the time for which the quality valueq was collected.
t(q) = 1 for the most recent collected value andt(q) > 1
for all other values.

With R
(i)
Q we have a representation of the general opin-

ion on how well service implementationi performs for a
quality Q. We now need a means to derive the trust value
that a prospective consumer of services should assign to

each service implementationi of interfaceι using the qual-
ity reputations for implementationi, the consumer’s qual-
ity preferences, and the quality advertisements of provider
p of implementationi.

Since the quality advertisements and preferences are de-
fined as points on the quality line ofQ, we can calculate
the moment of these points with respect to theπpref of
the consumer preferences. In essence, the closer the adver-
tised values and reputation are to the preferred value, the
greater the degree of match (and of the resulting trust). Gen-
erally, Equation 3 shows the second moment of a vector
~x = 〈x1, x2, . . . , xn〉 about some pointa.

moment(~x, a) =
1

n− 1

n∑

i=1

(a− xi)2 (3)

We formulate the consumer’s trust assignment for an im-
plementation using Equation 3. However, since we want to
match service implementations whose advertisement match
the need of a service consumer, we start by defining a
matching operator between quality preferences and adver-
tisements.

Definition 5 (Preference Matching Operator.) For
eachQ ∈ Φd let αQ = (αmin, αtypical , αmax) is the ad-
vertisement of providerp of service implementationi for
quality Q and πQ = (πmin, πpref , πmax) be the con-
sumer’s preferences for qualityQ.

Let Qmin = min(αmin, πmin) and Qmax =
max(αmax, πmax).

Let ~Qi = 〈Qmin, αtypical , πpref , Qmax, R
(i)
Q 〉.

We define the preference matching operator. for Q as:

φ . ϕ =

(πmax ≤ αmax) ∧ (πpref ≥ αmin)∧
(πpref ≤ αmax) if dir(Q) =↑, and

(πmin ≤ ϕmin) ∧ (πpref ≤ αmin)∧
(πpref ≥ αmax) whendir(Q) =↓

Wheredir(Q) : Φ 7→ {↑, ↓} is associated with each
quality Q, such thatdir(Q) =↑ indicates that the quality
Q is directionally increasing which means that higher val-
ues for Q are generally preferred by service consumers. And
dir(Q) =↓ indicates that lower values are generally pre-
ferred.

Using the. operator we can derive thetrust function of
Definition 1 as follows.

Definition 6 (Service Trust Function)

qTrust(~Qi, qpref) = moment(~Qi, qpref)−
1
2

wheremoment(~Qi, qpref) 6= 0
serviceTrust(i) =

∑
Q∈Φd,

φ.Qϕ

qTrust(Qi, qpref)

trust(ip, c) = serviceTrust(ip)

Consumer Application Agent Service 1Agent Service 2Policy1Policy2 Service ProvidersService1ImplementationB Service2ImplementationB Service1ImplementationA<<uses>><<selects>> AgenciesService1InterfaceService2InterfaceSelection is achieved partly by using agencies data DataWSAF Server
Figure 1. Architecture overview.

3. Framework

To evaluate our trust model and hypothesis of self-
adjusting trust, we created a framework that augments
a typical SOA with agents. The principal idea is to in-
stall software agents between service consumers and
each service that they consume. These service agents ex-
pose the same interface as the service. However, they
augment the service interface with agent-specific meth-
ods. An example of such a method issetWsPolicywhich
allows consumers to communicate their QoS prefer-
ences. By exposing the same interface as the service
these agents are able to transparently and dynamically se-
lect the actual service implementation by considering the
service consumer’s quality needs. The consumer commu-
nicates its need via the augmented agent interface. Ser-
vice method invocations are done via the service agent who
in turn monitors and forwards all calls to the selected ser-
vice.

Figure 1 shows a high-level view of the architecture; the
details and runtime operation are described at length in [21].
Briefly, the consumer application makes use ofService 1
which has three implementations (two by providerB and
one by providerA). Instead of selecting the implementa-
tion directly, the application uses a service agent which ex-
pose the same interface asService 1and selects, on the con-
sumer’s behalf, the implementation which best matches the
consumer’s policy. It is worthwhile to note that the service
agents can be co-located with the service consumers or dis-
tributed to an agent server (application server) as shown in
Figure 1. The advantage of decoupling the agents and the
service consumers is to move the agents’ processing from
the consumer’s applications and importantly to allow cross-
platform consumer-to-agent interactions.

In addition, the service agents participate in common
agencieswhere they share their quality opinions on the se-
lected service implementations. An agency is simply aren-
dezvousnode on the network where quality opinions are

shared and aggregated.
The agents share a conceptualization of quality in the

form of an ontology. The ontology is partitioned into three
parts. Theupper QoS ontologycontains basic definitions
for all qualities, including modeling relationships between
qualities. Themiddle QoS ontologyextends the upper on-
tology and defines qualities that are applicable across dif-
ferent domains.Lower QoS ontologiesare defined for spe-
cific domains by extending qualities in the middle ontol-
ogy or creating new ones from the upper ontology. Service
agent behaviors for quality monitoring can also be attached
to the ontology and dynamically bootstrapped in the agents.
Maximilien and Singh [21] give an overview of the upper
and middle QoS ontology as well as discussing examples of
lower ontology qualities and example usages of the frame-
work.

We implemented this architecture in the Web Service
Agent Framework (WSAF) and used simulation experi-
ments on simple services as an initial evaluation [22]. The
initial results showed that the service agents are able to
accurately select service implementations according to the
consumer’s preferences and adjust the selection as service
implementations’ quality degrade. We further enhance this
evaluation in Section 4 by conceptually showing how our
notion of self-adjusting trust fits the challenges and goals
of autonomic computing. In Section 5, we evaluate an ap-
proach to enable the service agents to adjust their service se-
lection when a well-behaved service implementation starts
degrading its exposed qualities and then again provides
good qualities (or vice versa).

4. Conceptual Evaluation

A characteristic of our system as a whole is the emer-
gence of a certain level of autonomy. This autonomy is the
result of the shared knowledge of the consumers which al-
lows them to make selections appropriate to their prefer-
ences and at the same time biasing their choices towards
well-behaved services by taking into account the opinions
of other consumers. Once a service starts behaving in a fash-
ion that is not in accordance with its advertised QoS, it even-
tually collects low QoS values (low ratings) and therefore a
low overall reputation. Unless that service starts behaving
correctly, we expect consumer agents to be biased against
selecting it. That is, our approach mimics social structures
where experiences, knowledge sharing, and reputation are
used to make decisions. The entire system regulates itself
and therefore exhibits autonomy.

This emerging behavior of the system falls perfectly into
the autonomic computing paradigm, as promoted by Horn
[12]. According to Kephart and Chess [19] as well as Ganek
and Corbi [9] an AC system manifests four mainself-*
traits:

1. Self-configuring. The system dynamically configures
and reconfigures itself as its environment changes.

2. Self-optimizing. The system tries to achieve optimal
operational characteristics vis-à-vis the current condi-
tions.

3. Self-protecting. The system protects itself from inter-
nal or external threats.

4. Self-healing. The system takes corrective actions to ad-
dress, as well as prevent, failures during its operations.

A system that achieves some or all of the above traits
is said to be autonomic and achieves some level ofself-
management. Such a system adjusts itself to be more re-
silient to its environment and to better support the goals and
policies of its owners.

From the above descriptions we can say that our ser-
vice agents exhibit dynamic configuration during runtime,
in essence merging the traditional phases of configuration
and execution. Using the preferences of its service con-
sumer, a service agent is able to reselect and rebind to a new
service provider and implementation, thereby reconfiguring
the consumer’s application. Since the agents participate in
agencies that allow them to improve subsequent choices and
collect overall historical perspectives on the various service
providers and implementations, the system as a whole en-
courages good services while purging the ones that misbe-
have. This degree of self-regulation, self-optimization, and
therefore self-management are key desired overall traits of
AC systems. Our approach enables a new AC trait that we
nameself-adjusting trust. This emerges from the system as
a result of the automatic adjustments to the trust levels that
service consumers assign to service providers and imple-
mentations.

5. Empirical Evaluation

Our empirical evaluation consists of a series of simula-
tions tailored to show the emergence of self-adjusting trust.
The simulations results reveal how, empirically, our trust
model yields a system that autonomically adjusts the level
of trust for the service implementations depending on their
past quality behaviors. Previous experiments showed that
as service qualities drop, the consumers’ agents select other
service implementations and eventually converge to clean
service implementations [22]. In the current experiment we
expand on the previous one by addingexplorer agents. The
simulations reveal the importance of the explorer agents in
the agent community and also how recent quality informa-
tion can be captured and be benefited from.

5.1. Setup Summary

Briefly, we created three sets of a simple mathemati-
cal integer sorting service with one method to sort an ar-
ray of integers. Each set contains five identical service im-
plementations. Each implementation exposes the qualities:
MethodFaultRate, PercentAvailability, andMethodRespon-
seTime. The qualities represent the average fault-rate of ser-
vice methods, the average service availability (as a per-
centage), and the average response-time of the service’s
method. In addition the implementations of each set have
identical quality advertisement. We created three groups of
five consumers; each group has quality preferences biasing
the members to one of the set of service implementations.
We named the groups of consumers:Careful, Mellow, and
Rushed; indicating their general preferences biased for the
three qualities.

We ran various simulations attaching a service agent to
each consumer and collected the agent’s selection. The ser-
vice implementations in each group are numbered0, . . . , 4
as are the service consumers. In some of the simulations, we
artificially forced all service implementations of group, ex-
cept the last one (numbered 4), to have its quality degrade.
We term thisdopingthe implementations. Our results show
that the service agent is able to find and select the clean ser-
vice implementation in a group after some number of itera-
tions to build the necessary reputation of service implemen-
tations.

For this experiment we run simulations with a simi-
lar setup of service implementations and consumer service
agents as in the previous experiment; however, for each sim-
ulation we:

• Added explorer agents. These are service agents de-
ployed for a specific service interface that periodically
run an exploring task on the service implementations.
These agents’ primary purpose is to explore the com-
munity of services regardless of a service’s trustwor-
thiness. That is, these agents would select a service
implementation whose quality reputation has dropped
to a point where it is no longer selected by regular
consumer agents, even though more recently its qual-
ity characteristics may have improved. The explorer
agents do not discriminate and have no preset qual-
ity preferences. They select the available service im-
plementations in a round-robin fashion. For each im-
plementation, they execute the same exploring task.
They monitor the selected service for all of its adver-
tised qualities and participate in appropriate agencies
for these qualities. The net effect is that if a service im-
plementation quality has improved, the explorer agents
will help it gain positive reputation. The primary con-
trolling factor for an explorer agent is how frequently
it performs its exploring tasks. We name this parame-

ter theexecution frequencyof the explorer agent. Es-
sentially, this value denotes the wait period between
each execution of the exploring task. Another control-
ling factor is the number of explorer agents as a ratio
of the total number of agents in the community.

• Varied the servicedoping policy. As in the previous
simulations we artificially control the qualities of cer-
tain service implementations with a quality doping
mechanism. This allows us to have knowledge (as an
oracle) to which service implementation should be se-
lected by a service agent at any given time during the
simulation. To show the effect of the explorer agents,
we also control the duration of the doping. We intro-
duce two new doping parameters:

1. Stop doping after. Specifies the number of times
a service will be selected and be under the effect
of the quality doping. After the specified number
of selections, the service doping will be turned
off.

2. Restart doping after. Indicates the number of
times the service will be selected before qual-
ity doping is resumed. The restart of doping typ-
ically occurs in conjunction with stopping dop-
ing afterward to simulate the effect of a service
that starts out with its quality doped, then stops
having its quality affected, and then restarts with
a poor quality period. In essence, this simulates
a service that behaves incorrectly, then correctly,
and then incorrectly once again.

To show the emergence of self-adjusting trust, we con-
duct six simulations, varying the number of explorer agents
and their execution frequency. We also simultaneously vary
the above doping parameters to enable us to better predict
and measure the effects of the explorer agents. Tables 1
shows an overview of the simulations with regard to the ex-
plorer agents and related parameters.

Table 3 shows the doping policy variation for each sim-
ulation. TheDoping column indicates the overall service
doping policy used.Full doping refers to the same ser-
vice doping policy as in the previous experiment and sum-
marized in Table 2. TheStop dopingcolumn indicates the
number of service selections after which service doping is
stopped. TheRestart dopingcolumn indicates the number
of service selections after which service doping is resumed
after being stopped.

5.2. Results

We now further describe each simulation and its ex-
pected results. For each simulation we also show the results
obtained in the form of service selection graphs. The simu-
lations are designed to progressively show the impact of the

Doped quality name Provider sets Parameters

MethodInvokeTime {0, 1, 2, 3},{5, 6, 7, 8},{10, 11, 12, 13} Random delay where,10 ms < delay < 20 ms
FaultRate {0, 1, 2, 3},{5, 6, 7, 8},{10, 11, 12, 13} Random periodic withperiod = 3
PercentAvailability {0, 1, 2, 3},{5, 6, 7, 8},{10, 11, 12, 13} Random periodic withperiod = 4

Table 2. Full-doping. Doped quality names, doped provider sets, and any other additional doping pa-
rameters.

Sim Iter. Is doped? No. Ratio Exe freq. (ms)

1.0, 1.1 15 No 0 0.0 NA
1.2 15 Yes 3 0.2 4500
1.3 10 Yes 3 0.2 6000
1.4 10 Yes 3 0.2 5000

1.5, 1.6 10 Yes 3 0.2 4500

Table 1. Simulations’ explorer agents param-
eters. The columns show the simulation num-
ber, the number of iterations, whether the
service implementations are doped or not,
the number of explorer agents, the explorer
agents ratio to the total number of agents in
the simulation, and the explorer agents’ exe-
cution frequency.

Simulation Doping Stop doping Restart doping

1.0 NA NA NA
1.1, 1.2 Full doping Never Never

1.3, 1.4, 1.5 Full doping After 6 Never
1.6 Full doping After 6 After 15

Table 3. Simulations’ doping policy parame-
ters. The columns show the simulation num-
ber, the doping policy, the number of selec-
tions after which to stop doping, and the
number of selections after which doping is to
restart when stopped.

explorer agents on the system as well as the emergence of
self-adjusting trust.

Simulations 1.0, 1.1, and 1.2: Base line service selection.
These simulations establish the base line service selec-
tion with and without explorer agents. As in the pre-
vious experiment we expect each group of consumers
to eventually converge to the sole clean service im-
plementation [22]. Our expected results for both sim-
ulations, with and without explorer agents, should be
similar to Figure 2.

Figures 3, 4, and 5 show the results obtained. These

Service selection (full doping)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 2. Selection with full doping.

Service selection (full dopings & no explorer agents)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 3. Full service doping and no explorer
agents (Simulation 1.0).

Service selection (0 explorer agents & stop after 6)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 4. Full doping, stop doping after six
selections, and no explorer agents (Simula-
tion 1.1).

Service selection (full dopings and 3 explorer agents)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 5. Full doping and three explorer
agents (Simulation 1.2).

are in agreement with our expectations. The consumer
agents, after a period of trying all service implemen-
tations in the same pool, eventually find the sole clean
service implementation and converge to it. This comes
about when no explorer agents are present and the
doping lasts the entire simulation (Figure 3) and also
when the doping stops (Figure 4). This occurs because
the consumer agents never select any of the newly
well-behaved service implementations—which accu-
mulated a low reputation already and are never con-
sidered.

In Figure 5, even though there are explorer agents

Service selection (stop doping after 6 and 3 explorer agents with
6000 ms

execution frequency)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 6. Full service doping stopped after
six and three explorer agents with 6000 ms
execution frequency (Simulation 1.3).

present, since the doping never stops, the sole clean
service implementation remains the best alternative for
selection during the entire simulation.

Simulations 1.3, 1.4, and 1.5: Explorer agents (EAgents).
There are two principal goals for simulations 1.3 to
1.5. First, show that when we stop doping the ser-
vice implementations pool, the use of explorer agents
will eventually cause the consumer agents to re-
select services that were avoided when they were
doped. Second, understand the impact of the ex-
plorer agents’ execution frequency on the reselec-
tion of these newly cleaned service implementa-
tions.

Figures 6, 7, and 8 show the service selection results
with three explorer agents and execution frequency re-
duced progressively from 6000, 5000, and then 4500
ms. The first thing to notice is that in each case, the
consumer agents first converge to the sole clean ser-
vice implementation (as in simulations 1.0 and 1.1).
Then as the stop doping takes effect—the service im-
plementations start to have good quality—the effect of
the explorer agents takes hold and the service imple-
mentations start to be selected randomly again. This is
the emergence of self-adjusting trust—as these service
implementations behave correctly (they are not doped)
they are reconsidered for selection.

We also notice that with higher execution fre-
quency, after the service doping is stopped, the newly
well-behaved service implementations are more of-
ten selected than with lower execution frequency.
This can be noticed by comparing Figure 8 with Fig-
ure 6 in the part of the graph where reselection is

Service selection (stop doping after 6 and 3 explorer agents with
5000 ms

execution frequency)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 7. Full service doping stopped after
six and three explorer agents with 5000 ms
execution frequency (Simulation 1.4).

Service selection (stop doping after 6 and 3 explorer agents with
4500 ms

execution frequency)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 8. Full service doping stopped after
six and three explorer agents with 4500 ms
execution frequency (Simulation 1.5).

occurring. We conjecture that this is due to faster posi-
tive reputation accumulation for the well-behaved ser-
vice implementations due to frequent explorer agent
selection.

Simulation 1.6: EAgents with doping stopped and restarted.
In this simulation, we use the best setup from Sim-
ulations 1.3 to 1.5, but in addition we use a doping
restart policy. That is, we simulate service implemen-
tations behaving incorrectly again. The restart is set up
to occur after the 15th selection. We expect the con-
sumer agents to begin again converging to the sole

Service selection (3 explorer agents, stop doping after 6, and
restart after 15)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 9. Three explorer agents with full ser-
vice doping stopped after six selections and
restarted after 15 (Simulation 1.6).

clean service implementation.
Figure 9 shows the results of this simulation. As ex-

pected, the consumer agents first converge to the sole
service implementation. Then as the doping stops they
start selecting other service implementations—since
the explorer agents help these service implementations
rebuild their quality reputation and thus their trustwor-
thiness. As the services doping restart, the consumer
agents again gradually converge to the sole clean ser-
vice implementation. This result is in complete agree-
ment with the emergence of self-adjusting trust.

6. Related Work

We divide the works related to ours into three broad cat-
egories: QoS-based service selection, trust and trustwor-
thiness, and autonomic computing and multiagent systems
(MAS). For each category we discuss the ones that are clos-
est to ours.

6.1. QoS-Based Service Selection

Service selection approaches fall into two primary cat-
egories: design-time and runtime. In design-time selection,
the application designer or architect use service registries
coupled with service descriptions to select and test binding
to a service. Nonfunctional characteristics are considered
during trial and error tests of the selected services. Newer
techniques using richer semantic descriptions of services
can help in the discovery of service interfaces. OWL-S [30]
is an example of a rich service ontology used for seman-
tic service discovery.

In runtime service selection, which is of greater rele-
vance to our work, the service interface is already discov-
ered, but the service implementations must be discovered,
selected, and bound to, based on nonfunctional service at-
tributes. Work in this area encompasses QoS requirements,
models and metrics, and middleware. The W3C QoS Re-
quirements for Web Services [34] gives an overview of the
requirements. The QoS UML profiles described in [1] and
[6] are examples of QoS models. Various brokering and
middleware architectures [27, 24, 25, 31, 37] have been pro-
posed for using QoS in Web services. Also, in the realm of
Grid Services, QoS is an important characteristic used for
differentiating the available services on the Grid [2].

Interestingly, van Moorsel et al. also consider higher
level of qualities such as Quality of Experience (QoE, the
subjective quality perception of the end user) and Quality
of Business (QoBiz, the economic characteristic of the ser-
vice to the service provider) [32]. This work also stresses
the importance of relationships among qualities. Similarly,
we model relationships between qualities and use such rela-
tionships to improve service selection by better computing
the preferences of the consumers.

Other researchers have also proposed using QoS for ser-
vice selection [24, 31, 16, 42]. However, whereas these
works address some form of service selection, they do not
address it adequately for open environments, such as using
trust and reputation and a decentralized multiagent architec-
ture as we are proposing. Wohlstadter et al. [37] propose a
policy language for advertising the QoS needs of clients and
to allow the middleware to match servers and clients. How-
ever, their work lacks a complete conceptualization of non-
functional attributes for Web services. Further, their match-
making techniques is not geared to enable dynamic evolu-
tion of the QoS exposed by the services. In other words, it
does not exhibit autonomic characteristics.

Casati et al. [5] present a dynamic service selection us-
ing a data mining approach on the service conversation
logs. They assume that conversation logs are collected for
each business process execution and that service consumers
specify quality goals that can be measured from the logs.
Using data mining they provide a middleware that can dy-
namically analyze the logs of various conversations and de-
termine the services best matching the service consumer’s
goals. Though similar in intent, our approach differs in two
respects. First, in our architecture, we use a multiagent sys-
tem with an agreed upon QoS ontology, whereas Casati
et al. use a centralized middleware and their definitions of
qualities is derived from conversation logs. Second, our se-
lection is based on the trust value assigned to a service im-
plementation, which itself is based of a combination of the
reputation of the consumer’s quality needs. Casati et al.’s se-
lection is based on a service ranking which is derived from
the decision trees constructed from the conversation logs.

6.2. Trust and Trustworthiness

The literature on trust in the context of Web systems and
Web services has been growing lately. The literature closest
to our work is summarized in [11]. Though a bit dated, most
of the techniques described are applicable to our frame-
work. It is well-known that no security techniques can apply
in a purely open environment where identities can be readily
created and discarded. In such cases, the best we can do is
to use social approaches based on open reputation manage-
ment. Yu and Singh have examined the robustness of such
approaches under certain threats [40].

Other relevant trust approaches are the Pretty Good Pri-
vacy (PGP) Web of Trust and the Platform for Internet
Content Selection (PICS) [33]. However, these works are
mainly in the realm of creating trust systems and platforms
for human users and human-facing applications. Our goal is
to create trust where human involvement is limited or com-
pletely absent.

Work on reputation systems is also closely related to our
work. Our proposed reputation calculation extends that of
Zacharia and Maes [41] and applies it in the world of Web
services by making considerations of QoS explicit. Huynh
et al. [14] calculate interaction trust as a reputation value
but their approach is limited when applied to service se-
lection (they do not consider nonfunctional characteristics
of services) and they also have limited prospect to creating
a system that is autonomic. Giorgini et al. [10] present an
agent-based social and individual trust model. Their model
is mainly in the realm of requirements engineering and gath-
ering; however, the resulting model is a step in the right di-
rection to achieving a formal agent-based trust model and
could be used to completement our own. Kalepu et al. [16]
extend our own approach to consider variance in collected
ratings values and it is also specific to reputation for quali-
ties that are subjectively rated.

Kashyap [17] argues that trust models for information
systems and service composition must have a verification
process. He gives a partial taxonomy of trust that includes
transitive trust (endorsements), reputation (indirect trust),
and a priori beliefs. Kashyap sketches how a composed
trust quality value can be computed from the various trust
notions. We differ primarily with this work in that we com-
pute an aggregate trust value from QoS but agree with the
fact that a complete model for trust must be multidimen-
sional.

Sloman [29] gives a trust definition that can be used in
decision making. Like in our approach, Sloman considers
reputation a basic component of trust. He observes that trust
is dynamic and context specific and argues that contextual
information should be included in the trust model. Sloman’s
work differs from our approach primarily in that he does not
consider qualities as a basis for determining the trustor’s

needs. Further, since our quality ontology allows domain-
specific qualities to be included in the trust calculation, our
trust model addresses the contextual requirement that Slo-
man raises.

6.3. Autonomic Computing and MAS

The overall goal of autonomic computing is outlined by
the Autonomic Computing Manifesto [12]. Five levels of
AC are outlined with the goal of eventually building sys-
tems reaching the highest level: self-management. Section 4
summarizes this vision as it applies to our approach.

Though AC has a well documented vision, actual results
in the field remain somewhat scarce. Yellin [39] describes
an algorithm to dynamically choose between software com-
ponent implementations. However, Yellin’s approach is lim-
ited to closed systems and only considers the case of two
competing implementations. Ours is applicable for open
systems with a potentially large number of alternative im-
plementations.

Our agents are decision-theoretic in design [26,
pp. 413—419]. They extend and apply decision the-
ory as documented in [8]. Our approach determines com-
plex consumer preferences and utility drawing on the
seminal work by [18] on making decisions with multi-
ple objectives. We make use of this work in the modern
landscape of Web services.

The literature on agents and multiagent systems is vast
and varied. Works by [13, 7, 36, 38] give good introduc-
tions to agency. More recently [23] and [28] discuss agency
in the context of Web services and are thus closest to our
framework and approach.

Other multiagent frameworks are also being con-
sidered in the Web services arena. These include the
well-established JADE platform [15, 3] and the lesser
known Bond [4] MAS framework. We see two key differ-
ences between these works and ours. First, our agents are
solely designed with Web services in mind, as such, the
Web services infrastructure is built-in. In fact, the Web ser-
vices infrastructure constitutes the core of our framework.
Second, our framework and agents are geared toward cre-
ating a trust model that achieves intelligent selection where
autonomy is an emergent property. This is a novel ap-
proach to service selection and novel application of
agency.

7. Conclusions

The autonomic characteristic ofself-adjusting trustis
crucial in open systems. We showed how explorer agents
enable our trust model and multiagent system to exhibit this
characteristic. In this manner, we can enable the benefits of
autonomic computing for a wide range of settings.

Further aspects of the emergence of self-adjusting trust
remain to be studied. These include, for instance, under-
standing the density of explorer agents needed to achieve
a certain level of self-adjusting trust in the presence of ser-
vices advertising some qualities. Since explorer agents con-
sume precious resources, an analytical model of their be-
havior in the community with respect to the resulting per-
ceived level of self-adjusting trust would be highly valuable.
Such a model would depend upon a characterization of the
variability in practice in the behavior of service implemen-
tations.

The full exploitation of explorer agents may require the
emergence of new standards. Specifically, explorer agents
would not automatically be able to use services that re-
quire a consumer’s private data or require payments. Agents
that can perform such tests would be difficult to set up and
specialized agencies may emerge to evaluate expensive ser-
vices on the behalf of prospective consumers. However, if
such services expose anexploration interfacethat enables
exploration and evaluation of their offerings but without re-
quiring payment, they would facilitate explorer agents. An
exploration interface would be useful to a provider, because
it would yield greater exposure to their offerings. An asso-
ciated aspect is that the consumers will have to trust that
the behavior obtained during exploration is representative
of the behavior to be expected during the actual interaction.

Finally, a direction for our work is to improve the
trust model to take into account provider’s trustworthi-
ness. Providers can be trusted by consumersa priori us-
ing implicit trust as well as indirect and transitive trust such
as endorsements from trusted third parties [20].

References

[1] J. Ø. Aagedal, M. A. de Miguel, E. Fafournoux, M. S. Lund,
and K. Stolen. UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms. Tech-
nical Report 2004-06-01, Object Management Group, June
2004.

[2] R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, and S. So-
hail. G-QoSM: Grid Service Discovery Using QoS Prop-
erties. Computing and Informatics Journal, 21(4):363–382,
2002.

[3] F. Bellifemine, A. Poggi, and G. Rimassa. JADE: A FIPA-
compliant agent framework. InPractical Application of In-
telligent Agents and Multi-Agent Technology (PAAM), pages
97–108, 1999.

[4] Bond. Bond: A Multi-agent System, 2002.
[5] F. Casati, M. Castellanos, U. Dayal, and M.-C. Shan. Prob-

abilistic, Contex-Sensitive, and Goal-Oriented Service Se-
lection. InProceedings of 2nd International Conference on
Service Oriented Computing (ICSOC), pages 316–321, New
York, Nov. 2004. ACM Press.

[6] V. Cortellessa and A. Pompei. Towards a UML Profile for
QoS: A Contribution in the Reliability Domain. InProceed-

ings of the fourth International Workshop on Software and
Performance, pages 197–206. ACM Press, 2004.

[7] J. Ferber, editor.Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence. Addison-Wesley, Great
Britain edition, 1999.

[8] S. French.Decision Theory: An Introduction to the Mathe-
matics of Rationality. John Wiley and Sons Inc., West Sus-
sex, England, 1986.

[9] A. G. Ganek and T. A. Corbi. The Dawning of the Auto-
nomic Computing Era.IBM Systems Journal, 42(1):5–18,
Jan. 2003.

[10] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone.
Modeling Social and Individual Trust in Requirements En-
gineering Methodologies. InThird International Conference
on Trust Management, Lecture Notes on Computer Science.
Springer Verlag, 2005. To appear.

[11] T. Grandison and M. Sloman. A Survey of Trust in Inter-
net Application. IEEE Communications Surveys & Tutori-
als, 3(4):2–16, 2000.

[12] P. Horn. Autonomic Computing: IBM’s Perspective on the
State of Information Technology, 2001.

[13] M. Huhns and M. P. Singh, editors.Readings in Agents. Mor-
gan Kaufmann, San Francisco, CA, 1998.

[14] D. Huynh, N. R. Jennings, and N. R. Shadbolt. Developing
an Integrated Trust and Reputation Model for Open Multi-
Agent Systems. InProceedings of 7th International Work-
shop on Trust in Agent Societies, pages 66–74, New York,
July 2004. ACM Press.

[15] JADE. Java Agent DEvelopment Framework (JADE), 1999.
[16] S. Kalepu, S. Krishnaswamy, and S. W. Loke. Verity: A

QoS Metric for Selecting Web Services and Providers. In
Proceedings of the Fourth International Conference on Web
Information Systems Engineering Workshops (WISEW’03),
pages 131–139, Rome, Dec. 2003. IEEE Computer Society.

[17] V. Kashyap. Trust, But Verify: Emergence, Trust, and
Quality in Intelligent Systems. IEEE Intelligent Systems,
19(5):85–87, Sept. 2004.

[18] R. L. Keeney and H. Raiffa.Decisions with Multiple Objec-
tives: Preferences and Value Tradeoffs. John Wiley & Sons,
Hoboken, NJ, 1976.

[19] J. O. Kephart and D. M. Chess. The Vision of Autonomic
Computing.IEEE Computer, 36(1):41–50, Jan. 2003.

[20] E. M. Maximilien and M. P. Singh. Reputation and Endorse-
ment for Web Services.SIGecom Exchanges, 3(1):24–31,
Dec. 2001.

[21] E. M. Maximilien and M. P. Singh. A Framework and On-
tology for Dynamic Web Services Selection.IEEE Internet
Computing, 8(5):84–93, Sept. 2004.

[22] E. M. Maximilien and M. P. Singh. Toward Autonomic Web
Services Trust and Selection. InProceedings of 2nd Interna-
tional Conference on Service Oriented Computing (ICSOC),
pages 212–221, New York, Nov. 2004. ACM Press.

[23] OWL-S. OWL-Service Ontology 1.0, 2004.
[24] S. Ran. A Framework for Discovering Web Services with

Desired Quality of Service Attributes. In L.-J. Zhang, ed-
itor, Proceedings of the International Conference on Web
Services, pages 208–213, Las Vegas, NV, June 2003. IEEE
Computer Society.

[25] S. Ran. A Model for Web Services Discovery with QoS.
SIGecom Exchanges, 4(1):1–10, 2003.

[26] S. Russell and P. Norvig.Artificial Intelligence: A Modern
Approach. Prentice Hall, Upper Saddle River, NJ, 1st edi-
tion, 1995.

[27] A. Sheth, J. Cardoso, J. Miller, and K. Kochut. QoS for
Service-Oriented Middleware. InProceedings of the 6th
World Multiconference on Sytemics, Cybernetics, and Infor-
matics (SCI02), volume 8, pages 528–534, Orlando, FL, July
2002.

[28] M. P. Singh and M. N. Huhns.Service-Oriented Computing:
Semantics, Processes, Agents. John Wiley & Sons, Chich-
ester, UK, 2005.

[29] M. Sloman. Trust Management in Internet and Pervasive
Systems.IEEE Intelligent Systems, 19(5):77–79, Sept. 2004.

[30] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan.
Automated Discovery, Interaction, and Composition of Se-
mantic Web Services.Journal on Web Semantics, 1(1):27–
46, Sept. 2003.

[31] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller.
A Concept for QoS Integration in Web Services. InProceed-
ings of the Fourth International Conference on Web Infor-
mation Systems Engineering Workshops (WISEW’03), pages
149–155, Rome, Dec. 2003. IEEE Computer Society.

[32] A. van Moorsel. Metrics for the Internet Age: Quality of Ex-
perience and Quality of Business. Technical Report HPL-
2001-179, Hewlett-Packard, Erlangen, Germany, July 2001.

[33] W3C. Platform for Internet Content Selection (PICS), 1998.
Recommendation.

[34] W3C. QoS for Web Services: Requirements and Possible
Approaches, Nov. 2003. Note.

[35] D. D. Wackerly, W. M. III, and R. L. Scheaffer.Mathemati-
cal Statistics with Applications. Duxbury, Pacific Grove, CA,
6th edition, 2002.

[36] G. Weiss, editor.Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence. MIT Press, Cambridge,
MA, 1999.

[37] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and P. De-
vanbu. GlueQoS: Middleware to Sweeten Quality-of-Service
Policy Interactions. InProceedings of 26th International
Conference on Software Engineering (ICSE 2004), pages
189–199, Edinburgh, May 2004. IEEE Computer Society.

[38] M. Wooldridge.An Introduction to Multiagent Systems. John
Wiley & Sons, West Sussex, England, 2002.

[39] D. M. Yellin. Competitive Algorithms for the Dynamic Se-
lection of Component Implementations.IBM Systems Jour-
nal, 42(1):85–97, Jan. 2003.

[40] B. Yu and M. P. Singh. An Evidential Model of Distributed
Reputation Management. InProceedings of Autonomous
Agents and Multi Agent Systems (AAMAS), pages 294–301.
ACM Press, 2002.

[41] G. Zacharia and P. Maes. Trust Management Through Repu-
tation Mechanisms.Applied Artificial Intelligence, 14:881–
907, 2000.

[42] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-Aware Middleware for
Web Services Composition.IEEE Transactions on Software
Engineering, 30(5):311–327, May 2004.

