
RJ10346 (A0505-002) May 2, 2005
Computer Science

IBM Research Report

Agent-Based Trust Model Involving Multiple Qualities

E. Michael Maximilien
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA  95120-6099

Munindar P. Singh
North Carolina State University

Department of Computer Science
Raleigh, NC  27695

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Agent-Based Trust Model Involving Multiple Qualities

E. Michael Maximilien
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

maxim@us.ibm.com

Munindar P. Singh
North Carolina State University

Department of Computer Science
Raleigh, NC 27695

singh@ncsu.edu

ABSTRACT
A key limitation of current Web services standards is the
inability to differentiate service instances at runtime using
(nonfunctional) qualities of services (QoS). Such differenti-
ation is necessary to allow for runtime selection and bind-
ing to service instances in a manner that continually adapts
selected services to the service consumer’s preferences and
needs. Quality values are volatile, depend on the trust asso-
ciated with instances and service providers, and also depend
on the needs of service consumers. We propose a multia-
gent framework where agents consider the consumers’ QoS
preferences, determine trust levels to associate to service
instances and providers, and automatically select service in-
stances on a consumer’s behalf. The service agents use a
trust model that is centered on a shared conceptualization
for QoS (ontology) and a QoS preference model that con-
siders consumer’s tradeoffs among qualities as well as rela-
tionships between qualities. We evaluate our approach via
simulations on simplified but realistic service instances and
service consumers. Our results show that using these consid-
erations for QoS, service agents are able to determine over
time the ‘best’ service selection for a consumer.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems; D.1.0 [Software Engineer-
ing]: Programming Techniques—general

General Terms
Algorithms, Reliability, Experimentation

Keywords
Service-Oriented Architecture, Service-Oriented Computing,
Semantic Web Services, Service selection, Multi agent sys-
tems, Quality of Service, Trust

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

Web services standards, while essential for automated ac-
cess to services on the Web, are mostly geared towards
design-time automation and usage. Limiting ourselves to
design-time automation is not appropriate for software agents
doing automatic runtime service selection and binding. Ser-
vice descriptions via WSDL are necessary but not sufficient
to automate service selection and binding—they principally
lack a means to represent nonfunctional service attributes.
To achieve true runtime integration we need a means to col-
lect nonfunctional information about services and use that
information to assign dynamic trust levels to the service
providers and implementations.

As in real-life situations, the agents in our system need to
be able to make decisions using partial information, limited
computational resources, and bounded time. As such, an
agent’s decision process is to derive a trust value for each
service instance. The service instance with the highest trust
value is selected.

Our primary contribution is a trust model based on a
shared conceptualization of qualities of service (QoS). Our
trust model takes into account a consumer’s subtle prefer-
ences for qualities when determining the trust value to assign
to service instances. Specifically, we consider a consumer’s
preference for tradeoffs among qualities and relationship be-
tween qualities. We show the effectiveness of our approach
using simulation experiments.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the conceptual background underlying our
approach, including assumptions and framework. Section 3
formulates the service selection problem using trust. Sec-
tions 4 and 5 give two solutions to this problem. Section 6
discusses our empirical evaluation and shows our results.
Section 7 highlights some related work. Section 8 discuses
some directions.

2. BACKGROUND
The trust assigned to a service instance is, in essence, a

predictor of quality values for future usage of the service
instance. It is an aggregate value that corresponds to his-
torical levels of quality of the service instance and to how
well the provider’s quality advertisements match the quality
needs of a consumer. Our approach to selection extends the
framework and trust model described previously [6, 7].

Since we are mainly concerned with agents that automate
service selection decisions on behalf of their consumers, we
make certain simplifying assumptions about the environ-
ment and the agents participating in it.



Assumption 1 (Service Agent Environment). The
agent environment is open and dynamic, with no central au-
thority.

Although our agents are self-interested and autonomous
they gain value from sharing and aggregating their opinions.
Sharing allows them to gain a global view of the quality and
trust of the service instances and service providers.

Assumption 2 (Shared Quality Opinion). The agents
are free to share opinions on service interactions and this in-
formation is accessible to all agents.

We also further assume that trust values are scaled ap-
propriately in their calculation to allow them to be added
to determine a composed value. Agents contribute their
subjective and objective quality opinions to common agen-
cies. Like other practical works on reputation, this approach
assumes that the opinions are truthful.

Assumption 3 (Truthful Agents). Agents report true
assessments of nonfunctional attributes that they gathered by
interacting with services.

This assumption is realistic for two principal reasons. First,
the consumer service agents gain from the collected aggre-
gated quality values, so individually they do not have a di-
rect incentive to be untruthful. Finally, since in practice
the population of consumer agents is likely large and few
agents will be untruthful the aggregated values are not sig-
nificantly impacted by untruthful reporting. A possible risk
is that some providers could have consumer agents that gen-
erate false ratings on their behalf, and at a volume that
overwhelms honest evaluators. We consider this case out of
the scope for our current formulation and an area for future
research.

We now introduce our main trust concepts. Sections 4
and 5 build on these definitions to create our trust model.

Provider and Service Trust. A value for predicting the
qualities of service—those that matter to a service
consumer—for a potential interacting service provider
and its service implementations.

Quality Reputation. An aggregate value for a quality of
a service implementation over time and over many ser-
vice consumer interaction episodes.

We distinguish three phases of interactions between con-
sumers and services: discovery, selection, and binding. Fig-
ure 1 shows a service instance usage lifecycle, from discovery
to binding, and the typical steps in between resulting from
the different types of interactions between consumers and
providers. Once a service interface is discovered, a consumer
selects an implementation from one of multiple implemen-
tations from different providers. Whereas service discovery
requires matching a service functional attributes, service se-
lection involves QoS. Once an implementation is selected it
is bound to for usage. During usage, a consumer may have
a policy to rebind or reselect the service implementation,
e.g., if the current implementation’s QoS falls below some
threshold.

Service Interface discoveredService discovery Service implementationselected(unbound)Service selectionUsing service ontology and service registries Using QoS ontology and agenciesService rebind Service implementationboundDue to QoS policy violation Service bindingService reselectionDue to service QoS falling below some thresholdTypically on first need
Figure 1: Service instance usage life-cycle.

3. PROBLEM FORMULATION
To formulate the service selection problem, we begin with

definitions of the basic objects and then give a generic defi-
nition of the selection problem as a trust optimization prob-
lem (introduced below). Using this general problem descrip-
tion, Sections 4 and 5 incrementally discuss our service trust
model, thereby providing an abstract solution to the selec-
tion problem.

Let Υ stand for the set of all URIs and let ΥS ⊂ Υ be
the set of URIs representing services on the Web. Let ∆ be
the set of all application domains. An example of an ap-
plication domain is Math—representing services for mathe-
matical calculations. A Web service is a triple s = (ι, d, i).
Where ι ∈ ΥS is the interface, d ∈ ∆ is the application do-
main, and i ∈ Is is the implementation, where Is ⊂ ΥS is
the set of all implementations of ι.

We associate nonfunctional attributes, in the form of qual-
ities, with services. For example, Capacity is a service qual-
ity representing the maximum number of concurrent con-
sumers supported by a given service and ResponseTime is
the request-to-response time for a given service. A quality
ontology [6] gives a comprehensive overview of the service
qualities that we are considering.

Let Q be a service quality or a nonfunctional attribute.
For a particular implementation i, Q is the set of values
for that particular quality, contributed by the agents that
selected and used the implementation. Let Φ be the set of
all qualities and Φd ⊆ Φ be the set of qualities applicable to
the application domain d.

We also associate directionality with each quality Q. In
notation, dir(Q) =↑ indicates that the quality Q is direc-
tionally increasing which means that higher values for Q are
preferred. And dir(Q) =↓ indicates that lower values are
preferred.

The service selection problem reduces to picking the most
trusted service. This is reasonable because the trust as-
signment depends on the service implementation’s qualities.
Specifically, our service agents need to dynamically associate
a trust value with each service implementation and select
the service implementation with the highest assigned level
of trust. We associate trust with an implementation using
its qualities, while taking into account the quality prefer-
ences of the consumer, and the quality advertisements of its



provider.
A consumer c is a pair (ι,Pref ), where ι is a service in-

terface and Pref are the consumer’s quality preferences for
the implementations of ι. A service provider p is a triple

(ι,~i, ~Adv), (with n as the number of implementations of in-

terface ι by p) where ~i = 〈i1, . . . , in〉 is an ordered set of the

implementations of ι, and ~Adv = 〈Adv1, . . . ,Advn〉 is an or-
dered set of advertisements—one for each implementation.

Definition 1 (Service Selection). Let P be the set
of all providers with implementations for service s. Our
problem is to select the service implementation i ∈ Is of
service s from all service providers p ∈ P such that:

i = arg max
i∈Is

{trust(i, Φd)}

Where trust() : Is × Φ 7→ R is a service trust function.

The trust function takes into account the service imple-
mentations, the service’s domain qualities, the quality pref-
erences of consumers, and the quality advertisements of providers.
We provide abstract solutions to this problem in the follow-
ing sections.

4. SERVICE TRUST MODEL: SIMPLE
PREFERENCES

We begin with an abstract solution to the service trust
function that considers simple preferences of consumers. Sec-
tion 5 expands on this initial solution to consider a con-
sumer’s more complex quality preferences.

In order for an agent to make sense of the collected data we
need to aggregate it into one value—the quality reputation
for the implementation. Since the quality exhibited by an
implementation varies with time, and recent opinions are a
better indication of current qualities, we need to make sure
that recent opinions count more than older ones. Similar to
Zacharia and Maes [13], we achieve the time discounting of
quality values by dampening the collected values.

Definition 2 (Service Quality Reputation). The
reputation RQi of an implementation, with respect to
quality Q, is the aggregation of the quality values for the
implementation i of service s over some time interval.
Specifically,

RQi =
1

n

n∑

k=0

qkδ−t(qk)

where Q = {qk}n
k=0 is the set of quality values collected

from agents that selected implementation i, δ ∈ R is the
quality Q’s dampening factor, and t() : Q 7→ Z+ is the time
for which the quality value q was collected. t(q) = 1 for the
most recent collected value and t(q) > 1 for all other values.

Based on a service implementation’s quality reputation
RQi as well as the consumer’s quality preferences Pref , in
order to have a solution to the selection problem of Defini-
tion 1, we need to complete the formula for trust(). Specif-
ically, we need to derive a trust function using RQ while

taking into account the consumer’s preferences ~φ, and the

provider’s advertisements ~Adv .
Since we can represent a consumer’s trustworthiness as-

signment to a provider, to complete the implementation of

the trust function of Definition 1, we need a way to assign
a trust value to a particular service implementation taking
into account the consumer’s preferences.

We achieve a trust assignment to an implementation by
matching the consumer’s quality preferences to the imple-
mentation provider advertisement and assigning a degree to
the match. The matching degree takes into account the
quality advertisements, preferences, and reputation [7].

5. SERVICE TRUST MODEL: COMPLEX
PREFERENCES

The previous section presented a solution to the selection
problem by introducing a trust function that takes into ac-
count the quality reputations of implementations and pref-
erences of consumers. Though reasonable, this solution is
lacking in the way it represents the quality preferences of
consumers. Specifically, it does not account for relationships
between qualities and a consumer’s preferences for tradeoffs
among qualities.

First, the qualities exhibited by an implementation typi-
cally represent the tradeoffs made by providers when expos-
ing their services; as a consequence, qualities will sometimes
have relationships with each other. Second, since the quali-
ties exposed by an implementation are the results of trade-
offs made by the provider—a provider cannot realistically
maximize all desirable qualities for an implementation—it
follows that to truly capture a consumer’s quality prefer-
ences, we also need to understand the consumer’s relative
preferences for one quality as well as among qualities.

To address these issues, we present a preference model for
service consumers that takes into account quality relation-
ships and the consumer’s quality tradeoffs.

5.1 Consumer Quality Utility
To derive a better representation of the consumer’s util-

ity over all qualities, we need to understand the consumer’s
utility for any of its preferred qualities, the consumer’s pref-
erences (if any) over tradeoffs among qualities, and the re-
lationships between qualities.

The consumer preferences vector ~φ currently accounts for
the consumer’s preferences for qualities based on boundary
conditions and an ideal preferred value for each quality. To
complete the representation, we additionally need to have
an understanding of the consumer’s utility for each quality
and the shape of the utility function. For instance, in ad-
dition to the preferred value for a quality, is there a limit
for the quality values for which the consumer becomes in-
different to further improvements in the quality? That is,
assume that a consumer’s application is limited to a Capac-
ity of 50 number of concurrent user connections and makes
use of a LoanService service. A LoanService implementation
s1 whose advertised and reputed Capacity quality is 500, is
probably of no benefit to the consumer. However, another
service implementation s2 whose Capacity is 51, can result
in a better match; especially if s2’s other qualities also match
the consumer’s remaining quality preferences. We say in this
case that the consumer’s utility for the Capacity quality ex-
hibits a saturation-limit utility shape—i.e., the consumer’s
utility saturates after a limit value for the quality.

5.1.1 Shape of Consumer’s Quality Utility
We consider two shapes for a consumer’s utility for a qual-



Sigmoid (s-shape curve)u: Consumer utility q: Q quality valuesβα +−+
=

qe
u

1

1
1 10 2

1

h

Figure 2: Sigmoid consumer quality utility.

ity:

1. Linear. Where the consumer’s utility for a quality is
unbounded.

2. Sigmoid. With this shape, we can consider qualities
for which the consumer’s utility is nil up to a certain
threshold value, and then quickly increases and flat-
tens out again. This shape is particularly important
to represent a consumer’s utility for qualities where the
values must be greater than or less than a threshold.
Figure 2 illustrates the saturation effect of this shape.

To get a better understanding of how to extend the defini-
tion of a consumer’s quality preferences to derive the utility
for the quality, let’s take a closer look at the equations for
these utility shapes. First, let’s assume that the quality val-
ues for a quality Q are normalized such that q ∈ Q and
0 ≤ q ≤ 1. For each utility shape we can derive equa-
tions constraining the curve’s parameters. These constrain-
ing equations are such that, if the parameters are selected
while satisfying them, we are able to derive a utility equation
that approximates the consumer’s utility for the quality.

5.1.2 Tradeoffs Among Qualities
We now consider a means to represent the consumer’s

preferences for tradeoffs among pairs of qualities.

Definition 3 (Preference Operators). Following
French [2, pp. 62–66], define for each consumer, the
preference binary relations ∼ and Â for pairs of qualities:

Indifference A ∼ B ⊆ Φ× Φ indicates that the consumer
is indifferent between qualities A and B.

Strict preference A Â B ⊆ Φ× Φ indicates that the
consumer strictly prefers quality A over B.

Preference A % B ⊆ Φ× Φ indicates that the consumer
strictly prefers quality A over B, i.e., A Â B, or that
the consumer is indifferent between qualities A and
B, i.e., A ∼ B.

The relation ∼ is reflexive, symmetric, and transitive, i.e.,
an equivalent relation. The relations formed by Â and % are
both asymmetric and transitive, i.e., they are weak orders
[2, p. 71].

Let’s also assume that the consumer has a tradeoff pref-
erence for any two qualities of a service. That is, for any
two qualities Qm, Qn ∈ Φs for a service either Qm Â Qn or
Qn Â Qm or Qm ∼ Qn. This is also stated in Axiom 1.

Axiom 1. For any service consumer of service s:
∀Qm, Qn ∈ Φs ⇒ (Qm Â Qn)∨ (Qn Â Qm)∨ (Qm ∼ Qn)

where Φs ⊆ Φd, Φd ⊆ Φ, and d is the domain of s.

Axiom 1 represents an ordering of the qualities for the
consumer. This follows since Â is a strict order of the qual-
ities and ∼ separates the set of qualities into disjoint sets of
mutually indifferent qualities.

5.2 Quality Relationships
We consider two kinds of relationships between pairs of

qualities: ontological and statistical.

• Ontological quality relationships are part of the QoS
ontology and decided by the domain experts [6].

• Statistical quality relationships are inferred (by the
agents) from the collected quality data.

Definition 4 (Ontological Relationships). Let
Q be a service quality and let Φ be the set of all service
qualities. Φd ⊆ Φ is the set of all qualities for the service
domain d of s and Φs ⊆ Φd is the set of qualities applicable
to a particular service s.
Let QRel = {Opposite(O),Parallel(P)} ×
{Weak(W ),Mild(M ),Strong(S)} be the set of semantic
quality relationships.
We denote γ : Φ× Φ 7→ QRel as the relation representing
the semantic relationship between pairs of qualities for a
service domain d.

To help corroborate the ontological quality relationships
provided by γ, we define the statistical quality relationship
ρ as the correlation of the collected quality values. Let Qa =
{ql}n

l=0 and Qb = {km}n
m=0 be sets of values obtained for

qualities Qa and Qb of an implementation of service s.

Definition 5 (Statistical Relationships). The
statistical relationship between qualities Qa and Qb (as
measured) is given by the correlation between between the
values as ordered in the sets Qa and Qb [8]. Thus
−1 ≤ ρ(Qa, Qb) ≤ 1.

As a concrete example of quality relationships, let us con-
sider the relationships of the following pairs of qualities
{Throughput (T), Capacity (C)} and {Robustness (R), Avail-
ability (A)}. Since Capacity is a measure of the limits on
a service implementation’s performance, we would expect
it to be oppositely related to Throughput. On the other
hand, qualities such as Robustness and Availability should
be positively correlated. As agents collect values for these
qualities we expect the qualities’ ontological and statistical
relationships to be in agreement.

5.3 New Service Trust Function
Assuming that the consumer’s utility function for a qual-

ity can be derived with the necessary elicited input. We now
define an improved consumer preference for qualities.

Definition 6 (Preferences for Qualities). We
redefine a consumer’s preferences for a quality Q as
φ = {(qmin, qpref , qmax), u()} where qmin is the minimum
value favored for the quality Q by the consumer, qmax is
the maximum, qpref is the preferred value, where
qmin ≤ qpref ≤ qmax, and u() : Q 7→ [0, 1] is the consumer’s
utility for quality Q.



Let us consider how to represent a consumer’s service pref-
erences using the new preferences for qualities as well as how
to capture and incorporate the consumer’s preferences for
tradeoffs between pairs of qualities.

Definition 7 (Preferences for a Service). Let
Φc ⊆ Φd be the set of qualities for which the consumer c of
service s holds some preferences and where Φd is the set of
all qualities for the service domain d of s.
Let Φ∼ ⊆ Φc be the set of qualities for which the consumer
is indifferent, that is, the consumer has no tradeoff
preferences among them. Let ΦÂ ⊆ Φc be the set of
qualities where the consumer holds tradeoff preferences.
Clearly, Φc = Φ∼ ∪ ΦÂ.
We define the consumer’s service preferences as

Pref = (~φ, ~Q) where ~φ = 〈φ1, . . . , φn〉, in which n = |Φc|, is

an ordering of the quality policies φ; and ~Q = 〈Qk〉|Φc|
k=1 is a

corresponding order for the qualities Qk ∈ Φc.

By definition of the operators ∼ and Â the following holds:
∀Qx, Qy ∈ Φ∼ ⇒ (Qx ∼ Qy). And ∀Qv, Qw ∈ ΦÂ ⇒ (Qv Â
Qw)∨(Qw Â Qv). It also follows that using the operators Â
and ∼, we can derive an ordering of the qualities for which
the consumer has % tradeoff preference, i.e., ~Q = 〈Ql〉ml=1

such that Q1 % Q2 . . . % Qm where m = |Φc|.
Using the consumer’s preferences for a service we can for-

mulate a trust function. This function provides a solution
to the selection problem of Definition 1 while taking into
account the consumer’s true preferences for qualities.

We achieve a trust assignment to a service implementa-
tion by matching the consumer’s quality preferences to the
service implementation provider advertisement and assign-
ing a degree to the match. The matching degree takes into
account the quality advertisements, preferences, and repu-
tation.

Since the quality advertisements and preferences are de-
fined as points on the quality line of Q, we can calculate
the moment of these points with respect to the πpreferred of
the consumer preferences. In essence, the closer the adver-
tised values and reputation are to the preferred value, the
greater the degree of match (and of the resulting trust).
Generally, Equation 1 shows the second moment of a vector
~x = 〈x1, x2, . . . , xn〉 about some point a.

moment(~x, a) =
1

n− 1

n∑
i=1

(a− xi)
2 (1)

We formulate the consumer’s trust assignment for an im-
plementation using Equation 1. However, since we want to
match service implementations whose advertisement match
the need of a service consumer, we begin by defining a
matching operator between quality preferences and adver-
tisements.

Definition 8 (Preference Matching Operator).
For each Q ∈ Φd let αQ = (αmin, αtypical , αmax) is the adver-
tisement of provider p of service implementation i for quality
Q and πQ = (πmin, πpreferred , πmax) be the consumer’s pref-
erences for quality Q.

Let Qmin = min(αmin, πmin) and Qmax = max(αmax, πmax).

Let ~Qi = 〈Qmin, αtypical , πpreferred , Qmax, R
(i)
Q 〉.

We define the preference matching operator . for Q as:

φ . ϕ =





(πmax ≤ αmax) ∧ (πpreferred ≥ αmin)∧
(πpreferred ≤ αmax) if dir(Q) =↑, and

(πmin ≤ ϕmin) ∧ (πpreferred ≤ αmin)∧
(πpreferred ≥ αmax) when dir(Q) =↓

Where dir(Q) : Φ 7→ {↑, ↓} is associated with each quality
Q, such that dir(Q) =↑ indicates that the quality Q is direc-
tionally increasing which means that higher values for Q are
generally preferred by service consumers. And dir(Q) =↓
indicates that lower values are generally preferred.

Using the . operator we can derive the trust function of
Definition 1 as follows.

Definition 9 (Service Trust Function).

qTrust( ~Qi, qpreferred) = moment( ~Qi, qpreferred)−
1
2

where moment( ~Qi, qpreferred) 6= 0

serviceTrust(i) =
∑

Q∈Φd,

φ.Qϕ

qTrust(Qi, qpreferred)

trust(ip, c) = serviceTrust(ip)

We now need a means to determine the importance of a
quality Qk in terms of its relationships with other qualities
in ~Q. We do this by finding an average (ontological and
statistical) relationship value of Qk when it is paired with
all qualities that are less preferred (i.e., Qk+1, . . . , Qn) and
taking into account the quality compatibility of each pair.

Definition 10 (Quality Compatibility Operator).
We define two qualities Qx, Qy ∈ Φ as compatible if and only
if they are directionally equivalent (See Section 4).

The operator ./ represents quality compatibility such that
Qx ./ Qy : Φ× Φ 7→ {1,−1} and defined as:

Qx ./ Qy =





1 if dir(Qx) = dir(Qy), and

−1 otherwise

Using the quality operator ./ we can define an average
quality relationship with the less preferred qualities in such a
way that as we pair qualities to determine the relationship’s
value, we reinforce that value if the pair is compatible and
negate it otherwise.

Definition 11 (Average Quality Relationship).

%(Qj) =
1

n− j

n∑
m=j+1

ρ(Qj , Qm)× (Qj ./ Qm) with j 6= n

where ρ is the statistical quality relationship (Definition 5)
and ./ is the quality compatibility operator.

%(Qj) represents the average relationship of the quality Qj

with the remaining qualities per the ~Q ordering.

We now derive a representation for the function trust that
takes into account the consumer’s new preferences for quali-
ties, the consumer’s utility for a quality, and the consumer’s
tradeoff preferences for qualities. Since we have an ordering
for the qualities with ~Q, we can derive the new trust func-
tion such that the first quality has more significance to the
total value than the second quality, and so on.



Definition 12 (New Service Trust Function).

trust(ip) =
1

n

n∑

Q∈Φc∧(φ.Qϕ)
j=0

wj × qTrust(Qj , qpref )×

[1 + %(Qj)]

where ip ∈ Is is an implementation of service s by provider
p ∈ P , wj ∈ R is the weight the consumer associates with the
quality Qj. Assuming the constraint that the weights are in
agreement with the consumer’s preferences for the qualities,
that is, ∀Qj , Qj+1 ∈ ~Q|Qj % Qj+1 ⇒ wj ≥ wj+1. For cor-
rectness, the sequence of weights: w1, w2, . . . , wn−1, wn for n
qualities can simply chosen as the sequence: 1, 1

2
, . . . , 1

n−1
, 1

n
.

The equation in Definition 12 represents the weighted sum
of qTrust values for the qualities in Φc; however, for each
quality Qj ∈ ~Q we adjust its impact on the total trust value
with the average relationship of that quality with all other
qualities for which this quality is strictly preferred. The
point of the adjustment is to give more impact to qualities
that are compatible and on average correlate positively with
the remaining qualities while reducing the impact otherwise.

6. EVALUATION
We have one provider of a loan service; however, we cre-

ate multiple implementations to enable us to simultaneously
examine specific relationships among qualities. Services in
this domain expose the common qualities from a QoS middle
ontology [6]; however, in addition, they have domain-specific
qualities.

To simplify the LoanService implementations and the over-
all experiment, we consider only the following qualities:

• LoanFee (LF). The fee that the consumer pays to the
loan service upon approval and purchase of a loan.

• InterestRate (IR). The interest rate that the consumer
pays for the loan.

• ApprovalRate (AR). The rate of approval of this loan
service. That is, how often does the service approves
a loan request versus denying the request?

Table 1: QRel for the LoanFinancing domain.
Quality pairs Relationship Correlation ρ

{ LF, IR } Mild-Parallel (MP) ρ ' 0.50
{ LF, AR } Weak-Parallel (WP) ρ ' 0+

{ IR, AR } Weak-Parallel (WP) ρ ' 0+

Table 1 show the initial QoS relationships among pairs of
the qualities that we consider in this experiment. Table 2
shows the secondary parameters used for the simulations.
The service doping names are based on the strength (Strong
(S), Mild (M), or Weak (W)) and direction (Parallel (P) or
Opposite (O)) of the relationship. For all simulations the
consumer’s preferences for qualities is: {LF Â IR Â AR}.

For this experiment we use one consumer and a set of
five implementations from the same provider. All imple-
mentations expose the same advertisement, which remains
constant throughout the simulations.

The results obtained are presented as service selection
graphs (X-axis is execution sequence and Y-axis is selected
service number).

Table 2: Secondary parameters of simulations.
Sim # Weights LF, IR service doping

0 {1.00, 0.80, 0.70} NA
1 {1.00, 0.80, 0.70} { SO, SO, SO, SO, SP }
2 {1.00, 0.80, 0.70} { MO, MO, MO, MO, SP }
3 {1.00, 0.80, 0.70} { SO, SO, MO, MO, SP }

4, 5 {1, 1
2
, 1

3
} { WP, WP, MP, MP, SP }

Service selection of LoanService implementation

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Execution sequence

S
er

vi
ce

 n
u

m
b

er

Simulation 0a Simulation 0b Simulation 0c

Figure 3: Simulation 0: simple preferences.

Simulation 0: Baseline service selection.
Figure 3 shows the results when the LoanServiceAgent
does not take into account quality relationships, the
consumer’s complex preferences, and the augmented
trust calculation, described in Section 5. The agent
cannot decide on one implementation since they ad-
vertise the same quality policy and are identically im-
plemented.

Simulations 1, 2, and 3: Selection for varying ρ.
Figure 4 shows the results for service selection when
the service implementations are doped (artificially mod-
ified) to vary the quality relationships. The doping is
according to Table 2 and affects qualities LF and IR.
Since the consumer’s quality preferences is constant:

Service selection for varying LoanFee and InterestRate 
correlation

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Execution sequence

S
er

vi
ce

 n
u

m
b

er

Simulation 1 Simulation 2 Simulation 3

Figure 4: Simulations 1, 2, 3: varying QRel.



Service selection for dopings: {WP, WP, MP, MP, SP} without 
explorer agents

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Execution sequence

S
er

vi
ce

 n
u

m
b

er

Simulation 4a Simulation 4b Simulation 4c

Figure 5: Simulation 4: no explorers.

Service seelection with dopings: {WP, WP, MP, MP, SP} with 
explorer agents

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Execution sequence

S
er

vi
ce

 n
u

m
b

er

Simulation 5a Simulation 5b Simulation 5c

Figure 6: Simulation 5: with explorers.

{LF Â IR Â AR} and since LF and IR are direction-
ally compatible—a consumer generally prefers lower
values of both qualities—we know that implementation
four is the ‘best’ choice because it has SP relationship
for LF and IR. As expected, the results show that for
each simulation, the consumer eventually converges to
the fourth service implementation.

Simulation 4 and 5: Effect of explorer agents.
In this final set of simulations, we use the dopings:
{WP, WP, MP, MP, SP}, which means that all ser-
vices have relationships (LF, IR) that are directionally
parallel but of different strengths. Figure 5 shows the
results for three separate runs of this simulation. No-
tice that the agent is not able to always find the ‘best’
implementation since it sometimes gets stuck on a local
maximum (i.e., an implementation with doping MP).
Since the agent is selecting the MP service it is build-
ing up its reputation, which makes it harder for the
agent to find the best implementation.

A possible remedy for the local maximum problem is
to use explorer agents that select all services without
discrimination and help them build their reputations,
independently of the consumer agent’s selection. We
added three explorer agents that run a round-robin
selection algorithm. The explorer agents run a script

similar to the one used by the LoanServiceAgent.

Figure 6 show the results for this experiments. We
included three runs of the simulations, each showing
consistent convergence to the ‘best’ service implemen-
tation (with doping SP). Notice also that the conver-
gence is faster than in Simulations 1, 2, and 3. We
attribute the fast convergence to the explorer agents
since they help all implementations build up their rep-
utations and, therefore, indirectly help the consumer
agent to quickly find the SP implementation.

7. RELATED WORK
Service selection and binding approaches fall into two pri-

mary categories: design-time and runtime. In design-time
selection and binding, the application designer or architect
use service registries coupled with service descriptions to
select and test binding to a service. Nonfunctional charac-
teristics are considered during trial and error tests of the
selected services. Newer techniques using richer semantic
descriptions of services can help in the discovery of service
interfaces. OWL-S [10] is an example of a rich service on-
tology used for semantic service discovery.

The other category, of most concern to our work, is run-
time service selection and binding. In this case, the service
interface is already discovered. At runtime, the service im-
plementations are discovered, selected, and bound to—all
based on QoS requirements, models and metrics, and mid-
dleware. Key models are those of the W3C [11] and UML
[1]. Brokering and middleware approaches that use QoS in-
clude works by Ran [9] and by Wohlstadter et al. [12].

Using QoS for service selection is also proposed by Ran [9],
Kalepu et al. [4] and Zeng et al. [14]; however, while these
work fail to address selection adequately for open environ-
ments because they do not consider trust, reputation, and
a decentralized multiagent architecture as we are proposing.
Wohlstadter et al. propose a policy language for advertis-
ing the QoS needs of clients and to allow the middleware
to match servers to clients [12]. However, their work does
not address a complete conceptualization of nonfunctional
attributes for Web services. Further, Wohlstadter et al.’s
matchmaking techniques lack support to enable dynamic
evolution of the QoS exposed by the services and does not
consider relationships that exist between qualities.

The literature on trust neither addresses QoS directly nor
the applicability of trust for dynamic and autonomic service
selection. Huynh et al. give a framework for trust determi-
nation in open systems, but do not use QoS conceptualiza-
tions to determine the needs of the truster [3]. Zacharia and
Maes give a general model for reputations that we extend
into dynamic service selection [13].

Finally, our agents are decision-theoretic in design. Their
decision-making algorithm, used to make selection decisions,
applies the works by Keeney and Raiffa [5] in decision mak-
ing with multiple objectives, extending it in terms of ontolo-
gies and computing with quality relationships.

8. DISCUSSION
Solutions to the dynamic service selection problem are

crucial for realizing the potential of Web services. After a
mathematical formulation of the problem, we proposed an
initial solution built on a trust model of services that di-
rectly take into account the qualities advertised by service



providers and the quality preferences of consumers. Con-
sidering more detailed consumer preferences for qualities,
we presented an updated trust model where the preferences
for qualities take into account the shape of the consumer’s
utility curve for a single quality, the consumer’s preferences
for tradeoffs among pairs of qualities, and the relationships
between pairs of qualities.

An area of future work is to complement our global view
of trust with one that is local to each agent. Essentially,
each agent would keep track of its past interactions with
service providers and service instances and would can use
the resulting computed trust value to complement the global
view.

A natural follow-on to this preference model is to consider
the consumer’s utility for multiple (greater than two) quali-
ties, the tradeoffs between multiple qualities, and making ex-
plicit the relationships between multiple qualities. A promis-
ing approach is to apply multi-objective utility and decision
theory, as studied by Keeney and Raiffa [5]. Finally, our cur-
rent model for trust does not consider how truthful providers
are in their QoS advertisements and does not include a
model to capture transitive trust. These could be added
to our model by including an honesty notion that compares
a provider’s advertisements to its reputation for qualities
and by introducing endorsements between providers and a
consumer’s list of trusted providers.

Finally, an analytical model that complements our prob-
lem formulation and empirical evaluation would give insight
into the system and also help derive mechanisms to give in-
centives discouraging service consumers from being untruth-
ful and allow them to share.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments.

10. REFERENCES
[1] J. Aagedal, M. de Miguel, E. Fafournoux, M. Lund,

and K. Stolen. UML Profile for Modeling Quality of
Service and Fault Tolerance Characteristics and
Mechanisms. TR 2004-06-01, OMG, 2004.

[2] S. French. Decision Theory: An Introduction to the
Mathematics of Rationality. Wiley, 1986.

[3] D. Huynh, N. Jennings, and N. Shadbolt. Developing
an Integrated Trust and Reputation Model for Open
Multi-Agent Systems. AAMAS), 2004.

[4] S. Kalepu, S. Krishnaswamy, and S. Loke. Verity: A
QoS Metric for Selecting Web Services and Providers.
Proc. 4th Intl. Conf. Web Information Systems Eng.
Workshops, pp. 131–139, 2003.

[5] R. Keeney and H. Raiffa. Decisions with Multiple
Objectives: Preferences and Value Tradeoffs. Wiley,
1976.

[6] E. Maximilien and M. Singh. A Framework and
Ontology for Dynamic Web Services Selection. IEEE
Internet Comp., 8(5):84–93, 2004.

[7] E. Maximilien and M. Singh. Toward Autonomic Web
Services Trust and Selection. Proc. of 2nd Intl. Conf.
Service Oriented Comp., pp. 212–221, 2004.

[8] D. Montgomery, G. Runger, and N. Hubele.
Engineering Statistics. Wiley, 3rd ed, 2004.

[9] S. Ran. A Framework for Discovering Web Services
with Desired Quality of Service Attributes. In L.-J.

Zhang, ed, Proc. Intl. Conf. Web Services,
pp. 208–213, 2003.

[10] K. Sycara, M. Paolucci, A. Ankolekar, and
N. Srinivasan. Automated Discovery, Interaction, and
Composition of Semantic Web Services. J. Web
Semantics, 1(1):27–46, 2003.

[11] W3C. QoS for Web Services: Requirements and
Possible Approaches, 2003. Note.

[12] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and
P. Devanbu. GlueQoS: Middleware to Sweeten
Quality-of-Service Policy Interactions. In Proc. 26th
Intl. Conf. Soft. Eng., pp. 189–199, 2004.

[13] G. Zacharia and P. Maes. Trust Management Through
Reputation Mechanisms. Appl. Art. Intel., 14:881–907,
2000.

[14] L. Zeng, B. Benatallah, A. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-Aware
Middleware for Web Services Composition. IEEE
Transactions on Soft. Eng., 30(5):311–327, 2004.


