
RJ10349 (A0506-007) June 20, 2005
Other

IBM Research Report

Levels of Business Structures Representation

K. Grigorova, P. Hristova, G. Atanasova
Department of Informatics and Information Technologies

University of Rousse
8 Studentska Str.
Rousse, Bulgaria

J. Q. Trelewicz
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

LEVELS OF BUSINESS STRUCTURES REPRESENTATION

K. Grigorova, P. Hristova, G. Atanasova. J. Q. Trelewicz

Abstract: With the increasingly large number of software frameworks available to facilitate "business modeling",
it is important to understand the implications of the level of abstraction provided by the frameworks. In this paper,
we discuss three levels of abstraction of framework for business modeling, including the most typical and widely
accepted representatives of each level. We show that XML is an emerging standard of data interchange and
integration for business modeling. We discuss these frameworks in the context of database representation, which
is important for storage and retrieval of models.

Keywords: Business Modeling, Modeling Languages, Modeling Techniques.

Introduction
Competitive pressure, globalization, and the wide availability of Internet have made necessary the formal design
of businesses. While in the past, business practices -- rules, routines, procedures, and processes -- could evolve
in a piecemeal, isolated, and historical way, today, a rigorous and systemic design of such practices is needed, to
ensure that customers' requests for products and services are processed at the satisfactory speed. Today’s
business modeling aims at the integration of the partial models that represent particular views on an enterprise.
This means not only that models of distinctive and important parts of the enterprise should be created, but also
that semantic relationships between partial models can be expressed.
The basic idea of business modeling is to offer different views on the business. The views should complement
each other and thereby support a better understanding of complex systems by emphasizing appropriate
abstractions. Therefore a corresponding modeling language is used based on specific terminology that is
common within particular view. It provides intuitive concepts to structure the problem domain in a meaningful way.
The baseline views should be flexible in the sense that they can be applied to any business area. Then business
modeling may provide concepts that can be reused and adapted in a convenient way to detailed models for
businesses in a specific market. Specialized modeling languages are one example. Other examples include
reference models for certain types of industry.
Business modeling is performed on different levels of detail according to the needs of designers. Sometimes it is
sufficient to create a common picture of the enterprise, while other times the use of detailed concept is required.
For this reason the business modeling methods should allow various levels of abstraction:

• The highest level in the hierarchy of abstraction is related to external description allowing the users to
express their view of how a given business structure looks, a type of meta-modeling language.

Often, communication between people that belong to different professional communities will not require a high
level of detail. Instead it is sufficient, and helpful, to seek a common understanding of the "big picture". On the
other hand, there are also specific tasks, like the re-design of a business process or the design of an object
model that require the use of detailed concepts. This confirms the existence of variety of modeling languages and
techniques. They are used to create the meta-model of a given business structure.

• The next level in the hierarchy of abstraction considers internal representation of business structures,
which is a kind of application level.

This level of representation corresponds to the requirements of a given application. The variety of modeling
languages and techniques does not demand the multiplicity of internal descriptions. It is preferable to use some
standard approaches in order to allow the successful exchange of models between different environments.
Lately the emergence of XML (eXtensible Markup Language) is a first step to solve the problem of the variety
modeling languages. XML is now widely accepted and acknowledged a standard. XML allows representing
information in a simple, readable format, easily parsed by software tools.

• The third, and final, level of the hierarchy of abstraction is related to the real (existing) storage.

 2

The representation on this level may be viewed in some sense as on-line database. In some implementations, the
user is not allowed to access it and its format may not even be known by the user. In other implementations, it
might be useful to enable the system analysts to operate directly with database models. Additionally, the effective
database design leads to successful performance.
In this paper we discuss both external and internal levels of business structures representation and indicate the
corresponding database models as a proper subject of efficient analysis. Sometimes we refer to modeling
techniques suitable mostly for representation of business processes as the most important part of business
modeling.

External representation of business structures
There is a large variety of meta-languages commonly used for the representation of the highest level of business
structures. Generally these meta-languages involve different graphical primitives for describing the objects and
connections between them.
The most important aspect of all of the meta-languages is important part that the notation plays in any model – it
is the glue that holds the process together. Notation has three roles:

• It serves as the language for communicating decisions that are not obvious or cannot be inferred from
the core itself;

• It provides semantics that are rich enough to capture all important strategic and tactical decisions;
• It offers a form concrete enough for humans to reason and for tools to manipulate.

Here we will discuss some typical and wide spread representatives of modeling tools, used for external business
structures description.
Flowcharting
Flowcharting is among the first graphical modeling techniques, dating back to the 1960s. The advantages of
flowcharts centre on their ability to show the overall structure of a system, to trace the flow of information and
work, to depict the physical media on which data are input, output and stored, and to highlight key processing and
decision points [Schriber, 1969] [Jones, 1986].
Flowcharting was initially intended to provide computer program logic representation, but, because of its flexible
nature, it has been used in many other application areas as well, including business modeling. Despite its
advantages, namely familiarity and ease of use, flowcharting is no longer a dominant modeling technique
because it can provide only basic facilities in representing processes. Therefore, in the area of business
modeling, flowcharts nowadays are typically used primarily as a simple, graphic means of communication,
intended to support narrative descriptions of processes, when the latter become complicated and difficult to
follow.
Data flow diagrams
Data Flow Diagramming (DFD) is a technique for graphically depicting the flow of data amongst external entities,
internal processing steps, and data storage elements in a business process. DFDs are used to document
systems by focusing on the flow of data into, around, and outside the system boundaries. In that respect, DFDs
are comparable to flowcharts, differing from them basically in the focus of analysis: DFDs focus on data, instead
of activities and control [Yourdon, 1989].
DFDs have been widely used for data modeling purposes and have become an ad-hoc standard notation for
traditional systems analysis and design.
DFDs used to model the system’s data processing and the flow of information from one process to another. They
are an intrinsic part of many analysis methods. They show the sequence of processing steps traversed by the
data. Each step documents an action taken to transform or distribute the data. DFDs are easy to read, making it
possible for domain experts to create or to validate the diagrams [Sommerville, 2003].
Entity-Relationship diagrams
Entity-Relationship (ER) diagrams [Yourdon, 1989] are another widely used data modeling technique. ER
diagrams are network models that describe the stored data layout of a system. ER diagrams focus on modeling
the data present in a system and their inter-relationships in a manner that is entirely independent of the

 3

processing that may take place on that data. Such separation of data and operations may be desirable in cases
where the data and their inter-relationships are complex enough to necessitate such an approach.
For the purposes of business process modeling, ER diagrams share similar limitations with DFDs. More
specifically, ER diagrams focus primarily on data and their inter-relationships and hence do not provide constructs
for modeling other process elements. Even more importantly, ER diagrams, unlike DFDs, do not provide any
information about the functions depicted that create or use these data. Finally, ER diagrams are entirely static
representations, not providing any time-related information that could drive analysis and measurement.
State-Transition Diagramming
State-Transition (ST) diagrams originate from the analysis and design of real-time systems. ST diagrams attempt
to overcome the limitations arising from the static nature of DFDs and ER diagrams by providing explicit
information about the time-related sequence of events within a system. The notation being used by standard ST
diagrams is very simple, consisting only of rectangular boxes that represent states and arrows that represent
changes of state (transitions) [Quatrany, 2001].
Namely the possibility for a transition’s depiction allows the usage of State-Transition diagrams as internal
description tool. The explicit description of time-related sequence of data changes points out context relationship,
which is in the base of the internal description.
Role Activity Diagramming
Role Activity Diagrams (RADs) uses diagrammatic notation that concentrates on modeling individual or group
roles within a process, their component activities and their interactions, together with external events and the
logic that determines what activities are carried out and when [Huckvale, 1995]. RADs differ from most other
process diagrammatic notations in that they adopt the role, as opposed to the activity, as their primary unit of
analysis in process models. Due to this focus, they are mostly suitable for organizational contexts in which the
human element is the critical organizational resource that process change aims to address.
Business Process Modeling Notation
The Business Process Modeling Notation (BPMN) is the new standard for modeling business processes and web
service process, as put forth by the Business Process Management Initiative (BPMI). BPMN is a core enabler of a
new initiative in the Enterprise Architecture world called Business Process Management.
BPMN is only one of three specifications that the BMNI has developed – the other two are a Business Process
Modeling Language (BPML) and a Business Process Query Language (BPQL).
BPMN specification provides a graphical notation for expressing business processes in a Business Process
Diagram (BPD). The objective of BPMN is to support business process management by both technical users and
business users by providing a notation that is intuitive to business users yet able to represent complex process
semantics [Owen, 2003] [Stephen, 2001].
A BPD is made up of a set of graphical elements. These elements enable the development of simple diagrams
that are intended to look familiar to most business analysts, resembling a flowchart-type diagram. The elements
were chosen to be distinguishable from each other and to utilize shapes that are familiar to most modelers. For
example, activities are rectangles and decisions are diamonds. It should be emphasized that one of the drivers
for the development of BPMN is to create a simple mechanism for creating business process models, while at the
same time being able to handle the complexity inherent to business processes. The approach taken to handle
these two conflicting requirements is to organize the graphical aspects of the notation into specific categories.
This approach provides a small set of notation categories, easier recognition of the basic types of elements and
understanding of the diagram. Within the basic categories of elements, additional variation and information can
be added to support the requirements for complexity without dramatically changing the basic look-and-feel of the
diagram.

Internal representation of business structures
Business structure models must be capable of providing various information elements to its users. Such elements
include, for example, what activities are carried out, who is performing these activities, when and where are these
activities performed, how and why are they executed, and what data elements they manipulate. Modeling
techniques differ in the extent to which their constructs highlight the information that answers these questions. To

 4

provide this information, a modeling technique should be capable of representing one or more of the following
“perspectives” [Curtis, 1992]:

• Functional perspective: Represents what activities are being performed.
• Behavioral perspective: Represents when activities are performed (for example, sequencing), as well as

aspects of how they are performed through feedback loops, iteration, decision-making conditions, entry
and exit criteria, and so on.

• Organizational perspective: Represents where and by whom activities are performed, the physical
communication mechanisms used for transfer of entities, and the physical media and locations used for
storing entities.

• Informational perspective: Represents the informational entities (data) produced or manipulated and
their relationships.

There are known some techniques and specific languages for internal description of business structures. All of
the techniques discussed here posses the above perspectives. The main benefit of one of these techniques is to
build a model of a business structure that is suitable for future data processing. We discuss standard approaches
here, since it is appropriate to use some standard approach to ensure interoperability between environments.
It is important to point out that the internal models describe the context data dependence, the internal relationship
between processes and subprocesses and the data flow in the scope of the presenting business structure.
The presentation of some wide spread techniques for business structure representation follows.
IDEF Techniques
The IDEF family of modeling techniques was developed as a set of notational formalisms for representing and
modeling process and data structures in an integrated fashion. The IDEF suite consists of a number of
independent techniques, the most well known being IDEF0 (Function Modeling), IDEF1x (Data Modeling), and
IDEF3 (Process Description Capture).
The IDEF0 method is designed to model the decisions, actions, and activities of an organization or other system
and, as such, it is targeted mostly towards the functional modeling perspective (Mayer). As a communication tool,
IDEF0 aims at enhanced domain expert involvement and consensus decision-making through simplified graphical
devices. Perhaps the main strength of IDEF0 is its simplicity, as it uses only one notational construct, called the
ICOM (Input-Control-Output-Mechanism). IDEF0 supports process modeling by progressively decomposing
higher-level ICOMs into more detailed models that depict the hierarchical decomposition of activities.
Despite its advantages, IDEF0 presents a number of limitations that may render the technique unsuitable for
process analysis. More specifically, IDEF0 models are static diagrams with no explicit or even implicit
representation of time. Even the sequence of ICOMs is not meant to depict the temporal relations between
activities. As such, IDEF0 models cannot represent the behavioral or informational modeling perspectives. To
overcome some of the limitations of IDEF0 models, IDEF3 has been developed. IDEF3 describes processes as
ordered sequences of events or activities. As such, IDEF3 is a scenario-driven process flow modeling technique,
based on the direct capture of precedence and causality relations between situations and events. The goal of an
IDEF3 model is to provide a structured method for expressing the domain experts’ knowledge about how a
particular system or organization works (as opposed to IDEF0, which is mainly concerned with what activities the
organization performs).
IDEF1x was designed as a technique for modeling and analysis of data structures for the establishment of
database requirements. IDEF1x differs from traditional data modeling techniques in that it does not restrict the
model to the data elements that are being manipulated by computers, but allows the modeling of manually-
handled data elements as well. IDEF1x utilizes simple graphical conventions to express sets of rules and
relationships between entity classes in a fashion similar to Entity-Relationship diagrams.
The power of IDEF1x diagrams for integrated databases can be harnessed when these diagrams are combined
with IDEF0 and IDEF3 business models. Since they belong to the same “family” of techniques, IDEF models can
complement each other effectively and, when combined, can provide a holistic perspective of a modeled system.
However, this facility comes at a potentially high complexity of developing and maintaining many different models
for a single system.

 5

Petri Nets
Petri Nets do not provide a business process structure representing technique, since they have originated from
and have been traditionally used for systems modeling. However, among the systems modeling techniques, Petri
Nets is perhaps the one technique that has received the most attention as a potential candidate for business
process structure representing as well [Reising, 1992]. Basic Petri Nets are mathematical-graphical
representations of systems, intended for assisting analysis of the structure and dynamic behavior of modeled
systems, especially systems with interacting concurrent components [Peterson, 1981]. A basic Petri Net graph is
composed of a set of states and a set of transitions.
It has been recognized that basic Petri Nets are not succinct and manageable enough to be useful in modeling
and representing high-level, complex business processes structures. To this end, a number of extensions to the
basic Petri Net formalism (usually to include the notions of “colour”, “time”, and “hierarchy”) have been proposed
[Jensen, 1996]. These extensions are collectively referred to as “high-level Petri Nets” and include, for example,
Generalised Stochastic Petri Nets (GSPN), Coloured Petri Nets (CPN), and others.
The power of Petri Nets for internal description is the well-composed formalism consisting of the set of states and
the state of transitions. Those familiar with this formalism can use the internal structure description for different
intentions in any chosen language without environmental dependence.
Unified Modeling Language (UML)
Introduced in 1997 and supported by major industry-leading companies, the Unified Modeling Language (UML)
has rapidly been accepted throughout the object-technology community as the standard graphical language for
specifying, constructing, visualizing, and documenting software intensive systems [Booch, 1999]. UML utilizes a
wide array of diagrammatic notations, including:

• Use case diagrams, which capture system functionality as seen by the users
• Class diagrams, which capture the vocabulary of the system.
• Behavior diagrams (for example state chart, activity and interaction diagrams).
• Implementation diagrams (for example, component and deployment diagrams).

The underlying reason for the development of the language is simple: although a wide variety of notational
languages have long existed for the representation of software systems, most languages are typically aligned
with a particular analysis and design method. This wide variety can be a source of complexity and problems of
non-compatibility between languages. UML attempts to address this gap by being a “universal” language,
covering everything from business process representation to database schema depiction and software
components modeling According to its developers, UML “will reduce the degree of confusion within the industry
surrounding modeling languages. Its adoption would settle unproductive arguments about method notations and
model interchange mechanisms, and would allow the industry to focus on higher leverage, more productive
activities” [UML, 1997].
As far as business structure representation and database modeling are concerned, UML is mostly targeted to
systems modeling situations, although an “extension for business structure modeling” has also been developed.
Some authors [Trelewicz, 2004] argue that UML is not appropriate for these applications because of its lack of
context and structural complexity and resistance to the natural evolution of business structures. Furthermore,
some may argue that the language is heavily based on the object-oriented paradigm and hold out very good
possibilities for internal system representation without program environment and language dependence. There is
no reason to be used in situations where the modelers want to follow only the system overview.
SADT (Structured Analysis and Design Technique)
An SADT model is a simple representation one aspect of business structure, which is adequate for a given
purpose. To achieve the benefits of the principles of structuring, especially top-down, levels of detail and
hierarchy the model should be graphic. Each SADT model consists of a set of related diagrams, which are
organized in a top-down manner. Each diagram is either a summary (parent) diagram or a detailed (child)
diagram of the parent [Vernadat, 1996].
There exist two types of SADT models. An Activity model is oriented toward the decomposition of activities
whereas a Data model is oriented toward the decomposition of data. Each type of model contains both activities
and data; the difference lies in the primary focus of the decomposition.

 6

A SADT Activity Model is used to describe the decomposition of activities. Data is included in the activity model
as inputs, outputs, controls, and mechanisms. The top-level diagram is detailed on separate diagrams. All data is
related to a given activity is explicitly shown (usually in more detail) on the lower level diagrams.
When one develops a Data model, it is not a mirror image of the Activity model, but rather the Data model is used
like a data dictionary to provide a more rigorous definition of data. Experience has shown that the development of
an Activity model in and by itself does not force a precise decomposition of data.
The SADT usage for internal structure representation provides the ability for explicit depiction of data and process
relationships without program language and environment dependence. Each structure represented with this
technique may be used in different ways and for different purposes even after its storage.

Extensible Markup Language
Many applications use business descriptions. The problem is that these applications work with descriptions in
their own internal representations. Therefore communication between them, a growing need for industry, is nearly
impossible without some kind of translator. That is why some sort of exchange standard is needed in order to
avoid a point-to-point translator for every pair of applications.
Extensible Markup Language (XML) is widely recognized as a rapidly emerging standard for moving data over the
Internet. It is a scripting language for representing structured data in a text file. The structured data represented
by XML can be virtually anything, for example, address books, configuration parameters, spreadsheets, Web
pages, financial transactions, technical drawings, and so on. XML defines a set of rules for text formats for such
data. By storing data in a structured text format, XML allows the user to read the data independent of the program
that produced it. XML files are easy for computers to generate and read, they are unambiguous, and they avoid
common pitfalls of text data formats, such as lack of extensibility, lack of support for internationalization and
localization, and platform dependency.
XML offers many advantages as a general-purpose mechanism for representing data and communicating
between applications [XML, 2002]:

• Flexibility
XML can be used for an enormous variety of different purposes just by defining element names and
arrangements appropriate for the particular purpose. Since each element is clearly marked with begin and end
tags, elements can grow and shrink as needed. Finally, the nesting property of XML elements makes it easy to
combine smaller documents into larger documents.

• Portability
XML documents can be moved easily among machines or over the Internet because they are based on text, not
binary representations. The text form used in XML is Unicode, which supports all of the world's languages,
allowing the use of XML for applications that span national boundaries.

• Self-describing
Each XML document carries a structural description of its contents in the form of the element tags. This makes it
much easier for one application to use an XML document created by a different application.

• General-purpose tools
Since all XML documents have the same basic form, general-purpose tools can be created that operate on any
XML document, such as tools that create documents, display their contents, modify their structure, or record
statistics about the flow of XML documents in a system. Several general-purpose XML parsers have already been
created, which makes it easy to XML-enable applications.

• Robustness
Because XML documents are self-describing, XML-based applications can be built to tolerate errors and to
evolve with changes in the content structure. The tags also allow graceful evolution of XML-based software. A
new element can be added to a document without affecting existing software that uses the document: old
software will simply ignore the new element.

• Human-readability

 7

Although XML is intended for processing by computer programs, its textual form is also possible for humans to
read. This can be useful when debugging XML-based applications and means that, if needed, a human can use
an ordinary text editor to create or repair XML documents.
A software module called an XML processor is used to read XML documents and to provide access to their
content and structure. It is assumed that an XML processor is doing its work on behalf of another module, called
the application. This specification describes the required behavior of an XML processor in terms of how it must
read XML data and the information it must provide to the application.
XML's real impact is in the area of data interchange and integration. Over the next few years XML promises to
revolutionize the way that applications and enterprises exchange information. XML makes it much easier for
applications to work together, even when they are in different organizations.

Database representation of business structures
Database models of business structures are usually hidden and the user does not access them directly, but
rather through an interface on the software tools for capturing and analyzing the models. We include in our
definition of “database representations” those structures that business modeling tools may utilize for file storage
or analysis; i.e., we do not restrict to tables in recognized relational database middleware. In many cases the
database design plays an important role for making possible the kinds of analysis that the business designer
wishes to perform on the model. If the designer is authorized to have knowledge of the structure of the business
model in the database, more efficient understanding, implementation and support may be possible. For example,
this can allow the designer to structure the representation in such a way to facilitate faster analysis or higher
degree of reuse of business process templates.
When the business designer needs to deal with only a small part of business model working with its database
model is very convenient. There are a number of aspects to the enterprise, each giving a different view on it,
presented by corresponding business structure.
When designing the business, the business designer will often create one aspect of the enterprise at a time,
linking the aspects of the enterprise once each aspect is understood. A business designer interested in one
aspect of the business can look just at that aspect of the business, without considering the others. However,
having in mind the interdependence of the aspects and the affect they may have on each other, the business
analyst have to take care about the connections between the different aspects.
Formally the business structures that we discuss are mostly graphs, comprising nodes and edges. Thus, the
database approach is addressed to database representation of graphs. The database model must allow
modifications with computational efficiency. Also, the database must support the structuring of queries
appropriate for the business model. The database representation is scaleable, the memory usage associated with
the business model increases linearly in respect with the of the business structures.

Conclusions and future works
Our current work addresses the co-representation of business structures using XML and the BPMN standards.
We have chosen these representations of the suite of prior art discussed above, leveraging the wide acceptance
and ad-hoc standardization that is provided by these options.
In spite of its advantages XML has three disadvantages, all of which are inevitable consequences of XML's
flexibility [Bouret, 2002]:

• Size
XML documents occupy a lot of space due to the use of text for everything and the presence of the tags. Thus,
XML documents will take more space on disk and may also take more time when transmitting over a network.

• Performance
It takes time to read and write XML documents. The tags must be read and processed, and information such as
numbers will have to be converted from its textual form to the form that the application needs.

• Complexity
Reading an XML document is very complicated due to the tag processing that must occur.

 8

Despite these limitations, our subsequent work will discuss the analysis of business models utilizing XML and
leveraging the large number of tools available for its creation and editing, such as Microsoft Visio or Rational
Software Modeler.

Acknowledgements
The paper present results of research project “Database representation of business architectures for efficient
analysis and modification” supported by IBM.

Bibliography
 [Booch, 1999] G. Booch, J. Rumbaugh, I. Jacobson, Unified Modeling Language User Guide, Addison-Wesley, Reading,

MA, 1999
[Bouret, 2002] R. Bourret, XML and Databases, (http://www.rpbourret.com), 2002
[Curtis, 1992] W. Curtis, M. I. Kellner, J. Over, Process Modeling, Communications of the ACM, 35, 9, 1992, pp. 75-90.
[Huckvale, 1995] T. Huckvale, M. Ould, Process Modeling – Who, What and How: Role Activity Diagramming. In Grover, V.

and Kettinger, W.J. (Eds.), Business Process Change: Concepts, Methods and Technologies, Idea Group Publishing,
Harrisburg, PA, 1995, pp. 330- 349

[IDEF, 2003] IDEF Family of Methods, A Structured Approach to Enterprise Modeling and Analysis, Knowledge Based
Systems, Inc., http://www.idef.com/, 2003

[Jensen, 1996] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, Springer Verlag,
Berlin, 1996

[Jones, 1986] J. L. Jones, Structured Programming Logic: A Flowcharting Approach, Prentice Hall, New Jersey, 1986
[Owen, 2003] M. Owen, J. Raj, BPMN and BPM. Introductions to the New Business Process Modeling Standard,

PopkinSoftware, www.popkin.com, 2003,
[Peterson, 1981] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.
[Quatrani, 2001] T. Quatrani, Visual Modeling with Rational Rose 2000 and UML, Addison-Wesley Publishing Company,

2001
[Reising, 1992] W. Reising, S. S. Muchnick, P. Schnupp, (Eds.) A Primer in Petri Net Design, Springer Verlag, Berlin, 1992.
[Sommerville, 2003] I. Sommerville, Software Engineering, Addison-Wesley Publishing Company, 2003
[Schriber, 1969] T. J. Schriber, Fundamentals of Flowcharting, Wiley, New York, 1967
[Stephen, 2001] A. Stephen, Introduction to BPMN, IBM Corporation,
 http://www.bpmn.org/Documents/IntroductionBPMN.pdf, 2001
[Trelewicz, 2004] J. Q. Trelewicz, J. L. C. Sanz, D. W. McDavid, A. Chandra, S. C. Bell, Informatics for business is more than

process automation: i-BUSINESS > e-PROCESS, Int’l Conf on Automatics and Informatics, SAI’04.
[UML, 1997] UML Proposal to the Object Management Group, http://www.rational.com/uml, 1997
[Vernadat, 1996] F. V. Vernadat,. Enterprise Modeling and Integration: Principles and Applications, Chapman & Hall, 1996
[XML, 2002] XML Introduction, (http://www.tcl.tk/advocacy/xmlintro.html), 2002
[Yourdon, 1989] E. Yourdon, Modern Structured Analysis, Prentice Hall International, Englewood Cliffs, NJ, 1989
[Хохлова, 2004] Хохлова М. Н., Теория Эволюционного Моделирования, ФГУП Цнииа-то-минформ, Москва, 2004

Author information
Katalina Grigorova - Department of Informatics and Information Technologies, University of Rousse, 8
Studentska Str, Rousse -7017, e-mail: katya@ami.ru.acad.bg
Plamenka Hristova - Department of Informatics and Information Technologies, University of Rousse, 8
Studentska Str., Rousse -7017, e-mail: pamela@ami.ru.acad.bg
Galina Atanasova - Department of Informatics and Information Technologies, University of Rousse, 8
Studentska Str., Rousse -7017, e-mail: gea@ami.ru.acad.bg
Jennifer. Q. Trelewicz, - IBM Research Relationship Manager, Eastern Europe, Russia, and CIS, Research Staff
Member,IBM Almaden Research Center, e-mail: trelewicz@us.ibm.com

