
RJ10353 (A0507-016) July 12, 2005
Computer Science

IBM Research Report

WEAVER Codes: Highly Fault Tolerant Erasure Codes for
Storage Systems

James Lee Hafner
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

WEAVER CODES: HIGHLY FAULT TOLERANT ERASURE CODES
FOR STORAGE SYSTEMS

James Lee Hafner

IBM Research
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099
e-mail: hafner@almaden.ibm.com

ABSTRACT: We present the WEAVER codes, new families of simple highly fault
tolerant XOR-based erasure codes for storage systems (with fault tolerance 12 in
some cases). The design features of WEAVER codes are (a) placement of data and
parity blocks on the same strip (so-called vertical codes) and (b) constrained parity
in-degree (so parity computation costs are small). These codes are not maximum
distance separable (MDS) but have optimal storage efficiency among all codes with
constrained parity in-degree. Though applicable to RAID controller systems, the
WEAVER codes are probably best suited in dRAID systems (distributed Redundant
Arrangement of Independent Devices). In addition, these codes have other advantages
over many erasure codes for storage systems.

Contents

1 Introduction 2
1.1 Vocabulary and Notations . 4

2 WEAVER code definitions 5
2.1 WEAVER codes of efficiency 50% . 7

2.1.1 The special case of 2 fault tolerance 10
2.2 Other constructions with one data row 11
2.3 Parity in-degree 2 . 14

2.3.1 Three fault tolerance . 15
2.3.2 Four fault tolerance . 16

3 Features 17
3.1 Advantages . 17

3.1.1 High Fault Tolerance . 17
3.1.2 Localization Effects . 17
3.1.3 Symmetry . 18
3.1.4 Variability of Stripe Size and Fault Tolerance 18
3.1.5 Short Write IOs . 19
3.1.6 Multiple Strip Writes . 20
3.1.7 Host IO Size Uniformity . 21

3.2 Disadvantages – Efficiency . 21

4 Related Work – Other codes 22

5 Open Problems 24

6 Summary 24

7 Acknowledgements 25

1

1. Introduction

It has become increasingly clear in the storage industry that RAID5 does not
provide sufficient reliability against loss of data either because of multiple concurrent
disk losses or disk losses together with sector losses (e.g., due to medium errors from
the disks). The reasons are primarily due to the dramatic increase in single disk
capacity together with a fairly constant per-bit error rate. Additional factors, as
mentioned in [5], include increasing number of disks per system, and use of less
reliable disks such as ATA (vs. SCSI). The cited paper makes the case for double
fault tolerance; by extrapolation, there is (or will be) a need for higher fault tolerant
codes if these trends continue. Furthermore, as the industry moves into very long-
term archival storage or dRAID (distributed Redundant Arrangement of Independent
Devices) node-based systems, the need for higher fault-tolerance erasure codes will
likely become more acute.

N -way mirroring can clearly be used to provide additional redundancy in any
system, but the storage overhead (the storage efficiency) of mirroring is very low. On
the other hand, codes like Reed-Solomon [9] provide optimal storage efficiency (that
is, are maximum distance separable, MDS) and arbitrarily high fault tolerance, but
require special purpose hardware to enable efficient computation of the finite field
arithmetic on which the codes are based.

Other erasure codes have been proposed for better fault tolerance than RAID5,
but none has emerged as a clear winner even in the RAID controller market – the
industry has not even settled on a de facto standard for 2 fault tolerance after 40+
years (since RS codes were first proposed). We believe no such “perfect” code can
exist; every code requires some trade-offs in efficiency, performance or fault tolerance.

In this paper, we present the WEAVER codes, so called because the parity/redundancy
values are computed by XOR formulas defined by patterns that weave through the
data. There are two design principles that characterize WEAVER codes: (a) every
strip (stripe unit) contains both data and parity from the same stripe (we call these
vertical codes because data and parity are arranged together vertically on each strip),
and (b) the number of data values that contribute to each parity value is fixed and,
most importantly, is independent of the stripe size. The latter property enables flex-
ibility in choices of stripe sizes without altering computational costs (in both XOR
and IO). In addition, it keeps the computational costs of many operations (e.g., short
writes) to relative minimums, particularly, during rebuild. More details on these
points are given in Section 3 and elsewhere.

The WEAVER codes are designed with balance and symmetry in three aspects.
First, every parity is constructed from some fixed number of data values (we call
this number the “parity in-degree” – as noted, it is independent of the stripe size).

2

Second, each data value contributes to a fixed number of parity values (we call this
the “data out-degree”; it is also independent of the stripe size). The data out-degree
for WEAVER codes is set to the theoretical minimum number of parity values for
the given fault tolerance. For additional symmetry, some of the codes have the parity
in-degree equal to the data out-degree – this provides a certain duality between data
and parity. Third, all the code constructions are specified by a weave-pattern which
is repeated by simple rotation of a base configuration. That is, they are rotationally
symmetric.

There are two general families and one ad-hoc family of WEAVER codes, which
we describe in detail later. We briefly mention here that there are constructions of
WEAVER codes that tolerate up to 12 device failures (and perhaps beyond). A key
feature of all WEAVER codes is the “localization” property that for large stripe sizes
limits the scope of most operations (including, for example, rebuild) to small subsets
of the stripe. This is discussed in more detail in Section 3.1.2.

The WEAVER codes are not MDS codes. Consequently, the main disadvantage
of these codes is their storage efficiency. However, these codes are optimally efficient
for the given fault tolerance and parity in-degree constraint. Of the three families of
WEAVER codes, one family has efficiency 50% for all levels of fault tolerance (up to
10 in our constructions); the other families have lower efficiency which decreases with
increasing fault tolerance. In all cases, these codes have significantly higher efficiency
than N -way mirroring. Because of their symmetry, the WEAVER codes have a
certain simplicity of implementation (though not as simple as N -way mirroring). As
such these codes provide a way for a system designer to select highly fault tolerant
codes that interpolate between N -way mirroring with its performance advantages,
exceptional simplicity but minimal efficiency and MDS codes with lower performance
and greater complexity but optimal efficiency.

Unfortunately, we do not have many theoretical results concerning specific con-
structions. Generally, for small fault tolerance and small stripe sizes, these codes can
be tested by hand (in some cases, we give the proof). For other cases, our construc-
tions were tested by computer program using the generator matrix (see [6] for related
methodology).

The paper is organized as follows. We close this introduction with some definitions
and notation. In Section 2 we describe the various constructions for each family of
WEAVER codes. Section 3 lists the key advantages and disadvantages of these codes.
Related work and comparisons with other published codes are discussed in detail in
Section 4. We conclude with a short summary.

3

1.1. Vocabulary and Notations

The literature contains some inconsistency concerning the use of common storage
and erasure code terms, so we state our definitions here to avoid confusion. We use the
term “system” to refer to either a dRAID storage system of node-type devices or to a
controller array of disks (RAID). The term “device” will refer to the “independent”
storage device in the system (a node in dRAID or a disk in RAID).

element: a fundamental unit of data or parity; this is the building block of the
erasure code. In coding theory, this is the data that is assigned to a bit within
the symbol. For XOR-based codes, this is typically one or more sequential
sectors on a disk (or logical sectors on a storage node).

stripe: a complete (connected) set of data and parity elements that are dependently
related by parity computation relations. In coding theory, this is a code word;
we use “code instance” synonymously.

strip: a unit of storage consisting of all continguous elements (data, parity or both)
from the same device and stripe. In coding theory, this is associated with a
code symbol. It is sometimes called a stripe unit. The set of strips in a code
instance form a stripe. Typically, the strips are all of the same size (contain the
same number of elements).

vertical code: an erasure code in which a (typical) strip contains both data elements
and parity elements (e.g., X-code [11] or these WEAVER codes). Contrast this
notion with a “horizontal code” in which each strip contains either data elements
or parity elements, never both (e.g., EVENODD [2]).

array: a collection of devices on which one or more instances of a erasure code is
implemented.

We use the symbol t exclusively to represent the fault tolerance of a code, the
symbol n for the size of the stripe (the number of strips, or equivalently, the number of
devices in a code instance), and k for the maximum parity in-degree. For WEAVER
codes, all parity have in-degree exactly k and k ≤ t. In addition, all data have
out-degree equal to t, the theoretical minimum for t fault tolerance. We therefore
parameterize our codes as WEAVER(n,k,t), and we provide constructions for different
values of these parameters. Since the codes have both data and parity on each strip,
we let r denote the number of data elements and q the number of parity elements per
strip. (We see how r and q may be determined from k and t in Section 2.)

4

We define a “short write” as a host write to any sequential subset of an element
(e.g., a single sector); a “multiple strip write” as a host write to a sequential subset
of the strips in a stripe (that is, the user data portion of the strips).

Other terms of relevance later are the “write lock zone” and the “rebuild zone”.
The former is the set of elements that should be locked during a short write so
as to provide data/parity consistency in case of failures encountered during a write
operation (an atomicity requirement for a write). The latter is the subset of strips
within the stripe which are needed during a rebuild of one or more lost strips. We
see why this notion is relevant to WEAVER codes in Section 3.

2. WEAVER code definitions

There are a number of viewpoints that are suitable to describe the general WEAVER
codes. Figure 1 shows a directed, bipartite graphical representation; the nodes on top
represent the data elements in the stripe and the nodes on the bottom represent the
parity elements. An edge connects a data element to a parity element if that data
element contributes to the parity value computation (we say that the data element
“touches” this parity element or conversely, the parity element is “touched by” the
data element). For WEAVER(n,k,t) codes, each data element has data out-degree
equal to t, the minimal value for a t fault tolerant code. In addition, each parity
element has parity in-degree exactly k, where k ≤ t.

Generally, a graphical representation like that of Figure 1 can be applied to any
XOR-based erasure code, though it only provides a partial description of the code in
the context of storage systems. The physical layout of data and parity on the strips
within the stripe must also be specified. This is given in Figure 2. We have logically
numbered the data elements first within a strip and then from strip to strip; this
corresponds to the logical addressing of the data elements from the hosts viewpoint.

Of course, there is no requirement that the parity elements be placed below the
data elements; they must be placed however on the same device. WEAVER codes
always have both data and parity elements on each strip. Essential for performance
is that the data elements be logically contiguous, as must the parity elements.

We can also represent our codes by sets of indices. A parity element pj can
relabeled pκ(j) where κ(j) is the set of indices of the data elements that touch this
parity element, That is,

pj → pκ(j) =
⊕

i∈κ(j)

di. (2.1)

Conversely, we can relabel the data elements as dτ(j) where τ(j) is the set of parity
elements that are touched by dτ(j). That is,

τ(j) = {i : j ∈ κ(i)}. (2.2)

5

…• • • • •

• • • • •…
Parity Elements

Data Elements

t edges out

k edges in

…

Figure 1: Graphical representation of a general WEAVER(n,k,t)
code. Each parity element has in-degree equal to k; each data ele-
ment has out-degree equal to t.

S0 S1 · · · Sj · · · Sn−1

d0 dr · · · djr · · · d(n−1)r

d1 dr+1 · · · djr+1 · · · d(n−1)r+1

...
... · · · ...

...
...

dr−1 d2r−1 · · · d(j+1)r−1 · · · dnr−1

p0 pq · · · pjq · · · p(n−1)q

p1 pq+1 · · · pjq+1 · · · p(n−1)q+1

...
... · · · ...

...
...

pq−1 p2q−1 · · · p(j+1)q−1 · · · pnq−1

Figure 2: Stripe/strip layout of general WEAVER(n,k,t) code. Each
strip contains r data elements and q parity elements. Sj denotes a
strip label; dj is a labeled data element; pj is a labeled parity element.
Each strip is stored on a different device in the system.

In the graph of Figure 1, κ(j) can be viewed as labeling the set of edges into parity
node pj, and, similarly, τ(j) as labeling the set of edges out of data node dj. This

6

notation makes it easier to provide formulas to define specific constructions.
To provide rotational symmetry (a key design feature of WEAVER codes), for

0 ≤ j ≤ n− 1 and 0 ≤ i ≤ q − 1, we set

κ(jq + i) = {(u + j) mod n : u ∈ κ(i)} def
= κ(i) + j.

In other words, a specification for the parities pκ(i) for 0 ≤ i ≤ q − 1 (on one strip),
together with a simple rotation to the right (with wrap-around) provides a complete
specification of WEAVER(n,k,t) erasure codes. We call the sets κ(i) “parity defining
sets”. A similar rotational formula can be derived for the sets τ(j).

We describe parity defining sets using the following additional notation. We let
κ1(i) be an increasing sequence of k integers with initial value 1 and we let s be an
“offset”. We can specify a parity defining set κ(i) from κ1(i) and s by the relation

κ(i)
def
= κ1(i) + s = {j + s : j ∈ κ1(i)}.

As we will see, simple κ1(i) sets, together with different offsets s provide a convenient
way to visualize good parity defining sets. We (slightly) abuse the terminology and
use “parity defining set” for a set κ1(i) and an offset s.

It is easy to see from Figures 1 and 2 that rt = qk (the total number of edges
can be computed either by counting the edges coming out of the data elements (nrt)
or by counting the edges coming in to the parity elements (nqk)). Generally, a
WEAVER(n,k,t) code will have r and q minimal (to minimize overall complexity): so
r = k/m and q = t/m where m = gcd(k, t). In general, this is assumed throughout
unless otherwise noted.

Given these parameters, the storage efficiency for these codes is given by

Eff =
nr

nr + nq
=

r

r + q
=

k

k + t
. (2.3)

The first two are obvious from Figure 2, the latter comes from the relation r = qk/t.
Since we assume k ≤ t, the maximum efficiency for any WEAVER code is 50%.

In the next few subsections, we describe specific constructions of parity defining
sets that provide for prescribed fault tolerance.

2.1. WEAVER codes of efficiency 50%

For our first family of WEAVER codes we set k = t so that efficiency is 50%. We
have gcd(k, t) = k = t so that r = q = 1 and the layout of Figure 2 takes the simpler
form:

Sj

d0 d1 · · · dj · · · dn−2 dn−1

pκ(0) pκ(1) · · · pκ(j) · · · pκ(n−2) pκ(n−1)

7

A specification for κ(0) (or equivalently, κ1(0) and s) defines the code from the parity
elements viewpoint (see (2.1)). Alternatively, we can reverse the viewpoint and label
(see (2.2)):

Sj

dτ(0) dτ(1) · · · dτ(j) · · · dτ(n−2) dτ(n−1)

p0 p1 · · · pj · · · pn−2 pn−1

Table 1 gives a partial listing of parity defining sets (κ1(0) with offset s) and valid
stripe sizes n for fault tolerance 1 ≤ t ≤ 10. (We say a stripe size is “valid” for a given
parity defining set if the code on that stripe size has the required fault tolerance.)
The entries tagged with an asterisk are discussed below in the remarks.

We make the following remarks concerning Table 1.

• The first entry in the table is a very simple code. In fact, it is just a simple
RAID1 mirror code, but with a non-standard data layout. Because of the
vertical layout (data above parity), this code can easily and uniformly provide
simple mirroring on any number of devices (at least 2), including an odd number
of devices. In addition it provides for natural load-balancing as every device
is equally burdened by data and a parity mirror. See Section 4 for further
comments on the second entry of the table where t = 2.

• The table provided only a small subset of all the constructions we discovered.
For this work, we tested validity for all cases of stripe sizes n, offsets s and
parity defining sets κ1(0) ⊆ [1, w] of various ranges. For t ≤ 7, we covered
the ranges n ≤ t2 + 2t, 0 ≤ s ≤ 8 and w = 3t. For t = 8, 9, we ran a
preliminary filter to find good candidate parity defining sets, then processed
the most promising ones in the range n ≤ t2, 0 ≤ s ≤ 8 and w = 2t. For
t = 10, we only completed a search of about 1/3 of the entire search space with
0 ≤ s ≤ 8 and w = 2t and n ≤ 4t + 4 (see the next remark). For t ≤ 3, it is
fairly easy to prove that the constructions work for all n in the described range;
for t ≥ 4, the implication that the codes work for n outside the tested range is
not theoretically established. See Section 5 and Theorem 1 in particular.

• The search space for these experiments is actually quite large. This is partic-
ularly true for the higher fault tolerant cases. For example, the t = 6 search
completed at least 1.6 trillion matrix rank tests. For a given t, κ1(0), s and

n, there are
(

n−1
t−1

)
binary matrices to test for each valid design (these are the

fault instances for a given design). There are 9 offsets s to test for each of

the
(

w−1
t−1

)
defining sets κ1(0). For t ≥ 6 it was prohibitive to do this on a

standard workstation. Instead, we implemented our search to run on an IBM

8

t κ1(0) offset s Stripe Size n

1 {1}∗ 0 2+
2 {1, 2}∗ 0 4+
3 {1, 2, 3}∗ 1 6,8+
{1, 2, 4} 2 7+

4 {1, 3, 5, 6} 1 10+
{1, 2, 3, 6}∗ 0,2,3 11+

5 {1, 3, 4, 5, 7} 2 12,15+
{1, 5, 6, 8, 9} 3 13+
{1, 2, 3, 4, 7} 1 14+
{1, 2, 3, 6, 9}∗ 2 15+

6 {1, 5, 8, 9, 10, 12} 2 17,19,21+
{1, 6, 8, 9, 11, 12} 7 17,20+
{1, 2, 3, 6, 9, 10} 0 18+
{1, 2, 3, 4, 6, 9}∗ 5 19+

7 {1, 4, 5, 6, 7, 8, 11} 4 20,23-24,26,28+
{1, 2, 4, 7, 10, 12, 13} 3 20,24+
{1, 3, 5, 6, 7, 11, 12} 1 22+
{1, 2, 3, 4, 6, 9, 14}∗ 6 23+

8 {1, 2, 4, 8, 10, 11, 12, 13} 0 26,28+
{1, 2, 6, 7, 8, 9, 12, 14} 0 27+
{1, 2, 3, 4, 6, 7, 9, 14}∗ 0 28+

9 {1, 4, 5, 6, 7, 12, 13, 15, 18} 2 30,32,34+
{1, 4, 5, 8, 11, 12, 13, 14, 15} 6 31+
{1, 2, 3, 4, 6, 7, 9, 14, 15}∗ 5 32+

10 {1, 2, 4, 5, 6, 8, 14, 16, 17, 19} 7 35,38,40+
{1, 2, 4, 7, 8, 9, 13, 14, 17, 18} 0 37+

Table 1: Partial listing of parity defining sets for WEAVER(n,t,t)
codes. See the remarks for a description of the entries tagged with
a superscript. A stripe size n0+ means n ≥ n0.

BlueGene/L system (we used only 1024 processors of the system). Each pro-
cessor was given a subcollection of the search space of parity defining sets κ1(0)
and, for each κ1(0) in its subcollection, ran the tests for every offset s and n
in the ranges mentioned above. The t = 6 case mentioned above took approxi-
mately 12 hours on 1024 processors. Other searches took many days (the t = 10
preliminary search was incomplete after 18 days, though it did complete more
than 32 trillion matrix rank tests!).

• For fault tolerance t ≥ 4, there are gaps in the sequence defining the set κ1(0).

9

This is a requirement as the following argument illustrates. Suppose k = t = 4
and there are four consecutive integers in κ(0), say, i, i+1, i+2, i+3. Consider
the data element labels i+1 and i+2. Both appear together in κ(n−1) = κ(−1),
κ(0) and κ(1). But i + 1 appears by itself in κ(2) and i + 2 appears by itself in
κ(−2). If we loose strips i + 1 and i + 2 (so data elements di+1 and di+2), and
strips 2 and (n−2) (with pκ(2) and pκ(−2)), then every surviving parity contains
either both of the data elements i + 1 and i + 2 or neither. Consequently, there
is no way to distinguish between the two values; this implies such a code cannot
tolerate these 4 failures. It is not clear what additional heuristics (or theorems)
define “good” or “bad” sets κ(0) (see Section 5).

• We listed only entries that have valid stripe sizes for all n ≥ n0 (identified in
the table as n0+), with perhaps a few isolated valid stripe sizes below n0. For
example, for t = 5, the entry κ1(0) = {1, 3, 4, 5, 7} with offset s = 2 has valid
stripe sizes n = 12 and n ≥ 15 but not n = 13, 14. We typically observed
similar behavior for almost all sets we tested though there were anomalies. The
set κ1(0) = {1, 3, 6, 10, 15, 21} had invalid stripe sizes for every n divisible by 9
regardless of offset. We do not have a proof that this persists, but we believe
that a proof of this type of negative result would not be difficult.

• The entries marked with ∗ form a single chain of supersets for κ1(0) at t in-
creases. The usefullness of this chain is described in more detail in Section 3.1.4,
but briefly it enables changing of fault tolerance on-the-fly with minimal parity
recomputation. Unfortunately, we did not find a t = 10 extension of the chain
though one still may exist (as our search was incomplete).

2.1.1. The special case of 2 fault tolerance Consider the t = 2 element from
Table 1 where κ(0) = κ1(0) = {1, 2} (and s = 0). We will describe this code in
somewhat different terms and prove the claimed fault tolerance. Because k = t = 2,
each parity value is the XOR sum of a pair of data values, one from each of the two
strips immediately to the right of the parity element (with wrap-around, of course).
Alternatively, each data element touches two parity elements and so is paired with
two other data elements (the other data element in each of its two parity elements).
From this viewpoint, a given data element D is paired with its west W and east E
neighbor elements (graphically):

W ← D → E

The parity value computed from W ⊕ D is stored in the strip to the left of W ; the
parity value computed from D⊕E is stored on the strip to the left of D, namely, the
same strip as W .

10

We now give a proof that this code has the required 2 fault tolerance, provided
n ≥ 4. It is clear that this is a necessary condition (if n ≤ 3 and two strips are lost,
there is at most only one strip remaining and that is clearly insufficient). It is also
clear that we only need to recover lost data values, as parity values can be recomputed
from all the data.

There are three cases to consider.
Case 1: Suppose one strip is lost (say, strip Sj). We observe that κ(j − 1) =

{j, j + 1} so that dj can be recovered by reading dj+1 (from the strip Sj+1 to the
right of strip Sj), reading pκ(j−1) (from the strip Sj−1 to the left of Sj), and using the
formula:

dj = dj+1 ⊕ pκ(j−1). (2.4)

Alternatively, we can recover dj from dj−1 and pκ(j−2) since κ(j − 2) = {j − 1, j}.
Case 2: If two adjacent strips are lost (say, Sj and Sj+1), we read dj−1 and pκ(j−1)

(in one operation from strip Sj−1) and pκ(j−2) from Sj−2. Then, recursively,

dj = pκ(j−2) ⊕ dj−1

dj+1 = pκ(j−1) ⊕ dj.

Note that even though we needed to read three elements (two parity and one data),
we only needed to access two devices (for disks, this is a single IO seek per device)
because of the vertical arrangement of data and parity.

Case 3: If two non-adjacent strips are lost, then we reconstruct as two inde-
pendent cases of a single strip loss (using (2.4)), because the data can always be
reconstructed from its left neighboring parity and right neighboring data (neither of
which is on a lost strip). For n ≥ 4, most of the dual failure cases are of this type.

In this proof, we see two examples of the value provided by the “localization”
property of WEAVER codes (see Section 3.1.2). For all cases, only a few devices in
the stripe need to be accessed for reconstruction; this number is independent of the
stripe size n. In addition, we saw in Case 3 that the reconstruction problem divided
into two smaller, easier and independent reconstruction problems.

We also saw that the vertical data/parity arrangement can reduce device access
costs, by combining some multi-element reads into a single device access. For disk
arrays, this implies fewer disk seeks and better performance.

2.2. Other constructions with one data row

The constructions of the previous section are “ad hoc”; that is, (with the excep-
tion of the case t = 2, 3) they were found by computer search and not by a parametric

11

formulation of the parity defining sets κ(0). In this section, we give a different con-
struction based on a formula.

We start by making the assumption that k divides t. In that case, we have
gcd(k, t) = k so we can take r = 1 (one data row) and q = t/k (q parity rows). The
special case t = k gives another instance of the codes in Section 2.1 when t = k ≤ 3.
We use the term consecutive-i to mean consecutive numbers with difference i. (For
example, the consecutive-2 numbers starting at 1 are 1, 3, 5,) We say a set of
parity elements are consecutive-i if they are in the same row and their corresponding
strip numbers are consecutive-i, modulo n (of course).

The constructions can be described as follows. For the parity row 0, data element
dj touches k consecutive-1 parity elements, starting at some offset s (with wrap-
around from left to right). For each parity row i, 1 ≤ i ≤ q − 1, data element dj

touches the set of k consecutive-(i + 1) parity elements starting one strip to the left
of the last parity element touched in the previous row (with wrap-around). A data
element touches exactly k parity elements in each row so that each parity is composed
of k data elements (that is, parity in-degree is k).

Figure 3 shows a graph representation for the special case when k = 3, t = 9
and so r = 1 and q = 3. This graph is that subgraph of the general graph in
Figure 1 corresponding to the out-edges for the one data element dj (and by rotational
symmetry, implies the subgraph for all other data elements). We have relabeled
the parity elements pjq+i = p(i,j) = pi,j so that i represents the row number and j
represents the strip (column) number.

Put in mathematical terms, the set τ(j) of (ordered pairs of) indices of parity
elements touched by dj is given by the formula

τ(j) =
q−1⋃
i=0

{(i, j − (k − 1)i(i + 1)/2− u(i + 1)− s) : 1 ≤ u ≤ k} . (2.5)

From the parity viewpoint, the equivalent formulation is

κ(i, j) = {j + (k − 1)i(i + 1)/2 + u(i + 1) + s : 1 ≤ u ≤ k} . (2.6)

In these expressions, the term u(i+1) for 1 ≤ u ≤ k provides the k consecutive-(i+1)
parity elements. The term s provides the initial offset. The term (k − 1)i(i + 1)/2
provides for the starting point relative to dj.

Table 2 provides a list of some examples found by testing all s ≤ 8 and all n ≤ 64
for t ≤ 10 and n ≤ 48 for t = 12. We also give the efficiency for these codes (in
the previous section, all codes had efficiency 50%); the efficiency is computed by the
formula Eff = 1/(q + 1) by (2.3). Notice that we have examples with fault tolerance
as high as t = 12 and we conjecture that this construction (with a suitable offset s

12

• ••

•

skipped

p0,j-1-sp0,j-3-s p0,j-2-s

• •• p1,j-4-sp1,j-8-s p1,j-6-s

• •• p2,j-9-sp2,j-15-s p2,j-12-s

• • • •

• •

dj

consecutive-3

consecutive-2

consecutive-1

Figure 3: The subgraph of the data/parity relations graph for k = 3,
t = 9 and offset s. Parity are labeled pi,j where i is the parity row
and j is the strip number (taken modulo n). The relative position
suggests approximate placement in the rows of the data/parity lay-
out of Figure 2. Small dots represent parity elements in the gaps
that not touched by dj.

and sufficiently large n) should work for arbitrarily large t, though not necessarily all
k.

The examples with t = 9, k = 3 and t = 12, k = 4 are interesting because the fault
tolerances are so high, but the efficiency if 250% higher and 325% than corresponding
10-way or 13-way mirrors. The two examples in Table 2 with t = k = 2 and t = k = 3
are identical to the WEAVER(n,t,t) codes given in Table 1 with κ1(0) = {1, 2} and
κ1(0) = {1, 2, 3}, respectively.

There are two codes in Table 2 with the same fault tolerance t = 6; they have
different parity in-degree k and so different efficiency. The code with k = 2 has
very simple parity computations but efficiency only 25%. The code with k = 3
has somewhat more complex parity computations but better efficiency 33%. This
exemplifies one of the trade-offs of erasure codes (performance vs. efficiency) and the
fact that the rich set of WEAVER codes provide a means to balance these trade-
offs for a given system’s constraints. (Similar remarks apply to the three codes with

13

t k q s Stripe Size n Efficiency

2 2 1 0,1 4+ 50%
4 2 2 0 6+ 33%
6 2 3 0,1,2 9+, excl. 9+s 25%
8 2 4 0,1,2,3 15+, excl. 14+s 20%
10 2 5 0,3,4 16,20+, excl. 20+s 17%
12 2 6 0,1 23,27+, excl. 27+s 14%

3 3 1 1 6,8+ 50%
6 3 2 2,4 11,13,15+ 33%

3 12,14+
9 3 3 1 15,17+ 25%

3 16-17,19+
12 3 4 1,3 24+, excl. 24+s 20%

12 4 3 2 21,25+ 25%

Table 2: Partial listing of WEAVER(n,k,t) codes where k divides t
and parity defining sets given by (2.5) or (2.6).

t = 12.)
The remark made in the comments of Section 2.1 about consecutive parity ele-

ments when k = t precludes this construction from working for k = t ≥ 4. For k = 4
and t > 4 the situation is undecided. Preliminary experiments suggest that t = 8 suf-
fers from a similar obstacle; surprisingly t = 12 does have some valid configurations.
Clearly, alternatives to consecutive-1 may be required if k ≥ 4 (though we have not
tested any of these cases).

There is considerably more structure to the patterns of valid offsets and stripe
sizes for this construction compared to those of the previous section. It is likely that
this construction can be analyzed in most cases theoretically. We leave that to future
work.

We conjecture that other parity defining sets will also provide valid WEAVER
codes of similar efficiency and design, perhaps on even smaller stripe sizes or will fill
in the gaps in the stripe sizes in Table 2.

2.3. Parity in-degree 2

All of the constructions we have presented so far have one data row (r = 1, because
k divides t in all cases). In the next two sections, we give two ad-hoc constructions
(with 3 and 4 fault tolerance, respectively) that have r = 2. The key feature of these
codes is that we restrict k = 2, so that the parity computations are quite simple.

14

These codes generalize the 2 fault tolerant code discussed in Section 2.1.1. They
each contain two copies of this 2 fault tolerent code, plus some additional cross re-
lations between them (hence, again the WEAVER name). All three codes use “data
neighbor” relations to determine the parity defining sets. Adding a second row allows
for relations in different directions than just east/west; this in turn enables more par-
ity defining sets containing a given data element; and this increases the (potential)
fault tolerance.

2.3.1. Three fault tolerance The WEAVER(n,2,3) code presented in this sec-
tion has a data/parity layout given by

Sj

d0 · · · d2j · · · d2n−2

d1 · · · d2j+1 · · · d2n−1

p{2,4} · · · p{2j+2,2j+4} · · · p{0,2}
p{3,5} · · · p{2j+3,2j+5} · · · p{1,3}

p{2n−3,2n−2} · · · p{2j−3,2j−2} · · · p{2n−5,2n−4}

Each parity element is labeled by its parity defining set. The first parity row is the
WEAVER(n,2,2) code built from the first data row. The second parity row is again
the WEAVER(n,2,2) code built from the second data row. The third row weaves
between these two along nearest neighbor up-diagonals, placing the parity to the
right of the up-neighbor. (Other placement of these parity are also possible.)

Visually, a data element D0 from the first row is paired with its neighbors as
follows (each pair computes a different parity value):

W0 ← D0 → E0
↙

SW

and similarly, a data element D1 from the second row has pairings:

NE
↗

W1 ← D1 → E1

The D1 → NE relation is just a reverse perspective on the D0 → SW relation
above (SW = D1 and NE = D0). Each data element touches three different parity
elements on three different strips, twice in one parity row, and once in the last row
parity row. This provides the necessary condition for 3 fault tolerance.

15

It can be proven that this construction is also sufficient for 3 fault tolerance
provided n ≥ 6 but we leave out the proof as it is similar to the one we gave for
WEAVER(n,2,2).

This construction provides another example of a 3 fault tolerant code on as few as 6
devices. Compare this with the first t = 3 entry in Table 1 where k = 3; the difference
is again a performance/efficiency trade-off. See Section 4 for more comments.

2.3.2. Four fault tolerance In this section we provide another WEAVER(n,2,4)
code with two data rows. Constrast this construction with the code of Section 2.2,
which also has k = 2 and t = 4 but has only one data row (see Table 2). This is the
only code we present that drops the “minimalist” condition r = k/ gcd(k, t).

The layout and parity defining sets can be seen in the following chart:

Sj

d0 · · · d2j · · · d2n−2

d1 · · · d2j+1 · · · d2n−1

p{2,4} · · · p{2j+2,2j+4} · · · p{0,2}
p{3,5} · · · p{2j+3,2j+5} · · · p{1,3}

p{2n−5,2n−4} · · · p{2j−5,2j−4} · · · p{2n−7,2n−6}
p{2n−6,2n−3} · · · p{2j−6,2j−3} · · · p{2n−8,2n−5}

The first five rows are essentially identical to the WEAVER(n,2,3) code of the previous
section, with the exception that the fifth row is cyclically shifted right by one. The
last row of parity elements is computed by weaving the down-diagonals and placing
the parity value in the parity element two strips to the right.

This time, each data element is paired with four other data elements: west neigh-
bor, east neighbor and its two diagonal neighbors (southwest, southeast for an element
D0 in row 0 and northeast, northwest for a an element D1 in row 1). Graphically,
this looks like:

W0 ← D0 → E0
↙ ↘

SW SE

and
NW NE

↖ ↗
W1 ← D1 → E1

Each data element is now stored in four parity elements: twice in one of the first two
parity rows (and not in the other), and once in each of the last two parity rows.

16

Again, we leave out the proof that this is 4 fault tolerant provided n ≥ 8. This code
has the same fault tolerance, efficiency and parity in-degree as the WEAVER(n,2,4)
code in Table 2, but requires more strips for the minimal configuration (and has six
rows in total versus three for the previous code). However, it has better localization
properties. For example, for this construction the write lock zone comprises a total of
eight data and parity elements on six neighboring strips (centered on the target strip)
versus the same number of data and parity elements on seven strips (five neighboring
strips similarly centered plus two additional strips) for the k = 2, t = 4 code of
Section 2.2.

Note that by dropping the first two rows of parity, we get yet another WEAVER(n,2,2)
code with two data rows, two parity rows and efficiency 50%. It can be made equiv-
alent to the code described in Section 2.1.1 and so is not very interesting by itself.

3. Features

Now that we have defined the WEAVER code structure, and given many examples,
we next discuss the key features of these codes, the advantages in the next subsection
and a brief discussion of the primary disadvantage following.

3.1. Advantages

3.1.1. High Fault Tolerance The WEAVER codes have instances of exception-
ally high fault tolerance (we gave constructions with fault tolerance 12 and conjecture
that other constructions should be possible). There are very few codes in the storage
system literature that meet these fault tolerance levels. The only viable options for
very high fault tolerance to date seem to be Reed-Solomon codes, with their high
computational costs, or N -way mirroring with their very low efficiency (there are
additional remarks in Section 4).

3.1.2. Localization Effects The design characteristics of constant parity in-
degree and rotational symmetry are key features of the WEAVER codes. They enable
the “localization” of many operations on the stripe. We have seen two examples of
this: (a) in Section 2.1.1 we saw reconstruction requiring access to a small bounded
(independent of stripe size) subset of the stripe; and (b) in Section 2.3.2 we saw write
lock zones for two codes that are also small, bounded subsets of the stripe.

These two examples are typical of any WEAVER code (in fact, any code with
parity in-degree bounded independent of the stripe size). Recall that the write lock
zone is the set of data or parity elements that should not be modified during a
write to some target data element. This zone can be determined by examining the

17

2-neighborhood of the target element in the data/parity graph (see Figure 1 – the
2-neighborhood is the set of nodes in the graph within a distance two of the target
element’s node). With t parities each having k edges out (one of which is the target
element), this bounds the write lock zone to at most t(k − 1) + t = tk data and
parity elements (so at most tk devices as well – for some WEAVER codes, the actual
number of devices is smaller). This is independent of the stripe size n, providing a
proof of the localized write lock zone.

In contrast, even RAID5 has a write lock zone that is effectively the entire stripe,
since the 2-neighborhood of an element is the entire remainder of the stripe. This is
a consequence of the parity in-degree determined as a function of the stripe size.

Similar localization effects occur during rebuild. A rebuild of one or more losts
strips in a WEAVER code only requires access to a fixed and bounded set of strips.
This set is at most the union of the 2-neighborhoods for all the data elements on all the
lost strips. Also, as we saw in Section 2.1.1, certain multi-strip failures may partition
themselves into independent failure scenarios (with fewer losses each). This allows for
some recovery in parallel. In addition, reconstruction algorithms generally get more
complicated with the number of inter-related failures so partitioning a multiple failure
case into two or more independent failure cases can have a significant performance
advantage. For example, consider the recovery costs of EVENODD(p,n) [2] and
WEAVER(n,2,2) code when two strips fail. For n ≥ 6, the EVENODD always
requires accessing n − 2 strips, whereas most cases of WEAVER recovery involve
only 4 devices, and the other cases only require 2 devices to be accessed!

3.1.3. Symmetry The vertical layout of data and parity together with the sym-
metry properties (balanced parity in-degree and data out-degree and the rotational
pattern repetition) provide natural load balancing across all the devices. Multiple
instances of the WEAVER codes can be stacked on the same set of devices with
a simple host-to-strip addressing and also a simple logical strip-to-physical-device
labelling. In contrast, the parity rotation of RAID5 vs RAID4 requires more compli-
cated logical/physical addressing models.

Furthermore, multiple instances of WEAVER codes with different fault tolerances
can be easily stacked on the same collection of devices (provided the number of devices
is sufficiently large). This allows for different classes of fault tolerant logical volumes
on the same set of devices. It is possible to do this with other codes, but it generally
would require more complex logical/physical addressing models.

3.1.4. Variability of Stripe Size and Fault Tolerance The localization prop-
erty mentioned above enables the WEAVER stripes to be expanded or shrunk (ad-
dition or removal of strips) with only local effects to the stripe; that is, not all de-

18

vices need to be accessed and data or parity moved around. For example, in the
WEAVER(n,2,t) codes, a new device/strip can be inserted into the stripe, and only
the nearby devices need to have parity recomputed. This property holds regardless
of how many devices are being inserted into the stripe. See the additional comments
in Section 4.

With the WEAVER(n,t,t) codes, it is further possible to change, on-the-fly, the
fault tolerance of a single stripe in the array (either up or down) by simply recomput-
ing the parity values. No remapping of either the host addressing or the strip labelling
is required. The only requirement is that the array size is supported for the higher
fault tolerance. This enables more autonomic adaptability and is not possible with
(almost) any other code. In addition, by using a chain of κ1(0) subsets (e.g., those
marked by a superscript in Table 1), the recomputation step involves only adding a
single new data value into each parity value and then storing the new parity values in
the appropriate strip (which may change if the offset changes). This is significantly
more efficient than recomputing all the parity from scratch. Note that “adding a data
value” can be used to either lower or raise the fault tolerance.

We believe that these features in particular make the WEAVER codes best suited
for dRAID (distributed Redundant Arrangement of Independent Devices) systems
involving network-connected storage nodes. Such systems will likely have data sets
with varying reliability and performance requirements. Such sets may be distributed
across different but intersecting sets of nodes. The WEAVER variability of stripe
size and fault tolerance enable a dRAID data distribution algorithm to focus on user
data layout (e.g., for load-balancing) and to achieve a balanced parity distribution
as a natural consequence of the code itself. In addition, the chain of design sets
for WEAVER(n,t,t) codes allows the system to change fault tolerance with minimal
network bandwith utilization. Each node reads both its data and parity values, and
sends only a single data value over the network, performs a single XOR operation,
sends the recomputed parity value over the network (only if the offset changes) and
then performs a single disk write operation of the new parity). This operation is then
both load-balanced and disk and network efficient.

3.1.5. Short Write IOs For most of the WEAVER(n,k,t) codes, the short write
IO cost in device accesses (e.g., disk seeks) is equal to 2(t+1). For the parity update
algorithm that uses the parity delta, this seek cost is optimal for any t fault tolerant
code: there are t old parity and one old data to read, and t new parity and one
new data to write. Many codes have even higher short write IO costs, when a given
data element touches more than t parity elements (and strip sizes are large – see
Section 3.1.7). For example, the EVENODD codes [2, 3] have this property for some
elements.

19

Furthermore, only codes of efficiency (approximately) 50% can aachieve IO ad-
vantages better than the typical 2(t + 1) for short writes. For example, a t-fault
tolerant Reed-Solomon code can perform a short write in 2t seeks but only if n = 2t
(so efficiency 50%) or in (2t + 1) seeks only if n = 2t + 1 (so efficiency close to 50%).
In these cases, the stripe size is fixed as a function of the fault tolerance t.

In contrast, some WEAVER codes achieve better short write IO seek costs for a
given fault tolerance and for any valid stripe size. For example, the WEAVER(n,2,2)
code (see Section 2.1.1) enables an implementation of a short write with 5 IOs (one
less than is typical). This is achieved by reading the west and east neighbors of the
target data element, computing the two new parities (from the parity equations) and
writing the two new parities and one new data.

Similarly, by amortizing two old data element reads into one longer read, the other
two ad hoc WEAVER codes with parity in-degree equal to 2 can achieve a short write
IO seek cost of 6 (for fault tolerance 3, Section 2.3.1) and 7 (for fault tolerance 4,
Section 2.3.2). We emphasize that these IOs are not all of the same length, and a
fairer comparison should take this into account (we do not do that here since seeks
dominate device access costs; but see [8] for a more thorough analysis of these issues).

3.1.6. Multiple Strip Writes Many of the WEAVER codes can amortize a
significant number of device accesses required for consecutive multi-strip host writes.
We explain this in detail for the WEAVER(n,2,2) code (Section 2.1.1) and leave it to
the reader to see how this principle can be applied in other WEAVER constructions.
We will contrast the WEAVER behavior with EVENODD [2] which is also 2 fault
tolerant, though this analysis applies to many other 2-fault tolerant codes, including
Reed-Solomon [9]. Assume a stripe size of n strips.

Suppose the system gets a host write for m consecutive strips in a stripe. For the
EVENODD code, there are two efficient implementations. The first implementation
reads all the m strips and the 2 parity strips, computes the new parity strips and
writes the m data strips and 2 parity strips for a total of 2m + 4 device accesses.
The second implementation reads the n− 2−m other (2-neighborhood) data strips,
computes the parity and writes m + 2 data and parity strips for a total of n device
accesses. The optimum number of device accesses is then min(2m + 4, n).

In contrast, we use the following diagram to show how this could be implemented
for a WEAVER(n,2,2) code. In the diagram, an R indicates a data element that we
read (only), a W indicates a data element that we write (this is the target of the host
IO), P indicates a parity element that we write (we do not read any parity or old
data).

R W W · · · W R
P P P · · · P

20

For the same m consecutive multi-strip write, we read only two data elements (the
two indicated by R on the west and east ends of the top row), and write m− 1 strips
with both data and parity (as a single seek), one data element W (on the right side
of the top row) and the two parity elements labeled P on the left, bottom row. This
totals 2 + m − 1 + 1 + 2 = m + 4 device accesses and is better than min(2m + 4, n)
for EVENODD provided m ≤ n − 4. (For m = n − 3, n − 2, n − 1, n the device
accesses counts are n+1, n+2, n+1, n, respectively, indicating a small disadvantage
of WEAVER codes in these cases.)

3.1.7. Host IO Size Uniformity XOR-based erasure codes have typically two
alternative implementations with respect to size (number of bytes) that are mapped
to each strip. One choice is to map a strip to a small unit of the device, e.g., 512B or
perhaps 4KB (so that strips and elements are small units). In this case, a host short
write maps to a (full) strip write and the parity computations involve all (or most)
of the parity elements. Generally, Reed-Solomon codes are implemented as extreme
examples of this where a strip is a byte. XOR-based codes may be implemented in
this way as well, but multiple rows impose fragmentation of the parity computations.

The alternative is to map a strip to a unit comparable to a moderate size host
IO (say, 256KB as is typically done in RAID5). In these cases, elements are much
larger units and a host short write affects only a subportion of an element. With this
implementation, the host short write costs can scale to larger host IO lengths, up to
the size of the element, incurring additional costs that are only a linear function of
the length. In particular, no additional seeks or other computational costs such as
additional XOR formulas.

Clearly, more data rows in the code implies smaller element size (for a fixed strip
size), and hence limitations on the advantages of this uniform and linear scaling. In
this regard, (most of) the WEAVER codes are optimal because they have only one
data row (the ad hoc constructions have two data rows, so are near optimal). They
also do not suffer from excessive XOR fragmentation for the same reason. (Clearly,
RAID5 and N -way mirroring have these properties as well but they are at opposite
ends of the fault-tolerance/efficiency spectrum, with WEAVER codes occupying the
middle ground. See Section 4 for additional comments.)

3.2. Disadvantages – Efficiency

Clearly, the primary disadvantage of the WEAVER codes is their limited efficiency
(at most 50%). On the other hand, WEAVER codes are optimally efficient among all
possible codes of fault tolerance t and parity in-degree k ≤ t. In addition, we clearly

21

see the trade-off of efficiency for simplicity, fault tolerance and the other positive
features of these codes.

4. Related Work – Other codes

The WEAVER codes can be compared to any other erasure code suitable for
storage systems (we have mentioned some already such as Reed-Solomon and EVEN-
ODD). For ease of comparison, we divide the set of known erasure codes into differ-
ent categories and give (non-exhaustive) examples in each category. In a category
by themselves are the Reed-Solomon codes [9], which are MDS but require complex
finite field arithmetic. Second are XOR-based codes that are MDS. These come in
two types: vertical codes such as the X-code [11], BCP [1] or ZZS codes [12] and
horizontal codes such as EVENODD [2, 3], Blaum-Roth [4], or Row-Diagonal Parity
codes [5]. Finally, there are non-MDS codes that are XOR-based. These subdivide
into three categories based on efficiency. The Gibson, et al, codes [7] with efficiency
larger than 50%, N -way mirroring (trivially XOR-based) with efficiency less than
50%, and two codes with efficiency 50% exactly. In the last category, the examples
are the LSI code [10] (in fact a subcode of one of the Gibson et al codes) and one
3 fault tolerant Blaum-Roth binary code [4].

With the exception of the Reed-Solomon codes and N -way mirroring, none of the
codes have exceptionally high fault tolerance. There are variations of EVENODD [3]
that are 4 fault tolerant; the Blaum-Roth [4] binary code of efficiency 50% and two
codes in [7] are 3 fault tolerant. As far as we know, none of the other codes have
variants that can tolerate more than 2 failures. The WEAVER codes can have very
high fault tolerance (up to 12 and perhaps beyond). Compared to Reed-Solomon
codes, they are significantly simpler but less efficient. Compared to N -way mirroring,
they are more complex but more efficient. The WEAVER codes provide alternative
interpolating design points between Reed-Solomon and N -way mirroring codes over
a long range of fault tolerances.

As we mentioned in Section 3.1.5, only codes with efficiency approximately 50%
can implement a host short write with fewer IO seeks than 2(t+1); the implementation
in fact must compute parity from new data and the 2-neighborhood dependent data.
To achieve IO seeks costs less than 2(t + 1), this 2-neighborhood must be small.
Special subcodes of the horizontal codes (both MDS and non-MDS) can achieve this
but only if the stripe size is bounded as a function the fault tolerance: n = 2t or
n = 2t + 1. The Blaum-Roth [4] three fault tolerant (binary) code is equivalent to a
very special case of Reed-Solomon with t = 3 and so can be implemented with a 6 IO
seeks (at efficiency 50%). In these implementations, the strip size must be comparable
to the short write IO size (see Section 3.1.7) so that a short write contains a strip.

22

Only the LSI code [10] and the WEAVER(n,2,t) codes support variable stripe sizes of
fixed fault tolerance and with improved short write IO seek costs. In addition, these
can be implemented with large single element strips gaining the advantages of host
IO size uniformity over a longer range of sizes (see Section 3.1.7).

All the MDS codes have the property that parity in-degree increases with stripe
size. Consequently, the advantages of WEAVER codes that result from bounded
parity in-degree (see Section 3.1.2) can not be achieved with MDS codes. Here we
see again a performance/efficiency trade-off.

All the 2 fault tolerant XOR-based MDS codes (and some 3 fault tolerant codes as
well) share the property that the number of elements per row (row count) increases
with increasing stripe size. For example, for EVENODD, the row count is p − 1
were p ≥ n + 2 and p is prime; for the X-code, the row count equals the stripe size
(and must be a prime as well). This has consequences for stripe size flexibility. For
horizontal codes such as EVENODD, Row-Diagonal Parity, or Blaum-Roth, flexibility
in stripe size can be attained either by selecting a large row count to start with, or by
changing the row count dynamically. The later is prohibitively complex in practice.
The former, initial large row count, increases the fragmentation and XOR-complexity
of parity computations. For example, the scalability of host IO size (see Section 3.1.7)
rapidly degrades with increasing row count. For the vertical codes, changing stripe
sizes implies changing row counts and that is prohibitive for on-the-fly changes. In
contrast, the WEAVER codes maintain constant XOR complexity with changes in
stripe size (XOR complexity only increases as fault tolerance increases, which is a
necessary effect).

The Gibson et al codes (of efficiency greater than 50%) share a number of the
good qualities of the WEAVER codes, including the host IO size uniformity (because
they have only one row). They are, however, horizontal codes and so require parity
rotation for load balancing and, in addition, only tolerate at most 3 failures and large
minimum stripe sizes. Furthermore, to maintain balance and symmetry, they must
restrict stripe sizes to specific values. We believe these codes are reasonable choices
for performance/efficiency trade-offs for 2 or 3 fault tolerant codes if efficiency beyond
50% is required. As we have seen, though, the WEAVER codes have a number of
additional advantages, a greater range of fault tolerance and better natural balance
and symmetry.

The LSI code is very similar to the special case WEAVER(n,2,2) code detailed
in Section 2.1.1, and as mentioned is a subcode of a Gibson et al code. Each parity
value is computed from two data elements, but instead of being placed below in a
new row (and new strip), each parity value is placed on a new device separate from
any data in the stripe (so it is a horizontal code). Besides being limited to tolerating
only 2 failures, the specific layout of the LSI code implies two restrictions on stripe

23

size: n ≥ 6 and n must be even. The WEAVER(n,2,2) code requires only n ≥ 4 and
has no such even/odd restriction. In addition, the WEAVER vertical code layout
again provides natural load balancing under mixed read/write host IOs without any
special parity rotation as would be required for the LSI code.

5. Open Problems

There are still a number of open questions and missing constructions. We list a
few here:

• Find constructions of WEAVER codes where k divides t, 4 ≤ k < t ≤ 8 (see
Section 2.2).

• For k = t (Section 2.1), determine the minimum valid stripe size and the parity
defining sets that achieve this minimum. More generally, resolve the same issue
for any t and k ≤ t.

• For a given parity defining set, determine the stripe size n0 so that all stripe
sizes n ≥ n0 are valid (see the next theorem); more generally determine the
complete set of valid stripe sizes.

Theorem 1. Let a WEAVER(n,k,t) be constructed from a collection of parity defin-
ing sets {κ(j) : 0 ≤ j ≤ q−1} (one for each parity row). Let w be the largest element
in these sets. Then the fault tolerance of the code is constant for all n > tw.

Proof. (Idea) The fault tolerance should not change once n is larger than the largest
window of devices that are (a) touched by some data element and its 2-neighborhood
and (b) can be affected by t failures. This window defines the localization of the code
(write lock zone and rebuild zones) and is dependent only on w, k, t. For a given data
element, the parity it touches are within a neighborhood of at most w strips. There
are at most t such neighborhoods that can be affected. Consequently, once n > tw,
the failures are localized to a zone independent of n and the result follows. Note, we
do not claim that the code is t fault tolerant, only that it is constant. 2

6. Summary

In this paper, we introduced the WEAVER codes, families of XOR-based erasure
codes suitable for storage systems (either RAID arrays or dRAID node-based sys-
tems). These codes have a number of significant features: (a) they are designed with
simplicity and symmetry for easy implementation; (b) they have constrained parity
in-degree for improved computational performance; (c) they are vertical codes for

24

inherent load-balance; (d) they have constructions with very high fault tolerance; (e)
they support all stripe sizes above some minimum (determined as a function of each
specific construction, but generally dependent on the fault tolerance); (f) there are
families with efficiency equal to 50% as well as families of lower efficiency (indepen-
dent of fault tolerance and stripe size). The WEAVER codes provide system designers
with great flexibility for fault tolerance and performance trade-offs versus previously
published codes. They provide a middle ground between the performance advantages
but low efficiency of N -way mirroring and the lower performance but higher efficiency
of codes such as Reed-Solomon. All these features make the WEAVER codes suit-
able for any storage system with high fault tolerance and performance requirements;
they are perhaps best suited to dRAID systems where flexibility in stripe sizes, fault
tolerance and autonomic considerations drive design choices.

7. Acknowledgements

The author extends his thanks and appreciation to Jeff Hartline, Tapas Kanungo
and KK Rao. Jeff, in particular, showed the author the relationship between parity
in-degree and efficiency, thereby indirectly offering the challenge to construct optimal
codes under these constraints. We also want to thank BlueGene/L support team
at IBM’s Almaden Research Center for the opportunity to run many of the larger
experiments on their system (and their assistence). Testing stripe sizes in 40-60
ranges, with fault tolerance 10 and tens of thousands of parity defining sets (as we
did for the results in Table 1) required considerable computing power.

References

[1] S. Baylor, P. Corbett, and C. Park. Efficient method for providing fault tolerance
against double device failures in multiple device systems, January 1999. U. S.
Patent 5,862,158.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: an efficient scheme
for tolerating double disk failures in RAID architectures. IEEE Transactions on
Computers, 44:192–202, 1995.

[3] M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardy. The EVENODD code
and its generalization. In J. Jin, T. Cortest, and R. Buyya, editors, High Perfor-
mance Mass Storage and Parallel I/O: Technologies and Applications, chapter 14,
pages 187–208. IEEE and Wiley Press, New York, 2001.

[4] M. Blaum and R. M. Roth. On lowest density MDS codes. IEEE Transactions
on Information Theory, 45:46–59, 1999.

25

[5] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar.
Row-diagonal parity for double disk failure. In Proceedings of the Third USENIX
Conference on File and Storage Technologies, pages 1–14, 2004.

[6] V. Deenadhayalan, J. L. Hafner, KK Rao, and J. A. Tomlin. Matrix methods
for lost data reconstruction in erasure codes. Technical Report RJ xxxxx, IBM
Research, San Jose, CA, 2005.

[7] G. A. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz, and D. A. Patterson.
Failure correction techniques for large disk arrays. In Proceedings of International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 123–132, Boston, MA, 1989.

[8] J. L. Hafner, V. Deenadhayalan, T. Kanungo, and KK Rao. Performance metrics
for erasure codes in storage systems. Technical Report RJ 10321, IBM Research,
San Jose, CA, 2004.

[9] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal
of the Society for Industrial and Applied Mathematics, 8:300–304, 1960.

[10] A. Wilner. Multiple drive failure tolerant raid system, December 2001. U. S.
Patent 6,327,672 B1.

[11] L. Xu and J. Bruck. X-code: MDS array codes with optimal encoding. IEEE
Transactions on Information Theory, IT-45:272–276, 1999.

[12] G. V. Zaitsev, V. A. Zinovev, and N. V. Semakov. Minimum-check-density codes
for correcting bytes of errors. Problems in Information Transmission, 19:29–37,
1983.

26

	Introduction
	Vocabulary and Notations

	WEAVER code definitions
	WEAVER codes of efficiency 50%
	The special case of 2 fault tolerance

	Other constructions with one data row
	Parity in-degree 2
	Three fault tolerance
	Four fault tolerance

	Features
	Advantages
	High Fault Tolerance
	Localization Effects
	Symmetry
	Variability of Stripe Size and Fault Tolerance
	Short Write IOs
	Multiple Strip Writes
	Host IO Size Uniformity

	Disadvantages -- Efficiency

	Related Work -- Other codes
	Open Problems
	Summary
	Acknowledgements

