
RJ10354 (A0507-017) July 13, 2005
Computer Science

IBM Research Report

Matrix Methods for Lost Data Reconstruction
in Erasure Codes

Veera Deenadhayalan, James Lee Hafner, KK Rao, John A. Tomlin
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

MATRIX METHODS FOR LOST DATA RECONSTRUCTION IN
ERASURE CODES

Veera Deenadhayalan

James Lee Hafner

KK Rao

John A. Tomlin

IBM Research
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

ABSTRACT: Erasures codes, particularly those protecting against multiple failures
in RAID disk arrays, provide a code-specific means for reconstruction of lost (erased)
data. In the RAID application this is modeled as loss of strips so that reconstruction
algorithms are usually optimized to reconstruct entire strips; that is, they apply only
to highly correlated sector failures, i.e., sequential sectors on a lost disk. In this paper
we address two more general problems: (a) recovery of lost data due to scattered or
uncorrelated erasures and (b) recovery of partial (but sequential) data from a single
lost disk (in the presence of any number of failures). The latter case may arise in the
context of host IO to a partial strip on a lost disk. The methodology we propose for
both problems is completely general and can be applied to any erasure code, but is
most suitable for XOR-based codes.

For the scattered erasures, typically due to hard errors on the disk (or combina-
tions of hard errors and disk loss), our methodology provides for one of two outcomes
for the data on each lost sector. Either the lost data is declared unrecoverable (in the
information theoretic sense) or it is declared recoverable and a formula is provided for
the reconstruction that depends only on readable sectors. In short, the methodology
is both complete and constructive.

Contents

1 Introduction 2
1.1 Vocabulary . 4

2 Related Work 4

3 Binary Linear Algebra – A Review 5

4 Generator and Parity Check Matrices 6

5 Simulating Scattered Sector Loss and Reconstruction 9

6 Pseudo-inverse Constructions 10
6.1 Column-Incremental Construction . 11
6.2 Improving a Pseudo-inverse . 14
6.3 Alternative Constructions . 15
6.4 Reversing The Column Incremental Construction 16

6.4.1 Restoring parity elements . 18

7 An Example: EVENODD Code 18
7.1 The Example – Scattered Sector Loss 20
7.2 The Example – Constructing R . 22
7.3 The Example – Additional Sector Loss 23
7.4 The Example – Reversing The Construction 24

8 Efficient Reconstruction of Partial Strips 25

9 Summary 29

10 Acknowledgements 29

A Proofs 31
A.1 Proof of the Column-Incremental Construction 31
A.2 Proof of the Reverse Construction . 32
A.3 Proof of the Parity Restore Construction 33

1

1. Introduction

XOR-based erasures codes for disk arrays model lost data most coarsely as loss
of entire disks but more precisely as loss of entire symbols of the code. In practice, a
symbol typically maps to a “strip”, that is, multiple sequential sectors with one bit of
the symbol corresponding to one or (typically) more sectors and with each different
symbol residing on a different disk (this is not always the case, but it is a common
practice). The collection of related strips is called a “stripe”. To deal with disk
failures, each erasure code comes complete with a specific reconstruction algorithm
that is highly dependent on the code construction. For example, the 2-fault-tolerant
X-code [10] is constructed geometrically, with parity values computed along diagonal
paths through the data sectors. When two disks fail, the reconstruction follows these
diagonal paths, starting at some initial point; that is, the reconstruction is both geo-
metrically and recursively defined. The BCP [1] code is less geometrically designed,
but still has a recursive reconstruction algorithm. More examples are mentioned in
Section 2.

Erasures then are seen as correlated sector failures: all sectors in a strip are “lost”
when the disk fails. However, increasing disk capacity together with a fairly stable
bit-error rate implies that there is a significant probability of multiple uncorrelated or
scattered sector errors within a given stripe, particularly in conjunction with one or
more disk failures. If all the scattered erasures occur within at most t disks where t is
the (disk) fault tolerance of the code, then one method is to simulate loss of all affected
disks and rebuild according to the code-specific reconstruction algorithm. However,
this has two drawbacks. First, it is clear that this can be highly inefficient since it
requires either reconstruction of “known” or readable data or it requires checking
at each step of the process to see if a reconstruction is required. More importantly,
however, this approach does not solve the more general problem when more than t
disks have been affected with sector losses. In such a case, it is quite possible that
some or all of the lost sectors can be reconstructed, though this is not obvious a
priori.

In addition, while each erasure code provides a means to reconstruct entire strips
(e.g., during a rebuild operation), to our knowledge, the literature does not contain
any methods that explicitly address the problem of reconstructing a partial strip of
lost data; such a need may arise in a host read operation to a failed disk during an
incomplete rebuild operation. Of course, the reconstruction method could be applied
in this case, but it is likely that such reconstruction will recover additional unnecessary
lost sectors; that is, do more work than is required to service the host read, thereby
adversely affecting performance. (This extra work may be worth the performance
penalty in that the additional recovered sectors can be cached or added to the rebuild

2

log, but that may not always be a desireable option.)
In this paper, we address both these problems. Our methodology is universal in

that it can be applied to any erasure code of any fault tolerance. It applies to any
failure scenario from full disk to scattered sectors to combinations of the two. It is
based solely on the generator matrix for the erasure code. Consequently, a general
erasure code reconstruction module could implement this methodology and use the
generator matrix as one of its inputs.

For the first problem of scattered sector loss, our methodology provides a mathe-
matical guarantee: for each lost sector, either that sector’s data is declared as (infor-
mation theoretically) unrecoverable (that is, a “data loss event”) or the sector’s data
is declared recoverable and a reconstruction formula is generated. The reconstruction
formula is a linear equation (XOR equation in case of XOR-based codes) involving
known or readable data and parity sectors. In this respect, our methodology is both
complete, constructive and universally applicable. It provides the best guarantee to
the host that the system has done all it can to recover the host’s data in the presence
of any set of sector failures.

For the second problem of partial strip reconstruction, we propose a hybrid solu-
tion: combine the inherent recursive method of the erasure code for full rebuild with
the methodology for recovering scattered sectors. We also propose an alternative
that is in many cases equivalent to the code-specific method, better in some cases
and universally applicable to any erasure code.

It should be noted that for RAID4 (or RAID5), that is, 1-fault-tolerant codes,
the solution to both these problems is quite simple and obvious. Similarly, for Reed-
Solomon codes [9] where the symbol is mapped to bytes or words (not sets of sectors),
the standard Reed-Solomon procedure addresses both problems directly as well. The
more interesting cases then are non-Reed-Solomon multiple fault-tolerant codes: such
codes are typically XOR-based as those have the most practical application, however,
it will be clear that this can be extended to more general codes (e.g., some of the
non-XOR codes in [3]). It will also be clear that this methodology can be applied in
any application of these types of erasure codes, not just to the RAID controller.

Our methodology is based on principles of matrix theory and pseudo-inverses.
Many codes (see [8, 9]) use full inverses to prove both that their codes have the de-
clared fault tolerance and to provide reconstruction formulas. However, the difference
there is that they apply it to recovering full code symbols, under maximal failures
(where unique inverses exist) and not to the more general bit-within-a-symbol level
that we address in this work.

The paper is organized as follows. We close the introduction with some definitions.
The next section contains a few remarks on related work. Section 3 contains a brief
review of the concepts from linear algebra that we need, particularly the notion of

3

pseudo-inverse. In Section 4 we present a brief description of the generator matrix
and parity check matrix for an erasure code. Section 5 explains how we simulate
scattered sector loss and how we determine reconstructability in addressing our first
problem. Section 6 contains algorithms for constructing pseudo-inverse matrices.
We develop our methods in a detailed example in Section 7. Section 8 outlines the
hybrid method for partial strip reconstruction (our second problem) and includes
experimental results. We conclude with a brief summary and include an appendix
with some proofs of the main results.

1.1. Vocabulary

sector: the smallest unit of IO to/from a disk (typically 512 bytes at the disk drive,
but perhaps 4KB from the filesystem or application layer).

element: a fundamental unit of data or parity; this is the building block of the
erasure code. In coding theory, this is the data that is assigned to a bit within
a symbol. We assume for simplicity that each element corresponds to a single
sector; the more general case can be derived from this case.

stripe: a complete (connected) set of data and parity elements that are dependently
related by parity computation relations. In coding theory, this is a code word;
we use “code instance” synonymously.

strip: a unit of storage consisting of all continguous elements (data, parity or both)
from the same disk and stripe. In coding theory, this is associated with a code
symbol. It is sometimes called a stripe unit. The set of strips in a code instance
form a stripe. Typically, the strips are all of the same size (contain the same
number of elements).

array A collection of disks on which one or more instances of a RAID erasure code
is implemented.

2. Related Work

The two main results of this paper are (a) the application of pseudo-inverses of
matrices to the problem of reconstruction of uncorrelated lost sectors and (b) a hybrid
reconstruction that combines code-specific recursive reconstruction methods with this
matrix method to efficiently reconstruct partial strips. To our knowledge neither of
these problems has been specifically addressed in the literature. As remarked before,
the theory of matrix inverses is used in the proof that some codes meet their declared
strip (i.e., symbol) fault tolerance. For example, the Reed-Solomon code [8, 9] proves

4

fault tolerance by solving a system of linear equations. In this case, the matrix inverse
method is used to solve for complete symbols (full strips in our terminology) under
maximum failures. In contrast, our method addresses elements (i.e., individual bits
in symbols) for any distribution of bits (within or beyond symbol fault tolerance).
The binary BR [3] codes have a recursive solution to two full strip losses; the authors
provide a closed form solution to the recursion. For the EVENODD code [2], the
authors give a recursion and point out that it could be solved explicitly. An explicit
solution to the recursion is equivalent to our matrix solution in the special case of full
strip losses (again, our method has no such correlation requirements). The BCP [1],
ZZS [11], X-code [10], and RDP [4] codes all have recursive reconstruction algorithms.
The latter two (as well as the EVENODD code) are “geometric” and easy to visualize;
the former are more “combinatorial” and less intuitive. In either case, these codes
with recursive reconstruction algorithms are well-suited to our hybrid methodology.
In addition, a variant of our hybrid method applies to any erasure codes suitable for
disk arrays, with or without a recursive reconstruction algorithm.

3. Binary Linear Algebra – A Review

In this section we recall and elaborate on some basic notions from the theory of
linear algebra over a binary field (which is assumed for all operations from now on
without further comment – the theory extends easily to non-binary fields as well). A
set of binary vectors is linearly independent if no subset sums modulo 2 to the zero
vector. Let G be a rectangular matrix of size N ×M with N ≤M . The “row rank”
of G is the maximum number of linearly independent row vectors. The matrix G has
“full row rank” if the row rank equals N (the number of rows). A “null space” for G
is the set of all vectors that are orthogonal (have zero dot-product) with every row
vector of G. This is a vector space closed under vector addition modulo 2. A “null
space basis” is a maximal set of linearly independent vectors from the null space. If
the null space basis has P vectors, then the entire null space has 2P −1 total non-zero
vectors.

We will write the null space vectors as column vectors, to make matrix multipli-
cation simpler to write down, though this is not the standard convention.

Let B be a basis for the null space of G. More precisely, B is a matrix whose
columns form a basis for the null space. If G has full row rank, then B has dimensions
M × P where P = M −N .

Suppose G is full row rank. A “right pseudo-inverse” is a matrix R (of size M×N)
so that

G ·R = IN

5

where IN is the N×N identity matrix. If M = N , then R is the unique inverse. Such
a right pseudo-inverse must exist if G has full rank and is never unique if N < M .

More generally, let G have row rank K ≤ N , then a “partial right pseudo-inverse”
(or partial pseudo-inverse) is a matrix R so that

G ·R = JK

where JK is an N -dimensional square matrix with K ones on the diagonal, N − K
zeros on the diagonal and zeros elsewhere. Note that R is a partial pseudo-inverse if
the product G · R has a maximal number of ones over all possible choices for R. If
G is full row rank then K = N , JN = IN and R is a (complete) pseudo-inverse. The
matrix JK is unique; that is, the positions of zero and non-zero diagonal elements are
determined from G and are independent of the choice of R.

Let B be a M × P basis for the null space basis for G (perhaps padded with
all-zero columns), and R some specific partial pseudo-inverse for G. As X varies over
all binary P ×N matrices, we have

G · (R + (B ·X)) = JK . (3.1)

so R + (B · X) runs over all partial pseudo-inverses (the proof of this is a simple
calculation). What X does in (3.1) is add a null space vector to each of the columns
of R. For our purposes, an optimal R would have minimum weight (fewer ones) in
each column (that is, be the most sparse). In Section 6 we discuss algorithms for
computing pseudo-inverses and in Section 6.2 we discuss algorithms for finding an
optimal pseudo-inverse.

For each column of JK with a zero on the diagonal, the corresponding column of R
can be replaced with the all-zero column without affecting the partial pseudo-inverse
property and in fact such an action clearly improves the weight of R. Consequently,
we add this property to the definition of a partial pseudo-inverse.

Strictly speaking, the term “pseudo-inverse” is used in the context of matrices
with real or complex entries to have a very specific meaning implying uniqueness (it
is optimal in some metric sense). We overload the term here with a slightly different
meaning – we allow for non-uniqueness and do not require optimality (most sparse).

In the next section we see how to apply these notions to the problem of recon-
struction of scattered sectors in a stripe.

4. Generator and Parity Check Matrices

In this section we recall the erasure code notions of “generator matrix” and “parity
check matrix”. These are the basic structures upon which we develop our methodol-
ogy. For a basic reference, see [7].

6

The generator matrix G of an erasure code converts the input “word” (incoming
data) into a “code word” (data and parity). The parity check matrix verifies that
the “code word” contains consistent data and parity (parity scrub). In the context of
erasure codes for disk arrays, the generator matrix actually provides much more.

The generator matrix is given a column block structure: each block corresponds
to a strip and each column within a block corresponds to an element within the strip.
If the column contains only a single 1, then the element contains user data. We call
such a column an “identity column” because it is a column of an identity matrix. If
the column contains multiple 1s, then it corresponds to an element which is the XOR
sum of some set of user data elements; that is, the element is a parity element. In
other words, the generator matrix specifies the data and parity layout on the strips,
the logical ordering of the strips within the stripe, and the equations used to compute
parity values. For example, the generator matrix for the EVENODD(3,5) code with
prime p = 3 on 5 disks is

G =

1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 1 0

 .

(more details on this example are given in Section 7).
Though it is not a requirement, the generator matrix for disk arrays typically has

an identity column for each user data element (so that this data is always copied to
the element’s sectors verbatim in some strip and can then be read with minimal IO
costs). In coding theory terms, a generator matrix of this form is called “systematic”.

Let D be a row vector of input user data values, then the row vector S, given by
the expression

S = D ·G, (4.1)

represents the data and parity elements that are stored in the stripe on the disks.
The vector D is indexed by the logical addresses of the user data values (say, as
viewed by the host). The vector S represents the physical addresses of the data
and parity elements, both the disk (actually, strip, identified by the block of the
generator matrix) and the sector addresses on the disk (element or offset within the
strip, identified by the column within the block). S is also block-structured with
blocks matching those of G. (See our example in Section 7.)

If there are N data elements input into the code and P parity elements computed
by the code, then the generator matrix has dimensions N × (N + P). (Note that N
is the total number of data elements within a stripe, not the number of disks in the

7

array; similarly, P is the number of parity elements in the stripe, not the number of
parity disks.)

The “parity check matrix” H of the code has dimensions (N +P)×P and can be
derived directly from the generator matrix (and vice-versa). This matrix is typically
used in codes on communication channels to detect errors. Each column corresponds
to a parity element. After the data and parity is read off the channel, the parity is
XORed with the data as indicated by its corresponding column; the result of this
computation is called a “syndrome”. If a syndrome is not zero, then there is an error
(either in the received parity symbol or in one of the dependent data symbols). For
erasure codes in disk arrays, this amounts to a parity consistency check (or parity
scrub). In other words, with S = D ·G as above, the test

S ·H == 0 (4.2)

is a parity consistency check.
The parity check matrix is row blocked exactly corresponding to the column blocks

of G (or S) and it can be arranged to contain an embedded identity matrix (corre-
sponding to the parity elements) – this is easy if G is systematic. The parity check
matrix for the example generator matrix G above is

H =

1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 1
1 0 1 1
0 1 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

In short, the generator matrix is used to compute the data and parity (and its
layout) for storage on the disks. The parity check matrix can be used when all the
data and parity are read off the disk (e.g., during parity scrub) to look for errors.

If a code can tolerate t ≥ 1 lost disks or strips, then G must have the property
that if any t blocks of G are removed (or zero-ed), then the resulting matrix must have
full row rank. The parity check matrix is full column rank (because of the embedded
identity matrix).

Also, (4.2) implies that
D ·G ·H = 0

8

should hold for every data vector D. This means that G ·H = 0 identically, so that
each vector in H is in the null space of G. A simple dimensionality argument shows
that in fact H is a basis of the null space of G.

In addition, it should be clear that if G is systematic, then there exists an M ×N
matrix R0 containing an embedded identity matrix of size N × N so that R0 is a
pseudo-inverse for G. R0 just picks off the embedded systematic portion of G. If G
is not systematic, a pseudo-inverse R0 can still be constructed, but it will not be so
simple (see Section 6.3).

5. Simulating Scattered Sector Loss and Reconstruction

In this section, we develop our theory for solving the first of our two problems:
how to deal with uncorrelated sector loss. An example is given in Section 7

We indicated above that a t-fault-tolerant code G must have the property that
zero-ing any t blocks of G should leave G full rank so that a complete pseudo-inverse
for G must exist. This suggests that we can simulate correlated and/or uncorrelated
sector loss by zero-ing or removing the associated individual columns from G. It
should be clear that certain combinations of uncorrelated sector losses will result in
some or all data loss events (some or all lost sectors having unrecoverable data); other
combinations may involve no data loss events. Our methodology will determine, in a
straightforward manner, exactly what sectors become data loss events and for those
that do not, will provide a reconstruction formula for the data from these sectors.

Suppoose we detect a set F of failed sectors in a stripe (correlated, perhaps because
of disk failure, or uncorrelated, because of medium errors, or a combination of these).
Completely ignoring the block structure of G, let Ĝ be a version of a generator matrix
G, with zero-ed columns corresponding to the sectors in F . Suppose we can find a
matrix R of size M ×N so that

• R is a partial pseudo-inverse of Ĝ, and

• R has zeros in all rows that correspond to the lost columns of Ĝ.

We associate the columns of R to the user data values in D. In Section 6 we discuss
algorithms for constructing R. The following theorem contains our main theoretical
result:

Theorem 1. Let G, Ĝ, and R be as above. Any theoretically recoverable user data
value corresponds to a non-zero column of R and the non-zero bit positions indicate
the data and parity elements whose XOR sum equals the data value. As a special
case, a directly readable data value corresponds to an identity column in R. A data
loss event (unrecoverable data value) corresponds to an all-zero column of R.

9

Proof. Let Ŝ be the vector S as in (4.1) but with zeros in the positions corresponding
to the lost elements (the zero-ed columns of G). Then it is clear that

D · Ĝ = Ŝ.

Consequently, we have

Ŝ ·R = D · Ĝ ·R = D · JK = D̂,

where D̂ is the vector D with zeros in all locations corresponding to zero’s on the
diagaonal of JK which also corresponds to the all-zero columns of R.

The fact that JK is uniquely determined by Ĝ means that any zero diagonal entry
of JK induces a zero in D̂ and this corresponds to a data loss event. Any non-zero
diagonal entry of JK induces a non-zero (not identically zero) data value in D̂. But
the non-zero diagonal entries of JK corresponds to non-zero columns of R and the
zero diagonal entries correspond to all-zero columns of R. This proves part of the
first statement and the last statement.

Now consider a non-zero column of R. Each non-zero bit in such a column selects
into an XOR formula a data or parity element from Ŝ. Because R has zeros in row
positions corresponding to zero’ed positions in Ŝ, such a formula does not depend
on any lost data or parity element. The XOR formula then indicates that a specific
XOR sum of known data and parity elements equals the data value associated to
that column. That is, such a column provides a formula for the reconstruction. This
proves the rest of the first statement in the theorem. The second claim of the theorem
is clear. 2

We emphasize that this theorem applies equally well to correlated and uncorrelated
losses; so the theorem can be applied even for the case of full disk/strip losses. It is
also does not depend on any special structure (for example geometric layout) of the
erasure code. All the information we need is embedded within the generator matrix.

Recall that R is not necessarily unique and that given a basis for the null space
of Ĝ, it is easy to construct other pseudo-inverses that satisfy the same properties as
R in the theorem. In the next section, we discuss methods for constructing pseudo-
inverses and bases for null spaces. We use the null space bases for improving the
sparseness of the pseudo-inverse.

6. Pseudo-inverse Constructions

There are many possible algorithms for computing pseudo-inverses and null space
bases. Fundamentally, they amount to the same thing and similar amounts of work,
though the data structures and approaches differ somewhat.

10

From now on, we use the label B to indicate a matrix whose columns form a
null space basis for some zero-ed matrix Ĝ, perhaps with all-zero column vectors
as padding. Furthermore, because we are concerned only with uncorrelated sector
loss, we ignore the block structure of G. As a result, we can assume without loss
of generality that the generator matrix G has its systematic identity submatrix in
the first N columns, with the parity columns in the right most P columns – we call
this “left systematic”. (If not, a permutation of the columns of G and corresponding
column positions in Ĝ, S, and Ŝ and row positions of B, H and R will reduce us to
this case.)

The input to our algorithms is the original generator matrix G (and/or its parity
check matrix H) and a list F of data or parity elements which are declared lost
(unreadable) in the stripe.

The output of our algorithms will be two matrices R and B: R is a pseudo-inverse
of Ĝ (obtained from G by zero-ing the columns of G corresponding to the elements
in F) and B is a basis for the null space of Ĝ.

Our algorithms use “column operations” and/or “row operations” to manipulate
matrices. Columns operations are equivalent to right multiplication by simple matri-
ces (for rows, the operations are on the left). We consider three column operations
(simplified for our situation):

• Swap: exchange two columns (or rows)

• Sum and Replace: add column c to column d (modulo 2) and replace column d
with the sum (similarly for rows).

• Zero: zero all the entries in a column (or row).

The first two are invertible (reversible), the Zero operation is not.
Our preferred algorithm, called the “Column-Incremental” construction, can be

viewed as a dynamic or on-line algorithm. It progressively updates data structures as
new lost sectors are detected (simulated by a incremental processing of the elements
in F). In Section 6.3, we outline some additional constructions including static or
off-line algorithms.

6.1. Column-Incremental Construction

The algorithm presented here is an incremental algorithm. It starts with a pseudo-
inverse and null space basis for the matrix G (in the “good” state) and incrementally
removes (simulates) a lost data or parity element, while maintaining the pseudo-
inverse and null space basis properties at each step. The algorithm is space efficient
and for most well-designed codes, has relatively few operations. It requires space

11

in R only for the lost data elements (there is no need to provide recovery formulas
for parity elements as these can be easily derived from the original formulas in the
generator matrix – alternatively, parity columns may be added to R and so provide
additional formulas for a parity computation that reflect the lost data elements). For
clarity of exposition, our description is not optimally space efficient; we leave that to
the expert implementor.

The process is reversible so long as the pseudo-inverse has full rank; that is, at any
step, it is possible to model recovery (reconstruction) of data values for lost elements
(in any order) and compute a new pseudo-inverse and null space basis equivalent to
one in which the recovered elements were never lost. This is described in Section 6.4

In this algorithm, column operations are performed on a workspace matrix. The
lost data or parity elements index a row of R and B.

Algorithm: Column-Incremental Construction

1. Construct a square workspace matrix W of size (N +P). In the first N columns
and rows, place an identity matrix. In the last P columns, place the parity
check matrix H. Let R represent the first N columns and B represent the last

P columns of W , so W = (R B), where initially, B = H and R =
(
IN

0

)
.

2. For each lost element in list F , let r indicate the row corresponding to the lost
element; perform the following operation:

(a) Find any column b in B that has a one in row r. If none exists, Zero any
column in R that has a one in row r and continue to the next lost element.
(Note that by zero-ing these columns we have zero-ed the entire row r in
W .)

(b) For each one in row r of W (both R and B portions), say in column c, if
c 6= b, Sum and Replace column b into column c.

(c) Zero column b in B. (This is equivalent to adding column b to itself.)
Continue to the next lost element, until the list has been processed.

3. (Optional) Use the columns of B to improve the weight of non-trivial columns
of R (corresponding to lost data elements processed so far). See equation (3.1)
and Section 6.2.

4. Output R (the first N columns of W) and the non-zero columns of B (from the
last P columns of W).

12

A proof that this algorithm satisfies the required properties can be found in Sec-
tion A.1. We make the following observations.

• The runtime complexity of the algorithm (excluding the optimizing step 3) can
be bounded by O(|F | ·M2) bit operations since at each of the |F | steps, at most
M ones can appear in row r and each such one induces M bit operations (one
column operation). This is clearly an excessive upper bound as generally the
matrices will be very sparse and only very few (typically O(t) or O(P)) ones
will be in each row.

• The optimizing step 3 on R can be done either as given in a penultimate or
post-processing step or during the loop after step 2c. Preferably, it is done
post-processing as this step can be quite expensive (see Section 6.2).

• At step 2a, there may (most likely will) be multiple choices for the column.
There is no known theory that provides a criterion so that the resulting R is
optimal or near optimal. One heuristic (the greedy-choice) is to use the column
in B of minimal weight, but that has not always precluded a post-processing
step 3 in our experiments. However, this approach does introduce the optimal
formula for the current lost element (this may change at later rounds of the
loop).

An alternative heuristic is the following: in the algorithm, a column b of B is
chosen with a one in position r among all such columns of B. This selected
column is added to each of the others in B. This suggests that a heuristic for b
is to pick the one that minimizes the total weight of the resulting columns. In
2-fault-tolerant codes, there are typically at most two such columns to choose
from, so this approach is equivalent to the one of minimal weight above; this is
not true for higher fault-tolerant codes.

• For only data elements (and systematic codes), it is always the case that column
c = r has a 1 in position r (and no other 1s elsewhere) so is always acted on in
the key step. In fact, the result for this column is that we replace this column
by the parity column b and then toggle the bit off in position r.

• We claim that after each lost element in the list is processed, the matrix R is
a (partial or complete) pseudo-inverse for a zero-ed generator matrix Ĝ that
has exactly the columns zero-ed corresponding to the set of elements processed
so far. This is clear in the first step because no elements have been processed,
Ĝ = G, the generator matrix, R is essentially an identity matrix which extracts
the identity portion of G and B = H is the parity check matrix, a.k.a. the null

13

space basis for G. The fact that this holds true at every other step will become
clear from the proof (see Section A.1).

• We never actually write down the intermediate (or final) matrix Ĝ. This is all
handled implicitly, and so no space is used for this purpose.

• Because we perform only column operations on R, it is easy to see that what
we are doing is performing, in parallel, the operations needed to determine a
reconstruction formula for all lost data elements. That means that one could
perform this process on individual columns as needed (e.g., to recover a sin-
gle element on-demand). This would be fairly expensive globally because one
repeats the same search and process algorithm on H each time, but may be
marginally quicker if only one column is really needed.

• For the same reason, given the list of lost elements F , one can operate only on
these columns in R and ignore all other columns. In our construction, we use
all columns because in principle, we do not know what column is coming next
(the algorithm does not care), so we operate on all of R at once.

• The algorithm can be used in an on-line fashion to maintain recovery formulas
for lost data elements as they are detected in the stripe. As each new loss
is detected, the matrices R and B get updated. If a lost element’s value is
reconstructed, the algorithm of Section 6.4 may be applied to again update
these matrices to incorporate this new information. Alternatively, the algorithm
can be applied as an off-line algorithm and applied after detection of all lost
elements in the stripe.

This algorithm was a key ingredient to the results of [6] where it was applied to
measure performance costs for a large variety of very different 2-fault-tolerant codes.

6.2. Improving a Pseudo-inverse

In this section we outline some approaches to implementing the optimizing step 3
in the Column-Incremental construction algorithm given above.

The following algorithm provides a systematic (though potentially very expensive)
approach to finding an optimal R.

Algorithm: Improve R

1. Compute all the null space vectors (by taking all possible sums of subsets of the
basis vectors).

14

2. For each non-identity (and non-zero) column of R, do the following:

(a) For each null space vector (from step 1), do the following:

i. Add the null space vector to the column of R to generate a new for-
mula.

ii. If the formula generated has lower weight, then replace it in R.

3. End

Of course, this is only practical if the null space has small enough basis set. If
the null space basis has very few vectors, then this algorithm provides an exhaustive
search solution to finding an optimal R. In general, one can use any subset of the full
null space to find better, but perhaps not optimal, pseudo-inverses (in Step 1 above,
compute only some subset of the null space). One simple choice, is to use only the
basis vectors themselves, or perhaps the basis vectors and all pairwise sums. It is
an open mathematical question if there are better algorithms for finding the optimal
R than that given here. However, for the extensive experiments we ran for [6], the
difference between optimal and near optimal was quite minimal.

6.3. Alternative Constructions

There are alternative constructions that can be applied to computing pseudo-
inverses. Among them is a Row-Incremental variation that is analogous to the
Column-Incremental method described above but uses row operations instead of col-
umn operations. Most of the steps are the same as for the Column-Incremental
construction. At step 2b, for each one in positions s 6= r in the selected column b of
B, Sum and Replace row r into row s of B; mirror this operation in R. At step 2c
zero row r in B and R and proceed to the next lost element. This algorithm has all
the same properties as the column variation (including reversibility), but is typically
more expensive, requiring more row operations.

Alternatively, there are both column and row versions which parallel the classical
algorithm for computing an inverse. Namely, start with two matrices, the original
generator matrix and an (N + P)-identity matrix. Zero the columns of the generator
matrix and the identity matrix corresponding to each lost data and parity element.
Perform column (or row) operations on the modified generator matrix to convert it to
column reduced eschelon form (use the row reduced eschelon form for the row oper-
ation version). Parallel each of these operations on the identity matrix; the resulting
matrix contains both the pseudo-inverse and null space basis. These variations are
static, off-line constructions as they utilize the complete set of lost elements in the
very first step. As before, the column version has marginally less computation.

15

We do not give a proof for any of these constructions as they vary only slightly
from the proof of the Column-Incremental construction in Section A.1. The static
algorithms can also be used to construct an initial pseudo-inverse matrix for the full
generator matrix in the case when G is not systematic.

6.4. Reversing The Column Incremental Construction

As mentioned, the incremental process can be used to start with a fully on-line
stripe and, step by step, as medium errors are detected in the stripe, maintain a set
of reconstruction formulas (or a declaration of non-reconstructability) for every data
element in the stripe. As new medium errors are detected, the matrices are updated
and new formulas are generated.

It might be useful to reverse the process. Suppose the array has had some set of
medium errors, but no data loss events yet. Suppose a data element is reconstructed
by its formula in R. If this reconstructed data is replaced in the stripe, it would be
helpful to update the formulas to reflect this. There are two reasons for this. First,
we know we can replace the formula in R by an identity column (we no longer need
the old formula). But second, it may be the case that other lost elements can be
reconstructed by better formulas that contain this newly reconstructed element; we
should update R to refect this fact.

One approach would be to use any algorithm to recompute from scratch the for-
mulas for the revised set of sector losses. However, the incremental algorithm suggests
that we might be able to reverse the process; that is, to update R and B directly to
reflect the fact that the data element has been reconstructed (e.g., its column in R is
replaced by an identity column).

To fully reverse the incremental construction of the previous section, it must be
the case that no information (in the information theorectic sense) is lost through
each step. Mathematically, this happens whenever we perform a matrix operation
(row or column) that is not invertible, i.e., that corresponds to multiplication by a
non-invertible matrix. This occurs essentially in only one place in the construction:
whenever we can find no vector in the null space basis with a one in the desired row.
This corresponds exactly to the case where we have data loss events.

Consequently, we have the following result: so long as we never encounter the
data loss branch, then (in principle), the sequence of steps can be reversed. How-
ever, the algorithm we give below works even after data loss events, so long as the
restored element has a reconstruction formula in R, i.e., it is not itself a data loss
event . Note that it makes little sense to consider restoring into the matrix an ele-
ment corresponding to a data loss event (the theorem says that this is theoretically
impossible).

16

The algorithm below performs this incremental restoration step in the case of a
(recoverable) data element. Section 6.4.1 discusses the parity element case.

The input to this algorithm is a workspace matrix W = (R B) (possibly) gener-
ated by the incremental algorithm and having the property that

Ĝ ·W = (IN 0)

where Ĝ is the generator matrix with zero-ed columns for each data or parity element
in the set F of assumed lost elements (prior to a reconstruction). The other input is a
data element index, that is, a row number r ≤ N of W . The output of the algorithm
is a revised matrix W so that the above formula holds with Ĝ having column r
replaced by the identity column. The new matrix W will have an identity column
in position r. (As before, the algorithm does not track the changes to Ĝ directly,
only implicitly.) Note that this process does not depend on which element is being
restored from among the set of elements removed during the incremental phase (that
is, it need not be the last element removed). We assume that B contains enough
all-zero colunns so that it has P columns in total.

If the restored element is not from the set F , then this algorithm has no work to
do, so we assume that the lost element is from F .

Algorithm: Reverse Incremental Construction

1. (Optional) For each column c in the inverse portion of W (first N columns) that
has a one in every row that column r has (that is, if the AND of the columns c
and r equals column r), do the following:

(a) Sum and Replace column r into column c; that is, for each position of
column r that has a one, set the corresponding value in column c to zero.

(b) Set position r in column c to the value 1.

2. Find any all-zero column b in the null space portion of W (in the last P columns).

3. Set position (r, r) and (r, b) in W to the value 1.

4. Swap columns r and b of W .

5. (Optional) Use the null space basis vectors in B of W to reduce the weight of
any column in the inverse portion R of W .

6. Return the updated W .

17

This algorithm works because it takes the reconstruction formula for the data
element and unfolds it back into the null space basis, then replaces the formula with
an identity column.

The first optional step replaces any occurrence of the formula in the original W for
data element r by that element itself. In particular, it restores to some formulas for
other columns a dependence on the restored data element. In the process, it improves
the weight of these formulas.

This algorithm does not necessarily completely reverse the incremental algorithm
in that it does not necessarily produce identical matrices going backward as were seen
going forward. However, the difference will always be something in the null space.

A proof of this construction is given in Section A.2.

6.4.1. Restoring parity elements To add a parity element back in to the ma-
trices, we need to have the original parity column from the generator matrix G (for
the data columns, we know a priori that this column is an identity column so we
do not need to keep track of this externally). Suppose that this parity is indexed by
column c in G.

Take this parity column and for each 1 in the column, sum together (modulo 2)
the corresponding columns of R in W and place the result in an all-zero column of
B in W . (This is exactly what we did above since there was only one such column!)
Replace the zero in position c of this new column by 1. Replace column c of G0 by
this parity column (restore it). (Again, this is exactlly what we did for a restored
data column, except we also had to set the (r, r) position in the inverse portion of W
to 1 – in the case of a parity column, no such position exists in the inverse portion
so this step is skipped.)

A proof is given in Section A.3.

7. An Example: EVENODD Code

Consider the EVENODD(3,5)1 code [2] with prime p = 3, n = 5 total disks,
n − 2 = 3 data disks and two parity disks. The data and parity layout in the strips
and stripe for one instance is given in the following diagram:

S0 S1 S2 P Q

d0,0 d0,1 d0,2 P0 Q0

d1,0 d1,1 d1,2 P1 Q1

1It turns out by a rare coincidence that this is exactly the same code as BR(3,5), the Blaum-
Roth [3] of the same parameters.

18

The columns labeled S0, S1, S2 are the data strips in the stripe (one per disk); the
columns labeled P and Q are the P-parity and Q-parity strips, respectively. We order
the data elements first by strip and then, within the strip, down the columns (this
is the same view as the ordering of host logical blocks within the stripe). In this
example, N = 6 and P = 4.

The generator matrix G defined for this code is:

G =

1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 1 0

 .

This is column blocked to indicate the strip boundaries. The matrix indicates that
the parity Q0 is the XOR sum of the data elements indexed by the 0th, 3th, 4th and
5th rows of G, i.e.,

Q0 = d0,0 + d1,1 + d0,2 + d1,2. (7.1)

The parity check matrix H is:

H =

1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 1
1 0 1 1
0 1 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

The parity check matrix is row blocked exactly to correspond to the column blocks
of G and it contains in the lower portion an embedded identity matrix. It is easy to
see that G · H = 0; that is, H is in the null space of G (and forms a basis as well).
Each column of the parity check matrix corresponds to a parity value in the array
(the identity rows and the block structure provide this association).

For example, column 3 of the parity check matrix implies

d0,0 + d1,1 + d0,2 + d1,2 + Q0 = 0.

If this equation is not satisfied for the actual data and parity read from the disks (or
detected on a channel), then an error has occurred somewhere.

19

More generally, we interpret these matrices in the following way. As labeled above,
we consider the user data values as a row vector (ordered as already indicated):

D = (d0,0, d1,0|d0,1, d1,1|d0,2, d1,2) .

The product

S = D ·G = (d0,0, d1,0|d0,1, d1,1|d0,2, d1,2|P0, P1|Q0, Q1)

indicates the data layout in strips (via the block structure) as well as the formulas
for computing the parity. We saw an example of this in equation (7.1).

The parity check matrix implies that

S ·H = 0,

regardless of the actual values of the data elements.
Any binary linear combination of the columns of H will also be orthogonal to all

the vectors in G. E.g., take the binary sum (XOR) of columns 0 and 3 in H:

(1, 1|0, 1|0, 0|1, 0|0, 1)t.

It is easy to see that this has the desired orthogonality property. We can replace any
column in H by any such combination and still have a “parity check matrix”. In
general, the H constructed directly from the parity equations is the most sparse.

7.1. The Example – Scattered Sector Loss

Suppose we loose strip S0 and only data element d0,2 of S2 in the EVENODD(3,5)
code above. We then have a “zero-ed” matrix Ĝ in the form:

• • •

Ĝ =

0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1 1 0

where the • over the column indicates the column has been removed by zero-ing.

Using the data vector D, we see that we have a revised set of relationships:

D · Ĝ = Ŝ, (7.2)

20

where
Ŝ = (0, 0|d0,1, d1,1|0, d1,2|P0, P1|Q0, Q1) .

When we view the vector Ŝ as “known” data and parity elements (in fact, the labeled
components represent the sectors that are still readable in the stripe), this equation
represents a system of linear equations for the “unknown” vector D in terms of the
known vector Ŝ.

The following two matrices R and R′ are easily seen to be pseudo-inverses for Ĝ:

R =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 0 0 0 0 0
1 1 0 0 1 1
1 0 0 0 0 0
1 1 0 0 1 0
0 0 0 0 0 0
1 0 0 0 1 0

, R′ =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 1 1 0
0 0 0 0 0 0
1 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 0
0 0 0 0 1 0
1 0 0 0 1 0

. (7.3)

We show how these matrices are obtained in Section 7.2.
The columns of R (or R′) correspond to the data elements as ordered in the vector

D. Each non-zero row corresponds to a position in the vector Ŝ of known elements.
Each all-zero row matches a lost element in Ŝ. Each column represents an XOR
formula for reconstructing the data element to which it corresponds. For example, to
reconstruct d0,2, we look at column 4 of R. It indicates the following formula:

d0,2 = d0,1 + d1,2 + P1 + Q1,

and by looking at column 4 of R′ we get the formula:

d0,2 = d1,1 + P0 + P1 + Q0 + Q1.

It is easy to see from the original code that both of these formulas are correct (and
that they do not depend on any lost sectors!).

Because the code is MDS and can tolerate two disk/strip failures, it is easy to see
from dimension counting that Ĝ has only one non-zero vector in its null space. This
vector turns out to be

(0, 0|1, 1|0, 1|1, 0|1, 0)t. (7.4)

This is also the sum of columns 4 of R and R′ (indicating that R′ is derived from R
by adding a vector from the null space).

The weight of each of the formulas for reconstructing data via R is at least as
good as those in R′, consequently, R is a better solution than R′ for our purposes. In
fact, with only one vector in the null space, it is clear that R is optimal.

21

7.2. The Example – Constructing R

We start with the EVENODD(3,5) code as before and assume as above that data
elements d0,0, d1,0, and d0,2 are lost from strips S0 and S2. These elements correspond
to columns r = 0, 1, 4 of G (and also to this set of rows in our workspace).

The initial workspace is

W = (R B) =

1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

.

For row r = 0, we find some column in B that has a one in this row. There are two
choices, b = 6 or b = 8. We choose b = 6 because its weight is less. We add this to
columns c = 0 and c = 8 (where there is a one in row 0), then zero column b = 6.
The result is

W =

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0 1 1
0 0 0 1 0 0 0 1 1 1
1 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 1 1 0
1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

.

For r = 1, select column b = 7 (again, this has the minimum weight), then add this

22

to columns c = 1, 9, then zero column b = 7. This gives:

W =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1
0 1 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
1 1 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

.

Similarly, for r = 4 (using b = 9), the result is

W =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 0
1 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 0 0

Note that the left portion of this workspace equals R in (7.3). Furthermore, our null
space basis B contains only the vector in (7.4); adding this vector to column 4 of
W produces R′ from (7.3). As R contains the optimal reconstruction formulas, no
post-process step is required in this example.

It can be checked that at each stage the claimed properties of pseudo-inverse and
null space of the intermediate results all hold (remember, this is not against the final
Ĝ but the intermediate Ĝ which we do not ever write down).

7.3. The Example – Additional Sector Loss

Now suppose in addition that element d0,1 of strip S1 is also lost. This corresponds
to a situation where sectors are lost from all three data strips of the stripe. Nominally,
the EVENODD(3,5) code can only protect against losses on 2 strips; we have three
partial strips, a case not covered in the literature.

23

The element d0,1 corresponds to r = 2. We select column b = 8, perform the
operations in the algorithm and the result is

W =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0
1 0 1 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0

. (7.5)

At this point, we have no more null space basis vectors (B is all zero). Any further
sector loss implies a “data loss event” (see below).

Observe that any column corresponding to a data element that is not lost has
remained unchanged as an identity column. In addition, even though we have lost
sectors in three strips, all sectors are still recoverable.

Furthermore, if we further assume that data element d1,1 (corresponding to row
r = 3) is also lost, we can continue the algorithm. In this case, there is no null space
basis vector with a one in this row. So, the algorithm says to zero all columns in R
with a one in this row (that is, columns 1, 2, 3, 4). This produces the matrix

W =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

.

This indicates that data elements corresponding to columns 1, 2, 3, 4 are “data loss
events”. However, column 0 corresponding to data element d0,0 is still recoverable (as
is d1,2 which was never lost).

7.4. The Example – Reversing The Construction

We start with the result of our incremental construction example in equation (7.5)
where we have lost sectors d0,0, d1,0, d0,2 and d0,1 corresponding to columns r =

24

0, 1, 4, 2 of G. Suppose we have reconstructed data element d0,0 of column r = 0 (which
is not the last element we simulated as lost). The reverse incremental algorithm above
has the following steps. (We include the optional steps for completeness.)

First, we examine each of the first six columns to see if column r = 0 is contained
in it. Column r = 0 has one’s in positions 5, 6, 7, 9. No other columns has ones in all
these positions, so we continue to the next step.

Next we select the all-zero column b = 6 and set position 0 in this column and in
column r = 0 to the value 1, then we swap these two columns:

W =

1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0
0 0 1 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0

.

Next we look for null space basis elements (there’s only one to choose from) that
might improve the inverse portion. For example, the weight of column 4 is 5. If we
combine (XOR) columns 4 and 6, we get a new matrix

W =

1 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

.

where the new column 4 now has weight 4. This step improved the weight of this
column, as we wanted.

Note that our final result does have an identity column in position 0 so we have
restored this data element.

8. Efficient Reconstruction of Partial Strips

In this section we introduce the hybrid reconstruction method. It applies the
reconstruction methodology based on the matrix method in another way to address

25

the problem of partial strip reconstruction.
Suppose the array’s erasure code can tolerate two strip failures. Most such erasure

codes have a recursive algorithm defined for reconstructing the two lost strips. This
can be quite efficient for rebuild of both lost strips in their entirety. The steps
are generally quite simple and explicitly assume use of intermediate reconstructed
elements. However, such a method will be very code-dependent; that is, the recursion
will depend on the specific code layout and parity formulas. On the other hand,
the matrix methodology above is completely generic. If applied without the Reverse
Incremental construction, no intermediate results are used; consequently, the amount
of XOR computation could be quite large compared to a recursive method. But
the Reverse Incremental construction would directly take advantage of intermediate
results and improve overall XOR computation costs. In fact, if applied appropriately
(as a special case of our algorithm below), the matrix method (including the Reverse
Incremental construction) would reduce to the recursive method in most cases (and
be very similar in all others).

Now consider a host request to read a single block from one of the two lost strips
(prior to completion of any background process to reconstruct the stripe). If the ele-
ment is very deep into the recursion, a number of intermediate reconstructions (of lost
elements) must take place; these intermediate results are not needed for the immedi-
ate host request and, though they can be cached, are potentially extraneous work for
the task at hand. The matrix method above, however, gives a (near) optimal formula
for direct reconstruction of any single element and it does not require reconstruction
of any excess elements.

We see that for single element reconstruction, the generic direct method of the
matrix methodology is generally more efficient than the recursive method provided
with a specific code. Conversely, for reconstruction of all lost elements the generally
preferred method is the recursive method (either explicitly using the code’s specific
theory or implicitly using the matrix method together with the Reverse Incremental
construction).

We now consider the problem of reconstructing a partial strip, say, to satisfy a
host read for multiple consecutive blocks that span multiple elements in a strip. We
assume that multiple strips are lost (though that is not a requirement at all). The
above discussion suggests that neither the direct nor the recursive methods may be
optimal to address this problem efficiently. We propose the following algorithm. The
input to the algorithm is the set of lost sectors F , the parity check matrix (or the
generator matrix) and a subset T of F containing sectors to reconstruct (we assume
that no element in T is a data loss event). The output is the data values for the
elements in T . That is, F if the complete set of lost sectors and T is that partial set
we need to reconstruct.

26

Algorithm: Code-specific Hybrid Reconstruction

1. Compute the pseudo-inverse R and a (padded) null space basis for B for the lost
sectors F (say, using the Column Incremental construction).

2. Do the following until all of T has been reconstructed:

(a) Find an unreconstructed element t ∈ T whose reconstruction vector in R
has minimal weight; reconstruct the value for t.

(b) Examine the recursion to see if any other element t′ ∈ T can be recon-
structed by some fixed number of iterations of the recursion when starting
that recursion at t. (e.g., for 2-fault-tolerant codes, this typically means
at most two steps).

(c) If such an t′ exists, reconstruct t′ following the recursion; set t ← t′ and
return to step 2b.

(d) If no such t′ exists, do:

i. (Optional) Update R and B using the Reverse Incremental construc-
tion for all values reconstructed so far.

ii. Return to step 2a.

3. Return the reconstructed values for the sectors in T .

Essentially, this algorithm uses the direct method to jump into the recursion at
the first point the recursion intersects the set T (thereby avoiding reconstruction of
unneeded values). The optional step 2(d)i ensures that we have factored into the direct
reconstruction formulas all values reconstructed to this point, thereby allowing these
elements to be used in later reconstruction formulas (lowering XOR computational
costs).

During step 2c, we can avoid physical reconstruction of intermediate steps in the
recursion that are not in set T (that is, not immediately required for the host) by
logically collapsing the recursion equations. That is, we combine the steps of the
recursions to get from t to t′. This has two advantages. First, it avoids a compu-
tation and temporary memory store of any unneeded intermediate result. Second,
the combination can eliminate the need for some data or parity values that appear
multiply (an even number of times) in the set of recursive formulas. This avoids a
possible disk read to access this data as well as the memory bandwidth costs to send
this data into and out of the XOR engine multiple times.

Step 2b looks for efficient ways to utilize the recursion. If none exist, we reapply
the direct method (updated, perhaps) to jump back into the recursion at some other
point in T of minimal direct costs.

27

Together, these steps enable efficient reconstruction of only those elements that are
needed (those in T) and no others. There are two special cases: (a) if T is a singleton,
then this method will apply the direct method in the first step then exit; (b) if T
is the union of all the elements on all lost strips, then the algorithm will default to
the application of the recursion alone. We see then that this algorithm interpolates
between these two extremes to find efficient reconstruction of partial strips. (Note
that T need not be a partial strip, but that is the most likely application.)

More generically, we can apply the following algorithm as a means to efficiently
solve the same problem, without reference to the specific recursion of the code (as-
suming it has one).

Algorithm: Generic Hybrid Reconstruction

1. Compute the pseudo-inverse R and a (padded) null space basis matrix B for the
lost sectors F (say, using the Column Incremental Construction).

2. Do the following until all of T has been reconstructed:

(a) Find an unreconstructed element t ∈ T whose reconstruction vector in R
has minimal weight and reconstruct it.

(b) Update R and B using the Reverse Incremental construction with input t.

(c) Return to step 2a.

3. Return the reconstructed values for the sectors in T .

It is not hard to see that in the presense of a straight forward recursion, the code-
specific and generic hybrid methods will produce similar results (perhaps in different
order of reconstruction, but with the same or similar costs). The application of
the recursion in step 2c in the code-specific algorithm implicitly applies the Reverse
Incremental algorithm.

Figure 1 shows the advantages of this hybrid method in the case of the EVENODD
code [2]. The chart shows the XOR costs (total number of XOR input and output
variables) for disk array sizes from 5 to 16. These numbers are the average over all
1/2-strip-sized (element-aligned) host read requests to lost strips and averaged over
all possible 2 strip failures. The numbers are normalized to the Direct XOR costs.
The figure shows that the direct cost is generally (except for very small arrays) more
expensive than application of the recursive method (as one would expect for long
reads), but it also shows that the Hybrid method is significantly more efficient than
both.

28

1/2-Strip Reconstruction Cost Comparison

0%

20%

40%

60%

80%

100%

120%

Disks

N
or

m
al

iz
ed

 X
O

R
 C

os
t

Direct 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Recursive 109% 103% 100% 100% 95% 68% 69% 68% 69% 68% 68% 56%

Hybrid 77% 77% 79% 80% 80% 57% 58% 58% 59% 59% 59% 52%

5 6 7 8 9 10 11 12 13 14 15 16

Figure 1: Comparision of Direct, Recursive and Hybrid reconstruc-
tion methods for 1/2 lost strip reconstruction, EVENODD code.

9. Summary

We developed a language to model loss of scattered or uncorrelated sectors (or
elements) in arbitrary array codes. We provided a direct methodology and construc-
tive algorithms to implement a universal and complete solution to the recoverability
(and non-recoverability) of these lost sectors. Our solution can be applied statically
or incrementally. We demonstrated the power of the direct method by showing how it
can recover data in lost sectors when these sectors touch more strips in the stripe than
the erasure code can nominally tolerate. The direct method can be joined with any
code-specific recursive algorithm to address the problem of efficient reconstruction of
partial strip data. Alternatively, the incremental method can be reversed when some
data is recovered to provide a completely generic method to address this same partial
strip recovery problem. Finally, we provided experimental results that demonstrate
significant performance gains for this hybrid of direct and recursive methods.

10. Acknowledgements

The authors would like to thank Tapas Kanungo and John Fairhurst for their
contributions to this work.

29

References

[1] S. Baylor, P. Corbett, and C. Park. Efficient method for providing fault tolerance
against double device failures in multiple device systems, January 1999. U. S.
Patent 5,862,158.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: an efficient scheme
for tolerating double disk failures in RAID architectures. IEEE Transactions on
Computers, 44:192–202, 1995.

[3] M. Blaum and R. M. Roth. On lowest density MDS codes. IEEE Transactions
on Information Theory, 45:46–59, 1999.

[4] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar.
Row-diagonal parity for double disk failure. In Proceedings of the Third USENIX
Conference on File and Storage Technologies, pages 1–14, 2004.

[5] V. Deenadhayalan, J. L. Hafner, KK Rao, and J. A. Tomlin. Matrix methods
for lost data reconstruction in erasure codes. Technical Report RJ xxxxx, IBM
Research, San Jose, CA, 2005.

[6] J. L. Hafner, V. Deenadhayalan, T. Kanungo, and KK Rao. Performance metrics
for erasure codes in storage systems. Technical Report RJ 10321, IBM Research,
San Jose, CA, 2004.

[7] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes.
Northolland, Amsterdam, The Netherlands, 1977.

[8] J. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like
systems. Software: Practice and Experience, 27:995–1012, 1997.

[9] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal
of the Society for Industrial and Applied Mathematics, 8:300–304, 1960.

[10] L. Xu and J. Bruck. X-code: MDS array codes with optimal encoding. IEEE
Transactions on Information Theory, IT-45:272–276, 1999.

[11] G. V. Zaitsev, V. A. Zinovev, and N. V. Semakov. Minimum-check-density codes
for correcting bytes of errors. Problems in Information Transmission, 19:29–37,
1983.

30

A. Proofs

A.1. Proof of the Column-Incremental Construction

To prove the procedure described in Section 6.1 has the required properties, we
start with an initial pair of matrices {G0, W0} at the initial step where G0 = G, the
generator matrix, and

W0 = (R0 B0)

where R0 =
(
IN

0

)
and B0 = H, the parity check matrix. We have at this initial step

G0 ·W0 = (IN 0) .

Each step of the algorithm produces an explicit matrix Wi, the workspace, and an
implicit matrix Gi, the generator matrix with zero-ed columns corresponding to the
lost elements processed so far.

We claim for every i that

Gi ·Wi = (J(i) 0) (A.1)

where J(i) = JKi
where Ki is the rank of Gi, that is, J(i) is an identity matrix with

some (possibly none) diagonal entries zero-ed. The number of such zero-ed entries is
the number of data loss events up to that point. Note that this number never goes
down as we step through the algorithm. So long as Gi has full row rank, we have the
more precise formula

Gi ·Wi = (IN 0) ,

which is true at the initial condition i = 0.
To prove (A.1), proceed inductively. We already have the initial condition of the

induction. Suppose we have completed step i− 1 and the claim holds in this case.
There are two branches to the algorithm at step i, where we are acting on a lost

data element corresponding to row r: either (a) we can find a null space vector to
work with or (b) there is none.

In the latter case, we zero the set of columns of R (and indirectly all of row r).
We also implicitly zero column r of Gi−1 to produce Gi. As matrix operations, this
can be achieved as follows. Let Xr be the (N + P) × (N + P) identity matrix with
zero in the rth diagonal position. Let Yr be a similar matrix that has a zero in every
diagonal position corresponding to a a column of R that we zero at this step. Then
set

Gi = Gi−1 ·Xr, Wi = Wi−1 · Yr, J(i) = J(i− 1) ·XrYr.

31

Consequently, equation (A.1) holds. (We note that inserting a factor Xr on the left
of Wi−1 has no effect on the product with Gi because the rth column of Gi is already
zero.)

We now consider the other branch at step i where we find a vector b in B (the
null space) from Wi−1.

In this case, build the matrix Sr,b that is an identity matrix with row b replaced
by row r of Wi−1.

Next, let Xb be the identity matrix with position (b, b) set to zero. Then the
algorigthm key step is to produce

Wi = Wi−1 · Sr,b ·Xb.

Let Zr be the all zero matrix (of the same dimensions as Gi−1 that has column r
replaced by the rth column of the original generator matrix (or equivalently, Gi−1

since this column has not changed yet). The algorithm logically zeros column r of
Gi−1 and this is equivalent to:

Gi = Gi−1 + Zr.

Set J(i) = J(i− 1).
We can now verify (A.1) by expanding the product Gi · Wi and examining the

terms. The expansion is

Gi ·Wi = (Gi−1 ·Wi−1) · Sr,b ·Xb + Zr ·Wi.

The last term is zero, since the only possible contribution is in column r and that
row of Wi is all zero.

The first term is, by the induction hypothesis, equal to

(J(i− 1) 0) · Sr,b ·Xb = (J(i) 0) ,

because right multiplication by Sr,b performs Sum and Replace operations with the
all-zero column b of the left matrix into other columns and the Xb only zeros the
already all-zero column b. This completes the proof.

A.2. Proof of the Reverse Construction

In this section we give a proof that the reverse increment construction of Sec-
tion 6.4 has the desired properties. We deal with the optional first step later.

Let E(r, r) be the N × (N + P) matrix that is all zeros except for a 1 in position
(r, r). Similarly, let E ′(r, r) be the (N + P) × (N + P) with a 1 in position (r, r)

32

and E ′(r, b) the same matrix with a 1 in position (r, b). Finally, let P (r, b) be the
(N +P)×(N +P) identity matrix with columns r and b swapped. From the algorithm
b ≥ N and r < N . The algorithm explicitly replaces W with the new matrix (W +
E ′(r, r)+E ′(r, b)) ·P (r, b) and implicitly replaces Ĝ with the new matrix Ĝ+E(r, r).
We need to show that the product of these two new matrices equals (IN 0). We do
this by first expanding the product (without the factor P (r, b)):

(Ĝ + E(r, r)) · (W + E ′(r, r) + E ′(r, b)) = Ĝ ·W
+ Ĝ · E ′(r, r)

+ Ĝ · E ′(r, b)

+ E(r, r) ·W
+ E(r, r) · (E ′(r, r) + E ′(r, b)),

and examining each term in turn. The first term (by assumption) gives us (IN 0).
The second term is the all-zero matrix with dimensions N×(N +P) but with column
r replaced by the rth column of Ĝ. But this column is all zero (by assumption) so this
term is zero. Similarly, the third term also produces the all-zero matrix (by putting
the rth column in Ĝ in the b column of the result). The fourth term is the all-zero
matrix with rth row replaced by the rth row of W . Again this row is all zero by
assumption, so the fourth term is zero. Finally, the last term is the N × (N + P)
matrix of all zeros with a 1 in positions (r, r) and (r, b). When we add this to the
first term, we cancel the 1 in the rth position in the identity portion and place a 1
in the bth column, rth row. In effect, this is a swap of columns r and b of the matrix
(IN 0). So, we see that right multiplying by P (r, b) swaps those columns back again
and the result follows.

The optional first step can be described by an optional final step that adds the
new bth column of the W to the selected columns in W . These are columns that have
a one in every position in which the new bth column does, with the exception of the
rth position. But this new bth column is in the null space of Ĝ so this step in the
algorithm is equivalent to a specific set of operations in the optional null space step
in the algorithm and so do not change the final product. This completes the proof.

This proof only covered the case where Ĝ has full rank. For the more general case,
replace IN with JK where K is the rank of the initial Ĝ. Observe that JK does not
change in this process even if the rank of Ĝ goes up – a data loss event persists.

A.3. Proof of the Parity Restore Construction

The proof of the Parity Restore construction in Section 6.4.1 is similar to the
above. First suppose, without loss of generality, that the all-zero column of W that

33

we replace in the null space portion of W is the last column. Let T be the N×(N +P)
matrix of all zeros except with column c replaced by the parity column p of the original
generator matrix. Let T ′ be the (N + P) × (N + P) identity matrix with the last
column replaced by the parity column p in the top N rows and zeros in the last P
rows. Let E ′(c) be the all zero matrix with a one in position c of the last column.
Then the algorithm steps described above are equivalent to

Ĝ ←− Ĝ + T

W ←− W · T ′ + E ′(c).

In Ĝ we simply replace the all-zero column c with the parity column. In W we sum its
columns into the last column (as done by right multiplication by T ′ and then toggle
the bit in the appropriate place by adding E ′(c).

The product expansion is:

(Ĝ + T) · (W · T ′ + E ′(c)) = (Ĝ ·W) · T ′

+ Ĝ · E ′(c)

+ T · (W · T ′)

+ T · E ′(c).

The first term works out to

(IN 0P) · T ′ = (IN 0P−1 p) .

The second term is all zeros except for the cth column of Ĝ is copied into the last
column. But this column is also all zero (by assumption), so this term is identically
zero.

The third term is all zero. To see this, observe that the term W · T ′ looks just
like W except the last column has been modified (sum of other columns of W . Also
observe that the cth row of this matrix is all zero (by assumption). The matrix T
on the left is mostly zeros, with the exception of the cth column. Consequently, the
product produces zero in all terms (non-zero terms in column c of T line up exactly
with the zero terms in row c of the product W · T ′).

Finally, the last term is all zero except with the cth column of T moved to the
last column, that is, it equals

(0N 0P−1 p) .

Adding these four terms together (two of which are all zero), we see that the last
column of the first and fourth terms cancel out and the result is our identity/zero
matrix as claimed.

As for the reverse construction, the more general case where Ĝ does not have full
rank, replace IN with JK .

34

	Introduction
	Vocabulary

	Related Work
	Binary Linear Algebra -- A Review
	Generator and Parity Check Matrices
	Simulating Scattered Sector Loss and Reconstruction
	Pseudo-inverse Constructions
	Column-Incremental Construction
	Improving a Pseudo-inverse
	Alternative Constructions
	Reversing The Column Incremental Construction
	Restoring parity elements

	An Example: EVENODD Code
	The Example -- Scattered Sector Loss
	The Example -- Constructing R
	The Example -- Additional Sector Loss
	The Example -- Reversing The Construction

	Efficient Reconstruction of Partial Strips
	Summary
	Acknowledgements
	Proofs
	Proof of the Column-Incremental Construction
	Proof of the Reverse Construction
	Proof of the Parity Restore Construction

