
RJ10356 (A0508-013) August 26, 2005
Computer Science

IBM Research Report

Kybos: Self-Management for Distributed Brick-Based Storage

Theodore M. Wong, Richard A. Golding, Joseph S. Glider,
Elizabeth Borowsky*, Ralph A. Becker-Szendy, Claudio Fleiner,

Deepak R. Kenchammana-Hosekote, Omer A. Zaki
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

*Computer Science Department
Boston College

Chestnut Hill, MA

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Kybos: Self-management for distributed
brick-based storage

Theodore M. Wong Richard A. Golding Joseph S. Glider
Elizabeth Borowsky∗ Ralph A. Becker-Szendy

Claudio Fleiner Deepak R. Kenchammana-Hosekote
Omer A. Zaki

IBM Almaden Research Center, San Jose, CA

Abstract

Current tools for storage system configuration management make offline decisions,
recovering from, instead of preventing, performance specification violations. The
consequences are severe in a large-scale system that requires complex actions to
recover from failures, and can result in a temporary shutdown of the system. We
introduce Kybos, a distributed storage system that makes online, autonomous re-
sponses to system changes. It runs on clusters of intelligent bricks, which provide
local enforcement of global performance and reliability specifications and so iso-
late both recovery and application IO traffic. A management agent within Kybos
translates simple, high-level specifications into brick-level enforcement targets, in-
voking centralized algorithms only when taking actions that require global state.
Our initial implementation shows that this approach works well.

1 Introduction
Large storage systems are complex and expensive to manage. Management tasks of-
ten require understanding the internal architecture of the system, and those that make
changes involve complex sequence of operations. Some changes require taking storage
offline in order to move data, incurring downtime costs. The cost of making changes
leads administrators to overprovision systems to accommodate growth without recon-
figuration.

Storage management tools have been developed to help solve these problems by
automating provisioning and configuration [2, 3, 11]. However, these tools are separate
from the systems they manage, making coarse-grained, offline decisions in reaction to
recent system behavior. Being separate from the system, they can only observe that a
problem has occurred (e.g., a performance violation) and try to reconfigure the storage
so it will not recur; they cannot prevent a problem from happening in the first place.

∗Computer Science Department, Boston College, Chestnut Hill, MA

1

Moreover, some require detailed knowledge of the expected application workload to
make good decisions, and do not eliminate overprovisioning.

We present the design of Kybos1, an architecture for a high-performance file system
that can scale to petabytes. Kybos is designed for brick-based storage, in which devices
that are interconnected via a high-performance network provide storage resources and
execute management operations. Bricks provides good scalability through their inher-
ent parallelism, and facilitate simple incremental expansion (to add resources, one just
adds bricks). However, a lack of natural central control points makes management
mechanisms harder to build.

In Kybos, each brick performs local enforcement of performance and reliability tar-
gets to meet global specifications. It reserves resources and shapes IO traffic to isolate
applications from each other and from system maintenance actions. A management
agent within Kybos invokes centralized algorithms only when making decisions that
require global state, e.g., when provisioning resources for an application or reacting to
failures. In this way the system prevents many kinds of problems, such as performance
violations, and reacts quickly when other changes occur, such as brick additions and
failures.

We have implemented Kybos as an extension of the IBM SAN.FS (a.k.a. Storage
Tank) file system [18]. Some of the results reported are from algorithms that we have
investigated using simulations, but have yet to incorporate into the file system.

2 System model
A Kybos cluster is built from bricks. Each brick is a small, self-contained storage
server; in our current prototype, each contains commodity CPU, memory, and about
1 TB disk. Bricks have no internal redundancy; however, they connect redundantly to
a high-speed, resilient IP network via an internal switch. The internal cluster network
forms a rectangular 3D mesh, with multiple external connections to other systems or
Kybos clusters [5, 6].

Each brick provides local storage allocation and resource management, so that ev-
ery brick carries part of the load of maintaining the cluster. It provides local enforce-
ment of security policies using a capability mechanism [9, 12, 21]. Each brick man-
ages local performance, shaping traffic to ensure performance isolation and fair access
among IO streams.

Data is stored redundantly across multiple bricks, using a Network RAID proto-
col to coordinate updates [15]. The protocol uses two-phase writes and client-selected
timestamps to implement atomic, serialized operations. The operations are not limited
to data read and write, but also include management operations. The timestamp-based
approach assists with migrating and rebuilding data concurrently with client IO ac-
cesses, and for implementing consistent snapshots.

A management agent monitors bricks for failure, makes global resource allocation
decisions, and coordinates migration and rebuild. These decisions require state beyond
that held by any one brick.

1From the Greek κυβoς (cube), pronounced “keu-baus”.

2

3 Virtual entities
A large-scale cluster stores data for several different applications. Each application
may use multiple classes of data, with each class potentially having different require-
ments. For example, a temporary database table may need high performance but only
low reliability, while a collection of archived documents may need high reliability but
only low aggregate performance.

Kybos provides resource pools (RP) to distinguish different classes of data. An
administrator specifies requirements for the RP, including capacity, performance, and
reliability. Kybos uses these requirements to assign brick resources to back the RP,
and determine how to react to events that change resource availability, such as brick
addition and failure.

One specifies capacity and performance requirements as reserve/limit tuples. For
example, a capacity reserve sets aside storage for an RP, and ensures that no other RP
can use that capacity, while the limit places an upper bound on consumption, like a
quota. Similarly, a performance reserve is an aggregate guarantee for the streaming
throughput of an RP (e.g., the number of concurrent video streams that the underlying
bricks for an RP must support), while the limit determines the maximum effect that the
streams accessing the RP can have on the system.

A reliability specification includes a redundancy metric, such as the allowed data
loss rate, which Kybos translates to a set of distance codes to use for storing data.
Kybos does not set aside resources explicitly based on the specification; instead, the
specification constrains the assignment of brick resources to RPs, and drives the exe-
cution of policies to migrate data.

Files belonging to an application correspond to virtual objects (VOs) associated
with one of the RPs of the application. As will be explained in §4, the reliability
specification for the RP of a VO guides the selection of the distance code for the VO.

The RP and VO virtual entity structure enables Kybos to hide details of how the
cluster works, and thus simplify administration. Kybos uses performance and relia-
bility requirements, along with current cluster state, to schedule internal activities to
operate the cluster consistent with the requirements. For example, Kybos can respond
to addition of a brick by migrating some data onto the brick in order to keep resource
usage balanced; the administrator does not need to select data by hand. Virtual entities
also insulate the administrator from heterogeneity in bricks.

4 Physical entities
Each of the virtual entities must be backed by physical resources to be useful. In our
model, a resource pool (RP) is backed by a set of allocation pools (APs), and a virtual
object (VO) is backed by a set of physical objects (POs). In both cases, we refer to
configuration as the problem of assigning resources to back virtual entities. Figure 1
below shows the relationship between virtual and physical entities.

We apply online constrained optimization techniques to make configuration deci-
sions. These algorithms make incremental changes to a system, and so support creation
and change of RPs as needed. They also enable the reconfiguration of RPs to take ad-

3

Brick B2Brick B1

Resource Pool RP2:
 Capacity specification
 Performance specification
 Reliability specification

Allocation Pool RP1/AP1:
 Capacity spec
 Performance spec

Allocation Pool RP1/AP2:
 Capacity spec
 Performance spec

Allocation Pool RP2/AP1:
 Capacity spec
 Performance spec

Resource Pool RP1:
 Capacity specification
 Performance specification
 Reliability specification

Physical object VO1/PO1

File “foo” File “baz”File “bar”

Physical object VO2/PO1

Physical object VO3/PO1 Physical object VO1/PO2

Physical object VO2/PO1

Virtual object VO1

Virtual object VO2

Virtual object VO3

File to virtual object association rules

Figure 1: The relationship between virtual and physical entities. RPs are backed on bricks by APs; VOs
associated with an RP are backed by POs in APs of the RP.

vantage of the resources on added bricks, or recover from the loss of a brick (§5). Our
focus on online techniques differs from other work in the area [2, 3, 11].

An RP is backed by APs, each on a different brick. Each AP has capacity and per-
formance reserve/limit requirements, analogous to RP requirements, that a host brick
uses to control capacity usage and shape IO traffic. The APs are subject to the following
constraints: the number of APs must be sufficient for the RP reliability requirements;
the sum over the AP requirements must equal the RP requirements; and the resources
required for each AP must be available on its host brick. Kybos determines the min-
imum number of APs by computing the minimum distance code that meets the RP
reliability requirements, e.g., an RP might specify a reliability that requires at least a
distance 2 code, which may yield 2 APs (2-replica RAID-1) or 5 APs (4+1 RAID-5, if
desired for better capacity efficiency).

We use a new algorithm, MinDot, to configure APs for an RP and place them
onto bricks. It determines the appropriate fraction of the RP that should go onto each
brick in a way that generally balances load across bricks while respecting configuration

4

constraints, even for clusters of heterogeneous bricks. MinDot is an online algorithm
based on a relaxation of the Toyoda zero-one multidimensional bin-packing heuristic
[22].

VOs are backed in APs by POs, analogous to how RPs are backed on bricks by APs.
The set of POs corresponds to a RAID encoding of the data that meets the reliability
requirements of the host RP, e.g., for an RP that requires at least a distance 2 code, the
hosted VOs may have 2 POs (2-replica RAID-1), or 5 POs (4+1 RAID-4).

We use different strategies to configure new VOs and to reconfigure existing ones.
The POs of a new VO use neither capacity nor performance resources, thus Kybos uses
a random-weighted placement strategy that biases placement towards APs with greater
free capacity. Later, when Kybos has accumulated resource usage statistics about the
POs, it uses a modified version of the Toyoda algorithm [22] (not MinDot) to compute
a better configuration that balances AP resource utilization.

5 Reactive self-management
The management agent (§2) monitors the state of the cluster, and takes corrective ac-
tion whenever it detects anomalous behavior, such as resource usage hot spots, or the
addition, removal, or failure of bricks. The actions either rebalance or rebuild data.

Management actions involve first reconfiguring RPs, and then migrating or rebuild-
ing its hosted VOs to match. Reconfiguring an RP involves re-running MinDot (§4) to
compute a new, presumably better, configuration. Reconfiguration may add or remove
APs, and change others.

Reconfiguring an RP may result in changes to an AP that are not feasible now, but
that will be in future. In this case, the agent sets goals on the AP to indicate what the
resources should become as local conditions change. For example, an AP might need
to shrink usage of some resource; as rebalancing migrates POs to other APs, the actual
usage will shrink until it meets the goal. Similarly, an AP might need to grow some
resource; as resources become available (e.g., as an AP on the same brick shrinks) they
are given to the growing AP until its goals are met.

The management agent periodically rebalances resource usage across bricks. The
agent measures balance by the coefficient of variance (CoV—the ratio of the standard
deviation to the average of a variable) in resource usage across bricks. The agent
alternates in phases between rebalancing VOs and RPs. The agent selects an RP or
VO to rebalance, choosing the hottest VO or choosing from any RPs that have goals,
and then computes a reconfiguration. The agent ensures that the reconfiguration will
improve the CoV before committing to it; if not, the agent leaves the cluster state
unchanged.

The agent reacts to failing bricks by rebuilding RPs with APs on such bricks, using
spare resources it sets aside when initializing each brick. The agent uses MinDot to
reconfigure any affected RPs, using spare resources if necessary. The agent may need
to reconfigure RPs not directly affected by the failed bricks in order to find a feasi-
ble reconfiguration for affected RPs; it uses a backtracking algorithm to search until it
finds a set of RPs with a feasible sequence of reconfigurations. The agent sets goals on
affected APs of the RPs, reflecting their new configuration after all data is migrated.

5

The agent then repeatedly iterates through the reconfigured RPs, rebuilding or migrat-
ing one VO in one RP per iteration. In this way shrinking APs will steadily release
their resources to growing APs, which in turn may allow an AP in another RP to re-
lease resources for an AP in yet a different RP. This approach contrasts with migration
scheduling based on finding matchings or colorings in the demand graph [10].

Migrating and rebuilding VOs may require large amounts of IO traffic. Kybos
prevents this traffic from interfering with application traffic by reserving some fraction
of the performance of each brick for management actions, and by using that reserve to
perform migration and rebuild IOs. If the brick is currently underutilized, its unused
performance is shared fairly among all IO traffic streams.

Kybos leverages rebalancing and rebuilding to handle scheduled additions and re-
movals of bricks in a cluster. Once the administrator attaches a brick to the cluster,
the agent will consider its resources during RP rebalancing. When the administrator
indicates that a brick will be removed, the agent will reconfigure RPs with APs on the
affected brick, which will place a goal of eliminating those APs; VO rebalancing will
migrate data to other APs.

6 Related work
The need for large, high-performance storage systems that can manage themselves and
withstand failures is not new, and becomes more pressing each day. As such, several
research projects and commercial products aim to fill this need. Among these, the FAB
block storage project at HP Labs [7, 20] is most similar to out work. Our work in Kybos
differs from FAB its emphasis on reactive self-management instead instead of on the
initial modeling, design, and configuration of data [13, 14]. The CMU Self-* project
[8] also uses a brick-based storage architecture, but concentrates more on protocols that
withstand Byzantine failure rather than the self-management goals. Both the Farsite [1]
and Oceanstore [16] projects have a peer-to-peer foundation, providing storage system
functionality on top of the spare disk space available on either an entity-wide network
of computers (Farsite) or a wide area network (Oceanstore).

In the product space, the Lustre File System [4] and the Panasas storage cluster
[19] each provide an object-based storage and file system for use in Linux cluster envi-
ronments. Lefthand Networks [17] provides similar functionality for Windows-based
systems. All of these systems lack the ability to either configure themselves or main-
tain themselves over time in the face of system events such as failure, load change, or
new resources.

7 Current status
The IO processing path now runs in a modified SAN.FS system. It stores and retrieves
data on bricks via a complete Posix file system API.

The self-management components now runs in simulation. We can create RPs,
and see assignments that balance load across bricks. When we simulate multiple IO
streams, bricks shape the streams such that each stream gets its reserved share of per-

6

formance and a fair share of any unreserved resource, with only short transient effects
as a new stream starts. When a brick fails, the system quickly reconfigures affected
RPs, and then rebuilds data as fast as permitted by the performance reserve held at the
bricks for management actions.

The current implementation supports all of the features discussed here. The split
of function between local enforcement and global decisions has worked well. The
global decision algorithms are simple because they can treat bricks as a black boxes
instead of having to understand their internals. If a brick accepts an AP with particular
requirements, it is responsible for meeting those requirements. These results bolster
our view that intelligent self-management of a storage system is possible, and that the
intelligent brick architecture will lead to a robust, scalable storage system.

References
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,

M. Theimer, and R. P. Wattenhofer. FARSITE: Federated, Available, and Reliable Storage for an
Incompletely Trusted Environment. In Proc. of the 5th Symp. on Operating Systems Design and Im-
plementation, pp. 1–14. Dec. 2002.

[2] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-Szendy, R. Golding, A. Merchant, M. Spa-
sojevic, A. Veitch, and J. Wilkes. Minerva: An automated resource provisioning tool for large-scale
storage systems. ACM Trans. on Comp. Sys., 19(4):483–518, Nov. 2001.

[3] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch. Hippodrome: Running circles
around storage administration. In Proc. of the 1st Conf. on File and Storage Technology, pp. 175–188.
Jan. 2002.

[4] Cluster File Systems, Inc. Lustre: A scalable, high performance file system. http://www.lustre.
org/docs.html, 2003.

[5] Thinking outside the box. The Economist, Sept. 2003.

[6] C. Fleiner, D. R. Kenchammana-Hosekote, O. A. Zaki, R. Garner, W. Wilcke, H. Huels, H. Lenk,
M. Ries, and K. Smolin. The IBM IceCube/Lars project. Tech. Report RJ 10292, IBM Almaden
Research Center and IBM Engineering & Technology Services, San Jose, CA and Mainz, Germany,
May 2003.

[7] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. FAB: Enterprise storage systems on a
shoestring. In Proc. of the 9th IEEE Workshop on Hot Topics in Operating Systems. May 2003.

[8] G. Ganger, J. Strunk, and A. Klosterman. Self-* storage: Brick-based storage with automated ad-
ministration. Tech. Report CMU-CS-03-178, Sch. of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, Aug. 2003.

[9] H. Gobioff, D. Nagle, and G. A. Gibson. Integrity and performance in network attached storage. In
Proc. of 2nd Intl. Symp. on High Performance Computing, pp. 244–256, May 1999.

[10] J. Hall, J. D. Hartline, A. R. Karlin, J. Saia, and J. Wilkes. On algorithms for efficient data migration.
In Proc. of 12th Ann. Symp. on Discrete Algorithms, pp. 620–629, 2001.

[11] IBM Corp. IBM TotalStorage Productivity Center. http://www.ibm.com/servers/
storage/software/center/index.html, 2004.

[12] INCITS Technical Committee. Information technology - SCSI object-based storage device commands
- 2 (OSD-2). http://www.t10.org/ftp/t10/drafts/osd2/osd2r00.pdf.

[13] K. Keeton and A. Merchant. A framework for evaluating storage system dependability. In Proc. of
DSN 2004, the Intl. Conf on Dependable Systems and Networks, pp. 877–886, June–July 2004.

[14] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes. Designing for disasters. In Proc. of the 3nd
Conf. on File and Storage Technology, pp. 59–72. Mar.–Apr. 2004.

7

[15] D. R. Kenchammana-Hosekote, R. A. Golding, C. Fleiner, and O. A. Zaki. The design and evaluation
of network RAID protocols. Tech. Report RJ 10316, IBM Almaden Research Center, San Jose, CA,
Mar. 2004.

[16] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels, R. Gummadi, S. Rhea, W. Weimer, C. Wells,
H. Weatherspoon, and B. Zhao. OceanStore: An architecture for global-state persistent storage. In
Proc. of ASPLOS IX, the Intl. Conf. on Architectural Support for Programming Languages and Oper-
ating Systems, pp. 190–201, Nov. 2000.

[17] Lefthand Networks. Architecting a networked storage solution. http://www.
lefthandnetworks.com/library/wp.php.

[18] J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B. Hillsberg. IBM Storage Tank—A heteroge-
neous scalable SAN file system. IBM Syst. J., 42(2):250–267, 2003.

[19] D. Nagle, D. Serenyi, and A. Matthews. The Panasas ActiveScale storage cluster—Delivering scalable
high bandwidth storage. In Proc. of the 2004 ACM/IEEE Conf. on Supercomputing, Nov. 2004.

[20] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence. FAB: Building distributed enterprise disk
arrays from commodity components. In Proc. of ASPLOS XI, the Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, pp. 48–58, Oct. 2004.

[21] A. S. Tanenbaum, S. J. Mullender, and R. van Renesse. Using sparse capabilities in a distributed
operating system. In Proc. of the 6th Intl. Conf. on Distributed Computing Systems, pp. 558–563. May
1986.

[22] Y. Toyoda. A simplified algorithm for obtaining approximate solutions to zero-one programming prob-
lems. Management Science, 21(12):1417–1427, 1975.

8

