
RJ10358 (A0509-008) September 20, 2005
Computer Science

IBM Research Report

Reliability for Networked Storage Nodes

KK Rao, James L. Hafner, Richard A. Golding
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Reliability for Networked Storage Nodes

Abstract

High-end enterprise storage has traditionally
consisted of monolithic systems with customized
hardware, multiple redundant components and paths,
and no single point of failure. Distributed storage
systems realized through networked storage nodes
offer several advantages over monolithic systems
such as lower cost and increased scalability. In
order to achieve reliability goals associated with
enterprise-class storage systems, redundancy will
have to be distributed across the collection of nodes
to tolerate node and drive failures. In this paper, we
present alternatives for distributing this redundancy,
and models to determine the reliability of such
systems. We specify a reliability target and
determine the configurations that meet this target.
Further, we perform sensitivity analyses where
selected parameters are varied to observe their effect
on reliability.

1 Introduction

High-end enterprise storage systems currently
deployed in production environments have
traditionally been monolithic systems – so-called ‘big
iron’ with several symmetrical multiprocessors,
multiple internal fabrics, large cache memories and
no single point of failure. These systems are
expensive – requiring customized hardware and
multiple redundant components and paths to ensure
that there is no single point of failure. In contrast,
achieving scalability through distributed storage
systems is becoming increasing popular in research
and development, and, to some extent, in commercial
deployments. A significant aspect of distributed
systems is the ability to use common building blocks
across a wide range of storage requirements: from a
few terabytes to the scale of petabytes. This
translates into several advantages: lower cost due to
economies of scale, reduced number of inventory
types, commonality of software across the product
line, and so on.

The distributed storage system in this paper is
modeled after the Collective Intelligent Bricks
project in IBM Research [5]. The storage system
consists of several bricks where each brick or node is
a sealed unit consisting of a controller, power supply,
networking interfaces and disk drives. Several
components in the node represent single points of

failure. In order to achieve reliability goals
associated with high-end enterprise-class storage
systems, redundancy has to be distributed across the
collection of nodes to tolerate drive and node failure.
In this paper, we will model the reliability of such a
system and look at the alternatives for distributing
redundancy between the nodes in order to meet
reliability goals of large-scale enterprise systems.

The goal of this paper is to view redundancy
requirements from a storage viewpoint. We assume
that there is enough redundancy in switches and links
so that reliability is limited by storage nodes and
drives; that is, the interconnect fabric and topology is
not a constraining factor in determining the overall
reliability of the system. This is typically the case
with [5].

We will describe the different configurations for
achieving reliability in distributed storage systems, in
Section 3. In Section 4, we will describe the models
used to obtain reliability for these configurations.
The implication of distributing data across such a
system and its impact on reliability is presented in
Section 5. Section 6 will present a baseline reliability
analysis. We will analyze the sensitivity of the
reliability of some of the configurations to several
parameters, in Section 7.

2 Related Work

Trivedi [6] covers reliability analysis and in
particular, the use of continuous-time Markov chains
with absorbing states for crash failures. The
modeling and analyses presented in this paper are
based on this work. Xin et al. [7] present reliability
for large distributed systems but do not consider node
failures. Also, while uncorrectable sector errors are
dealt with through a scheme of signatures, the
reliability improvements through the use of this
scheme are not characterized. Snappy Disk and Petal
[4] represent shared-disk, shared-metadata systems
and partitioned-disk, partitioned-metadata systems
respectively. The availability analysis presented in
this paper is intended only to gain insights into the
factors affecting availability rather than to derive
accurate predictions. Fr�lund et al. [2] describe an
erasure coding algorithm in the context of a
distributed storage system composed of inexpensive
bricks, and Goodson et al. [3] describe erasure-coded
storage that tolerates Byzantine failures. Both these

papers focus on the algorithms for erasure coding for
distributed storage nodes and do not address the
reliability analysis needed to ensure that erasure
coded distributed storage will meet required
reliability goals.

3 Redundancy Configurations

As mentioned earlier, a node consists of a controller
card, network interfaces, a collection of disk drives
and associated power supplies. Apart from the disk
drives and the network interfaces, all other major
components are not duplicated. Thus, the node is
inherently unreliable as the failure of any one of these
components will result in node failure. Therefore, in
order to build a highly reliable storage system out of
a collection of such nodes, redundancy will have to
be distributed through the collection.

We will look at two dimensions to realizing
redundancy in the collection of nodes: redundancy
within nodes to tolerate internal drive failures, and
redundancy across nodes to tolerate entire node
failures. Within the nodes, we will employ three
possible configurations: no internal RAID, RAID 5
and RAID 6, which will tolerate 0, 1 and 2 drive
failures respectively. We will achieve redundancy
across nodes by applying three types of erasure codes
between them: codes that can tolerate 1, 2 and 3 node
failures respectively. The three node configurations
and three erasure code types between nodes yield a
total of 9 combinations between them.

We assume that the nodes in this system are enclosed
entities that are not amenable to service actions. This
implies a fail-in-place philosophy where failed
components within a node are not replaced.
Specifically, in the case of failure of one or more disk
drives within a node, the node will continue to
operate with a reduced set of disks until either all
disks fail or some other critical component fails
rendering the node unusable. For the case of nodes
with internal RAID (RAID 5 or RAID 6) we will
assume that on a drive failure, data is re-striped
removing the failed drive from the array, thereby
restoring redundancy at the end of this operation.
The resulting loss in capacity is adjusted against the
spare capacity, as described below.

The fail-in-place service model implies that, initially,
storage capacity is over-provisioned so that loss in
capacity with subsequent failures can be tolerated.
The over-provisioned storage capacity is either
sufficient to deal with expected failures over the
operational life of the installation, or spare nodes are

added at appropriate times – e.g. when overall
capacity utilization increases above predetermined
thresholds.

4 Reliability Models

In this reliability analysis, we are primarily interested
in preventing data loss. Consequently, to compare
redundancy configurations, we use the expected
number of data loss events per unit time as a measure
of reliability. We believe the expected number of
data loss events per unit time is a metric that is easier
to comprehend and relate to than the more traditional
Mean Time to Data Loss – MTTDL. We will use
Markov models to determine MTTDL, and use it to
obtain the expected number of data loss events per
year.

We look at three types of failures that lead to data
loss: an uncorrectable read error from a disk drive, a
failure of a disk drive and a failure of a node. A data
loss event occurs when the above failures occur in a
combination that cannot be handled by the data
protection scheme used in the system. For example,
a controller with a RAID 5 array can tolerate a single
failure (a disk failure or an uncorrectable read error).
When a drive in the RAID 5 array fails and the array
is rebuilding to a spare or a replacement drive, if
either a second drive fails or an uncorrectable read
error occurs on any of the remaining drives, this
results in a data loss event. Clearly, the failure of the
second drive results in data loss of a much larger
scale than the uncorrectable read error, but either
failure results in data loss of some magnitude.

With respect to an uncorrectable read error, we will
assume it can result in a data loss event only if the
array is in a critical state and cannot tolerate any
further errors. We believe this is a reasonable
assumption because as long as the array has not lost
any drive, the recovery from an uncorrectable read
error just requires reading from the remaining drives
and regenerating the data item that encountered the
read error. The conditions under which this recovery
can fail are 1) if another element in the same stripe
encounters an uncorrectable read error, or 2) if
another drive fails during this recovery. We believe
that both these conditions are extremely low
probability occurrences and can be ignored.

To describe our modeling methodology, we illustrate
the technique for a RAID 5 disk array. Figure 1
shows the Markov model for a RAID 5 array with
mean time to failure of the disk drives MTTFd and
mean time to repair (rebuild) a drive failure MTTRd.

Figure 1: Markov Model for a RAID 5 array

State 0 is when the array is fully operational. State 1
corresponds to a drive failure that will not experience
an uncorrectable error during the rebuild. State 2
represents a data loss state – either due to a second
drive failure or due to an uncorrectable error during
rebuild. The parameters are:

d = number of drives in the array
�d = drive failure rate = 1/MTTFd

�d = drive rebuild rate = 1/MTTRd
h = probability of an uncorrectable error

during rebuild
 = HERCd ••−)1(
C = drive capacity
HER = disk hard error rate expressed in hard

errors per number of bytes read

The methodology to solve a Markov model with
absorbing states is described in [6].

Typically, �d >> �d. Solving this model for MTTDL
gives

hddd

dhd
MTTDL

ddd

dd

µλλ
µλ

+−
+−−= 2)1(

)12(

HERCdddd ddd

d

••−+−
≈

µλλ
µ

)1()1(2

4.1 Node Set and Redundancy Set

We introduce the concepts of node set and
redundancy set for a storage system made up of
networked storage nodes as shown in Figure 2. Data
“objects” are stored across multiple nodes in such a
system in order to meet requirements such as
performance and reliability (the focus of this paper).
Each data object constitutes exactly one ‘stripe’ of
data – that is, the redundancy elements (parity) can
be computed entirely from this data. For a given data
object, the set of nodes that contain the data and its

corresponding redundancy (parity) elements
constitutes a redundancy set. The node set is the set
of all the nodes in the storage system. We assume
that data is evenly distributed across all the nodes in
the storage system. Thus, each node has one or more
redundancy set relationships with every other node in
the node set. The total number of redundancy sets of

size R in a node set of size N is given by: ��
�

�
��
�

�

R

N

The even distribution of data implies that the failure
domain is the entire node set and not just individual
redundancy sets. For example, in a redundancy
scheme that tolerates only a single failure, when such
a failure has occurred and is being recovered from, a
failure of any second node in the node set will result
in data loss.

Figure 2: Node Sets and Redundancy Sets

We will present the modeling for systems where the
nodes have internal RAID in section 4.2, and the
modeling for nodes without internal RAID in section
4.3.

4.2 Nodes with Internal RAID

For a system in which the nodes have internal RAID,
we use hierarchical Markov models to obtain
MTTDL. We represent the RAID array internal to a
node in a Markov model and obtain array failure rates
from it. We then use these failure rates in a higher
level Markov model representing the redundancy
arrangement between nodes. It should be noted that,
as we assume that the nodes are not amenable to
service actions, and that on a drive failure, the array
is re-striped removing the failed drive from the array,
the �d term as depicted in Figure 1 is the array re-
stripe rate and not the array rebuild rate. We already
obtained the MTTDL for a RAID 5 array as:

d(1-h)�d (d-1)�d

�d

0 1 2

dh�d

Node Set

Redundancy Sets

Node

HERCdddd
MTTDL

ddd

d

••−+−
≈

µλλ
µ

)1()1(2

We define array failure as the failure of disk drives
beyond the fault tolerance provided by the RAID
scheme. From the above, we obtain �D, the rate of
array failure and �S, the rate of a sector error during a
re-stripe. These are:

d

d
D

dd
RAID

µ
λλ

2)1(
)5(

−≈

HERCddRAID dS ••−≈ λλ)1()5(

Figure 4 shows the Markov model for a RAID 6
array.

Figure 4: Markov Model for a RAID 6 array

State 0 is when the array is fully operational; state 1
is when a single drive has failed; state 2 corresponds
to a second drive failure that will not experience an
uncorrectable read error during rebuild; and state 3
represents a data loss state, either due to triple drive
failure or an uncorrectable error when rebuilding with
2 drives failed. Solving this model for MTTDL gives

HERCdddddd
MTTDL

ddd

d

••−−+−−
≈

µλλ
µ

23

2

)2)(1()2)(1(

Correspondingly, we obtain �D and �S as

2

3)2)(1(
)6(

d

d
D

ddd
RAID

µ
λλ −−≈

d

d
S

HERCddd
RAID

µ
λλ ••−−≈

2)2)(1(
)6(

We will use these rates in the higher level model for
the erasure codes between nodes. Figure 5 shows the
Markov model for nodes with internal RAID (either
RAID 5 or RAID 6) and a redundancy arrangement
with a fault tolerance of 1 between nodes.

Figure 5: Markov Model for Fault Tolerance 1;
Nodes with Internal RAID

Here N is the number of nodes in the node set, �N is
the node failure rate and �N is the node rebuild rate.
The array failure rate, �D, and the rate of sector error
during a re-stripe, �S, correspond to the internal
RAID in the nodes.

State 0 is when the storage system is fully
operational. The system transitions to state 1 when
either a node fails or a node experiences an array
failure. In this state, the data of this node is rebuilt
on the remaining nodes in the node set. (This is
described in Section 5). State 2 represents the data
loss state caused by a second node or array failure or
a sector error during an internal RAID re-stripe while
the node rebuild is in progress.

The MTTDL for this scheme (internal RAID, node
fault tolerance 1) is given by:

))()(1(
)1())(12(

1,
SDNDN

SDNN
NFTIR NN

NN
MTTDL

λλλλλ
λλλµ

+++−
−++−+=

))()(1(SDNDN

N

NN λλλλλ
µ

+++−
≈

Figure 6: Markov Model for Fault Tolerance 2;
Nodes with Internal RAID

Figure 6 shows the Markov model for nodes with
internal RAID and an erasure code with a fault
tolerance of 2 between nodes. As can be seen above,
this scheme tolerates two failures; a third failure
during the node rebuild operation results in a data
loss event, State 3. We will explain the factor k2 (and
corresponding k3 below) in section 5.2.1.

The MTTDL for this scheme (internal RAID, node
fault tolerance 2) is:

d�d (d-1)(1-h)�d

�d

0 1 2

(d-2)�d

3

�d

(d-1)h�d

N(�N+�D) (N-1)(�N+�D+�S)

�N

0 1 2

�N

0 1 3
�N

2

N(�N+�D) (N-1)(�N+�D) (N-2)(�N+�D+k2.�S)

)())(2)(1(2
2

2

2,

SDNDN

N

NFTIR

kNNN

MTTDL

λλλλλ
µ

•+++−−
≈

Figure 7: Markov Model for Fault Tolerance 3;
Nodes with Internal RAID

Figure 7 shows the Markov model for nodes with
internal RAID and an erasure code with a fault
tolerance of 3 between nodes. This scheme tolerates
three failures; a fourth failure during the node rebuild
operation results in a data loss event, State 4.

The MTTDL for this scheme (internal RAID, node
fault tolerance 3) is:

)())(3)(2)(1(3
3

3

3,

SDNDN

N

NFTIR

kNNNN

MTTDL

λλλλλ
µ

•+++−−−
≈

4.3 Nodes without Internal RAID

In configurations for nodes without internal RAID,
individual drives within each node are used to realize
the erasure code between nodes. We assume that no
more than one drive per node is used in each
redundancy set, that is, each block of a data stripe is
on a different node; thus, each node failure causes
only a single erasure on each redundancy set.

Figure 8 shows the Markov model for nodes without
internal RAID and an erasure code of fault tolerance
1 between nodes.

Figure 8: Markov Model for Fault Tolerance 1;
Nodes without Internal RAID

Although there are only a few new parameters used
in the above model, we list all the parameters:

N = node set size
d = drives per node
�N = node failure rate
�d = drive failure rate
�N = node rebuild rate
�d = drive rebuild rate
hN = probability of an uncorrectable error

during node rebuild
 = hdHERCRd •=••−•)1(
hd = probability of an uncorrectable error

during drive rebuild
 = hHERCR =••−)1(
R = redundancy set size
C = drive capacity
HER = disk hard error rate expressed in hard

errors per number of bytes read

State 0 is when the system is fully operational. State
1 corresponds to a node failure that will not
experience an uncorrectable error during node
rebuild. State 2 corresponds to a drive failure that
will not experience an uncorrectable error during
drive rebuild. State 3 represents a data loss state –
either due to a second node or drive failure or due to
an uncorrectable error during rebuild.

The MTTDL for this scheme (no internal RAID, node
fault tolerance 1) is:

)())()(1(

1,

NdNdDNNddN

Nd

NFTNIR

NdhddNN

MTTDL

λλµµλµλµλλ
µµ

++++−
≈

Figure 9: Markov Model for Fault Tolerance 2;
Nodes without Internal RAID

N(�N+�D)

�N
0 1 4

(N-1)(�N+�D)

�N
2

(N-2)(�N+�D)

�N
3

�N

0

1

2

3

�d

N�N(1-hN)

Nd�d(1-hd)
(N-1)(d�d+�N)

(N-1)(d�d+�N)

N(d�dhd+�NhN)

�N

0

1

4

7

�d

N�N

Nd�d

�N

2

3

�d

(N-1)�N(1-hNN)

(N-1)d�d(1-hNd)

�N

5

6

(N-1)�N(1
-hdN)

(N-1)d�d(1-hdd)

(N-2)(d�d+�N)

(N-1)(d�dhdd

+�NhdN)

(N-1)(d�dhNd

+�NhNN)

(N-2)(d�d+�N)

(N-2)(d�d+�N)

(N-2)(d�d+�N) �d

(N-3)(�N+�D+k3.�S)

Figure 10: Markov Model for Fault Tolerance 3; Nodes without Internal RAID

Figure 9 shows the Markov model for nodes without
internal RAID and an erasure code of fault tolerance
2 between nodes. The hxy parameters are
probabilities of encountering an uncorrectable error
during a second node or drive rebuild (y = N or d
respectively), after an initial node or drive failure (x
= N or d respectively). We will show how these
parameters are determined in Section 5.2.2.

Figure 10 shows the Markov model for nodes without
internal RAID and an erasure code of fault tolerance
3 between nodes. As can be seen, the Markov
models for nodes without internal RAID become
increasingly complex as the fault tolerance increases.
This is because without internal RAID, a drive failure
state is distinct from a node failure state and these
states multiply as the fault tolerance increases.
Consequently, using conventional techniques to
obtain a parameterized closed form solution for these
higher levels of fault tolerance is not practical.
However, by comparing Figures 8, 9 and 10, we
observe similarities. For instance, the state

transitions in Figure 8 are represented in two subsets
in Figure 9 – states 1, 2, 3 and 7; and states 4, 5, 6
and 7. Similarly, Figure 9 itself is represented in two
subsets in Figure 10. From these observations, it can
be seen that a recursive method can be developed to
solve these Markov models. In the appendix, we
describe a recursive method to obtain a closed form
solution for nodes without internal RAID with
arbitrary fault tolerance across nodes.

The MTTDL for the last two schemes will be shown
in Section 5.2 following the explanation of the h
parameters.

5 Implications of Distributed Data

5.1 Node Rebuild Time

We mentioned earlier that the fail-in-place service
model implies that the set of nodes is over-
provisioned with spare capacity to deal with
subsequent failures that will result in a loss of usable

�N

(N-1)�N

(N-1)d�d

�d

(N-2)�N(1-hNNN)

(N-2)d�d(1-hNNd)

(N-2)�N(1-hNdN)

(N-2)d�d(1-hNdd)
(N-2)(d�dhNdd+�NhNdN)

(N-2)(d�dhNNd+�NhNNN)

(N-3)(d�d+�N)

(N-3)(d�d+�N)

(N-3)(d�d+�N)

0

N�N

Nd�d

8

9

12

(N-1)�N

(N-1)d�d

10

11

(N-2)d�d(1-hdNd)

13

14

(N-2)�N(1-hddN)

(N-2)d�d(1-hddd)

(N-3)(d�d+�N)

(N-2)(d�dhdNd+�NhdNN)

(N-2)(d�dhddd+�NhddN)

(N-3)(d�d+�N)

(N-3)(d�d+�N)

(N-3)(d�d+�N)

15

1

5

2

7

6

4

3

(N-3)(d�d+�N)

(N-2)�N(1-hdNN)

�N

�N

�N

�N

�N

�N

�d

�d

�d

�d

�d

�d

capacity. This model, coupled with the even
distribution of data, implies that spare capacity is also
evenly distributed among the nodes. Thus, when a
node fails, the data on the failed node is rebuilt by all
the remaining nodes, utilizing their spare capacity.
Similarly, in configurations without internal RAID,
when a drive fails, the data on the failed drive is
rebuilt on all the remaining drives. This is not the
case for nodes with internal RAID: a drive failure
results in a re-striping operation, removing the failed
drive from the array and restoring redundancy.

Rebuild time, and hence the rebuild rate, is a key
component in the expressions for MTTDL. We will
describe a model to determine rebuild time
accurately. Our model of rebuild time is based on the
amount of data that is transferred during a rebuild.

We assume that in a rebuild, the destination node
receives all the required redundancy data and
performs the necessary exclusive-OR (or equivalent)
operations to generate the data it will write on its
drive(s).

For a node set size of N, a redundancy set size of R
and a fault tolerance of t, we express the amounts of
data below in units of a node’s worth of data. Note
that this means that R nodes are involved in the
rebuild of one lost data object.

• Amount of data rebuilt by each node
1

1
−

=
N

• Amount of data received by each node from

other nodes to rebuild the above
1−

−=
N

tR

• Total data received by all the 1−N nodes

1
)1(

−
−−=

N
tR

N = total data sourced by all

1−N nodes
• Total data sourced by each node

11
)1(

1
1

−
−=

−
−−

−
=

N
tR

N
tR

N
N

The effective rebuild time will be the maximum time
required to move data in and out of nodes, to and
from disks, and through the interconnecting network,
depending on where the bottleneck lies.

• Hence, total data in and out of a node

1
*2

−
−=

N
tR

• Total data to and from the disks in a node

1
1

1 −
+

−
−=

NN
tR

• The total data flowing in the interconnecting
network tR −=

5.2 Scope of Sector Error

Figure 11: Critical Redundancy Sets

We stated earlier that we assume that an
uncorrectable read error causes a data loss event only
when the redundancy set is in a critical state. The
even distribution of data across all the nodes implies
that, for fault tolerance 2 or higher, when a
redundancy set is critical, only a portion of a node’s
data (or drive’s data in the case of no internal RAID)
is critical.

This is illustrated in Figure 11. Let us assume that
we have an erasure code of fault tolerance 2 between
nodes and that the nodes have internal RAID. The
X’s indicated failed nodes. Each failed node is a part
of two redundancy sets, one shared with the other
failed node and one otherwise independent.
However, only the shared set is critical; the other has
lost one node but can tolerate a second loss.

5.2.1 Nodes with Internal RAID

The fraction of redundancy sets that are critical and
hence, can contribute to a sector loss are represented
in the k2 and k3 terms in the MTTDL expressions for
internal RAID, fault tolerance 2 and 3 respectively.

Each node is a part of ��
�

�
��
�

�

−
−

1
1

R

N
 redundancy sets.

Thus,

1
1

1
1
2
2

2 −
−=

��
�

�
��
�

�

−
−

��
�

�
��
�

�

−
−

=
N
R

R
N
R

N

k , and

Node Set

Redundancy Sets

Node

X

X

Node Set

Redundancy Sets

Node

Critical Redundancy Set

))(()2)(1())()(2)(1(2

22

2,

dNNdNdNdDNNddN

Nd

NFTNIR

dHERCRRNddNNN

MTTDL

λµλµλλµµλµλµλλ
µµ

++•••−−+++−−
≈

23

33

3,

))(()3)(2)(1())()(3)(2)(1(dNNdNdNdDNNddN

Nd

NFTNIR

dHERCRRRNddNNNN

MTTDL

λµλµλλµµλµλµλλ
µµ

++•••−−−+++−−−
≈

Figure 12: MTTDL for No Internal RAID, Node Fault Tolerance 2 and 3

)2)(1(
)2)(1(

1
1
3
3

3 −−
−−=

��
�

�
��
�

�

−
−

��
�

�
��
�

�

−
−

=
NN
RR

R
N
R

N

k .

5.2.2 Nodes without Internal RAID

For nodes without internal RAID, we used h-with-
subscript terms to represent probabilities of
encountering uncorrectable sector errors during
critical rebuilds. These probabilities depend on the
amount of critical data that must be read for a rebuild
operation, which in turn is derived from critical
redundancy sets. Unlike nodes with internal RAID,
redundancy sets may be critical because of
combinations of node and drive failures.

The combinations and corresponding fractions of
critical redundancy sets for fault tolerance 2 are:

• two nodes:
1
1

1
1
2
2

−
−=

��
�

�
��
�

�

−
−

��
�

�
��
�

�

−
−

N
R

R
N
R

N

 of a node;

• two drives:
1
11

1
1
2
2

1

2

−
−=

��
�

�
��
�

�

−
−

��
�

�
��
�

�

−
−

−

−

N
R

d
R
N

d

R

N
d

R

R

 of a drive;

• and a drive and a node:
1
1

1
1
2
2

1

1

−
−=

��
�

�
��
�

�

−
−

��
�

�
��
�

�

−
−

−

−

N
R

R
N

d

R

N
d

R

R

 of

a drive.

The probability of encountering a hard error while
rebuilding a drive if the entire drive is critical is

HERCR ••−)2(.

Now, if HERC
N

RR
h ••

−
−−=

1
)2)(1(

, then

dhhNN =
hhh dNNd == and

d
h

hdd = .

Similarly, the combinations and corresponding
fractions of critical redundancy sets for fault
tolerance 3 are:

• three nodes:

)2)(1(
)2)(1(

1
1
3
3

−−
−−=

��
�

�
��
�

�

−
−

��
�

�
��
�

�

−
−

NN
RR

R
N
R

N

 of a node;

• two nodes and a drive:

)2)(1(
)2)(1(

1
1
3
3

1

1

−−
−−=

��
�

�
��
�

�

−
−

��
�

�
��
�

�

−
−

−

−

NN
RR

R
N

d

R

N
d

R

R

 of a drive;

• two drives and a node:

)2)(1(
)2)(1(1

1
1
3
3

1

2

−−
−−=

��
�

�
��
�

�

−
−

��
�

�
��
�

�

−
−

−

−

NN
RR

d
R
N

d

R

N
d

R

R

 of a drive;

• and three drives:

)2)(1(
)2)(1(1

1
1
3
3

2
1

3

−−
−−=

��
�

�
��
�

�

−
−

��
�

�
��
�

�

−
−

−

−

NN
RR

d
R
N

d

R

N
d

R

R

 of a drive.

The probability of encountering a hard error while
rebuilding a drive if the entire drive is critical is

HERCR ••−)3(.

Now, if HERC
NN

RRR
h ••

−−
−−−=
)2)(1(

)3)(2)(1(
, then

dhhNNN =
hhhh dNNNdNNNd ===

d
h

hhh ddNdNdNdd === and

2d
h

hddd = .

We use these parameters to solve the Markov models
and obtain the corresponding MTTDLs, which are
shown in Figure 12. A general solution for arbitrary
fault tolerance is described in the appendix.

6 Baseline Reliability

We use the closed form solutions for the MTTDL for
the various configurations and determine baseline
reliability using parameters defined below. We
assume that desktop/ATA drives are used in the
nodes.

MTTFN = node MTTF = 400,000 hours
MTTFd = drive MTTF = 300,000 hours
HER = drive hard error rate = 1 sector in 1014

bits read
C = drive capacity = 300 GB
Maximum drive throughput = 150 I/O

operations/sec.
Drive sustained transfer rate (average) = 40

MB/sec.
N = node set size = 64
R = redundancy set size = 8
d = drives per node = 12
Re-stripe command size = 1 MB
Rebuild command size = 128 KB
Link speed = 10 Gbps (800 MB/sec. sustained)
Capacity utilization = 75%
Bandwidth utilization for rebuild, re-stripe = 10%

The link speed needs clarification. The rebuild
performance depends on the total rate data can move
in and out of the node over all links. We assume that
nodes are physically sealed units shaped like cubes
and are stacked together to build larger three-
dimensional structures. Nodes communicate with
adjacent nodes through links on each of their six
surfaces. [1] has more information on effective
bandwidth of such structures.

We specify the reliability target in terms of data loss
events per PB-year. We view reliability from a
manufacturer’s perspective and choose a target that
tracks the field population of such storage systems.
We set a reliability target that a field population of
100 systems each with a petabyte of logical capacity
will experience less than one data loss event in 5
years. This translates to less than 2 x 10-3 data loss
events per PB-year.

1.00E-14
1.00E-13
1.00E-12
1.00E-11
1.00E-10
1.00E-09
1.00E-08
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00
1.00E+01
1.00E+02

Fault Tol 1 Fault Tol 2 Fault Tol 3

Node Fault Tolerance
D

at
a

Lo
ss

 E
ve

nt
s

p
er

 P
B

-Y
ea

r

No Int. RAID
Int. RAID 5
Int. RAID 6
Target

Figure 13: Baseline Comparison

Figure 13 shows a baseline comparison of the 9
configurations using the parameters defined above.
We observe the following:

1. Configurations with node fault tolerance of
1 do not meet our reliability target.

2. There is no significant difference between
internal RAID 5 and internal RAID 6
especially for fault tolerance 2 or higher.
We will discuss why this is the case in
Section 8.

3. At fault tolerance 3, the internal RAID
configurations exceed the target by 5 orders
of magnitude.

Based on the above observations, we will not
consider configurations with fault tolerance of 1
between nodes. Also, for configurations with internal
RAID, we will only use RAID 5 as RAID 6 does not
provide any advantage. Further, we will not include
the configuration at fault tolerance 3, internal RAID
in the sensitivity analyses (item 3. above). This will
leave us with three configurations for sensitivity
analyses:
 Fault Tolerance 2 without internal RAID,
 Fault Tolerance 2 with internal RAID 5, and
 Fault Tolerance 3 without internal RAID.

7 Sensitivity Analyses

We will perform sensitivity analyses of the reliability
to the following parameters: drive MTTF, node

MTTF, rebuild block size, link speed, node set size,
redundancy set size, and drives per node. As we vary
these parameters one at a time, we will keep all the
other parameters at their baseline level, except for
drive and node MTTF. For the latter two, we will use
two values, one at each end of a practical range as
shown here:

Drive MTTF (hours): low 100,000; high 750,000;
Node MTTF (hours): low 100,000; high 1,000,000.

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

10
0,0

00

25
0,0

00

50
0,0

00

75
0,0

00

1,0
00

,00
0

1,2
50

,00
0

Drive MTTF

D
at

a
Lo

ss
 E

ve
nt

s
p

er
 P

B
-Y

E
ar

FT 2 No RAID
Low MTTFN
FT 2 No RAID
High MTTFN
FT 2 RAID 5
Low MTTFN
FT 2 RAID 5
High MTTFN
FT 3 No RAID
Low MTTFN
FT 3 No RAID
High MTTFN
Target

Figure 14: Sensitivity to Drive MTTF

Figure 14 shows the sensitivity to disk drive MTTF.
We observe that the configuration at fault tolerance 2,
no internal RAID does not meet the target at all for
low node MTTF, and marginally meets it for high
node MTTF. The other two configurations exceed
the target – some more comfortably than the others –
over the entire range. FT 2, Internal RAID 5 appears
to be relatively insensitive to drive MTTF, especially
for low node MTTF – clearly, it is limited by node
MTTF and provides another view why RAID 6,
which protects from a further drive failure, does not
offer any advantage.

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

10
0,0

00

25
0,0

00

50
0,0

00

75
0,0

00

1,0
00

,00
0

1,2
50

,00
0

Node MTTF

D
at

a
Lo

ss
 E

ve
n

ts
 p

er
 P

B
-Y

ea
r FT 2 No RAID

Low MTTFd
FT 2 No RAID
High MTTFd
FT 2 RAID 5
Low MTTFd
FT 2 RAID 5
High MTTFd
FT 3 No RAID
Low MTTFd
FT 3 No RAID
High MTTFd
Target

Figure 15: Sensitivity to Node MTTF

The sensitivity to node MTTF is shown in Figure 15.
FT 2, Internal RAID 5 shows the most sensitivity to
node MTTF and all three configurations show
increased sensitivity with high drive MTTF. FT 2,

No Internal RAID again does not meet the target for
the most part.

The rebuild block size affects the node and the drive
rebuild rate, �N and �d respectively. As we saw in
Sections 4 and 5, these are key parameters for the
MTTDL. From Figure 16, it can be seen that the
rebuild block size affects the reliability significantly.
FT2, No Internal RAID does not meet the target for
low MTTF. The other two configurations meet the
target if the rebuild block size is 64 KB or larger.

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

16 32 64 128 256 1024

Rebuild Block Size (KB)
D

at
a

L
o

ss
 E

ve
n

ts
 p

er
 P

B
-Y

ea
r

FT 2 No RAID
Low MTTF
FT 2 No RAID
High MTTF
FT 2 RAID 5
Low MTTF
FT 2 RAID 5
High MTTF
FT 3 No RAID
Low MTTF
FT 3 No RAID
High MTTF
Target

Figure 16: Sensitivity to Rebuild Block Size

The rebuild rate is determined by the slower of the
data transfers – across the network between nodes or
within a node to and from the disk drives. With the
parameters as defined (12 drives per node, 150 I/O
operations/second, and so on), the rebuild rate is
constrained by the link speed up to around 3 Gb/s
beyond which it is constrained by the disk drives.

This can be seen in Figure 17 which shows sensitivity
to link speed at 3 points – 1, 5 and 10 Gb/s. There is
no difference in reliability between the last two
points.

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 5 10

Link Speed (Gb/s)

D
at

a
Lo

ss
 E

ve
nt

s
p

er
 P

B
-Y

ea
r

FT 2 No RAID
Low MTTF
FT 2 No RAID
High MTTF
FT 2 RAID 5
Low MTTF
FT 2 RAID 5
High MTTF
FT 3 No RAID
Low MTTF
FT 3 No RAID
High MTTF
Target

Figure 17: Sensitivity to Link Speed

We now look at sensitivity to the configurable
parameters – node set size, redundancy set size and
drives per node. Figure 18 shows the sensitivity to

node set size. As can be seen, FT 2, No Internal
RAID shows some sensitivity to the node set size, but
the other two configurations are relatively insensitive
to it.

The sensitivity to redundancy set size is shown in
Figure 19. It can be seen that all configurations
appear to become less reliable as the redundancy set
size increases, with about an order of magnitude
difference between the extremes.

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

27 64 125 1000

Node Set Size

D
at

a
Lo

ss
 E

ve
nt

s
p

er
 P

B
-Y

ea
r

FT 2 No RAID
Low MTTF
FT 2 No RAID
High MTTF
FT 2 RAID 5 Low
MTTF
FT 2 RAID 5 High
MTTF
FT 3 No RAID
Low MTTF
FT 3 No RAID
High MTTF
Target

Figure 18: Sensitivity to Node Set Size

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

8 12 16 20

Redundancy Set Size

D
at

a
Lo

ss
 E

ve
nt

s
p

er
 P

B
-Y

ea
r

FT 2 No RAID
Low MTTF

FT 2 No RAID
High MTTF

FT 2 RAID 5
Low MTTF

FT 2 RAID 5
High MTTF

FT 3 No RAID
Low MTTF

FT 3 No RAID
High MTTF

Target

Figure 19: Sensitivity to Redundancy Set Size

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

4 8 12 16

Drives/Node

D
at

a
Lo

ss
 E

ve
nt

s
p

er
 P

B
-Y

ea
r

FT 2 No RAID
Low MTTF
FT 2 No RAID
High MTTF
FT 2 RAID 5
Low MTTF
FT 2 RAID 5
High MTTF
FT 3 No RAID
Low MTTF
FT 3 No RAID
High MTTF
Target

Figure 20: Sensitivity to Drives per Node

From Figure 20, it can be seen that there is very little
sensitivity to the number of drives per node. It
should be noted that we are measuring normalized
reliability – data loss events per PB-Year. As a
result, with some parameters such as drives per node,
there is a cancellation effect. Increasing the number
of drives in a node can result in decreased reliability
per node – however, fewer such nodes will be
required to yield a petabyte.

8 Discussion

The baseline reliability analysis in Section 6 showed
that RAID 6 does not offer any advantage over RAID
5 when used internal to networked storage nodes.
This is because the reliability of a networked storage
system as a whole is affected by both drive and node
failures. When RAID 5 is used internally, the effect
of drive failures is considerably minimized such that
the susceptibility to node failures becomes a
dominant factor. Providing further tolerance to drive
failures by using RAID 6 does not alleviate the
susceptibility to node failures. It is interesting to note
that we need to obtain a balance of protection against
both drive and node failures – increasing the
protection for one without correspondingly increasing
it for the other does not result in an overall increase
in reliability.

The sensitivity analyses in section 7 reveal interesting
results. Firstly, we see that there is very little
sensitivity to the configurable size parameters – node
set size and drives per node and a little more
pronounced sensitivity to redundancy set size. We
alluded to the reason for the insensitivity to drives per
node earlier. Similar arguments apply to the node set
size. In the latter case, there is an additional factor.
Even though increasing the node set size increases
the size of the failure domain, the fraction of critical
redundancy sets decreases.

We also see that the reliability is constrained by disk
drive bandwidth rather than network bandwidth if the
link speed is 3 Gb/s or higher, resulting in no change
in reliability at higher link speeds. By using drive
bandwidth more efficiently through the use of larger
rebuild block sizes, we see significant improvements
in reliability. In fact, the rebuild block size is a
controllable parameter with the most significant
impact on reliability.

In contrast, drive and node MTTF are not easily
controllable. Industry experience has indicated that
drive MTTF can vary significantly between batches
of drives and the same can be expected of nodes.

The numbers we have used in the baseline analysis
are conservatively realistic with the sensitivity
analysis providing an insight into available headroom
from a reliability perspective.

For the specific target we have chosen in this paper, it
appears that either the [FT2, Internal RAID 5] or the
[FT3, No Internal RAID] configurations meet the
reliability requirement with the condition that the
rebuild block size is at least 64 KB.

9 Conclusions

We have developed effective reliability models for
networked storage nodes based on Markov chains.
We deal with the complexity of solving large Markov
models in two different ways – hierarchical models
and recursive models. Using these methods, we are
able to generate closed-form parametric solutions that
have broad utility. We have chosen a specific
reliability target in order to focus on a few
redundancy configurations. However, the closed-
form solutions we have presented may be used to
determine redundancy configurations for a spectrum
of reliability targets such as in systems that offer
user-configurable goals.

We have also developed a model that utilizes basic
parameters such as disk drive bandwidth and network
link speed, to generate effective rebuild rates.
System reliability, as we have seen, is impacted
significantly by the rebuild rate; hence, obtaining a
precise estimate using basic parameters ensures that
the reliability results are accurate.

References

[1] C. Fleiner, D.R. Kenchammana Hosekote, R.

Garner, and W. Wilcke. Quantitative Study of
the Performance and Reliability of a Resilient 3-
D Mesh-based Server. Technical Report RJ
10308, IBM Research, November 2003.

[2] S. Fr�lund, A. Merchant, Y. Saito, S. Spence,
and A. Veitch. A Decentralized Algorithm for
Erasure-Coded Virtual Disks. Dependable
Systems and Networks, June 2004.

[3] G.R. Goodson, J.J. Wylie, G.R. Ganger, and
M.K. Reiter. Efficient Byzantine-tolerant
erasure-coded storage. Dependable Systems and
Networks, June 2004.

[4] E.K. Lee, C.A. Thekkath, C. Whitaker, and J.
Hogg. A Comparison of Two Distributed Disk
Systems. Research Report 155, Digital Systems
Research Center, April 1998.

[5] IBM Research. Collective Intelligent Bricks –
Hardware.
http://www.almaden.ibm.com/Stora
geSystems/autonomic_storage/CIB_
Hardware/index.shtml

[6] K.S. Trivedi. Probability and Statistics with
Reliability, Queuing, and Computer Science
Applications. Prentice-Hall, 1982

[7] Q. Xin, E.L. Miller, T. Schwarz, D.D.E. Long,
S.A. Brandt, and W. Litwin. Reliability
Mechanisms for Very Large Storage Systems.
IEEE/ NASA Goddard Conference on Mass
Storage Systems and Technologies, April 2003.

Appendix: Recursive Solution to
Reliability Models with No Internal RAID

In this section we outline the recursive methodology
used to solve for the MTTDL in the case of no
internal RAID with redundancy of arbitrary fault
tolerance k across nodes. The results for k =1, 2,
and 3 of Sections 4.3 and 5.2 are special cases. For a
CTMC (see [6]) with state set S , absorbing states
A , non-absorbing states ASB −= and mean time

spent in state Bi ∈ given by iτ , the MTTDL is
computed as
 �

∈

=
Bi

iMTTDL τ (A.1)

The terms iτ are can be computed as the solution to
the system of equations
)0(BBBQ πτ −=

where
BiiB ∈= ,......,ττ ,)0(Bπ is the vector of initial

probabilities for the states in B , and BQ is the
submatrix restricted to the non-absorbing states B of
the infinitesimal generator matrix Q . The matrix Q is
defined as follows: the off-diagonal entries are the
transition rates for each pair of states in S (these are
non-negative); the diagonal entries are defined so that
the row sums of Q all equal zero (the diagonal
entries are negative). In all our models, there is only
one initial state (the first state in an enumeration of
B) so that 0,...,0,1)0(=Bπ . Consequently, we

have 10,...,0,1 −−= BB Qτ and

 t
BQMTTDL 1,...,10,...,0,1 1−−= .

The vector on the right in this formula computes the
sum in (A1). We let BQR −= so that R has positive
diagonal entries, non-positive off-diagonal entries
and

 t
RMTTDL 1,...,10,...,0,1 1−= (A.2)

We call R the absorption matrix for the model. Let
)(RM be the expression on the right hand side of

(A.2). Recall the formula
)det(/)(adj1 RRR =− where)(adj R is the adjoint of

R (the transpose of the matrix of determinants of all
one-less dimension submatrices of R). Set

 tRR 1,...,1)(adj0,...,0,1)Num(=
 So that we have
).det(/)(Num)(RRRM = (A.3)
(“Num” is an abbreviation for numerator.) We also
define the notation =)(Sdet R upper left corner of

)(adj R , that is, the determinant of the submatrix of
R after removing the first row and first column. If

)(rR = is a scalar (1x1), then set 1)(Num =R ,
1)(Sdet =R , and rR =)det(, so that rRM /1)(= .

We use this notation and formulation later.

As we noted in Section 4.3, the CTMC for the no
internal RAID model with fault tolerance k has a
recursive structure. By a re-labeling, we can describe
this recursion as follows.

First build the model as in Fig. 8 for fault tolerance

1=k . Re-label state “3” as “A” (the absorbing
state), state “1” as “ N ” and state “2” as “ d ” (to
indicate the type of failure that we model on the
transition into these states). To create the model for
general k from the model for k – 1, do the following:

1. Make two copies of the model for fault
tolerance 1−k (inductively). Each non-
absorbing state has a label of length 1−k in
the letters “0”, “ N ”, “ d ”.

2. Merge the two absorbing states into one
state “A”.

3. Prefix each state label in the first copy with
an “ N ” and in the second copy with a “ d ”.

4. In the each copy, replace N by 1−N (and
1−N by 2−N , etc.). In the first copy

replace every subscript on each h with a
new subscript prefixed by “ N ”; in the
second copy prefix each h -subscript by
“ d ”.

5. Add a new root state with label all “0”s of
length k . Set the rate from this new state to
the root state of the first copy (labeled
“N0…0”) to NNλ , and back with Nµ ; set
the rate from this new state to the root state
of the second copy (labeled “d0…0”) with
rate dNdλ and back with dµ .

This completes the construction.

The general model is parameterized by N,)(kh , Nµ ,

dµ , Nλ , and ddλ where }},{:{)(kk dNhh ∈= αα
(so the subscripts are all words of length k in the
letters “ N ” and “ d ”) and assume this is in reverse
lexicographical order according to the subscripts.
Generally, we will suppress the last four parameters
as they are not dependent on what level we are in the
recursive construction (only N and)(kh change as
we see above). At times we suppress the dependence
on N and)(kh as well for notational brevity.

When 1>k , there are no transitions from the root
state to the absorbing state. When 1=k , there is a
transition and it is determined by Nh and dh (see
Figure 8). When 1>k , the only transitions to the
absorbing state come at the inner most level of the
recursion. For every state with label containing
only the letters “ N ” and “ d ”, there is a transition to
the absorbing state with rate))((dN dkN λλ +− . For

every state whose label is of the form 0α (where α

contains only the letters “ N ” and “ d ”), there is a
transition to the absorbing state with rate

))(1(ddNN hdhkN αα λλ ++− .

The construction (step 4) suggests the following
notational operation for the sets)(kh : for x = “ N ”
or “ d ”, define the “dot” operation
 }},{:{ 1)1(−− ∈= k

x
k

x dNhhh αα�
so that
)1()1()(−− ∪= k

d
k

N
k hhhhh �� .

Given this notation and construction, it is easy to see
that the absorption matrix),()()(kk hNRR = for the
model of fault tolerance k has the form

��
�
�

�

�

��
�
�

�

�

−
−

−−
=

)(

)(

)(

)(

0
0

k
dd

k
NN

dN
k

k

R

R

r

R

�

�

rr

where N� represents a vector of the form 0,..,0,Nµ

(similarly for d� , Nr and dr), and for 1>k ,
 NN Nr λ=
 dd Ndr λ=

)()(
dN

k rrNr +=
since there is no transition from the root state (labeled
with all zero word) to the absorbing state in this case.

If 1=k then)1(NNN hNr −= λ ,)1(ddd hNdr −= λ

and)()1(
dN dNr λλ += .

))()(),())()((1()1(
)(

)),()(
)(

k
kdN

k
NddN

k
dNk

hLLdkNkNNN
hNMTTDL

µµµµλλ
µµ

++−+−−
≈

�

Figure A1: General form for MTTDL for k Fault Tolerance

The dimension of)(kR is 12 1 −+k . The matrices

)(k
NR and)(k

dR are of the same structural form as
)(kR . Let)(kU be the matrix of size 12 −k that is

all zero except for a single one in the upper left
corner. Then)()(k

N
k

N UR µ− is the absorption matrix

for the 1−k level model with parameters N and
)1(−kh replaced by 1−N and)1(−k

N hh � ,

respectively. Similarly,)()(k
d

k
d UR µ− is the

absorption matrix for the 1−k level model with

parameters N and)1(−kh again replaced by 1−N

and)1(−k
d hh � , respectively. Symbolically, for x =

“ N ” or “ d ”,

),1(),()1()1()()()(−− −=− k
x

kk
x

kk
x hhNRUhNR �µ .

 (A.4)

We now have a formal model of the recursive
construction and the effect this recursive construction
has on the absorption matrices and the parameters at
each level.

From the definitions of adj and det and a straightfor-
ward calculation, it is not difficult to prove the
following lemma:

Lemma. For 1≥k ,

)(Num)det(

)det()(Num)(Sdet)(Num
)()(

)()()()(

k
d

k
Nd

k
d

k
NN

kk

RRr

RRrRR

+

+=

and

))(Sdet))(det(det(

)det())(Sdet)(det(

)(Sdet)det(

)()()(

)()()(

)()()(

k
dd

k
d

k
Nd

k
d

k
NN

k
NN

kkk

RRRr

RRRr

RrR

µ

µ

−+

−+

=

By (A.4), the term (with x = “ N ” or “ d ”, and

suppressing the N and)(kh on the left side)

)).,1(det(

)(Sdet)det(
)1()1(

)()(

−− −=

−
k

x
k

k
xx

k
x

hhNR

RR

�

µ
 (A.5)

and
)),1((Num)(Num)1()1()(−− −= k

x
kk

x hhNRR �
as well. These formulas provide the basis for an
inductive argument. We need some additional
notation in order to state the result and assumptions

(on relative size of parameters) in order to derive our
approximation results.

Set dN ydxyxL λλ +=),(so that

NyrxryxL dN /)(),(+= (on recalling that

NN Nr λ= and dd Ndr λ=). Furthermore, for any

ordered set)(kH of k2 symbols, let
),()(21

)1(
1 HHLHL = for 1=k , and for 1>k

))(),(()(2111
)(HLHLLHL kNkd

k
k −−= µµ

where 21
)(HHH k ∪= and 1H is the first

12 −k elements of)(kH and 2H is the last
12 −k elements. So, for our special set)(kh we have

))(),(()()1(
1

)1(
1

)(−
−

−
−= k

dkN
k

Nkd
k

k hhLhhLLhL �� µµ
and),()()1(

1 dN hhLhL = .

We can now state the general theorem:
Theorem: Assume)(dN dN λλ + is at least an order

of magnitude smaller than both Nµ and dµ . Then

())()(),())((

))(1()1(

)),(det(

)(

12

)()(

k
kdN

k
NddN

k
dN

kk

hLLdkN

kNNN

hNR
k

µµµµλλ

µµ

++−⋅

+−−≈ −−
�

and

 12)()()()),((Num −≈
k

dN
kk hNR µµ .

From this and (A.3) we easily derive the
approximation formula for MTTDL for the general
model of fault tolerance k across nodes and no
internal RAID as shown in Figure A1.

The proof of the theorem is a fairly straightforward
induction, using the formula (A.5) and the Lemma.
We leave out the details. The statements of MTTDL
in Section 4.3 and 5.2 for k =1, 2 and 3 are easily
seen to be special cases of this theorem, after
replacing the parameters)(kh by their values as
defined in those sections. In particular, we see that
the numerator of the quotient is simply k

dN)(µµ .
The denominator contains a term

)1()1(+−− kNNN � and two (possibly) comparable
terms depending on the relative orders of magnitude
the parameters.

