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Reliability for Networked Storage Nodes 
 
 
 

Abstract 
 
High-end enterprise storage has traditionally 
consisted of monolithic systems with customized 
hardware, multiple redundant components and paths, 
and no single point of failure.  Distributed storage 
systems realized through networked storage nodes 
offer several advantages over monolithic systems 
such as lower cost and increased scalability.  In 
order to achieve reliability goals associated with 
enterprise-class storage systems, redundancy will 
have to be distributed across the collection of nodes 
to tolerate node and drive failures.  In this paper, we 
present alternatives for distributing this redundancy, 
and models to determine the reliability of such 
systems.  We specify a reliability target and 
determine the configurations that meet this target.  
Further, we perform sensitivity analyses where 
selected parameters are varied to observe their effect 
on reliability.  
 
1   Introduction 
 
High-end enterprise storage systems currently 
deployed in production environments have 
traditionally been monolithic systems – so-called ‘big 
iron’ with several symmetrical multiprocessors, 
multiple internal fabrics, large cache memories and 
no single point of failure.  These systems are 
expensive – requiring customized hardware and 
multiple redundant components and paths to ensure 
that there is no single point of failure.  In contrast, 
achieving scalability through distributed storage 
systems is becoming increasing popular in research 
and development, and, to some extent, in commercial 
deployments.  A significant aspect of distributed 
systems is the ability to use common building blocks 
across a wide range of storage requirements: from a 
few terabytes to the scale of petabytes.  This 
translates into several advantages: lower cost due to 
economies of scale, reduced number of inventory 
types, commonality of software across the product 
line, and so on. 
 
The distributed storage system in this paper is 
modeled after the Collective Intelligent Bricks 
project in IBM Research [5].  The storage system 
consists of several bricks where each brick or node is 
a sealed unit consisting of a controller, power supply, 
networking interfaces and disk drives.  Several 
components in the node represent single points of 

failure.  In order to achieve reliability goals 
associated with high-end enterprise-class storage 
systems, redundancy has to be distributed across the 
collection of nodes to tolerate drive and node failure.  
In this paper, we will model the reliability of such a 
system and look at the alternatives for distributing 
redundancy between the nodes in order to meet 
reliability goals of large-scale enterprise systems.   
 
The goal of this paper is to view redundancy 
requirements from a storage viewpoint.  We assume 
that there is enough redundancy in switches and links 
so that reliability is limited by storage nodes and 
drives; that is, the interconnect fabric and topology is 
not a constraining factor in determining the overall 
reliability of the system.  This is typically the case 
with [5]. 
 
We will describe the different configurations for 
achieving reliability in distributed storage systems, in 
Section 3.  In Section 4, we will describe the models 
used to obtain reliability for these configurations.  
The implication of distributing data across such a 
system and its impact on reliability is presented in 
Section 5.  Section 6 will present a baseline reliability 
analysis.  We will analyze the sensitivity of the 
reliability of some of the configurations to several 
parameters, in Section 7.   
 
2   Related Work 
 
Trivedi [6] covers reliability analysis and in 
particular, the use of continuous-time Markov chains 
with absorbing states for crash failures.  The 
modeling and analyses presented in this paper are 
based on this work.  Xin et al. [7] present reliability 
for large distributed systems but do not consider node 
failures.  Also, while uncorrectable sector errors are 
dealt with through a scheme of signatures, the 
reliability improvements through the use of this 
scheme are not characterized.  Snappy Disk and Petal 
[4] represent shared-disk, shared-metadata systems 
and partitioned-disk, partitioned-metadata systems 
respectively.  The availability analysis presented in 
this paper is intended only to gain insights into the 
factors affecting availability rather than to derive 
accurate predictions.  Fr�lund et al. [2] describe an 
erasure coding algorithm in the context of a 
distributed storage system composed of inexpensive 
bricks, and Goodson et al. [3] describe erasure-coded 
storage that tolerates Byzantine failures.  Both these 



papers focus on the algorithms for erasure coding for 
distributed storage nodes and do not address the 
reliability analysis needed to ensure that erasure 
coded distributed storage will meet required 
reliability goals. 
 
3   Redundancy Configurations 
 
As mentioned earlier, a node consists of a controller 
card, network interfaces, a collection of disk drives 
and associated power supplies.  Apart from the disk 
drives and the network interfaces, all other major 
components are not duplicated.  Thus, the node is 
inherently unreliable as the failure of any one of these 
components will result in node failure.  Therefore, in 
order to build a highly reliable storage system out of 
a collection of such nodes, redundancy will have to 
be distributed through the collection. 
 
We will look at two dimensions to realizing 
redundancy in the collection of nodes: redundancy 
within nodes to tolerate internal drive failures, and 
redundancy across nodes to tolerate entire node 
failures.  Within the nodes, we will employ three 
possible configurations: no internal RAID, RAID 5 
and RAID 6, which will tolerate 0, 1 and 2 drive 
failures respectively.  We will achieve redundancy 
across nodes by applying three types of erasure codes 
between them: codes that can tolerate 1, 2 and 3 node 
failures respectively.  The three node configurations 
and three erasure code types between nodes yield a 
total of 9 combinations between them. 
 
We assume that the nodes in this system are enclosed 
entities that are not amenable to service actions.  This 
implies a fail-in-place philosophy where failed 
components within a node are not replaced.  
Specifically, in the case of failure of one or more disk 
drives within a node, the node will continue to 
operate with a reduced set of disks until either all 
disks fail or some other critical component fails 
rendering the node unusable.  For the case of nodes 
with internal RAID (RAID 5 or RAID 6) we will 
assume that on a drive failure, data is re-striped 
removing the failed drive from the array, thereby 
restoring redundancy at the end of this operation.  
The resulting loss in capacity is adjusted against the 
spare capacity, as described below. 
 
The fail-in-place service model implies that, initially, 
storage capacity is over-provisioned so that loss in 
capacity with subsequent failures can be tolerated.  
The over-provisioned storage capacity is either 
sufficient to deal with expected failures over the 
operational life of the installation, or spare nodes are 

added at appropriate times – e.g. when overall 
capacity utilization increases above predetermined 
thresholds.   
 
4   Reliability Models 
 
In this reliability analysis, we are primarily interested 
in preventing data loss.  Consequently, to compare 
redundancy configurations, we use the expected 
number of data loss events per unit time as a measure 
of reliability.  We believe the expected number of 
data loss events per unit time is a metric that is easier 
to comprehend and relate to than the more traditional 
Mean Time to Data Loss – MTTDL. We will use 
Markov models to determine MTTDL, and use it to 
obtain the expected number of data loss events per 
year. 
 
We look at three types of failures that lead to data 
loss: an uncorrectable read error from a disk drive, a 
failure of a disk drive and a failure of a node.  A data 
loss event occurs when the above failures occur in a 
combination that cannot be handled by the data 
protection scheme used in the system.  For example, 
a controller with a RAID 5 array can tolerate a single 
failure (a disk failure or an uncorrectable read error).  
When a drive in the RAID 5 array fails and the array 
is rebuilding to a spare or a replacement drive, if 
either a second drive fails or an uncorrectable read 
error occurs on any of the remaining drives, this 
results in a data loss event.  Clearly, the failure of the 
second drive results in data loss of a much larger 
scale than the uncorrectable read error, but either 
failure results in data loss of some magnitude. 
 
With respect to an uncorrectable read error, we will 
assume it can result in a data loss event only if the 
array is in a critical state and cannot tolerate any 
further errors.  We believe this is a reasonable 
assumption because as long as the array has not lost 
any drive, the recovery from an uncorrectable read 
error just requires reading from the remaining drives 
and regenerating the data item that encountered the 
read error.  The conditions under which this recovery 
can fail are 1) if another element in the same stripe 
encounters an uncorrectable read error, or 2) if 
another drive fails during this recovery.  We believe 
that both these conditions are extremely low 
probability occurrences and can be ignored. 
 
To describe our modeling methodology, we illustrate 
the technique for a RAID 5 disk array.  Figure 1 
shows the Markov model for a RAID 5 array with 
mean time to failure of the disk drives MTTFd and 
mean time to repair (rebuild) a drive failure MTTRd.   



                               

 
 
Figure 1: Markov Model for a RAID 5 array 
 
State 0 is when the array is fully operational.  State 1 
corresponds to a drive failure that will not experience 
an uncorrectable error during the rebuild.  State 2 
represents a data loss state – either due to a second 
drive failure or due to an uncorrectable error during 
rebuild.  The parameters are: 
 

d =  number of drives in the array 
�d =  drive failure rate = 1/MTTFd 

�d =  drive rebuild rate = 1/MTTRd 
h =  probability of an uncorrectable error 

during rebuild 
  =  HERCd ••− )1(  
C =  drive capacity 
HER =  disk hard error rate expressed in hard 

errors per number of bytes read 
 
The methodology to solve a Markov model with 
absorbing states is described in [6].   
 
Typically, �d >> �d.  Solving this model for MTTDL 
gives 
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4.1   Node Set and Redundancy Set 
  
We introduce the concepts of node set and 
redundancy set for a storage system made up of 
networked storage nodes as shown in Figure 2.  Data 
“objects” are stored across multiple nodes in such a 
system in order to meet requirements such as 
performance and reliability (the focus of this paper).  
Each data object constitutes exactly one ‘stripe’ of 
data – that is, the redundancy elements (parity) can 
be computed entirely from this data.  For a given data 
object, the set of nodes that contain the data and its 

corresponding redundancy (parity) elements 
constitutes a redundancy set.  The node set is the set 
of all the nodes in the storage system.  We assume 
that data is evenly distributed across all the nodes in 
the storage system.  Thus, each node has one or more 
redundancy set relationships with every other node in 
the node set.  The total number of redundancy sets of 

size R in a node set of size N is given by: ��
�
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The even distribution of data implies that the failure 
domain is the entire node set and not just individual 
redundancy sets.  For example, in a redundancy 
scheme that tolerates only a single failure, when such 
a failure has occurred and is being recovered from, a 
failure of any second node in the node set will result 
in data loss. 
 

 
Figure 2: Node Sets and Redundancy Sets 
 
We will present the modeling for systems where the 
nodes have internal RAID in section 4.2, and the 
modeling for nodes without internal RAID in section 
4.3. 
 
4.2   Nodes with Internal RAID 
 
For a system in which the nodes have internal RAID, 
we use hierarchical Markov models to obtain 
MTTDL.  We represent the RAID array internal to a 
node in a Markov model and obtain array failure rates 
from it.  We then use these failure rates in a higher 
level Markov model representing the redundancy 
arrangement between nodes.  It should be noted that, 
as we assume that the nodes are not amenable to 
service actions, and that on a drive failure, the array 
is re-striped removing the failed drive from the array, 
the �d term as depicted in Figure 1 is the array re-
stripe rate and not the array rebuild rate.  We already 
obtained the MTTDL for a RAID 5 array as: 
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We define array failure as the failure of disk drives 
beyond the fault tolerance provided by the RAID 
scheme.  From the above, we obtain �D, the rate of 
array failure and �S, the rate of a sector error during a 
re-stripe.  These are: 
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Figure 4 shows the Markov model for a RAID 6 
array. 
 

 
 
Figure 4: Markov Model for a RAID 6 array 
 
State 0 is when the array is fully operational; state 1 
is when a single drive has failed; state 2 corresponds 
to a second drive failure that will not experience an 
uncorrectable read error during rebuild;  and state 3 
represents a data loss state, either due to triple drive 
failure or an uncorrectable error when rebuilding with 
2 drives failed.  Solving this model for MTTDL gives  
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Correspondingly, we obtain �D and �S as 
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We will use these rates in the higher level model for 
the erasure codes between nodes.  Figure 5 shows the 
Markov model for nodes with internal RAID (either 
RAID 5 or RAID 6) and a redundancy arrangement 
with a fault tolerance of 1 between nodes. 
 

 
 
Figure 5: Markov Model for Fault Tolerance 1; 
Nodes with Internal RAID 
 
Here N is the number of nodes in the node set, �N is 
the node failure rate and �N is the node rebuild rate.   
The array failure rate, �D, and the rate of sector error 
during a re-stripe, �S, correspond to the internal 
RAID in the nodes.  
 
State 0 is when the storage system is fully 
operational.  The system transitions to state 1 when 
either a node fails or a node experiences an array 
failure.  In this state, the data of this node is rebuilt 
on the remaining nodes in the node set.  (This is 
described in Section 5).  State 2 represents the data 
loss state caused by a second node or array failure or 
a sector error during an internal RAID re-stripe while 
the node rebuild is in progress. 
 
The MTTDL for this scheme (internal RAID, node 
fault tolerance 1) is given by: 
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Figure 6: Markov Model for Fault Tolerance 2; 
Nodes with Internal RAID 
 
Figure 6 shows the Markov model for nodes with 
internal RAID and an erasure code with a fault 
tolerance of 2 between nodes.  As can be seen above, 
this scheme tolerates two failures; a third failure 
during the node rebuild operation results in a data 
loss event, State 3.  We will explain the factor k2 (and 
corresponding k3 below) in section 5.2.1. 
 
The MTTDL for this scheme (internal RAID, node 
fault tolerance 2) is: 
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Figure 7: Markov Model for Fault Tolerance 3; 
Nodes with Internal RAID 
 
Figure 7 shows the Markov model for nodes with 
internal RAID and an erasure code with a fault 
tolerance of 3 between nodes.  This scheme tolerates 
three failures; a fourth failure during the node rebuild 
operation results in a data loss event, State 4. 
 
The MTTDL for this scheme (internal RAID, node 
fault tolerance 3) is: 
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4.3   Nodes without Internal RAID 
 
In configurations for nodes without internal RAID, 
individual drives within each node are used to realize 
the erasure code between nodes.  We assume that no 
more than one drive per node is used in each 
redundancy set, that is, each block of a data stripe is 
on a different node; thus, each node failure causes 
only a single erasure on each redundancy set. 
 
Figure 8 shows the Markov model for nodes without 
internal RAID and an erasure code of fault tolerance 
1 between nodes. 
 

 
 
Figure 8: Markov Model for Fault Tolerance 1; 
Nodes without Internal RAID 
 

Although there are only a few new parameters used 
in the above model, we list all the parameters: 
 

N =  node set size 
d =  drives per node 
�N =  node failure rate 
�d =  drive failure rate 
�N =  node rebuild rate 
�d =  drive rebuild rate 
hN =  probability of an uncorrectable error 

during node rebuild  
    =  hdHERCRd •=••−• )1(  
hd =  probability of an uncorrectable error 

during drive rebuild 
    =  hHERCR =••− )1(  
R =  redundancy set size 
C =  drive capacity 
HER =  disk hard error rate expressed in hard 

errors per number of bytes read 
 
State 0 is when the system is fully operational.  State 
1 corresponds to a node failure that will not 
experience an uncorrectable error during node 
rebuild.  State 2 corresponds to a drive failure that 
will not experience an uncorrectable error during 
drive rebuild.  State 3 represents a data loss state – 
either due to a second node or drive failure or due to 
an uncorrectable error during rebuild. 
 
The MTTDL for this scheme (no internal RAID, node 
fault tolerance 1) is: 
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Figure 9: Markov Model for Fault Tolerance 2; 
Nodes without Internal RAID 
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Figure 10: Markov Model for Fault Tolerance 3; Nodes without Internal RAID 
 

Figure 9 shows the Markov model for nodes without 
internal RAID and an erasure code of fault tolerance 
2 between nodes.  The hxy parameters are 
probabilities of encountering an uncorrectable error 
during a second node or drive rebuild (y = N or d 
respectively), after an initial node or drive failure (x 
= N or d respectively).   We will show how these 
parameters are determined in Section 5.2.2. 
 
Figure 10 shows the Markov model for nodes without 
internal RAID and an erasure code of fault tolerance 
3 between nodes.  As can be seen, the Markov 
models for nodes without internal RAID become 
increasingly complex as the fault tolerance increases.  
This is because without internal RAID, a drive failure 
state is distinct from a node failure state and these 
states multiply as the fault tolerance increases.  
Consequently, using conventional techniques to 
obtain a parameterized closed form solution for these 
higher levels of fault tolerance is not practical.  
However, by comparing Figures 8, 9 and 10, we 
observe similarities.  For instance, the state 

transitions in Figure 8 are represented in two subsets 
in Figure 9 – states 1, 2, 3 and 7; and states 4, 5, 6 
and 7.  Similarly, Figure 9 itself is represented in two 
subsets in Figure 10.  From these observations, it can 
be seen that a recursive method can be developed to 
solve these Markov models.  In the appendix, we 
describe a recursive method to obtain a closed form 
solution for nodes without internal RAID with 
arbitrary fault tolerance across nodes. 
 
The MTTDL for the last two schemes will be shown 
in Section 5.2 following the explanation of the h 
parameters. 
 
5   Implications of Distributed Data 
 
5.1   Node Rebuild Time 
 
We mentioned earlier that the fail-in-place service 
model implies that the set of nodes is over-
provisioned with spare capacity to deal with 
subsequent failures that will result in a loss of usable 
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capacity.  This model, coupled with the even 
distribution of data, implies that spare capacity is also 
evenly distributed among the nodes.  Thus, when a 
node fails, the data on the failed node is rebuilt by all 
the remaining nodes, utilizing their spare capacity.  
Similarly, in configurations without internal RAID, 
when a drive fails, the data on the failed drive is 
rebuilt on all the remaining drives.  This is not the 
case for nodes with internal RAID:  a drive failure 
results in a re-striping operation, removing the failed 
drive from the array and restoring redundancy. 
 
Rebuild time, and hence the rebuild rate, is a key 
component in the expressions for MTTDL.  We will 
describe a model to determine rebuild time 
accurately.  Our model of rebuild time is based on the 
amount of data that is transferred during a rebuild. 
 
We assume that in a rebuild, the destination node 
receives all the required redundancy data and 
performs the necessary exclusive-OR (or equivalent) 
operations to generate the data it will write on its 
drive(s).  
 
For a node set size of N, a redundancy set size of R 
and a fault tolerance of t, we express the amounts of 
data below in units of a node’s worth of data.  Note 
that this means that R nodes are involved in the 
rebuild of one lost data object. 
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The effective rebuild time will be the maximum time 
required to move data in and out of nodes, to and 
from disks, and through the interconnecting network, 
depending on where the bottleneck lies. 
 

• Hence, total data in and out of a node 
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5.2   Scope of Sector Error 

 
 
Figure 11: Critical Redundancy Sets 
 
We stated earlier that we assume that an 
uncorrectable read error causes a data loss event only 
when the redundancy set is in a critical state.  The 
even distribution of data across all the nodes implies 
that, for fault tolerance 2 or higher, when a 
redundancy set is critical, only a portion of a node’s 
data (or drive’s data in the case of no internal RAID) 
is critical.  
 
This is illustrated in Figure 11.  Let us assume that 
we have an erasure code of fault tolerance 2 between 
nodes and that the nodes have internal RAID.  The 
X’s indicated failed nodes.  Each failed node is a part 
of two redundancy sets, one shared with the other 
failed node and one otherwise independent.  
However, only the shared set is critical; the other has 
lost one node but can tolerate a second loss. 
 
5.2.1   Nodes with Internal RAID 
 
The fraction of redundancy sets that are critical and 
hence, can contribute to a sector loss are represented 
in the k2 and k3 terms in the MTTDL expressions for 
internal RAID, fault tolerance 2 and 3 respectively.  
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Figure 12: MTTDL for No Internal RAID, Node Fault Tolerance 2 and 3 
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5.2.2   Nodes without Internal RAID 
 
For nodes without internal RAID, we used h-with-
subscript terms to represent probabilities of 
encountering uncorrectable sector errors during 
critical rebuilds.  These probabilities depend on the 
amount of critical data that must be read for a rebuild 
operation, which in turn is derived from critical 
redundancy sets.  Unlike nodes with internal RAID, 
redundancy sets may be critical because of 
combinations of node and drive failures. 
 
The combinations and corresponding fractions of 
critical redundancy sets for fault tolerance 2 are: 
 

• two nodes: 
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• and a drive and a node: 
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The probability of encountering a hard error while 
rebuilding a drive if the entire drive is critical is 
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Similarly, the combinations and corresponding 
fractions of critical redundancy sets for fault 
tolerance 3 are: 
 

• three nodes:  
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The probability of encountering a hard error while 
rebuilding a drive if the entire drive is critical is 
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We use these parameters to solve the Markov models 
and obtain the corresponding MTTDLs, which are 
shown in Figure 12.  A general solution for arbitrary 
fault tolerance is described in the appendix. 
 
6   Baseline Reliability 
 
We use the closed form solutions for the MTTDL for 
the various configurations and determine baseline 
reliability using parameters defined below.  We 
assume that desktop/ATA drives are used in the 
nodes. 
 

MTTFN =  node MTTF = 400,000 hours 
MTTFd = drive MTTF = 300,000 hours 
HER =  drive hard error rate = 1 sector in 1014 

bits read 
C =  drive capacity = 300 GB 
Maximum drive throughput = 150 I/O 

operations/sec. 
Drive sustained transfer rate (average) = 40 

MB/sec. 
N =  node set size = 64 
R =  redundancy set size = 8 
d =  drives per node = 12 
Re-stripe command size = 1 MB 
Rebuild command size = 128 KB 
Link speed = 10 Gbps (800 MB/sec. sustained) 
Capacity utilization = 75% 
Bandwidth utilization for rebuild, re-stripe = 10% 

 
The link speed needs clarification.  The rebuild 
performance depends on the total rate data can move 
in and out of the node over all links.  We assume that 
nodes are physically sealed units shaped like cubes 
and are stacked together to build larger three-
dimensional structures.  Nodes communicate with 
adjacent nodes through links on each of their six 
surfaces.  [1] has more information on effective 
bandwidth of such structures. 
 

We specify the reliability target in terms of data loss 
events per PB-year.  We view reliability from a 
manufacturer’s perspective and choose a target that 
tracks the field population of such storage systems.  
We set a reliability target that a field population of 
100 systems each with a petabyte of logical capacity 
will experience less than one data loss event in 5 
years.  This translates to less than 2 x 10-3 data loss 
events per PB-year. 
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Figure 13: Baseline Comparison 
 
Figure 13 shows a baseline comparison of the 9 
configurations using the parameters defined above.  
We observe the following: 

1. Configurations with node fault tolerance of 
1 do not meet our reliability target. 

2. There is no significant difference between 
internal RAID 5 and internal RAID 6 
especially for fault tolerance 2 or higher.  
We will discuss why this is the case in 
Section 8. 

3. At fault tolerance 3, the internal RAID 
configurations exceed the target by 5 orders 
of magnitude.   

 
Based on the above observations, we will not 
consider configurations with fault tolerance of 1 
between nodes.  Also, for configurations with internal 
RAID, we will only use RAID 5 as RAID 6 does not 
provide any advantage.  Further, we will not include 
the configuration at fault tolerance 3, internal RAID 
in the sensitivity analyses (item 3. above).  This will 
leave us with three configurations for sensitivity 
analyses: 
      Fault Tolerance 2 without internal RAID, 
      Fault Tolerance 2 with internal RAID 5, and 
      Fault Tolerance 3 without internal RAID. 
 
7   Sensitivity Analyses 
 
We will perform sensitivity analyses of the reliability 
to the following parameters: drive MTTF, node 



MTTF, rebuild block size, link speed, node set size, 
redundancy set size, and drives per node.  As we vary 
these parameters one at a time, we will keep all the 
other parameters at their baseline level, except for 
drive and node MTTF.  For the latter two, we will use 
two values, one at each end of a practical range as 
shown here:   
 
Drive MTTF (hours): low 100,000; high 750,000; 
Node MTTF (hours): low 100,000; high 1,000,000. 
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Figure 14: Sensitivity to Drive MTTF 
 
Figure 14 shows the sensitivity to disk drive MTTF.  
We observe that the configuration at fault tolerance 2, 
no internal RAID does not meet the target at all for 
low node MTTF, and marginally meets it for high 
node MTTF.  The other two configurations exceed 
the target – some more comfortably than the others – 
over the entire range.  FT 2, Internal RAID 5 appears 
to be relatively insensitive to drive MTTF, especially 
for low node MTTF – clearly, it is limited by node 
MTTF and provides another view why RAID 6, 
which protects from a further drive failure, does not 
offer any advantage. 
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Figure 15: Sensitivity to Node MTTF 
 
The sensitivity to node MTTF is shown in Figure 15.  
FT 2, Internal RAID 5 shows the most sensitivity to 
node MTTF and all three configurations show 
increased sensitivity with high drive MTTF.  FT 2, 

No Internal RAID again does not meet the target for 
the most part. 
 
The rebuild block size affects the node and the drive 
rebuild rate, �N and �d respectively.  As we saw in 
Sections 4 and 5, these are key parameters for the 
MTTDL.  From Figure 16, it can be seen that the 
rebuild block size affects the reliability significantly.  
FT2, No Internal RAID does not meet the target for 
low MTTF.  The other two configurations meet the 
target if the rebuild block size is 64 KB or larger.   
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Figure 16: Sensitivity to Rebuild Block Size  
 
The rebuild rate is determined by the slower of the 
data transfers – across the network between nodes or 
within a node to and from the disk drives.  With the 
parameters as defined (12 drives per node, 150 I/O 
operations/second, and so on), the rebuild rate is 
constrained by the link speed up to around 3 Gb/s 
beyond which it is constrained by the disk drives. 
 
This can be seen in Figure 17 which shows sensitivity 
to link speed at 3 points – 1, 5 and 10 Gb/s.  There is 
no difference in reliability between the last two 
points. 
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Figure 17: Sensitivity to Link Speed  
 
We now look at sensitivity to the configurable 
parameters – node set size, redundancy set size and 
drives per node.  Figure 18 shows the sensitivity to 



node set size.  As can be seen, FT 2, No Internal 
RAID shows some sensitivity to the node set size, but 
the other two configurations are relatively insensitive 
to it. 
 
The sensitivity to redundancy set size is shown in 
Figure 19.  It can be seen that all configurations 
appear to become less reliable as the redundancy set 
size increases, with about an order of magnitude 
difference between the extremes. 
 

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

27 64 125 1000

Node Set Size

D
at

a 
Lo

ss
 E

ve
nt

s 
p

er
 P

B
-Y

ea
r

FT 2 No RAID
Low MTTF
FT 2 No RAID
High MTTF
FT 2 RAID 5 Low
MTTF
FT 2 RAID 5 High
MTTF
FT 3 No RAID
Low MTTF
FT 3 No RAID
High MTTF
Target

 
Figure 18: Sensitivity to Node Set Size  
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Figure 19: Sensitivity to Redundancy Set Size  
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Figure 20: Sensitivity to Drives per Node  
 

From Figure 20, it can be seen that there is very little 
sensitivity to the number of drives per node.  It 
should be noted that we are measuring normalized 
reliability – data loss events per PB-Year.  As a 
result, with some parameters such as drives per node, 
there is a cancellation effect.  Increasing the number 
of drives in a node can result in decreased reliability 
per node – however, fewer such nodes will be 
required to yield a petabyte. 
 
8   Discussion 
 
The baseline reliability analysis in Section 6 showed 
that RAID 6 does not offer any advantage over RAID 
5 when used internal to networked storage nodes.  
This is because the reliability of a networked storage 
system as a whole is affected by both drive and node 
failures.  When RAID 5 is used internally, the effect 
of drive failures is considerably minimized such that 
the susceptibility to node failures becomes a 
dominant factor.  Providing further tolerance to drive 
failures by using RAID 6 does not alleviate the 
susceptibility to node failures.  It is interesting to note 
that we need to obtain a balance of protection against 
both drive and node failures – increasing the 
protection for one without correspondingly increasing 
it for the other does not result in an overall increase 
in reliability. 
 
The sensitivity analyses in section 7 reveal interesting 
results.  Firstly, we see that there is very little 
sensitivity to the configurable size parameters – node 
set size and drives per node and a little more 
pronounced sensitivity to redundancy set size.  We 
alluded to the reason for the insensitivity to drives per 
node earlier.  Similar arguments apply to the node set 
size.  In the latter case, there is an additional factor.  
Even though increasing the node set size increases 
the size of the failure domain, the fraction of critical 
redundancy sets decreases. 
 
We also see that the reliability is constrained by disk 
drive bandwidth rather than network bandwidth if the 
link speed is 3 Gb/s or higher, resulting in no change 
in reliability at higher link speeds. By using drive 
bandwidth more efficiently through the use of larger 
rebuild block sizes, we see significant improvements 
in reliability.  In fact, the rebuild block size is a 
controllable parameter with the most significant 
impact on reliability. 
 
In contrast, drive and node MTTF are not easily 
controllable.  Industry experience has indicated that 
drive MTTF can vary significantly between batches 
of drives and the same can be expected of nodes.  



The numbers we have used in the baseline analysis 
are conservatively realistic with the sensitivity 
analysis providing an insight into available headroom 
from a reliability perspective. 
 
For the specific target we have chosen in this paper, it 
appears that either the [FT2, Internal RAID 5] or the 
[FT3, No Internal RAID] configurations meet the 
reliability requirement with the condition that the 
rebuild block size is at least 64 KB. 
 
9   Conclusions 
 
We have developed effective reliability models for 
networked storage nodes based on Markov chains.  
We deal with the complexity of solving large Markov 
models in two different ways – hierarchical models 
and recursive models.  Using these methods, we are 
able to generate closed-form parametric solutions that 
have broad utility.  We have chosen a specific 
reliability target in order to focus on a few 
redundancy configurations.  However, the closed-
form solutions we have presented may be used to 
determine redundancy configurations for a spectrum 
of reliability targets such as in systems that offer 
user-configurable goals. 
  
We have also developed a model that utilizes basic 
parameters such as disk drive bandwidth and network 
link speed, to generate effective rebuild rates.  
System reliability, as we have seen, is impacted 
significantly by the rebuild rate; hence, obtaining a 
precise estimate using basic parameters ensures that 
the reliability results are accurate. 
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Appendix: Recursive Solution to 
Reliability Models with No Internal RAID  
 
In this section we outline the recursive methodology 
used to solve for the MTTDL  in the case of no 
internal RAID with redundancy of arbitrary fault 
tolerance k  across nodes. The results for k =1, 2, 
and 3 of Sections 4.3 and 5.2 are special cases.  For a 
CTMC (see [6]) with state set S , absorbing states 
A , non-absorbing states ASB −= and mean time 

spent in state Bi ∈  given by iτ , the MTTDL  is 
computed as  
         �

∈

=
Bi

iMTTDL τ                                   (A.1) 

The terms iτ are can be computed as the solution to 
the system of equations  
        )0(BBBQ πτ −=                    

where
BiiB ∈= ,......,ττ , )0(Bπ is the vector of initial 

probabilities for the states in B , and BQ  is the 
submatrix restricted to the non-absorbing states B of 
the infinitesimal generator matrix Q .  The matrix Q is 
defined as follows: the off-diagonal entries are the 
transition rates for each pair of states in S  (these are 
non-negative); the diagonal entries are defined so that 
the row sums of Q  all equal zero (the diagonal 
entries are negative).   In all our models, there is only 
one initial state (the first state in an enumeration of 
B ) so that 0,...,0,1)0( =Bπ .    Consequently, we 

have 10,...,0,1 −−= BB Qτ and  

      t
BQMTTDL 1,...,10,...,0,1 1−−= . 

The vector on the right in this formula computes the 
sum in (A1). We let BQR −=  so that R has positive 
diagonal entries, non-positive off-diagonal entries 
and  

         t
RMTTDL 1,...,10,...,0,1 1−=               (A.2) 



We call R  the absorption matrix for the model.  Let 
)(RM  be the expression on the right hand side of 

(A.2).   Recall the formula 
)det(/)(adj1 RRR =− where )(adj R is the adjoint of 

R  (the transpose of the matrix of determinants of all 
one-less dimension submatrices of R ).   Set  

         tRR 1,...,1)(adj0,...,0,1)Num( =  
 So that we have  
         ).det(/)(Num)( RRRM =                          (A.3)  
(“Num” is an abbreviation for numerator.) We also 
define the notation =)(Sdet R upper left corner of 

)(adj R , that is, the determinant of the submatrix of 
R  after removing the first row and first column.  If 

)(rR =  is a scalar (1x1), then set 1)(Num =R , 
1)(Sdet =R , and rR =)det( ,  so that rRM /1)( = .   

We use this notation and formulation later.  
 
As we noted in Section 4.3, the CTMC for the no 
internal RAID model with fault tolerance k  has a 
recursive structure.  By a re-labeling, we can describe 
this recursion as follows.  
 
First build the model as in Fig. 8 for fault tolerance 

1=k .  Re-label state “3” as “A” (the absorbing 
state), state “1” as “ N ” and state “2” as “ d ” (to 
indicate the type of failure that we model on the 
transition into these states).   To create the model for 
general k  from the model for k – 1, do the following: 

1. Make two copies of the model for fault 
tolerance 1−k  (inductively).  Each non-
absorbing state has a label of length 1−k in 
the letters “0”, “ N ”, “ d ”.  

2. Merge the two absorbing states into one 
state “A”.   

3. Prefix each state label in the first copy with 
an “ N ” and in the second copy with a “ d ”.   

4. In the each copy, replace N  by 1−N  (and 
1−N  by 2−N , etc.).  In the first copy 

replace every subscript on each h  with a 
new subscript prefixed by “ N ”; in the 
second copy prefix each h -subscript by 
“ d ”.   

5. Add a new root state with label all “0”s of 
length k .  Set the rate from this new state to 
the root state of the first copy (labeled 
“N0…0”) to NNλ , and back with Nµ ; set 
the rate from this new state to the root state 
of  the second copy (labeled “d0…0”) with 
rate dNdλ  and back with dµ . 

This completes the construction. 

The general model is parameterized by N, )(kh , Nµ , 

dµ , Nλ , and ddλ  where }},{:{)( kk dNhh ∈= αα  
(so the subscripts are all words of length k  in the 
letters “ N ” and “ d ”) and assume this is in reverse 
lexicographical order according to the subscripts.  
Generally, we will suppress the last four parameters 
as they are not dependent on what level we are in the 
recursive construction (only N  and )(kh  change as 
we see above).  At times we suppress the dependence 
on N  and )(kh as well for notational brevity. 
 
When 1>k , there are no transitions from the root 
state to the absorbing state.   When 1=k , there is a 
transition and it is determined by Nh and dh  (see 
Figure 8).    When 1>k , the only transitions to the 
absorbing state come at the inner most level of the 
recursion.    For every state with label containing 
only the letters “ N ” and “ d ”, there is a transition to 
the absorbing state with rate ))(( dN dkN λλ +− .  For 

every state whose label is of the form 0α (where α  

contains only the letters “ N ” and “ d ”), there is a 
transition to the absorbing state with rate 

))(1( ddNN hdhkN αα λλ ++− . 
 
The construction (step 4) suggests the following 
notational operation for the sets )(kh : for x  = “ N ” 
or “ d ”,  define the “dot” operation 
   }},{:{ 1)1( −− ∈= k

x
k

x dNhhh αα�  
so that  
   )1()1()( −− ∪= k

d
k

N
k hhhhh �� .    

Given this notation and construction, it is easy to see 
that the absorption matrix ),( )()( kk hNRR =  for the 
model of fault tolerance k has the form  
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where N� represents a vector of the form 0,..,0,Nµ  

(similarly for d� , Nr  and dr ), and for 1>k ,  
   NN Nr λ=  
   dd Ndr λ=   

   )()(
dN

k rrNr +=   
since there is no transition from the root state (labeled 
with all zero word) to the absorbing state in this case.   
 
If 1=k  then )1( NNN hNr −= λ , )1( ddd hNdr −= λ  

and )()1(
dN dNr λλ += .  
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Figure A1: General form for MTTDL for k Fault Tolerance 

 
The dimension of )(kR  is 12 1 −+k .   The matrices 

)(k
NR  and )(k

dR  are of the same structural form as 
)(kR .    Let )(kU be the matrix of size 12 −k that is 

all zero except for a single one in the upper left 
corner.  Then )()( k

N
k

N UR µ−  is the absorption matrix 

for the 1−k  level model with parameters N  and 
)1( −kh  replaced by 1−N  and )1( −k

N hh � , 

respectively.   Similarly, )()( k
d

k
d UR µ−  is the 

absorption matrix for the 1−k  level model with 

parameters N  and )1( −kh  again replaced by 1−N  

and  )1( −k
d hh � , respectively.    Symbolically, for x = 

“ N ” or “ d ”,  

  ),1(),( )1()1()()()( −− −=− k
x

kk
x

kk
x hhNRUhNR �µ .  

                                                                             (A.4) 
 
We now have a formal model of the recursive 
construction and the effect this recursive construction 
has on the absorption matrices and the parameters at 
each level.   
 
From the definitions of adj  and det and a straightfor-
ward calculation, it is not difficult to prove the 
following lemma: 
 
Lemma.  For 1≥k ,  

 
)(Num)det(

)det()(Num)(Sdet)(Num
)()(

)()()()(

k
d

k
Nd

k
d

k
NN

kk

RRr

RRrRR

+

+=
 

and  

))(Sdet))(det(det(

)det())(Sdet)(det(

)(Sdet)det(

)()()(

)()()(

)()()(

k
dd

k
d

k
Nd

k
d

k
NN

k
NN

kkk

RRRr

RRRr

RrR

µ

µ

−+

−+

=

 

 
By (A.4), the term (with x  = “ N ” or “ d ”, and 

suppressing the N  and )(kh on the left side) 

    
)).,1(det(

)(Sdet)det(
)1()1(

)()(

−− −=

−
k

x
k

k
xx

k
x

hhNR

RR

�

µ
          (A.5) 

and 
   )),1((Num)(Num )1()1()( −− −= k

x
kk

x hhNRR �  
as well.  These formulas provide the basis for an 
inductive argument.    We need some additional 
notation in order to state the result and assumptions 

(on relative size of parameters) in order to derive our 
approximation results.  
 
Set dN ydxyxL λλ +=),(  so that 

NyrxryxL dN /)(),( +=  (on recalling that 

NN Nr λ=  and dd Ndr λ= ).  Furthermore, for any 

ordered set )(kH  of k2  symbols, let 
),()( 21

)1(
1 HHLHL =   for 1=k , and for 1>k  

   ))(),(()( 2111
)( HLHLLHL kNkd

k
k −−= µµ   

where 21
)( HHH k ∪=  and 1H is the first 

12 −k elements of )(kH  and 2H is the last 
12 −k elements.   So, for our special set )(kh we have 

))(),(()( )1(
1

)1(
1

)( −
−

−
−= k

dkN
k

Nkd
k

k hhLhhLLhL �� µµ
and ),()( )1(

1 dN hhLhL = .  
 
We can now state the general theorem: 
Theorem:  Assume )( dN dN λλ + is at least an order 

of magnitude smaller than both Nµ  and dµ .    Then  

( ))()(),())((

))(1()1(

)),(det(

)(

12

)()(

k
kdN

k
NddN

k
dN

kk

hLLdkN

kNNN

hNR
k

µµµµλλ
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++−⋅

+−−≈ −−
�

and   

   12)()( )()),((Num −≈
k

dN
kk hNR µµ .  

From this and (A.3) we easily derive the 
approximation formula for MTTDL for the general 
model of fault tolerance k  across nodes and no 
internal RAID as shown in Figure A1.  
 
The proof of the theorem is a fairly straightforward 
induction, using the formula (A.5) and the Lemma.   
We leave out the details.  The statements of MTTDL  
in Section 4.3 and 5.2 for k =1, 2 and 3 are easily 
seen to be special cases of this theorem, after 
replacing the parameters )(kh  by their values as 
defined in those sections.   In particular, we see that 
the numerator of the quotient is simply k

dN )( µµ .  
The denominator contains a term 

)1()1( +−− kNNN � and two (possibly) comparable 
terms depending on the relative orders of magnitude 
the parameters.  


