
RJ10368 (A0507-011) July 12, 2005
Computer Science

IBM Research Report

Glamour: A Wide-Area Filesystem Middleware Using NFSv4

Renu Tewari, Jonathan M. Haswell, Manoj P. Naik, Steven M. Parkes
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Glamour: A Wide-area Filesystem Middleware using NFSv4

Abstract
In this paper we describe the design and implementation of

Glamour, a federated filesystem layer that enables clients to
seamlessly navigate data that is spread across multiple hetero-
geneous widely distributed file servers. Glamour is not a glob-
ally distributed filesystem. Instead, it enables a set of loosely
coupled file servers to behave as one. It provides the com-
mon enterprise-wide namespace and data management oper-
ations as a wide-area distributed filesystem would, while re-
lying completely on standard off-the-shelf clients, filesystems
and client-server protocols. Glamour provides data manage-
ment with flexible granularity and supports transparent replica-
tion and data migration. Using our testbed, we demonstrate the
various features of Glamour and report on overheads.

1 Introduction
As enterprises move toward distributed operations spread over
several remote locations, multi-site collaboration and joint
product development becomes increasingly common. This re-
quires data sharing in a uniform, secure, and consistent man-
ner across the enterprise acceptable performance. While large
amounts of data can be easily shared on a local-area net-
work (LAN) using standard file access protocols (NFS[9],
CIFS[26]), these mechanisms do not scale well when extended
to remote offices connected over a wide-area network). More-
over, deployment of alternate solutions such as a wide-area
filesystems geared for global scalability is rarely chosen by en-
terprises; the cost of maintaining and operating multiple filesys-
tems and protocols for local and wide-area access and integrat-
ing data between them is prohibitive.

The need, therefore, is not to build yet another globally dis-
tributed filesystem but to group together a set of heterogeneous,
multi-vendor, independent, and distributed file servers so that
they act as one. It is desirable that data remain where it is,
possibly in legacy filesystems or on a variety of single server
filesystems. Instead, we want clients to seamlessly navigate the
data without the need for additional client-side software and
configuration. Performance is not the primary concern here but
improvements can be made by replicating “hot”, slowly chang-
ing data. Other desirable features would be a shared uniform
namespace much like AFS[13] along with support for consis-
tent and secure access. Finally, to be commercially viable, the
system should be easy to use and deploy.

In this paper we propose Glamour1, a filesystem middleware
framework, that enables clients to seamlessly navigate data that

1Glamour was initially an acronym that loosely stood for replication and
migration in Grids, now it is simply a word.

is spread across distributed heterogeneous file servers. Glam-
our is not a new global filesystem or a new clustered filesystem.
Glamour is filesystem agnostic: while it can leverage features
of a filesystem, it does not rely on them.

As a first step towards globally distributed file services,
Glamour provides a common enterprise-wide namespace
across a set of loosely coupled distributed file servers. In or-
der to handle a range of filesystems, from a single server to a
large clustered filesystem, Glamour supports flexible data man-
agement, both in terms of how much data can be handled as a
logical unit and when and how that data can be defined. For
easy administration, Glamour relies on a central server to man-
age namespace operations and trigger data management events.
It still maintains, however, the flavor of a federation as each
server can operate independently and even completely isolated
as might happen in the case of a network partition. To remain
easy to deploy, Glamour relies on standard protocols, clients,
and filesystems.

Beyond this basic infrastructure, Glamour provides data
management services that include replication, non-disruptive
migration and persistent server-side caching of data. Addition-
ally, we envision that once this mobility of data is established,
Glamour can go a step further to determine where and when
data needs to be placed in relation to server and network con-
ditions. This will further work to reduce the overall cost of
ownership of the server infrastructure, as per-machine utiliza-
tion will rise and the cost of administration and tuning will fall.

We have implemented Glamour as a federated file system
layer that is built on top of multiple independent filesystems by
leveraging the client redirection features of the standard NFSv4
protocol[24]. Currently, Glamour runs on Linux and AIX. Us-
ing our testbed infrastructure, we demonstrate how Glamour
provides a common namespace and performs replication, load-
balancing and fail-over. We detail the Andrew benchmark re-
sults and the performance overheads of client redirection both
at the server and client.

In this paper we highlight three main contributions of Glam-
our. First, we demonstrate a commercially-viable architec-
ture of a federated filesystem middleware layer that provides
a common namespace and relies only on off-the-shelf client
and protocol implementations2. Second, we detail the design
and implementation of a virtualization layer that supports flex-
ible units of data management on top of a standard filesystem.
Finally, we demonstrate how Glamour enhances data mobility
and location independence by replicating and migrating data

2Glamour needs the standard but not mandatory feature of client redirection
functionality of NFSv4

1

units without disrupting client applications.
The remainder of this paper is organized as follows. In the

next section we briefly summarize the features of wide-area file
systems and NFSv4. An overview of Glamour and the primary
abstractions is given in Section 3. Glamour fileset operations
are described in Section 4. Section 5 discusses data manage-
ment and fileset mottion. An overview of the archicture of the
Glamour implemention is given in Section 6. We evaluate our
implementation prototype in Section 7, related work in Sec-
tion 8, and finally summarize conclusions in Section 9.

2 Wide Area Filesystems and NFSv4
Data and file sharing has long been achieved through tradi-
tional file transfer mechanisms such as FTP and distributed
file sharing protocols like NFS and CIFS. While the former
are mostly ad-hoc, the latter tend to be “chatty” having been
designed for LAN environments where clients and servers are
located in close proximity. Data sharing can also be facilitated
by a clustered filesystem such as GPFS[23], SANFS[16] and
Lustre[20]. While these are designed for high performance and
strong consistency, they are neither cheap3 nor easy to deploy
and administer. Other filesystem architectures such as AFS
and DCE/DFS[15] have attempted to solve the WAN file shar-
ing problem through a distributed architecture that provides a
shared namespace by uniting disparate file servers at remote
locations into a single logical filesystem. However, these tech-
nologies incur substantial deployment expense and have not
been widely adopted for enterprise-wide file sharing.

Recently, a new market has emerged to primarily serve the
file access requirements of enterprises where knowledge work-
ers are expected to interact across a number of locations. Wide
Area File Services (WAFS) is fast gaining momentum and
recognition with leading storage and networking vendors in-
tegrating WAFS solutions into new product offerings[6][1].

Introduced in 2000, version 4 of the Network File System
(NFS)[24] is a distributed file system similar in design to previ-
ous versions with additional support for high performance data
sharing over a WAN with integrity and security enhancements.
Unlike earlier versions, NFSv4 presents a single seamless view
of all exported filesystems to a client. A client can traverse the
server namespace without regard for the structure of the filesys-
tems on the server. When a server chooses to export a discon-
nected portion of its name space, it creates a pseudo-filesystem
to bridge the unexported portions allowing a client to reach the
export points from a single common root. To improve avail-
ability, NFSv4 has added features to support filesystem migra-
tion and replication. When a filesystem is migrated to a new
server, clients are notified of the change by means of a special
error code and informed of new locations through a special at-
tribute. It may then access the filesystem on the new server
transparently to applications running on the client. This special
attribute, fs locations, may also designate alternate loca-

3Some may be free but are still expensive to maintain.

tions for a filesystem. If a client finds a filesystem unrespon-
sive or poorly performing, it may choose to access the same
data from another location. NFSv4 also introduces volatile file-
handles4 which allows a server to expire client state on special
events. One such event is migration, where the client will re-
lookup open files using saved pathname components on the new
server.

3 Glamour
Glamour is a package for providing wide area filesystem feder-
ation. The goal of this system is to provide distributed file ac-
cess across Internet-scale networks, networks that exhibit lim-
ited bandwidth, high latency, and low reliability. Glamour pro-
vides these services using a unified administration and security
model. All administration can be done from a single interface
regardless of the scale of the implementation.

In addition to these common features, Glamour includes fea-
tures found in earlier distributed filesystems such as AFS and
DFS. Primarily, these features revolve around the concepts of
filesets to facilitate data management and a unified namespace
to ease client access.

The development of Glamour has been targeted towards im-
plementation in an NFSv4 environment. All features of Glam-
our are delivered to clients via this standard protocol with no
client side changes. Aspects of the standard NFSv4 protocol
such as volatile filehandles, fs locations attributes, and
special protocol return codes are sufficient and used to imple-
ment all Glamour functionality.

Standard server to server protocols for this environment do
not exist so protocols have been developed for data transfer
within Glamour. These protocols leverage existing standards
such as LDAP and could be the target of standardization in
the future. All protocols, including client-to-server and server-
to-server are architecture-independent and have been imple-
mented in Linux-on-Intel and AIX-on-Power environments.

While currently implemented in an NFSv4 context, exten-
sions to Glamour to CIFS environments incorporating Mi-
crosoft DFS has begun.

3.1 Filesets
Traditionally, storage management in Unix and Windows is
performed at the filesystem level. Filesystems are usually tied
one-to-one with partitions (representing either physical or log-
ical volumes), managing all the storage space in that partition.
With larger and more complex block storage systems, this man-
agement can be course grained and of limited flexibility.

Filesets have been used in the context of distributed filesys-
tems to sidestep these limitations. A fileset can be viewed as
a storage abstraction somewhere between a filesystem and a
directory. Like a filesystem, a fileset “owns” its contents and

4In NFS versions 2 and 3, filehandles were persistent. A client could rely
on a filehandle always referring to the same file; if the underlying file object
was deleted and replaced by another of the same name, the client was notified
of the change through invalidation of any existing filedhandles.

2

therefore copying a fileset implicitly copies its contents. How-
ever, unlike a filesystem, a fileset does not “own” free space.
Filesets allocate and free space for files and directories from
one or more backing filesystems.

A fileset is a lighter weight object than a filesystem. It is
not tied to a particular OS device and can be moved from one
filesystem to another relatively easily. Whereas a server will
generally have a small number of filesystems, the number of
filesets a single filesystem can hold is limited only by the size
of the filesystem and the sizes of the filesets themselves. A file-
set can be as small as a single empty directory or as large as
an entire filesystem. Generally filesets are created to represent
a semantic storage relationship. For example, every user could
have their home directory in a unique fileset, regardless of size.
Because filesets have low overhead, there is little penalty for
creating a large number of filesets. Filesets can also be eas-
ily created, destroyed, and moved. The analogous filesystem
operations are heavy weight. Some operations on filesets, for
example, promoting an existing normal directory to a new file-
set, have no filesystem analog.

3.1.1 Locations

Filesets in Glamour are actually implemented as two related ob-
jects: a fileset object and a fileset location object (see Figure 1).
The data for a fileset is actually stored in one or more locations.
In the simplest case, Fileset A in the figure, only a single loca-
tion exists for a fileset and thus the distinction between a fileset
and its location is blurred. However, filesets can have multiple
(identical) locations as Fileset B does in the figure. In this case,
all locations are identical and can be used interchangeably.

This model of filesets and locations is similar to the model
of filesets and volumes in AFS[13] and filesets and sites in
DFS[15].

Locations are usually spread across multiple servers. Hav-
ing locations on multiple servers opens up new opportunities
for added value;

� Higher Throughput: By adding servers, client load can be
spread across more compute and storage resources

� Reduced Latency: If locations are placed on geographi-
cally distributed servers, similarly distributed clients will
observe improved latency

� Higher Reliability: With multiple servers and automatic
failover, tolerance of machine crashes and regional disas-
ters is achieved.

As mentioned above, all locations for a given fileset are
identical. In some cases, Glamour can guarantee this. For ex-
ample, in the case of a read-only replica fileset (see below), the
read-only nature of the fileset enables Glamour to guarantee all
locations of the fileset are identical. In the case of read-write
filesets, however, Glamour relies on external mechanisms, such
as a clustered filesystem, to ensure that all locations are consis-
tent.

Figure 1: Glamour Filesets and Locations

3.1.2 Fileset Types
Glamour maintains two kinds of filesets: read-write filesets and
read-only replica filesets.

Read-write filesets are the most common. They generally
have only a single location (unless created in a clustered filesys-
tem environment) and can be read and written by multiple
clients just like a normal filesystem.

Glamour also has the concept of a read-only replica of a
fileset. Read-only replicas are filesets that are created through
replication of another fileset at a particular point in time. Refer-
ring back to Figure 1, Fileset B is created as a replica of Fileset
A. The contents of Fileset B will reflect the contents of Fileset
A at the time the replica was created. Subsequent changes to
Fileset A are not reflected in any location of Fileset B until a
replica update operation is requested, either manually through
Glamour administrative interface (see Section 6.3) or through
Glamour-provided automation.

3.2 Mount-points and the Glamour Namespace
Like filesystems, filesets must be mounted before they are visi-
ble to clients. Also, like filesystems, filesets are mounted on an
existing directory in an existing fileset. The result of mounting
a fileset is the creation of a special object called a referral.

Each server has a special filesystem which provides the root
of the filesystem namespace for local file access. Glamour pro-
vides a namespace that serves a similar function for Glamour
services. Details of this namespace are provided below.

Glamour mount operations differ from filesystem mounts in
two ways. First, Glamour mount operations are persistent, i.e.
mounts survive a system reboot. This makes sense since Glam-
our is a distributed, multi-server system for which the impact
of individual system failures should be minimal.

Second, Glamour filesets can be mounted more than once,
in multiple places within the namespace. Because Glamour
mount points are very lightweight, there is no penalty in al-

3

lowing multiple mounts.
Note that filesets are mounted, not locations. It is the respon-

sibility of the Glamour servers and NFS clients to determine the
best location to use to access data for a fileset with multiple lo-
cations.

Glamour also introduces the concept of an external mount
point. This represents the mounting of a non-Glamour NFSv4
filesystem within a fileset. Glamour provides the services nec-
essary to create and recognize the mount point which will cause
the client to attempt to fetch the data from the external server.
Glamour does not manage this external data in anyway and can-
not verify the availability or validity of the target data.

3.2.1 Fileset Operations

Once created and mounted, filesets, like filesystems, appear to
clients as normal directories, with some restrictions, e.g., a file-
set, like a filesystem, cannot be destroyed via a rmdir com-
mand.

In addition to common filesystem operations, a number of
operations unique to filesets are provided:

� An existing fileset can have an additional location created
through a place operation (with the restrictions mentioned
above regarding read-write filesets and cluster filesys-
tems). The place operation indicates to the server where
the new location should be created. Multiple locations for
the same fileset can be placed on the same server, which
can, in some cases, improve performance.

� An existing directory with existing content, either within
an existing fileset or not, can turned into a fileset via a
promote operation. Similarly, a fileset location can be de-
moted back to a normal directory.

� Locations of filesets can be migrated from one server to
another. This is similar to creating a new location and
removing and old but is done in a way that no client dis-
ruption occurs.

� A fileset can be snapshot, i.e., a consistent copy made at
a point in time. Glamour facilitates this but requires sup-
port from underlying filesystems. Otherwise all Glamour
copies are not made consistently, i.e., changes can occur
during the time it takes Glamour services to walk the con-
tents of a fileset.

3.3 Glamour namespace

Glamour facilitates fileset organization by providing a common
root namespace that all clients see. The namespace contains no
data. It only serves as a place to mount other user-created file-
sets. In this way, it functions analogously to the NFSv4 psueo-
filesystem. However, where the NFSv4 psuedo-filesystem is
configured independently for all NFSv4 servers, the Glamour
root namespace is shared by all clients. The scope of the names-
pace as well as other Glamour objects is described below.

3.4 Cell
The primary organizational unit of Glamour is a cell. All
Glamour objects such as filesets, fileset locations, and the root
namespace, are associated with a cell. Cells are independent
and non-interacting with each other so that a single organiza-
tion can create cells in a way that best meets their business
needs of security and performance. Cells can be as small as
a workgroup or as large as an enterprise.

Note that the cell is a logical construct and that the Glamour
architecture (see Section 6) allows multiple cells to be serviced
by a single host.

In addition to maintaining all the information necessary to
manage filesets, Glamour cells provide a range of other ser-
vices:

� Security: Glamour security revolves around the cell. Cell
services allow the authorization of users and groups as
well as adding and removing data severs.

� Automation: Glamour provides automation services to fa-
cilitate maintenance of filesets. Chief among these is the
scheduled update of a fileset replica from a source fileset.

Glamour cells are administered through a single administra-
tive user interface (see Section 6.3).

3.5 Relationship to NFSv4
Glamour provides added value to an NFSv4 infrastructure with-
out enforcing additional requirements. For example, an exist-
ing NFSv4 server could be added to a Glamour cell without
having to disrupt any preexisting normal NFSv4 services that
server was providing.5

When a NFSv4 server as added to a cell, Glamour will place
a copy of the cell namespace on that server and export the
namespace as “/cellname”. An NFSv4 client need only mount
the cell (or the root of the server psuedo-filesystem, if desired)
in order to access any data within the Glamour cell, regardless
of where the data resides.

Glamour does not provide a truly global namespace, one that
crosses all organizational boundaries, e.g., a web URL. Efforts
along these lines are being considered in the NFSv4 working
group and elsewhere and include such techniques as using DNS
records to resolve the top level, universal namespace. Glamour
should fit within such a framework, managing data once an di-
rectory level suitable for a cell is traversed.

4 Implementing Fileset Operations
Glamour’s data management framework aims at seamlessly
replicating, migrating and navigating through filesets dis-
tributed across a federation of wide-area distributed

The fileset abstraction can be natively supported by the un-
derlying physical filesystem (PFS). With native PFS support a
fileset looks like a filesystem from the NFSv4 client and server

5The NFS server code itself must have been modified to include Glamour
functionality as described later. No client changes are required

4

perspective. Except that the fileset masquerading as a filesys-
tem can magically appear and disappear. Without PFS sup-
port, filesets can be supported by Glamour adding a virtualiza-
tion layer. All we need is support in the operating system to
go through this layer for fileset management and hooks in the
NFSv4 server to query this layer for fileset information. Fi-
nally, we need some magic such that a vanilla NFS client sees
the fileset and recognizes it as a data management unit.

In this section we will discuss the details of how this virtu-
alization is implemented.

4.1 Implementing Filesets for NFSv4
While Glamour can define arbitrary filesets at the server, we
still need a vanilla NFSv4 client to recognize fileset bound-
aries. As a client traverses the server namespace, it needs to
detect filesystem transition (crossing mount points) for various
reasons, including obtaining replica locations and other meta-
data information. Typically, in the absence of filesets the client
detects a filesystem boundary when the value of the fsid at-
tribute returned by the server changes during traversal. Each
filesystem returns a unique fsid value which, in most cases,
is based on the device major and minor numbers of the underly-
ing device. Supporting fine-grained filesets, would then require
support from the underlying filesystem to return a unique fsid
value per fileset.

Note that from a client’s perspective, fileset boundaries are
solely defined by changes in fsid values. Essentially, all
Glamour needs to do is add hooks in the NFSv4 server to query
Glamour and return a different fsid per fileset. It would seem
that a simple mapping table between the fileset boundary and a
virtual fsid would suffice. However, every object within the
fileset has to return the same fsid on a GETATTR request. It
would be impossible for Glamour to identify the fileset for any
given object unless it tracked every object in its mapping table
and monitored them as they were created and deleted. One op-
tion would be to walk up the directory tree (by looking up “..”),
on every GETATTR request, to check if any ancestor directory
happens to be a fileset boundary. While this works for directo-
ries with significant overheads, it would still not work for files.
This is because, given a filehandle in the client request, it may
be impossible for the server to determine the directory contain-
ing the file especially in the presence of hard links.

In Glamour we have designed an approach that is scalable,
and also requires minimal state to be maintained while adding
only nominal performance overhead. The key idea is to em-
bed the fileset information in the filehandle that is exchanged
between the client and the server, instead of maintaining it for
object at the server . Firstly, every fileset is assigned a unique
filesetid per VFS. Secondly, a mapping is maintained be-
tween the fileid of the fileset root and the filesetid.
Finally, an object filehandle is enhanced with the associated
filesetid The client will later, in a PUTFH call, return
the filehandle containing the embedded filesetid. Since
a client can only access an object is by traversing the directory

tree leading upto it from the server root, the filesetid will
pass through the successive filehandles that are exchanged be-
tween the client and the server. Whenever the client steps into a
directory that is the root of new fileset, the filehandle is changed
to reflect the new filesetid. On a GETATTR fsid request
by the client, the associated filesetid is used to create a
unique fsid value that is returned to the client. The effect of
supporting fine-grained filesets on the handling of the various
NFSv4 operations is summarized below:

� GETFH The server embeds the object’s associated
filesetid in the filehandle that is returned to the client.
The filesetid is either the one that was in the incom-
ing filehandle (from the earlier PUTFH call) or a newly
created one if the current object happens to be the root of
a fileset.

� PUTFH The filesetid in the incoming filehandle is
stored as the default value for the current object.

� LOOKUP The current object is checked against a map-
ping table to determine if it is the root of a fileset. If no
entry exists, the default value that was set by the PUTFH
operation is used. If multiple LOOKUPs are requested in
a COMPOUND request, the filesetid flows through ap-
propriately.

� GETATTR The affected attributes in a GETATTR request
are: ATTR FILEHANDLE and ATTR FSID.

� LOOKUPP Here, we need to find the filesetid of the
parent directory. It may be possible that the parent direc-
tory belongs to a different fileset, hence the default value
cannot be used.

� Others SAVEFH, RESTOREFH, PUTROOTFH,
PUTPUBFH, OPEN, READDIR: As with the earlier
operations, the filesetid is appropriately handled.

� RENAME, LINK When a rename or hard link crosses a
fileset boundary we return the NFS4ERR XDEV error.

4.1.1 Fileset Promotion and Demotion
So far we have discussed how Glamour provides the necessary
support to handle fine-grained filesets. The next step is to de-
termine when a fileset can be defined. In the simplest case, file-
sets are carved out as an administrative task before the NFSv4
server is online (i.e., before filesystems are exported). The
client, in this case, does not have any state (e.g., filehandles)
associated with the objects in a fileset and can be provided the
“virtual” fsid whenever it crosses a fileset boundary. The file-
sets in this case could be static, as long as the server was on-
line. For an operational system with rare down times, it is not
always prudent to take the server offline for any customer de-
sired changes in fileset boundaries. In Glamour, therefore, we
added the flexibility of dynamic filesets – new fileset bound-
aries can be established after the server is online and clients
have previously accessed data. An existing directory in an ex-
ported filesystem can be “promoted” to be the root of a new
fileset. The only restriction imposed is that there should be no
existing hard links that cross the new fileset boundary. Note

5

that if a new directory is created and marked as a fileset, it is
similar to a static fileset as the client has no state associated
with it.

4.1.2 Filehandle Expiration
With dynamic promotion, filehandles of objects that a client has
previously seen that now belong to the new fileset have to be ex-
pired by returning the NFS4ERR FHEXPIRED error. For this,
we need to relax the persistence attribute of filehandles. The
server should indicate to the client that filehandles are volatile
so that the client can prepare to maintain the necessary state
required to rebuild them on expiration6. As filehandle expira-
tion is generally expensive, the server needs to determine which
filehandles need to be expired as we do not want to expire all
filehandles. This is tricky as the fileset information is carried in
the filehandle and the server cannot determine which filehan-
dles belong to the new fileset without traversing up the tree. To
manage expirations, we attach a generation number to each file-
set. Whenever a new fileset is promoted, the generation number
of its parent fileset is incremented. This generation number is
also embedded in the filehandle along with the filesetid. When-
ever the server is presented with a filehandle that has a valid
filesetid, it checks the validity of the corresponding file-
set generation. If the generation is not current, the filehandle is
expired. With this the filehandle expiration is contained within
the outer fileset. A similar approach is taken when a fileset is
demoted. In this case, however, expiration can be limited to the
demoted fileset only.

4.2 Fileset Replication
Replica filesets are generally assumed to be read-only, with
only the original fileset being read-write. Any operation that
would result in a modification at the replica fileset will result in
NFS4ERR ROFS. Replica consistency is administratively con-
trolled, i.e., an administrator can specify when, and how often,
a replica needs to updated. For example, a replica could be a
daily backup of the original fileset. In this case, the replica up-
date mechanisms could include taking a snapshot of the source
fileset at midnight and updating all the replicas.

Replica updates pose an interesting problem. Although
replicas are read-only, they need to be modified on an update,
while clients may be accessing its files. A simple approach is
to proceed with updates ignoring client accesses. While this
may work in most cases, it could result in client inconsisten-
cies for open files. For a consistent updates, snapshot support
is required. A snapshot based replica update requires that the
filesystem snapshot be taken from the source fileset and then
populated at the replica location. The clients are then redirected
to the new snapshot while preserving the filehandles. A snap-
shot based in-place replica update requires that the filesystem
not only support fileset level snapshots but also guarantee that

6A server specifies this by setting the filehandle expiration type to be
FH4 VOLATILE ANY and, optionally, FH4 NOEXPIRE WITH OPEN.

fileid namespace be preserved across snapshots. This will en-
sure that the clients see the same filehandle and attributes for a
given object that it was previously accessing.

The data transfer between the source fileset and the replicas
happens using an out of band server-to-server protocol. The
Glamour infrastructure allows different protocols to be plugged
in, the default being a differential compression scheme similar
to rsync. This is discussed in the next section.

Replication in Glamour is useful for both load balancing and
failure handling. For load balancing, the server returns differ-
ent server locations (the fs locations attribute in NFSv4)
for the directory that is the boundary of a replica fileset. The
locations returned could be based on the geographic or network
location of the client, the load on the server or a combination
of other factors. To enforce load balancing, Glamour can steer
a client to different replica locations dynamically. The client
would, in such cases, need to handle volatile filehandles and
different fileids for the same objects on a different server.

Multiple replica locations are also useful to mask failures.
When the client detects that the server providing a replica is
unresponsive or poorly performing, it can connect to another
server from the list of locations for that replica. Fail-over be-
haves somewhat similar to migration except that the server has
failed and no state can be recovered.

4.3 Fileset Migration
A fileset, in Glamour, can be physically migrated from
one server to another. NFSv4 protocol has a method of
providing filesystem migration with the use of the special
fs locations attribute. Migration is typically used for
read-write, single copy filesystems and usually employed for
load balancing and resource reallocation. For the purpose of
migration, a filesystem is defined as all files that share a given
fsid. This allows a Glamour fileset to be physically migrated
from one server to another with no noticeable impact to client
applications. It is important to note that a fileset migration
does not impact the namespace which is designed to be location
transparent. Once a fileset is migrated, it appears as a referral
at its previous location, i.e. all future accesses of the fileset on
the original server will result in client redirection to the new
location. Some clients that did not previously communicate
with the original server, or did not have cached state pertain-
ing to files from the migrated fileset, will encounter a pure re-
ferral when traversing the server namespace that includes the
migrated fileset. Existing clients, however, potentially have
outstanding state on the original server that should7 be trans-
ferred between the participating servers. There are three design
choices in migrating client state:

� No state transfer - the client starts afresh at the new server.
If the client presents state information from the original
server, it gets stale errors. In this case, the client should
be prepared to recover all state as in case of server fail-

7SHOULD per [24]

6

ure. While this is a simple approach from a server imple-
mentor’s point of view, it can be rather disruptive to client
applications.

� Complete state transfer - the client sees a truly transparent
migration. Since all client state is transferred between the
servers, the client can continue to use the state assigned by
the original server. In addition, clients can use persistent
filehandles if the immigrating filesystems can recognize
each other’s filehandles. While this may be improbable to
implement in a heterogeneous multi-vendor environment,
it may be plausible in more tightly coupled homogeneous
systems.

� Some state transfer - client starts afresh at the new server
except for files that it has open8. All state pertaining to
open files is migrated to the new server. While client ex-
pects filehandle expiration for other files, it can continue to
use existing filehandles for open files on the new server9.
This requires the server to recognize and service foreign
filehandles specially. Other client state (including clientid
and lease information) may also need to be migrated10

Apart from state management, migration also requires data
transfer in case of single-copy read-write file systems. How the
data is transferred is also open to several design choices.

� No data transfer: The remote server acts as a proxy read-
ing the data on demand and in the background. Clients in
this case are instantaneously redirected to the new server.
All reads and writes and metadata operations happen at the
new server. Apart from the performance concerns of the
client having to cross two servers to get the data, there are
data integrity concerns. On a network partition between
the two servers neither server will have a fully consistent
copy of the fileset.

� Complete data transfer: In this case the data transfer is
complete before the client redirection happens. However,
we can’t delay all the updates from clients to the old server
before the data transfer completes. The idea is to use a se-
ries of snapshots each with lesser data to be transferred.
Finally, when the remaining updated data is sufficiently
small, the clients are paused for a while until the all the
data is moved over. The client redirection happens after
that. Although this is a much slower approach, data in-
tegrity is maintained. In Glamour we use this approach.

Although we were tempted to explore a “transfer some data”
middle ground approach we realized that it was the worse of
the two. It was neither fast nor provided data integrity.

8This is supported by the NFSv4 protocol with filehandle expiration type of
FH4 NOEXPIRE WITH OPEN.

9It is possible that a client has a lot of open files on the server especially if
the server is offering delegations. It is possible to simplify the server imple-
mentation by recalling delegations before a migration event occurs.

10We intend to consider this approach to migration in Glamour, but it is a
work in progress.

5 Data Management
Glamour has two major data manipulation components. The
client-server fileset component was discussed in Section 4. The
other component is the data management services component
which manages server to server data operations. These services
are responsible for maintaining the configuration state for all
filesets within a Glamour cell and for transferring filesets be-
tween systems.

Data management encompasses management of filesets
within a server, i.e., exclusive of client-server aspects covered
in Section 4 and between servers.

Most fileset data management operations occur as the result
of an administrative action, for example, a request to create
a new fileset or to place a new copy of a replica fileset on a
new server. Data management services also support the NFS
server in responding to requests for fs locations attribute.
Since these attributes represent cell-wide information, they are
the domain of the data management services.

5.1 Data Management Fileset Services
Once a fileset exists on a host operating as an NFSv4 server,
the fileset services described in Section 4 are used by the server
in responding to client requests. However, these services do
not encompass such functions as those necessary to actually
create a fileset, to migrate a fileset from one server to another,
or to make create a new location for a fileset. Data management
fileset services provide this functionality.

These services are implemented via a purpose-built server
to server protocol. As described in Section 6, a Glamour agent
is instantiated on every host running Glamour services. This
agent is responsible for accepting requests from either an ad-
ministrator or from other peer agents.

In addition to implementing fileset maintenance operations,
the data management services are responsible for managing
fileset allocation to backing filesystem storage. When a fileset
location is created, it can be created at a specific location in the
local filesystem hierarchy or optionally allocation can be left
to data management services which maintain a list of pools of
filesystems where filesets are created if not otherwise specified.

5.2 Data Management Protocols
As part of the data management fileset services, a rich set of
copy and replication services is provided. These services are
provided in a plug-in library that anticipates servers providing
different combinations of these protocols.

All server to server communications run over ONCRPC and
can be configured to use different security mechanisms such
RPCSEC GSS and AUTH SYS depending on the environmen-
tal needs of identity verification and privacy.

5.2.1 Fileset Motion
A primary responsibility of the data management services is
movement of filesets from server to server. This can happen,
for example, in response to an administrative request to add a

7

place a new fileset location, to update existing replica locations
from a source fileset, or to migrate a fileset location from one
server to another.

When placing a new replica location or migrating a fileset, a
copy operation takes place. Different copy implementations ex-
ist which can provide optional compression for low bandwidth
lines or no compression for higher performance where network
bandwidth allows.

5.2.2 Fileset Replication
One of the most common data management operations is
replica fileset update. In this case, a higher performance
rsync[5]-like protocol is available which only transmits fileset
differences between servers. The data management protocol se-
lection process will drop back to a simple copy where the rsync
protocol is not available.

When fileset replication is to occur, it is desirable that the
replication represent a point-in-time copy or snapshot. This
ensures that the data in the new or update replica is consistent
with the state of the source at some point in time. Without
point in time copies, the contents of the resulting fileset may
not represent the contents of the source at any single time but
rather a mixture of the contents of the source at different times.
Whether this is acceptable or not depends on the use of the
contents of the fileset.

Glamour does not implement snapshot support but can uti-
lize that support where provided by the underlying filesystem.
For example, if a fileset exists within a filesystem that provides
snapshot functionality, when a fileset snapshot is requested,
Glamour can snapshot the entire filesystem which is sufficient
(but not necessary) to snapshot the fileset location. This snap-
shot can then be used to populate or update a replica location.
When the fileset snapshot is no longer required, it can be de-
stroyed, at which point Glamour will release the filesystem
snapshot.

Various performance trade-offs exist when using filesystem
level snapshots. Generally snapshots can be quickly created
with low overhead. However, there may be limitations on the
number of snapshots that can exist concurrently and there may
be a performance impacts on all filesystem activity while the
snapshot exists. For this reason, the impacts of snapshot us-
age must be manually considered. In some cases, they can be
forgone and the simpler inconsistent method used.

5.2.3 Location Selection
In addition to managing fileset motion, the data management
services maintain and respond to requests for fileset location
information. The most common source of this request is in
response to an NFS client request for the fs locations attribute.
While the kernel Glamour components (see Section 6) maintain
the necessary information to handle fileset requests for fileset
locations on the current server, the kernel does not maintain
fileset information for locations not on the local server. The
data management services maintain a small, custom database

of all locations for all filesets in the Glamour cell.
The data management services provides a service for re-

questing location data for a given fileset. The service is de-
signed with a flexible interface for selecting among possible
locations. In general, the service will not return all locations
for a requested fileset since this can lead to a large amount of
useless data transfer. Moreover, it is unclear how useful a long
list of fileset locations is to a client. A client has severely lim-
ited information on the organization of a Glamour cell and thus
is not a good position to rank the utility of different locations
for a fileset. The server on the other hand has a complete list
of all filesets, locations, and servers within the cell. Potentially
this information can be augmented with status about server and
network capacity and load, maintained via new Glamour intra-
cell services. For this reason, the data management services
rank the list of candidate replica locations and return an ordered
list of the top � candidates, where � is configured per cell. To
facilitate this, some information about the client request, for ex-
ample, the client IP address, is passed to the ranking function.
From the list of locations returned to the client, the client can
select any in an implementation-defined manner. Some existing
client implementations select the first location and only switch
to another on server failures. Others use round-robin selection.

5.3 Cell namespace support
The data management services are responsible for maintain-
ing the Glamour cell namespace in response to administrative
mount and unmount requests. These services take two parts:
maintaining a fileset representing the namespace and managing
server exports of all filesets including the namespace fileset.

5.3.1 Namespace filesets
The Glamour cell namespace is implemented as by two normal
Glamour filesets. A read-write fileset is created and maintained
as described below. This fileset exists on the administration
server (see Section 6). A replica of this fileset is also created
and a fileset location for this replica is placed on every data
server in the cell. This read-only replica thus becomes the root
of the Glamour namespace. The Glamour data management
services are completely responsible for modifying and updating
both of these filesets in response to the various administrative
operations.

The namespace fileset plays a role analogous to that of the
standard NFSv4 pseudo-filesystem. Its role is only to provide
a place to mount other filesets. Thus is contains mount points
only and no data.

5.3.2 Export management
Glamour manages all exporting of fileset locations required for
proper operation. No manual NFS exports are required.

The primary Glamour export is that of the namespace. The
local location of the namespace replica fileset is exported to
“/cellname” in the NFSv4 pseudo-namespace. Thus any server
in a Glamour cell resolve the root of the Glamour namespace.

8

Each server also exports all the fileset locations it contains.
The issue arises where these locations are exported to in the
Glamour namespace. The locations are not exported directly
into the namespace. For example, given a cell mycell and
fileset mounted on /mycell/myfileset, the fileset location is not
exported into the NFSv4 namespace at /mycell/myfileset.

This may seem counterintuitive but recall that a fileset
mount operation results in a mount point be created in the ap-
propriate fileset, in this case, at the name myfileset in the fileset
representing the root namespace. This mount point triggers the
NFS server to respond to the NFS client with a moved error at
which point the client will request the fs locations attribute for
myfileset. Glamour then responds with locations for this file-
set, including the fs root component. Because this component
is not exposed to the client, Glamour has complete freedom in
where within the pseudo-namespace it exports filesets as long
as the exports and the data in the locations attributed is consis-
tent.

Glamour exports fileset locations into a hidden directory
(nominally “.hidden”) in the directory that implements the cell.
This makes the directory available to the client but not obvious
to the user.

5.4 Server Management
The data management services are responsible for managing
all fileset-related state, whether it be in-kernel-memory state or
filesystem resident state. In particular, the data management
initializing services are used to reload kernel information after
a reboot or subsystem reset and to check for fileset consistency
similar to fsck.

6 Architecture
The overall Glamour architecture is shown in Figure 2. An in-
stance of the Data Management Server and kernel services will
run on every server in the cell providing file services. In addi-
tion, on one server in the cell, an administration server is run.
This server communicates with the data management servers
on all data servers in the cell. In the simplest case, all servers
and components may be run on a single machine.

The Glamour architecture facilitates fault tolerance by mak-
ing each data server independent of each other. Inter-server
communication occurs via reliable queues that can hold mes-
sages should a server fail or a network partition occur. When
the server is restored or the partition healed, the queued mes-
sages will be sent bringing the server back to full currency.

The administration server is not duplicated in Glamour and
could be run on a server configured for high-availability for
added reliability. Note that Glamour data services run inde-
pendently of the administration server. If the administrating
server fails or a network partition causes communication with
the server to be lost, all data services are sill available, only ad-
ministration functions cannot be performed until the server is
restored or the network healed.

The Glamour architecture supports multiple cells. Each data

Figure 2: Glamour Architecture

server can hold filesets for multiple servers and an administra-
tion server can be used to configured multiple cells. This al-
lows cells to be relatively lightweight, making them more use-
ful, more configurable to application needs. A desire to create
a new cell for administration and security purposes does not
require new hardware.

6.1 Kernel Components

Glamour contains three groups of kernel services, generally im-
plemented as loadable kernel modules.

6.1.1 Fileset Kernel Services

The fileset kernel services module implements the functions for
filesets, e.g., create, modify, etc. These services are imple-
mented via native filesystem calls for each operating system.
These file services are generally called from the NFS server
and the data management server as described below.

6.1.2 Kernel Interface Module

The kernel interface module is used by the various other com-
ponents to communicate between user and kernel components.
Communication occurs in both direction, e.g., from user to ker-
nel space when the data management server requests fileset ser-
vices and from kernel to user space when the NFS server re-
quests location data for a fileset. Downcalls and upcalls may be
implemented in different ways and varies across OSes although
the API used the other components is the same in all cases.

9

6.1.3 NFS Server

The Glamour NFS server is a modified standard NFS server
supporting version 4 of the NFS protocol.

The server is modified to be fileset-aware and to maintain
the state necessary to implement fileset semantics (including
multiple locations, failover, etc.) in a way invisible to the client.
Implementation details were described in Section 4.

The modified server queries the fileset services component
to determine fileset information such as boundaries, identifiers,
etc. It queries the data management server via the kernel inter-
face module to resolve client requests for fileset location infor-
mation.

6.2 Server Components

6.2.1 Data Management Server

The data management server runs on each host in the cell pro-
viding file services. It responds to requests from the admin-
istration server to execute fileset operations. In response, it
maintains a small local database of configuration information
and uses the fileset kernel services via the kernel interface mod-
ule to actually perform fileset operations. It communicates with
other data management servers in the cell to perform fileset mo-
tion operations.

The data management server also responds to request, gen-
erally from the NFS server via the kernel interface, to look up
locations for given filesets.

6.2.2 Administration Server

The administration server provides a single point of coordina-
tion for all Glamour administration functions. It maintains a
complete database of all configuration of the cell and infor-
mation within it, including servers. filesets, locations, users,
groups, automation jobs, etc.

The administration server receives user requests and takes
the appropriate action, updating its local database and forward-
ing commands on to the affected data management servers in
the cell. All administration server communications, both with
the administration client and the data servers, is implemented
via a purpose-built protocol run over ONCRPC with support
for RPCSEC GSS and AUTH SYS. The protocols are built on
LDIF.

6.3 Administration Client

Administrative action occurs via an administrative client which
talks to the administration server. Currently the client is im-
plemented as a command line interface (CLI) which simply
encodes and decodes user commands for processing by the ad-
ministration server. The CLI can run on any host that can access
the administration server via ONRPC with one of the allowed
security protocols.

7 Evaluation
In this section, we evaluate the performance of Glamour using
different workloads with an emphasis on measurement of over-
heads and scalabity of following referrals, client load balancing
through server redirection, and client handling of server fail-
ure in the presence of alternate replica locations. We compare
vanilla NFS systems against those with of a Glamour enhanced
NFS server. We present two benchmarks: a micro-benchmark
to determine the performance of individual common metadata
operations that are affected the most by this work, and the
Andrew benchmark to show overall performance on common
filesystem operations.

7.1 Experimental Setup
Although our Glamour prototype has been built on both Linux
and AIX, we present our Linux results only. We ran our ex-
periments between a Linux NFS client and NFS servers in the
following configurations:

� Vanilla: A vanilla setup using an unmodified Linux client
and server. Results from these tests give us baseline num-
bers to evaluate the overheads and advantages of Glamour.

� Glamour: A standard11 Linux client interacting with
Glamour-enabled NFSv4 servers.

All experiments were conducted using identical IBM eS-
erver xSeries 330 machines using 1.266GHz Intel Pentium III
CPU, 2GB RAM and 36GB 7200rpm hard disk, and running
Linux kernel 2.6.12.

7.2 Micro-benchmarks
Although not utilized in the performance evaluation since it
does not yet support NFSv4, SpecSFS[27] was used to cre-
ate the filesystem hierarchy and populate the files, creating
1 500 directories and 60 000 files totalling 1GB of data. All
micro-benchmarks were run using this fileset. We also use
OProfile[3], a system-wide profiler for Linux, to identify per-
formance bottlenecks.

7.2.1 Namespace Traversal
We evaluate the overhead of following referrals to a different
server and the effect of client redirection on application re-
sponse time. To measure this, we perform a simple recursive
listing using ls -lR on a tree created at Server A that is
mounted by an NFSv4 client. At several points in the direc-
tory tree, mount points were created, each pointing to another
server, Server B.

Figure 3 shows the response time for ls -lR with mul-
tiple directories on server A being set as mount point refer-
rals. In the “multiple locations” case, each referral on Server

11Current Linux client implementation does not support replication and mi-
gration features of the protocol which are optional. Although we have modified
the Linux client to enable these features, only changes as allowed by the proto-
col have been made.

10

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 200 400 600 800 1000 1200 1400 1600

Ti
m

e
ta

ke
n

(s
ec

)

Number of references

single location
multiple locations

Figure 3: ls -lR traversal through 1500 directories with multiple ref-
erence points

A points to a different location on Server B. As the client tra-
verses the namespace, it is redirected upon hitting each refer-
ral. On following each referral, the client performs the equiva-
lent of an NFS mount operation, creating a superblock for each
fsid transition. On completion, the client would have as many
mounts as the number of referrals followed. In the “single loca-
tion” case, all referrals on Server A point to the same location
on Server B. In this case, since the root paths for all referrals
are identical, the client needs to create only a single mount for
all referrals. Profiling shows that the client incurs substantial
overhead in superblock management as the number of mounts
increases as it maintains a singly-linked list of all superblocks
that makes lookups expensive. This is shown in OProfile num-
bers in Tables 7.2.1-7.2.1.

% time Function name
10.34 nfs lookup revalidate
6.90 decode getfattr
6.90 nfs readdir
6.90 nfs update inode

Table 1: Percentage of total running time of the experiment used by
individual functions on a Vanilla system.

% time Function name
8.77 nfs lookup revalidate
7.02 nfs idmap id
5.26 decode compound hdr
3.51 decode getfattr

Table 2: Percentage of total running time of the experiment used by
individual functions with all referrals pointing to the same replica lo-
cation.

It is noteworthy that once a client has traversed the names-
pace and resolved all referrals by creating appropriate su-

% time Function name
91.09 nfs4 compare super
0.65 decode getfattr
0.37 nfs idmap id
0.28 nfs revalidate inode

Table 3: Percentage of total running time of the experiment used by
individual functions with each referral pointing to a different replica
location.

perblock state, this information is cached so all future names-
pace traversals do not incur these overheads. This is shown in
Figure 4 where the same experiment has been repeated after the
client has already traversed the namespace once.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 200 400 600 800 1000 1200 1400 1600

Ti
m

e
ta

ke
n

(s
ec

)

Number of references

cached ls -lR

Figure 4: ls -lR traversal through 1500 directories with multiple re-
ferrals after attributes have already been cached

7.2.2 Replica Load balancing
To demonstrate the benefits of load balancing through repli-
cation and client redirection, we ran experiments that allow a
client to access parts of the same fileset through multiple lo-
cations in parallel. Using the same fileset created earlier, we
compare the time it takes a client to archive the entire fileset
when reading from a single server with the time it takes for the
same operation when spread across multiple servers. For this,
we created a simple parallel version of GNU tarwith multiple
processes running in parallel each of which archives a portion
of the directory. Each process operates on a Glamour fileset
and the client is redirected to use all the replica locations. The
simplest case where each replica location corresponds to a dif-
ferent server is shown in Figure 5.

7.2.3 Failure recovery
In a traditional NFSv4 setup with no replica locations, a client
detects server failure and resumes normal operations after
server recovery by re-establishing state with the server. Client
operations ongoing when the server is rebooting are delayed
(and retried) until the server is functional again. On the other

11

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6

Ti
m

e
ta

ke
n

(s
ec

)

Number of Servers

tar -cf

Figure 5: Archival of data replicated across multiple servers.

hand, with replication support, an NFSv4 client can detect un-
responsive or poorly performing filesystems and choose to ac-
cess the same data from alternate replica locations. A client can
greatly reduce application response times on server failure by
automatically redirecting to a replica. We demonstrate this in
Glamour with a simple experiment where a client continuously
traverses a directory on a server. We initiate a server reboot and
compare the times it takes for the client to resume operations
with a standalone server, and a server with replicas. The time
taken for a client to recover in a Glamour-enabled environment
depends on the timeout settings on the client that are config-
urable. In the experiment, a client marks a server that has been
unresponsive for 10 seconds as temporarily unavailable. We
conclude that Glamour can match the response time of a vanilla
system failure and recovery with 8 concurrent replica failures.

Operation Time (sec)
Vanilla with no failure 00:24
Vanilla with failure 04:14
Glamour with Client Redirection 00:34

Table 4: Time taken to traverse a directory with ls -lR. A
vanilla system experiences delay on server reboot. A Glamour-
enabled system allows the client to automatically failover the
operation to a replica.

7.2.4 Filehandle Expiration
As mentioned in Section 4.1.2, a Glamour-enabled NFSv4
server will expire client filehandles in the events of fileset pro-
motion and demotion. This requires the client to prepare itself
to recover from expiration of volatile filehandles. It does this
by storing the component names leading upto and including the
filesystem object in question, and redoing object lookups by
starting at the root of the server’s filesystem namespace. While
fileset operations like promote and demote are typically sched-
uled at times of low activity, an administrator is also allowed to

dynamically create filesets. We experiment with the overheads
of expiring filehandles and its effects on application response
time. We repeat the previous ls -lR experiment to allow a
client to cache the entire directory metadata. After all filehan-
dles are cached, we trigger a fileset promote event that results
in all filehandles being expired. We then measure the time it
takes for the client to recover all the filehandles (Table 7.2.4).

Operation Time (sec)
Vanilla 3.7
Glamour with Filehandle Expiration 11.16

Table 5: Time taken to traverse a directory with ls -lR. Af-
ter expiration, client incurs additional processing to recover all
filehandles from the cached component names.

7.3 Modified Andrew Benchmark
This section evaluates Glamour’s performance by emulating a
software development workload using a modified version of
the Andrew Benchmark[14]. We show that Glamour has ac-
ceptable performance in the presence of reference points in the
namespace in a environment of sequential workload with no
data sharing. We also show that if the workload can take ad-
vantage of multiple replica locations by running operations in
different filesets in parallel, Glamour demonstrates better per-
formance as compared to a single server.

The benchmark works with an existing fileset (source tree).
Phase I (mkdir of the benchmark creates directories in the
filesystem being tested; phase II (copy) copies the files from
the fileset into the directories created; phase III (stat) recusively
lists all the directories; phase IV (grep) scans each copied file;
and phase V (make) performs a compilation of the source tree.
We created a variant of the Andrew benchmark to demonstrate
the effectiveness of data access from multiple replica locations:

� We use, as input, the Linux kernel source12 which contains
1076 directories, 17361 files and approximately 230MB of
data.

� We create mount points at various places in the directory
tree during the mkdir phase so that subsequent operations
are spread over two servers through client redirection13.
We compare this scenario with a single server with no
replica locations.

� In the make phase, we run multiple jobs simulataneously
(with make -j [number of servers]) to allow
the compilation to take advantage of replica locations.

Table 7.3 shows the results of running the benchmark using
a single client with a vanilla system, and with 2 and 4 servers.
Since the first four phases employ a sequential metadata work-
load, there is no advantage of using multiple replica locations.
In fact, the response times are slightly worse due to client redi-

12Kernel version 2.6.12
13Replica locations are created by observing parallelism demonstrated by

make -j

12

rection on following referrals. The benefits are clear in phase
V where operations can be run in multiple filesets in parallel14.

Phase Vanilla 2 servers 4 servers
mkdir 00:36 0:34 0:32
copy 37:11 37:41 38:15
stat 00:50 00:58 01:06
grep 01:07 01:11 01:19
make 17:34 13:05 12:40
Total 57:18 53:29 53:52

Table 6: Times in seconds for different phases of the Andrew
benchmark when run on a vanilla system, with 2 servers having
5 filesets each, and with 4 servers having 4 filesets each.

8 Related Work
A number of previous research prototypes and commercial sys-
tems have explored some aspects and featuers of Glamour.
Most notably AFS [2, 13, 14], which is a globally distributed
filesystem, introduced a number of concepts that we refine or
reuse in Glamour. AFS introduced the concept of a cell as an
administrative domain and supports a global namespace. AFS
also introduced the volumes [25] abstraction for data manage-
ment. AFS has extensive client-side file caching for improv-
ing performance and supports cache consistency through call
backs. AFS allowed read-only replication that was useful for
improving performance. The successor to AFS was the IBM
DFS [15] filesystem which had most of the features of AFS
but also integrated with the OSF DCE platform. DFS provided
better load balancing and synchronization features along with
transparency across domains within an enterprise for easy ad-
ministration. There were other AFS related filesystems such as
Coda [18] that dealt with replication for better scalability while
focusing on disconnected operations.

In contrast to the global scale of AFS, NFS [9], a widely de-
ployed distributed file system, was designed to be simple, state-
less and operating system independent using a simple client-
server model. Glamour ofcourse relies on NFSv4 [24] for its
operation. Unlike earlier NFS versions, the new NFSv4 proto-
col integrates locking, windows-style share semantics, stronger
security, compound operations and client delegations. NFSv4
is stateful as it supports locking and file delgations and is fire-
wall friendly as it uses a well known port and TCP. Moreover,
v4 supports a stateful OPEN/CLOSE operation with share se-
mantics similar to Windows. It also eliminates all secondary
protocols that were used in v3(e.g., mount and NLM). NFSv4
also adds a host of new features that are leveraged by Glamour.
These include volatile filehandles, client redirection, replica-
tion and migration support, and a pseudo namespace.

Similar to NFS, in the MS Windows world, CIFS [26] pro-
vides the remote server file access support. The Windows

14The paralellism in make decreases when using 4 simultaneous jobs instead
of 2 which is why make with 4 servers is not much better.

DFS [21] protocol extends CIFS to provide a common names-
pace using server directories and can redirect clients to other
CIFS servers similar to NFSv4.

Recently there has been some work on leveraging the fea-
tures of NFSv4 to provide global naming and replication sup-
port. In [31] the focus is on providing a global namespace and
read-write replica synchronization. Other related efforts are
geared toward improving performance by using parallel data
access [11, 12]. Numerous IETF drafts proposal highlight the
design considerations for NFSV4 naming [29, 10], the issues
related to replication and migration [30] and provide an imple-
mentation guide for the NFSv4 referral support [22]

Orthogonal to the distributed file system work, there has
been a number of commercial clustered file systems clustered
filesystems [23, 4, 16, 28]. These are all geared for high-
performance solutions using high-speed network connections
and tightly coupled servers.

A large assortment of research protoypes have explored
grouping together servers for a common file service. The xFS
file system [8] decentralized the storage services across a set
of cooperating servers in a local area environment. In contrast,
the Oceanstore [19] project is an archival system, aimed at stor-
ing huge collections of data using world-wide replica groups
with security and consistency guarantees. Another effort that
focuses on security and byzantine faults, is Farsite [7] where
a loose collection of untrusted insecure servers are grouped to-
gether to establish a virtual file server that is secure and reliable.
Archipelago [17] couples islands of data for scalable internet
services.

9 Conclusions and Future Work
In this paper, we demonstrated a commercially-viable architec-
ture of a federated filesystem middleware layer that provides a
common namespace and relies only on off-the-shelf client and
protocol implementations. We detailed the design and imple-
mentation of a virtualization layer that can support flexible file-
set granularities on top of any standard filesystem. Finally, we
demonstrated how Glamour enhances data mobility and loca-
tion independence by replicating and migrating data units with-
out disrupting the client and client applications.

We described the Glamour implementation that runs on
Linux and AIX. Using our testbed infrastructure, we demon-
strated how Glamour provides a common namespace and per-
forms replication, load-balancing and fail-over. We detailed the
performance overheads of client redirection both at the server
and at the client and the Andrew benchmark results.

We envision that once the Glamour infrastructure and the
mobility of data is established, we can go a step further to au-
tomatically create filesets and place them at different locations
and perform automatic load balancing with regard to the server
and network conditions. We also plan to extend the imple-
mentation to handle read-write replication, implement a state-
ful data migration across different filesystems, and better un-
derstand how Glamour can be used to leverage the features of

13

clustered filesystems.

References
[1] DiskSites: http://www.disksites.com.
[2] OpenAFS: http://www.openafs.org.
[3] OProfile: http://oprofile.sourceforge.net.
[4] PanFS: http://www.panasas.com/panfs.html.
[5] Rsync http://rsync.samba.org.
[6] Tacit: http://www.tacit.com.
[7] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.

Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Watten-
hofer. FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. In Proceedings of the Fourth
Symposium on Operating Systems Design and Implementation,
Dec. 2002.

[8] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Roselli, and R. Y. Wang. Serverless network file systems. ACM
Trans. Comput. Syst., 14(1):41–79, 1996.

[9] B. Callaghan, B. Pawlowski, and P. Staubach. NFS version 3
Protocol Specification. RFC 1813.

[10] C. Fan, D. Noveck, and M. Wurzl. Nfsv4
global namespace problem statement. IETF Draft,
http://www.ietf.org/internet-drafts/
draft-fan-nfsv4-global-namespace-00%.txt.

[11] G. Gibson, B. Welch, G. Goodson, and P. Corbett. Parallel NFS
requirements and design considerations. IETF Draft.

[12] D. Hildebrand and P. Honeyman. Exporting storage systems in
a scalable manner with pNFS. Technical Report TR-05-1, CITI,
2005.

[13] J. Howard and et al. An overview of the andrew filesystem. In
Usenix Winter Techinal Conference, Februrary 1988.

[14] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and performance in a distributed file system. ACM Trans. Com-
put. Syst., 6(1):51–81, 1988.

[15] IBM. DFS Administration Guide.
[16] IBM. IBM Storage Tank – A Distributed Storage System.
[17] M. Ji, E. W. Felten, R. Wang, and J. P. Singh. Archipelago: An

island-based file system for highly available and scalable internet
services. In Proc. of the 4th USENIX Windows Systems Sympo-
sium, August 2000.

[18] J. J. Kistler and M. Satyanarayanan. Disconnected operation in
the coda file system. In SOSP ’91: Proceedings of the thirteenth
ACM symposium on Operating systems principles, pages 213–
225, New York, NY, USA, 1991. ACM Press.

[19] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, and
B. Zhao. Oceanstore: an architecture for global-scale persistent
storage. In ASPLOS-IX: Proceedings of the ninth international
conference on Architectural support for programming languages
and operating systems, pages 190–201, New York, NY, USA,
2000. ACM Press.

[20] Lustre. The lustre storage architecture.
[21] Microsoft. DFS Technical Reference.
[22] D. Noveck and R. C. Burnett. Implementation guide for referrals

in nfsv4. IETF Draft.

[23] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for
large computing clusters. In Proc. of the First Conference on File
and Storage Technologies (FAST), pages 231–244, Jan. 2002.

[24] S. Shepler and et al. NFS version 4 Protocol. RFC 3530.
[25] R. Sidebotham and et al. Volumes— the andrew file system data

structuring primitive. In European UNIX System User Group
Conference, September 1986.

[26] SNIA. Common Internet file System (CIFS) Technical Refer-
ence. SNIA.

[27] spec.org. SpecSFS: http://www.spec.org/sfs97r1.
[28] A. Sweeney and et al. Scalability in the XFS file system. In

USENIX conference, San Diego,CA, 1996.
[29] R. Thurlow. A namespace for NFS version 4. IETF

Draft, http://www.ietf.org/internet-drafts/
draft-thurlow-nfsv4-namespace-00.tx%t.

[30] R. Thurlow. A server-to-server replication/migration protocol.
IETF Draft.

[31] J. Zhang and P. Honeyman. Naming, migration, and replication
in nfsv4. Technical Report TR-03-2, CITI, 2003.

14

