
RJ10374 (C0505-002) May 6, 2005
Computer Science

IBM Research Report

CPWCT: Making P2P Home Network Secure Virtual
Multimedia Device

Yu Chen Zhou, Julian A Cerruti*, Lin Ma, Lei Ma
IBM China Software Development Laboratory

Beijing 100085
China

*IBM Research Division
Almaden Research Center

650 Harry Road
San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

CPWCT: Making P2P Home Network Secure Virtual

Multimedia Device

Yu Chen Zhou∗ Julian A Cerruti† Lin Ma∗ Lei Ma∗

∗IBM China Software Development Laboratory
100085, Beijing, China

{zhouyuc, mallin, malei}@cn.ibm.com
†IBM Almaden Research Center

95120, San Jose, CA, USA
jcerruti@us.ibm.com

Abstract

Content management and protection are important
features of emerging home network technologies. In this paper,
we present the design of Content Protection for Workplace
Client Technology (CPWCT), a novel secure content
management system based on the multiagent paradigm that
transforms a P2P home network in a secure virtual multimedia
device. In CPWCT, devices in a home network are organized in
a secure P2P cluster leveraging the broadcast encryption based
xCP Cluster Protocol. Based on this torus, a distributed content
management mechanism for purely P2P home networks is
implemented. This mechanism includes lightweight secure
streaming and RDF based capability-aware content indexing
technologies. We show how this approach can significantly
enhance the ability to dynamically self-reorganize the
underlying topology and deploy context sensitive functionality.

1. Introduction

The widespread availability of audio and video in digital
form together with the increasing ability to easily share content
among consumer electronics devices promises to create a new
market for multimedia home networking. In this environment
where content such as music and movies is no longer bound to
the physical media that carries it, content protection is a critical
feature. This presents new challenges to content owners, i.e.
record labels, studios, distribution networks and artists, who
want to protect their intellectual property from indiscriminate
reproduction and distribution in order to extract economic
benefit from it, while presenting a non-invasive user experience
for the consumer. Legal actions against infringes may dissuade
others from accessing or manipulating content illegally, but
technical measures usually provide a more effective means for
limiting abuse. The objective of a content protection scheme is
to raise the barrier for casual violations and to require a
concerted effort by attackers. Digital rights management allows
the content owners to define and enforce restrictions on how the
content is used. In order for a content protection scheme to be
successful, it must be cost-effective to implement and run. At
the same time, it must be unobtrusive to consumers, who do not
want to be burdened with administrative tasks associated with
protecting the interests of content owners.

The home network presents the following challenges in
the area of distributed content management and protection: (1)
decentralized P2P environment with devices connecting and
disconnecting dynamically; (2) heterogeneous structure that
consists of diversified devices (e.g., set-top box, PC, PDA) with
different system and media capabilities and; (3) distributed
storage of content.

In this paper, we present the design of Content Protection
for Workplace Client Technology (CPWCT), which includes
novel and comprehensive approaches for secure content
dissemination and protection in a P2P home network,
leveraging the eXtensible Content Protection (xCP) technology
[1] based on broadcast encryption. Due to the Multiagent
System (MAS) computing model’s similarity to the P2P
computing model in terms of common use of a distributed
environment, we applied the MAS paradigm to implement a
CPWCT model with 3 layers: secure clustering, secure content
dissemination and dynamic content indexing. We show that this
approach can significantly enhance the ability to dynamically
self-reorganize the underlying topology and deploy context
sensitive functionality. The final target of CPWCT is to turn a
P2P home network into a secure virtual multimedia device for
the end user. The structure of CPWCT is shown in figure 1. In
this environment, no matter which device and network
connection is used or whether the user is located in her home or

Figure 1. CPWCT system in home network

1

mailto:ganyimin}@cn.ibm.com
mailto:jcerruti@us.ibm.com

traveling, she is able to enjoy all the applicable multimedia
content securely within the domain of her entertainment
electronic devices.

The remainder of the paper is structured as follows:
section 2 presents overview of the CPWCT architecture and
CPWCT agents; section 3 introduces the xCP cluster protocol,
the torus of CPWCT for P2P authorization and clustering based
on broadcast encryption technology; section 4 discusses the
distributed P2P content management and introduces a
lightweight xCP based media streaming mechanism; section 5
describes a novel approach of capability-aware P2P indexing
mechanism leveraging W3C RDF; and section 6 provides the
main conclusions of this work.

2. Overview of CPWCT

The P2P architecture of a consumer electronics home
network presented several challenges for the design of CPWCT.
In the absence of a centralized mediator with global knowledge
that directs requests to appropriate agents, CPWCT agents must
cooperate to forward queries and merge and return results.

A group of CPWCT agents can form an xCP cluster,
which defines the social context in which the agents interact.
Each CPWCT agent joins an xCP cluster, acquires the
commitments from other peers, and provides commitments
according to its own capabilities. The behavior of CPWCT can
be described as social behavior with both collaboration and
competence.

The CPWCT agents collaborate in tasks that include
clustering, content dissemination and indexing. A CPWCT
agent is active rather than reactive: It actively contacts other
agents to join the xCP cluster and share local content among
trusted peers. An xCP cluster could be abstracted as a set
Cluster={A, S}, where A is a trusted agent set in the xCP cluster,
and S is the cluster context. Extending the BDI model [3], a
CPWCT agent could be defined as a set A=(Bel, Int, Cap, Act)
which consists of believe, intention, capability and action set.

Generally, the intentions of CPWCT agents are to achieve
better the goals of the whole cluster to protect content and that
of themselves to share the content. We define Int = {Ic, Is, Ii} to
be the set of intends of a CPWCT agent, including those for
creating or joining xCP cluster, disseminating xCP content and
sharing content information. Int will be dynamically updated
according changes of Bel, Cap, and S.

)()()()()()(IntPSPCapPIntPBelP sE⎯⎯ →⎯×××

There are the following decencies among the intention
sets; this means that content could only be shared to trusted
peers and only the index of shared content could be provided to
peers.

sdi IatrustIashareIaindex)()()(aa ∈∈

According to the tasks of CPWCT, Bel = {Bc, Bd, Bi} are
the knowledge and rules maintained by each CPWCT agent and
will be updated dynamically according to changes of S. Bc is
the believe for secure clustering which will be described in
chapter 3. Bs is the knowledge of local media for content
dissemination. Bi contains the knowledge and rules for content

indexing that is described in Chapter 5
Being the core of Bel, Bc is represented by a set {Bsecinfo,

Bcluster, Bauthrule, Bcomm}. Bsecinfo is the secret information for P2P
authorization. To monitor the whole xCP cluster, each CPWCT
agent maintains Bcluster, which contains the dynamic cluster
topology that is a cut of both logical and physical status of
CPWCT agents in the cluster. Bauthrule is the set of rules for a
CPWCT agent to authorize peers. The consistency of Bauthrule in
each different CPWCT agent is critical to maintain a consistent
state of the system against concurrent distributed transactions.
Bcomm is the knowledge of agent communications based on xCP
cluster protocol.

In a heterogeneous home network, the capabilities of a
CPWCT agent depend on those of device where it resides and
dictates what this agent can commit to the cluster. These
capabilities are represented by Cap={Cmed, Csys}. The media
capabilities Cmed include media formats and input modes
supported by media players plugged in the CPWCT agent, size
of the available display, capability of the audio device, etc. The
system capabilities Bsys, include the size of free local storage,
network bandwidth, CPU capability, free memory size, etc..,
Cap is a critical component for a CPWCT agent to choose
which actions to take for content dissemination and indexing.

The cluster context is represented by a set S = {S1, S2, …
Sn} of environment variables which represents the status of all
the CPWCT agents in an xCP cluster. A change of state is
triggered by a set of events, and it in turn causes the generation
of another set of events. The sequence of changing states can be
stated as follows.

n
E

n
EE SSSS n⎯⎯ →⎯⎯→⎯⎯→⎯ −

−
11

1
2

21 ...

The action set Act can be executed according to believes,
intends and capabilities of each CPWCT agent and triggered by
events representing changes in the cluster context

ACapPIntPBelPExecution sE⎯⎯ →⎯××)()()()(:

Coordination is also a main task for CPWCT which is
forced to adopt distributed control and data in the P2P
environment. This makes the agents have a higher degree of
autonomy in generating new actions and in deciding which
goals to pursue. The disadvantage is that the knowledge of the
system’s overall states is dispersed throughout the system and
each agent has only a partial and imprecise perspective. There
is an increased degree of uncertainty about each agent action,
so it is more difficult to attain coherent global behavior. In
CPWCT, great efforts have been made to synchronize the
overall state information through perceptions (receiving
message) and actions (sending message), especially for Bc, Bi
and Ic, in the clustering and content indexing layer that is
described in sections 3 and 5.

The CPWCT Agent is implemented as an OSGi compliant
middleware component in Java with a footprint of 372 KB. It is
easy to deploy on both legacy and future devices in the home
network. It implements a flexible structure shown in figure 2
with following layers: (1) Communication Service, which is
responsible for inter-agent communication and provide SPI to
integrate multicast UDP, HTTP, Web Services, UPnP or other

2

proprietary network protocols for device discovery, messaging
and transportation of content data; (2) xCP Cluster Protocol
Stack, which implements the core logic for secure clustering,
and provides functions for up-level components to encrypt and
decrypt xCP content and monitor the status of the xCP cluster
and; (3) Application Framework, which consists of Content
Manager, Media Player Manager and Crawler that allow
various media players, repository services and customized UI
components to be integrated into CPWCT.

3. Broadcast Encryption Based Secure Clustering

The secure clustering layer of CPWCT is an
implementation of the xCP Cluster Protocol, introduced and
presented in detail in [1], [3], [4] and [5]. In a nutshell, this is a
broadcast encryption application that allows a group of devices
in a P2P network to form an “authorized domain”, agreeing in a
common, unique cryptographic key. This key is used to protect
all the content stored in this network of devices thus binding it
to the group of devices instead of the single physical container
that carries it. In this chapter, a high-level overview of this
technology with particular emphasis on the CPWCT
implementation is presented.

3.1 Broadcast Encryption

Broadcast Encryption (BE) is a key management
technique introduced by Fiat and Naor in [7] which can be used
as an alternative to traditional PKI. It was originally designed
for applications where only a unidirectional broadcast channel
is available and there is no chance for two way authentication
for key distribution, hence its name.

BE is particularly appealing for applications where
limited processing power is available because it can be fully
implemented using symmetric key encryption algorithms,
which is orders of magnitude more efficient than asymmetric
ciphers such as RSA. With the latest advances in this area, the
overhead in message length has became roughly the same size
of that of a PKI exchange with a CRL, making this technology
the best choice for consumer electronics applications.

3.1.1 Main components of a BE scheme

At system creation time, a group of long-lived keys are

generated. These keys, which will be referred as device keys
are grouped into unique groupings called device key sets (DKS)
and assigned to each device that will participate in the system.
In other words, each device instance is assigned a unique
long-lived DKS at manufacturing time.

When a message needs to be transmitted – or a piece of
content recorded – a random management key1 (Km) is chosen
by the sender and a block of data called key management
block2 (KMB) is generated. In a first approach, the KMB can
be though of as the encryption of the Km multiple times using
all the originally generated device keys. When a device receives
a KMB, it will try to find an instance of the Km that has been
encrypted using a device key it has in its DKS and then it will
be able to decrypt it. In BE terminology, this is to say that the
receiver “processes” the KMB using its own DKS, getting a Km
as a result.

If the sender wants to exclude a group of devices from
receiving the message, a new KMB is generated but this time
the encryption of Km with the device keys of the excluded
devices is replaced with garbage information. Now, when a
receiver processes the KMB using its DKS the result will be
either the Km or an invalid value, depending on whether it has
been included in the transmission or not.

The message in question is of course encrypted by the
sender and decrypted by the receiver using Km as a session key
for this transmission. Figure 3 depicts this whole idea, where
receiver 2 is excluded from a transmission.

Figure 2. Structure of CPWCT agent

3.1.2 Real-Life BE Schemes

At this point a reader might rightfully ask: “But how long
does this KMB need to be in a real world system? How big is
each receiver’s DKS?” These are the very questions that the
inventors of new broadcast encryption systems have in mind
while working on a new scheme, making their objective to
make the answer to both questions a number as small as
possible. A better or worse result will be reached depending on
how are the device keys first generated and how are they

Figure 3. Trivial broadcast encryption scheme

1 Some media-based applications of BE use the name Media Key (Km)
or the same concept f2 Some media-based applications of BE use the name

Media Key Block (MKB) instead for this very same concept

3

grouped when assigning them to each receiver. Other topics that
have to be taken into considerations are how the size of the
KMB changes when more and more devices are to be excluded
and what is the impact of a massive device exclusion or
inclusion in the size of the KMB.

The scheme described and shown in Figure 3 is of course
only provided as a means for depicting the idea behind the main
concepts but it is never used in practice. There are several
broadcast encryption schemes, some of which are currently
being used in real life applications. Examples of this is the
content protection for recordable media (CPRM) and content
protection for pre-recorded media (CPPM) technologies [9],
which use a two-dimensional matrix to layout the device keys
and the logical tree hierarchy (LKH) [10], [11] which use a
tree-based approach.

The BE scheme used in the xCP Cluster Protocol within
CPWCT is a Naor-Naor-Lotspiech (NNL) scheme. This scheme
named after their inventors is fully described in [7]. Some of its
highlights are:
• It achieves an average efficiency of 1.38 messages per

revocation, resulting in a KMB roughly the same size as a
PKI certificate revocation list

• It allows very efficient group revocation of DKS (i.e.:
revoke all the devices of a given model, increasing the
KMB size only by one)

• Revocation is completely granular. This is to say, no
matter how many revocations are there on a KMB, there
will be no innocent devices revoked
All the basic cryptographic operations used for the xCP

Cluster Protocol in this system are implemented using AES in
CBC mode in most cases and ECB mode in a few exceptional
ones.

3.2 Other Content Protection System Elements

A key concept when using BE to design a content
protection system is the concept of device compliance. Along
with the key management system described above goes a set of
rules that dictate how devices should act under different
conditions – i.e.: how to interpret the usage conditions
associated to a given multimedia object. In other words, the
system consists of a set of agents that have keys to access the
content but are trusted to comply with the rules defined for the
system. These trusted agents are said to be compliant with the
system, because they play by the rules.

When the system is first launched all devices are assumed
to be compliant and thus any KMB used to transmit a message
should include all devices in the system. Nevertheless, it could
happen that one of the devices is attacked, its DKS extracted
and an application written to use that DKS and ignore the rules
that dictate the protection of the content. Or, an originally
compliant device could be found to be ill-behaved and allow a
user to circumvent some of the restrictions associated with the
content through careful device manipulation. In those cases,
these non-compliant circumvention devices have to be excluded
from further transmissions by excluding their DKS from
calculating Km in all future KMBs. This operation will be
referred as device revocation. That is to say, the DKS of the
circumvention devices have been revoked in the KMB.

This notion of device compliance is usually enough for
the purposes of a content protection system in which licensors
of the content that is distributed are not concerned with the
particular identity of each receiver; it is enough for them to rest
assured that only compliant devices can access the content.

Another concept that builds on top of compliance is the
concept of content binding to a particular entity. This idea of
making the cryptographic calculation used to access the content
dependent on the unique identifier of an object has been used
by content licensors to control how the content can be moved
and copied between entities through compliant devices.

A common example of the use of this concept is CPRM
and its ability to bind content to the media where it will be
played back. When a compliant recorder makes a protected
recording into a media, for example, a recordable DVD, the
unique ID of that particular DVD is used as part of the
cryptographic calculation performed to encrypt the content:

Kmu = [C2_G(Km, IDmedia)] 3

The media unique key (Kmu) will be used to encrypt the
title key (Kt) used in turn to encrypt the content. IDmedia is of
course written in an area of media where it is not possible to be
altered by the user.

This way, because only compliant devices can get to Km,
rules can be dictated by the content licensors as to when is it
allowed to move or copy the content to another piece of media
– which will require a re-encryption of Kt with a new Kmu . This
gives the content owners the control on the copies of protected
content that we were speaking about.

3.3 xCP Cluster Protocol

With the latest advances on consumer electronic
technologies it is very natural that consumers want to take full
advantage of the networking and storage capabilities of their
devices to enjoy the entertainment content they have acquired
in any of the devices they own.

In this environment, placing usage restrictions on where
the user can store the content – i.e.: in a particular piece of
media, or on a particular device – doesn’t seem natural. With
this concept in mind IBM has developed the xCP Cluster
Protocol that provides a means for protecting content from
indiscriminate redistribution without precluding the user from
enjoying the content freely within the domain of her electronic
devices.

The main idea behind this technology is that devices will
use BE to form a cluster of a limited number (N) of compliant
devices that share a common ID. This ID is used as the
identifier for a particular household thus, when the content is
bound to this cluster, it is equivalent to binding the content to
the household instead of to a particular device or piece of media.
The content will be playable in any of the devices owned by
that household, but it will not play in other people’s devices. By
limiting the number of devices to a given finite number N, the
forming of a single global million device (Inter)network is

3 C2_G represents a C2-based cryptographic one-way function. See [9]
for details.

4

avoided.
In CPWCT, a simplified version of the xCP Cluster

Protocol technology has been implemented. Without getting
into the details of the protocol – which can be found in [1], [3]
and [4] – the particulars of the implementation used in CPWCT
are outlined below.

3.3.1 xCP Cluster Components

Each xCP-capable device has a set of device keys and a
unique device ID (IDp) assigned by the licensing entity. Also,
each device comes with its own singleton cluster already
prepared so the first time a device is turned on it is already part
of a new cluster consisting of a single device.

An xCP Cluster consists of a cluster KMB, unique cluster
ID (IDc) and a file that lists the devices that form part of the
cluster – called authorization table (AT). This way, the default
cluster that comes pre-made on each device has its IDc, a
default KMB and an AT consisting of the single device. This is
depicted in Figure 4 below.

In order to bind the content to the cluster, when a piece of
content is introduced in a cluster, its Kt is encrypted using a
cluster unique key or binding key (Kb), calculated as

Kb = AES_G(Km, IDc / Hash(AT)) 4

As the cluster evolves and devices join the cluster, the
contents of the AT will change. Also, if a new KMB is
introduced into the system, devices have the obligation of
adopting it, changing the value of Km. In any of those cases, the
value of Kb changes, requiring a re-encryption of the title keys
of content stored in the cluster. In order to keep track of which
are the AT and KMB that have been used to encrypt a group of
title keys, a reference to them are kept in the header of each
xCP file.

3.3.2 xCP Device Communication

During the implementation of CPWCT the
communication of messages between devices has been moved
to a separate communication layer, as show in figure 2 above,
allowing the main logic of which messages need to be
transferred be agnostic of the particular transport protocol being
used. This communication layer provides two main services to
the upper layer: (1) a device discovery service, which notifies
the device whenever another xCP compliant device has been
discovered in the network and; (2) a standard point-to-point

4 AES_G represents an AES-based cryptographic one-way function.

communication service, addressable by device ID
The first service maps well with the “Who’s there”

message mentioned in [1], [3] and [4], while the second one can
service all the rest of the xCP Cluster Protocol messages (“I’m
here”, “Authorize me”, etc.)

In this first approach, CPWCT implements a
communication service based on HTTP. The discovery service
is implemented by listening for multicast messages on a defined
port. When a device appears in the network, the device
discovery service recognizes this multicast message and
informs the device that a “Who’s there?” message has been
received.

In a future release, this same service can be provided
using the underlying device discovery mechanisms built-in the
physical transports, such as plug-n-play (i.e.: a portable player
is connected via USB to a home media server), uPnP, etc.

3.3.3 Messages and Device Behavior

Whenever a device receives a “Who’s there?” message
indicating that there is a new device in the network, it must
reply with a point-to-point “I’m here” message. This message
contains IDc and also the hash of the cluster’s current KMB and
AT.

If the discovered device is a new device the user has just
connected into the network, it will not have any information
about the cluster mentioned in the “I’m here” message. In that
case, the receiving device will try to get authorized in the
existing cluster IDc, using the authorization procedure exactly
as described in [1], [3] and [4]. At the end of this procedure, if
the predefined maximum cluster size has not been reached, the
cluster will consist of an additional device.

Figure 4: xCP Cluster Components

Each device is also responsible for sending “I’m here”
periodically to all the rest of the devices that are already in the
cluster in order to propagate updates in the AT and/or KMB,
which will take place as follows:

If the device receiving the “I’m here” message is already
part of the cluster, it must check whether the hashes of the AT
and KMB match the ones it is currently using. If any of them
are newer, it must update its information by downloading the
AT and/or KMB from the device that sent the “I’m here”
message. Of course, it should also re-encrypt all the title keys
of the files that are stored in this device to the new value of Kb.
If on the other hand, the AT or KMB of the device sending the
“I’m here” is older than the ones it has, the roles must be

Figure 5: Merging clusters

BCluster 1:

<device A>
<… others …>
<device B>

Cluster 2:

<device B>

BCluster 1:

<device A>
<… others …>
<device B>

Cluster 2 Cluster 1

authTable

Rebind content to cluster
1 and forget information

of cluster 2
authTable

authTable

tim
e

BBCluster 1:

<device A>
<… others …>
<device B>

Cluster 2:

<device B>

BBCluster 1:

<device A>
<… others …>
<device B>

Cluster 2 Cluster 1

authTable

Rebind content to cluster
1 and forget information

of cluster 2
authTable

authTable

tim
e

5

reverted: the device with the newer information must send an
“I’m here” to the sending device to let it know there is newer
information available.

Finally, if after processing an “I’m here” message a
device finds itself belonging to more than one cluster it must try
to merge them into a single one. This is done by checking if the
AT of one of the clusters is a proper subset of the AT of the
other cluster. When that happens, the device must try to
abandon the smaller cluster and later move all the content it has
stored for the smaller cluster into the bigger one.

As devices interact and share content within the user’s
network, information about the cluster is propagated, resulting
in a distributed though uniform view of the user’s cluster that
allow all devices to share the same content. Figure 5 above
depicts this merge procedure in the most common and simple
context of a new device B with a singleton cluster 2 that has
been introduced into an existing cluster 1.

4. Content Dissemination

The main target of CPWCT is to share content securely.
Once a content file is ingested and bound to an xCP cluster, it
will be shared within the whole cluster according to
commitment of CPWCT agents.

4.1 Distributed Content Management

Each CPWCT agent maintains knowledge about local
xCP content Bs ={cf1, …cfm}, where cfm is an xCP content file
that could be identified uniquely in an xCP cluster by a triple
(id, clusterinfo, agent). id is the identifier of an xCP content file
and contains a general description of the content file including
attributes of the media format. clusteinfo is a set of information
about the cluster to which the xCP content file is bound to, and
will be used by CPWCT agent to decrypt the content. agent
represents the location where the xCP content file is located.
CPWCT supports both P2P file sharing and P2P streaming.
There may exist more than one copy of an xCP content file
within a xCP cluster. The P2P streaming mechanism in
CPWCT will be described in section 4.2.

Based on Bs, a CPWCT agent performs actions triggered
by events e∈{Eu, Ea}, where Eu is the event set generated by
user involvement and Ea is the event set generated during
communication with other CPWCT agents. As described in
chapter 3, since each content file is tightly bound to a cluster, a
particular action performed by CPWCT agents is content
rebinding. Once the cluster information is changed (e.g. new
device joining or new KMB introduced), each CPWCT agent
will decrypt the encrypted title key (eKt) located in header of
each content file using the old binding key (Kb), and encrypted
it using the new binding key (K’

b).

)'),,((: bbicl KKeKtdecryptencrypterebind →

4.2 Secure P2P Streaming

Because of the asymmetry in device capability, low-end
devices such as PDAs and smart phones don’t have enough
storage for large content files and need streaming functions to

render content that resides on other high-end devices such as
PCs and home media servers. Even for more powerful devices,
streaming can enhance the efficiency of rending by removing
the time consuming replication phase, and decreasing the
complexity of content management with fewer redundant
copies of each content file on different devices in the same
cluster.

Different from P2P file sharing, P2P streaming in
CPWCT poses more stringent requirements: (1) a secure
mechanism to protect the media from being accessed illegally
during transmission; (2) independence from specific media
players, media formats and network protocols for diversity of
devices and media technologies used in heterogeneous
networks and; (3) symmetric functions applicable to both
low-end and high-end devices according to P2P nature.

Conventional streaming solutions based on client/server
architecture and open standards such as Internet Media
Streaming Alliance (ISMA) are not designed for this purpose.
DTCP provides device authentication and data encryption for
devices connected with a digital interface in a home network.
Nevertheless, it is based on PKI that is different from broadcast
encryption mechanism implemented by CPWCT [2]. In
CPWCT, an xCP-based lightweight secure streaming
mechanism is designed to avoid conflicts between streaming
and content protection in the P2P environment, especially when
a low-end device such as a PDA plays the role of a streaming
server, with balance made between applicability and
functionality.

The structure of the CPWCT streaming mechanism and
the streaming process from agent a1 to a2 are shown in figure 6.
The following components are involved:

Trusted Player – The player plugged in the CPWCT
agent for rendering content, which should support HTTP
streaming that is widely supported and has no complex control
mechanism

Content Binding Service – The service provided by xCP
Cluster Protocol Stack for the encryption and decryption of
content files.

Controller – It handles user requests and coordinates the
streaming process. Once an event emd(a1, ci) is received to
request a1 to render content ci on a2 , the controller starts the
trusted player urlp(ci) with pseudo media URL urlp(ci) pointing

Streaming
ProxyController

Trusted Player

Content Binding Service

xCP Conent
Repository

a1

(3) urlp(ci)

(6) mse(ci)

(1)ernd(ci, a1)

a2

Figure 6. Process of xCP based secure P2P streaming

(2) urlp(ci)

(4) r(urlp(ci))

(5) r(url(ci))

(7) mse(ci)(8) msc(ci)

(9) msc(ci)

6

to a local Streaming Proxy, and passes <urlp(ci), url(ci)>, the
mapping set between urlp(ci) and the real media URL url(ci) to
the Streaming Proxy.

Streaming Proxy – Core component that acts both as a
client to the requesting agent and as a streaming server to the
local Trusted Player. When the Streaming Proxy receives a
streaming request r(urlp(ci)) from the local Trusted Player, it
checks the map <urlp(ci), url(ci)> and sends the real request
r(urlp(ci)) to a2. The encrypted media stream mse(ci) responded
from a2 will first be decrypted by invoking the Content Binding
Service of xCP Cluster Protocol stack with the cluster
information described in chapter 3, and then the clear media
stream msc(ci) will be passed to the local Trusted Player. The
operations from (5) to (8) are opaque to the Trusted Player.

Comparing this with a conventional streaming solution,
the CPWCT secure streaming mechanism has prominent
advantages. Unlike conventional secure streaming servers that
dynamically encrypt content during the streaming process, the
CPWCT agent decouples the processes of encryption and
streaming, using the already encrypted content file generated
during ingestion. Also, it moves most of the workload of
streaming to requesting peers, and the requested peer becomes
only responsible for sending the encrypted media stream, so
that low-end devices can support concurrent streaming
transactions. As a result, it provides a symmetric function by
which even low-end devices such as PDAs can become
streaming servers. On the other hand, transmission of the media
stream is independent of the network protocol and security
mechanism, so even proprietary protocols without security
mechanisms can be used to transport content streams.
Meanwhile, a unified user experience for the streaming of both
local and remote content files can be implemented using the
same mechanism.

5. Dynamic P2P Indexing

In P2P home networks, shareable content changes
dynamically. Nevertheless, all devices in the P2P network
should be aware these changes in real-time. Popular internet
P2P content sharing systems usually involve a centralized
directories or registry services which use technologies derived
from the enterprise. Dedicated multimedia applications for the
home network, e.g., Network-Integrated Multimedia
Middleware [6], [12], also work in such mode. Nevertheless,
the failure of a device with centralized content information may
cause a critical problem in the home network.

Also, in most of these solutions it is difficult to
accommodate heterogeneous structures because of the lack of
device capability information. In such case, devices may get the
information about all the content shared within the cluster,
while only part of the content can be rendered. Then, an error
occurs when this device tries to render this content that is
beyond its capabilities, e.g., when a PDA tries copy a huge
movie file to local storage, or a device with only mp3 support
tries to render an MPEG4 file. Though standards for mobile
web access such as W3C CC/PP and OMA UAProf use
capability information, their main focus is on client/server
architecture and provides no mechanism to dynamically notify

clients about changes in the contents of the server.
In CPWCT, a Crawler which shares content information

dynamically among CPWCT agents according to device
capabilities described in W3C RDF format [10] was developed.
Each CPWCT agent is responsible for maintaining local content
and capability information. Each response containing content
information from a requested peer has been filtered using the
capabilities information of the requesting peer to avoid
replicating and rendering useless content. This significantly
decreases user involvement and makes the system more robust.
The changes in content information are broadcasted actively.
The update of content information is triggered by changes in
the content, cluster topology, network connectivity, capabilities
and status of each CPWCT agent. Fault tolerance is
implemented for system level changes of device and cluster are
monitored.

5.1 RDF Based Capability Description

One important characteristic of RDF metadata is the
ability to use distributed annotations for the same resource.
Furthermore, RDF schemas are flexible and extensible such
that schemas can evolve over time, and RDF allows the easy
extension of schemas with additional properties. As such RDF
is capable of overcoming the problems of fixed and
unchangeable metadata schemas that often occur in current P2P
systems. Annotations about resources are based on various
schemas that are defined using RDF and are transmitted in RDF
based messages.

Using RDF, we can represent schemas based on device,
capability and value, to define the vocabulary used for
describing device capability. An RDF triple (d, c, v) represents
specific annotations, where d identifies the device we want to
abstract, c specifies what property the device has, and v
specifies the value of this property. Figure 7 shows a sample of
system capability used in CPWCT, which uses RDF.

<rdf:RDF >

 <rdf:Description about="http://www.ibm.com/DeviceX">

 <s:Assignment>

 <rdf:Description about="http:// www.ibm.com/DID">

 <v: FreeStorage >32M </v: FreeStorage >

 <v: CPUSpeed >1.5G Hz </v: CPUSpeed >

 </rdf:Description>

 </s: Assignment >

 </rdf:Description>

</rdf:RDF>

Figure 7. Sample of RDF based capability description

5.2 Capabilities-Aware P2P Indexing

In an xCP cluster, the global content snapshot is
Bcs= B∪ s,i, where ai A∈ is the agent in the cluster, and Bs,i
={cf1, …cfm} is the set of content files managed by ai. Then, the

7

global content snapshot retrieved by ai, Bcs,i= f(B∪ s,i,Ci) , where
ai A∈ and j≠i, is only a subset of Bcs. This result has been
filtered using the capabilities of ai. The basic assumption is that
Bs,i=φ if ai is disconnected from the network, ai is shutdown or
ai has no local content file.

One of the difficulties in an xCP cluster is that no agent
has access to the global state of the system. In CPWCT, the
content information can be updated in active and passive modes
in various scenarios. A simple message set M={mreq, mres, mref }
is designed to simplify the distributed transaction among
CPWCT agents. Here, mreq is the message sent to request shared
content information from another agent, which contains the
media capability, system capability and even user profile of
requesting peer in RDF format; mres is the response message
which contains local content information filtered according to
the capabilities of requesting device and; mref is the notification
message which is sent to notify other CPWCT agents of local
contents change.

In the CPWCT Crawler, an event set represented by E =
{emc, esc, elc eas, eras, ecl, ereq, eres, eref }, is defined to trigger
actions for content indexing. emc and esc are the events
generated when the local media capabilities change (e.g., a
media player is added or removed) and the system capabilities
change (e.g., memory, hard disk or network bandwidth is
changed); a CPWCT agent generates eas when its status changes,
typically, when the agent is started; elc is used to notify about
changes on local content, (e.g., content file is ingested or
removed); ecl is an event generated when the cluster topology is
changed (e.g., an agent joins or leaves the cluster); eras is event
generated when other agent is disconnected from the local
agent; eres, ereq and eref are generated when mres, mreq and mref

messages are received. Following are the actions triggered by
the events.

),(
START e
CONNe

:
as

cl Amsendrequestall req→
⎭
⎬
⎫

⎩
⎨
⎧

=
=

),(
)(e

START)(e
JOIN)(e

:

ref

ras

cl

ireq

i

i

i

amsend
a
a

a
request →

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

=

),(
e
e
e

:

sc

mc

lc

ireq amsendnotifiyall →
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

),(: ireqreq amsenderesponse →

6. Conclusion

A novel approach for content management and protection
in P2P home networks was introduced. A MAS model for
secure clustering, content dissemination and indexing was
proposed. In such a system, devices in a home network are
organized in a trusted P2P cluster leveraging the broadcast
encryption based xCP Cluster Protocol. Based on this torus, the
distributed content dissemination mechanism for purely P2P
home network including lightweight secure streaming
mechanism and RDF based capability-aware content indexing

mechanism were implemented. The resulting architecture poses
significant enhancements in the ability to dynamically
self-reorganize the underlying topology and deploy context
sensitive functionality, while pervasively protecting the content
from illegal redistribution. As a result, the entire P2P network
of devices is turned into a secure virtual multimedia device
from the user’s perspective.

Acknowledgements

We would specially like to thank Amal Shaheen for
conducting CPWCT project and providing valuable comments
on earlier drafts of this paper. We would also want to warmly
thank Florian Pestoni, Stefan Nusser and Jeff Lotspiech for
their initial and continuing support, helping us learn about the
exciting fundamentals of this technology.

Reference

[1] Jeffrey Lotspiech, Stefan Nusser, Florian Pestoni. “Anonymous
Trust: Digital Rights Management Using Broadcast Encryption”
PROCEEDINGS OF THE IEEE, VOL. 92, NO. 6, JUNE 2004
[2] A.S. Rao, M.P.Georgeff. “An abstract architecture for rational
agents”. Proceedings of Knowledge Respection and Reasoning, pages
439-449, 1992.
[3] Florian Pestoni, Jeffrey B. Lotspiech, Stefan Nusser. “xCP:
Peer-to-Peer Content Protection”. IEEE SIGNAL PROCESSING
MAGAZINE, MARCH 2004.
[4] Jeffrey B. Lotspiech, Dalit Naor, Florian Pestoni. “Secure Local
Agreement in a Peer-to-Peer network”
[5] Jeffrey B. Lotspiech, Stefan Nusser, Florian Pestoni. “Broadcast
Encryption’s Bright Future”. Computer magazine (Vol. 35, No. 8),
August 2002
[6] Marco Lohse, Philipp Slusallek. “Middleware Support for Seamless
Multimedia Home Entertainment for Mobile Users and Heterogeneous
Environments”.Saarland University, 2003
[7] A. Fiat and M. Naor. “Broadcast Encryption. Advances in
Cryptology”. Crypto '93, Lecture Notes in Computer Science 773
(1994), 480-491.
[8] D. Naor, M. Naor, and J. Lotspiech. “Revocation and Tracing
Schemes for Stateless Receivers”. Advances in Cryptology (Crypto
2001), Lecture Notes in Computer Science 2139, Springer-Verlag, New
York, 2001, pp. 41-62.
[9] 4C Entity. LLC. http://www.4centity.com
[10] D.M. Wallner, E.J. Harder, and R.C. Agee. “Key Management for
Multicast: Issues and Architectures,” RFC 2627 (informational), July
1999; ftp://ftp.isi.edu/in-notes/rfc2627.txt
[11] C.K.Wong, M.Gouda, and S.Lam. “Secure Group
Communications Using Key Graphs”. Proceedings SIG-COMM 1998,
ACM Press, New York, pp. 68-79
[12] Patrick Becker, Patrick Cernko, Wolfgang Enderlein, Marc Klein,
Markus Sand.”The Multimedia-Box - Design and Development of a
Multimedia Home Entertainment System for Linux”.Advanced
practical project, Universität des Saarlandes, 2002
[13] GartnerConsulting. “The Emergence of Distributed Content
Management and Peer-to-Peer Content Networks”. GartnerConsulting,
January 2001.
[14] W3C. “Resource Description Framework (RDF) Model and
Syntax Specifation”. RFC-rdf-syntax-19990222, February 1999.

8

http://www.4centity.com/
ftp://ftp.isi.edu/in-notes/rfc2627.txt

