
RJ10375 (A0603-033) March 24, 2006
Computer Science

IBM Research Report

Efficient Algorithms for Allocation Policies

Doug Burdick1, Prasad M. Deshpande2, T. S. Jayram2, 
Raghu Ramakrishnan1, Shivakumar Vaithyanathan2

1University of Wisconsin
Madison, Wisconsin

2IBM Research Division
Almaden Research Center

650 Harry Road
San Jose, CA  95120-6099 

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Efficient Algorithms for Allocation Policies

Doug Burdick‡ Prasad M. Deshpande∗ T.S. Jayram∗

Raghu Ramakrishnan‡ Shivakumar Vaithyanathan∗

∗IBM Almaden Research Center ‡University of Wisconsin, Madison

ABSTRACT
Recent work proposed extending the OLAP data model to support
data ambiguity, specifically imprecision and uncertainty. A process
called allocation was proposed to transform a given imprecise fact
table into a form, called the Extended Database, that can be readily
used to answer OLAP aggregation queries.

In this work, we present scalable, efficient algorithms for cre-
ating the Extended Data Model (i.e., performing allocation) for a
given imprecise fact table. Many allocation policies require multi-
ple iterations over the imprecise fact table, and the straightforward
evaluation approaches introduced earlier can be highly inefficient.
Optimizing iterative allocation policies for large datasets presents
novel challenges, and has not been considered previously to the
best of our knowledge. In addition to developing scalable alloca-
tion algorithms, we present a performance evaluation that demon-
strates their efficiency and compares their performance with respect
to straightfoward approaches.

1. INTRODUCTION
Recent work [6] proposed extending the OLAP data model to

represent data ambiguity. Specifically, one form of ambiguity that
work addressed arose from relaxing the assumption that all dimen-
sion attributes in a fact are assigned leaf-level values from the un-
derlying domain hierarchy. Such data was referred to as imprecise.
In [6], we proposed allocation as a mechanism to deal with im-
precision. Operationally, allocation is performed by replacing each
imprecise fact r in D with a set of precise facts representing the
possible completions of r. Each possible completion is assigned an
allocation weight, and any procedure for assigning these weights is
referred to as an allocation policy. The result of applying an alloca-
tion policy to an imprecise database D is referred to as an extended
database.

[6] motivated allocation as a mathematically principled method
for handling imprecision, and provided a general framework for
characterizing the space of allocation policies. However, scalability
and performance issues were not explored. The main contribution
of this work addresses that is the presentation of scalable algorithms
for addressing the following problem:

1. Given: Imprecise database D, allocation policy A.

2. Do: Materialize Extended Database D∗ which results from
applying allocation policy A to imprecise database D.

Scalability is an issue because several of the allocation policies pre-
sented in [6] were iterative.

2. NOTATION AND BACKGROUND
In this section, our notation is introduced and the problem is mo-

tivated using a simple example.

2.1 Data Representation
Attributes in the standard OLAP model are of two kinds—dimensions

and measures. Each dimension in OLAP has an associated hierar-
chy, e.g., the location dimension may be represented using City and
State, with State denoting the generalization of City. In [6], the
OLAP model was extended to support imprecision in dimension
values that can be defined in terms of these hierarchies. This was
formalized as follows.

Definition 1 (Hierarchical Domains). A hierarchical domain H
over base domain B is a power set of B such that (1) ∅ /∈ H , (2)
H contains every singleton set (i.e., corresponds to some element
of B), and (3) for any pair of elements h1, h2 ∈ H , h1 ⊇ h2 or
h1 ∩ h2 = ∅. Elements of H are called imprecise values. For
simplicity, we assume there is a special imprecise value ALL such
that h ⊆ ALL for all h ∈ H .

Each element h ∈ H has a level, denoted by LEVEL(h), given
by the number of elements of H (including h) on the longest chain
(w.r.t. ⊆) from h to a singleton set. �

Intuitively, an imprecise value is a non-empty set of possible val-
ues. Hierarchical domains impose a natural restriction on specify-
ing this imprecision. For example, we can use the imprecise value
Wisconsin for the location attribute in a data record if we know
that the sale occurred in the state of Wisconsin but are unsure about
the city. Each singleton set in a hierarchical domain is a leaf node
in the domain hierarchy and each non-singleton set is a non-leaf
node. For example, Madison and Milwaukee are leaf nodes
whose parent Wisconsin is a non-leaf node. The nodes of H
can be partitioned into level sets based on their level values, e.g.
Madison belongs to the 1st level whereas Wisconsin belongs
to the 2nd level. The nodes in level 1 correspond to the leaf nodes,
and the element ALL is the unique element in the highest level.

Definition 2 (Fact Table Schemas and Instances). A fact table
schema is 〈A1, A2, . . . , Ak; L1, L2, . . . , Lk; M1, M2, . . . , Mn〉 such
that (i) each dimension attribute Ai, i ∈ 1 . . . k, has an associated
hierarchical domain, denoted by dom(Ai), (ii) each level attribute



Li, i ∈ 1 . . . k is associated with the level values of dom(Ai), and
(ii) each measure attribute Mj , j ∈ 1 . . . n, has an associated do-
main dom(Mj) that is either numeric or uncertain.

A database instance of this fact table schema is a collection of
facts of the form 〈a1, a2, . . . , ak; �1, �2, . . . �k; m1, m2, . . . , mn〉
where ai ∈ dom(Ai) and LEVEL(ai) = �i, for i ∈ 1 . . . k, and
mj ∈ dom(Mj), j ∈ 1 . . . n. �

Definition 3 (Cells and Regions). Consider a fact table schema
with dimension attributes A1, . . . , Ak. A vector 〈c1, c2, . . . , ck〉 is
called a cell if every ci is an element of the base domain of Ai, i ∈
1 . . . k. The region of a dimension vector 〈a1, a2, . . . , ak〉, where
ai ∈ dom(Ai), is defined to be the set of cells {〈c1, c2, . . . , ck〉 |
ci ∈ ai, i ∈ 1 . . . k}. Let reg(r) denote the mapping of a fact r to
its associated region. �

Since every dimension attribute has a hierarchical domain, we
thus have an intuitive interpretation of each fact in the database
being mapped to a region in a k-dimensional space. If all ai are
leaf nodes, the fact is precise, and describes a region consisting of
a single cell. Abusing notation slightly, we say that the precise fact
is mapped to a cell. If one or more Ai are assigned non-leaf nodes,
the fact is imprecise and describes a larger k-dimensional region.
Each cell inside this region represents a possible completion of an
imprecise fact, formed by replacing non-leaf node ai with a leaf
node from the subtree rooted at ai.

Example 1. Consider the fact table shown in Table 1. The first
two columns are dimension attributes Location (Loc) and Auto-
mobile (Auto), and take values from their associated hierarchical
domains. The structure of these domains and the regions of the
facts are shown in Figure 1. The sets State and Region denote the
nodes at levels 1 and 2, respectively, for Location; similarly, Model
and Category denote the level sets for Automobile. The next two
columns contain the level-value attributes Location-Level (LocL)
and Automobile-Level (AutoL), corresponding to Location and
Automobile respectively. For example, consider fact p6 for which
Location is assigned MA, which is in the 1st level, and Automobile
is assigned Sedan, which is in the 2nd level. These level values
are the assignments to Location-Level and Automobile-Level, re-
spectively.

Precise facts, p1–p5 in Table 1, have leaf nodes assigned to both
dimension attributes and are mapped to the appropriate cells in Fig-
ure 1. Facts p6–p14, on the other hand, are imprecise and are
mapped to the appropriate multidimensional region. For exam-
ple, Fact p6 is imprecise because the Automobile dimension is as-
signed to the non-leaf node Sedan and its region contains the cells
(MA,Camry) and (MA,Civic). �

3. FRAMEWORK FOR ALLOCATION
In this section, we quickly review the basic framework for allo-

cation policies. First, we restate the general template for allocation
policies presented previously in [5]. Then, we present a graph-
based framework to conceptualize the flow of data required to per-
form allocation.

3.1 Allocation Policies
For completeness we restate the following definition from [6, 5].

Definition 4 (Allocation Policy and Extended Data Model). Let r
be a fact in the fact table. For each cell c ∈ reg(r), the alloca-
tion of fact r to cell c, denoted by pc,r, is a non-negative quan-
tity denoting the weight of completing r to cell c. We require that�

c∈reg(r) pc,r = 1. An allocation policy A is a procedure that

FactID Loc Auto LocL AutoL Sales
p1 MA Civic 1 1 100
p2 MA Sierra 1 1 150
p3 NY F150 1 1 100
p4 CA Civic 1 1 175
p5 CA Sierra 1 1 50
p6 MA Sedan 1 2 100
p7 MA Truck 1 2 120
p8 CA ALL 1 3 160
p9 East Truck 2 2 190
p10 West Sedan 2 2 200
p11 ALL Civic 3 1 80
p12 ALL F150 3 1 120
p13 West Civic 2 1 70
p14 West Sierra 2 1 90

Table 1: Sample data

M
A

N
Y

TX
C

A

W
es

t
Ea

st

A
LL

Lo
ca

tio
n 

Civic Camry

TruckSedan

SierraF150

ALL
Automobile 

Model

Category

R
eg

io
n

S
ta

te

6

11

10

8

7

9

1413

ALL

AL
L

1

3

2

2 1 3

1 2

3

4 5

Figure 1: Multidimensional View of the Data

ID FactID Loc Auto LocL AutoL Sales Weight
1 p1 MA Civic 1 1 100 1.0
2 p2 MA Sierra 1 1 150 1.0
3 p3 NY F150 1 1 100 1.0
4 p4 CA Civic 1 1 175 1.0
5 p5 CA Sierra 1 1 50 1.0
6 p6 MA Camry 1 2 100 1.0
7 p7 MA Sierra 1 2 120 1.0
8 p8 CA Camry 1 3 160 0.5
9 p8 CA Sierra 1 3 160 0.5
10 p9 MA Sierra 2 2 190 0.5
11 p9 NY F150 2 2 190 0.5
12 p10 NY F150 2 2 200 1.0
13 p11 MA Civic 3 1 80 0.5
14 p11 CA Civic 3 1 80 0.5
15 p12 MA Sierra 3 1 120 0.5
16 p12 CA Sierra 3 1 120 0.5
17 p13 CA Civic 2 1 70 1.0
18 p14 CA Sierra 2 1 90 1.0

Table 2: Extended Database for Sample Data



takes as its input a fact table consisting of imprecise facts and pro-
duces as output the allocations of all the imprecise facts in the ta-
ble. The result of applying such a policy to a database D is an
extended database D∗. The schema of D∗, referred to as the Ex-
tended Data Model, contains all the columns of D plus additional
columns to keep track of the cells that have strictly positive alloca-
tions. Suppose that fact r in D has a unique identifier denoted by
ID(r). Corresponding to each fact r ∈ D, we create a set of fact(s)
〈ID(r), r, c, pc,r〉 in D∗ for every c ∈ reg(r) such that pc,r > 0
and
�

pc,r = 1. By default, each precise fact has a single alloca-
tion of 1 for the cell to which it maps. �

Table 2 shows the example of a possible Extended Database that
can result from applying an allocation policy to the example data
from Table 1.

3.2 Allocation Policy Template
In [5], we demonstrated how the space of allocation policies con-

sidered in [6] can be mapped to the following allocation policy tem-
plate, which is presented below. Each allocation policy instantiates
this template by selecting a particular allocation quantity that will
be used to assign the allocation weights. For example, EM-Count
allocation (from [5])uses fact count as the allocation quantity. Each
fact r is assigned the value 1 (i.e., has a “count” of 1), and each
cell c is assigned the “count” of facts “mapped” to c (i.e., the sum
of pc,r values for all facts r with non-zero allocation to cell c).
The selection of an allocation quantity corresponds to making an
assumption about the correlation structure present in the data that
should be reflected in the assignment of allocations, and details are
provided in [5].

Definition 5 (Allocation Policy Template). Assume allocation pol-
icy A has been selected, which determines the associated allocation
quantity. For each cell c, let δ(c) be the value of the allocation
quantity assigned to c. Let ∆t(c) be the updated quantity assigned
to c during iteration t to account for all imprecise facts r over-
lapping c. Let Γ(t)(r) denote the quantity associated with fact r.
Then, for an imprecise fact table D, the set of update equations are
generated from the following template:

Γ(t)(r) =
�

c′: c′∈reg(r)

∆(t−1)(c′) (1)

∆(t)(c) = δ(c) +
�

r: c∈reg(r)

∆(t−1)(c)

Γ(t)(r)
(2)

For each cell c that is a possible completion of fact r, the alloca-
tion of r to c is given by pc,r = ∆(t)(c)/Γ(t)(r) �

For a given imprecise fact table D, the collection of update equa-
tions is specified by instantiating this template with the appropriate
quantities for each fact r and each cell c. Every imprecise fact
r ∈ D has an equation for Γ(t)(r), and likewise every cell c ∈ C

has an equation ∆(t)(c).
Observe the equations generated by this framework are iterative,

as denoted by the superscripts. The equations in the above tem-
plate can be viewed as defining an Expectation Maximization (EM)
framework (see [6, 5] for the details). Expression 1 of the template
encodes the E-step (Expectation) and Expression 2 is the M-step
(Maximization). In numerical EM, each ∆(c) is evaluated itera-
tively until the values between successive iterations stop changing

(i.e., the value converges). Formally, let ε = |∆(t)(c)−∆(t+1)(c)|
∆(t)(c)

. If

ε ¡ k, where k is a pre-determined constant, then we say the value

for ∆(c) has converged. When ∆(c) for all cells c have converged,
the iterations stop. At this point, the final allocation weights pc,r

are available.
Further details regarding the mathematical justification for this

space of iterative allocation policies is covered in [6, 5], and will
not be revisited in this work. However, we will describe the “in-
tuition” behind such iterative allocation policies. Intuitively, allo-
cation policies should take into account interactions between over-
lapping imprecise facts. Consider imprecise facts p11 and p6 from
the example in Figure 1. Intuitively, the allocation of p11 should
affect the allocation of p6, and symmetrically, the allocation of p6
should affect the allocation of p11 since these facts overlap. How-
ever, it should be clear that different allocation weights are obtained
for the completions of facts p6 and p11 in the EDB depending on
the relative order in which the facts are allocated. Iterative allo-
cation policies avoid this issue because they will converge to the
same allocation weights regardless of the order in which the facts
are allocated.

3.3 Allocation Graph
The template given above only enumerates the set of allocation

equations, and provides no insight into the operational aspects re-
garding their evaluation. For example, the required access patterns
of cell data C and imprecise facts in D are not clear, and such infor-
mation is necessary for designing efficient, scalable algorithms. To
address this, we present an operational framework using a bipartite
graph-based formalism, called allocation graph.

Definition 6 (Allocation Graph). Assume allocation policy A has
been selected to handle imprecision in fact table D. Let I denote
the set of imprecise facts in D and C denote the set of cells repre-
senting possible completions of facts in I , as determined by A.

The allocation graph of D (w.r.t. A) is defined as follows: Each
cell c ∈ C corresponds to a node shown on the left side of Figure
2, while each imprecise fact in r ∈ I corresponds to a node shown
on the right side. There is an edge (c, r) in G if and only if c is a
possible completion of r. (i.e., c ∈ reg(r)). �

In the above definition, the set of cells C depends on the selected
allocation policy A, and is not equivalent to the set of precise facts
in D. The values of δ(c) for each entry c may be determined from
the precise facts, but this is not required. For example, each allo-
cation policy in [6, 5] used one of the following choices: the set
of cells mapped to by at least one precise fact from D, the union
of the regions of the imprecise facts, or the cross product of base
domains for all dimensions (i.e., every possible cell). Regardless
of the choice for C made by A, the allocation graph formalism can
still be used. The allocation graph for the sample data in Table 1
(w.r.t. EM-Count allocation policy) is given in Figure 2.

Notice that the allocation graph is bipartite. We now present
an allocation algorithm template that describes how to evaluate
the collection of allocation equations generated by A in terms of
processing these edges in G (i.e., processing terms in the allocation
equations). The pseudocode is given in Algorithm 1.

Theorem 1. For a given imprecise fact table D and selected al-
location policy A, let G be the resulting allocation graph for D
(w.r.t. A). The processing of edges in G performed by the Basic
Algorithm is equivalent to evaluating the collection of allocation
equations generated by A.

Proof. By construction, G contains an edge (c, r) between cell c
and imprecise fact r if and only if c is a possible completion of r. In
terms of the set of allocation equations, each edge (c, r) ∈ G cor-
responds to exactly one term in both the Γ(t)(r) equation for fact r



<MA,Sedan>p6
<MA,Truck>p7

<CA,ALL>p8

<East,Truck>p9
<West,Sedan>p10

<ALL,Civic>p11
<All,F150>p12

<West,Civic>p13
<West,Sierra>p14

<MA,Civic>

<MA,Sierra>

<NY,F150>

<CA,Civic>

<CA,Sierra>

c1

c2

c3

c4

c5

S1:<State,Category>

S2 :<State, ALL>

S3 :<Region,Category>

S4 :<ALL,Model>

S5 :<Region,Model>

C:<State,Model>

Figure 2: Allocation graph for data in Table 1

and the ∆(t)(c) equation for cell c. Lines 8 - 10 of the Basic Algo-
rithm correspond to evaluating Γ(t)(r) equations for all imprecise
facts r. The updates to Γ(t)(r) in Line 10 corresponds to evaluat-
ing the allocation equation for fact r (generated from Equation 1
of the allocation template). Similarly, Lines 14 - 16 correspond to
evaluating ∆(t)(c) equations for all cells c, with the processing of
edges and update in Lines 15 - 16 corresponding to evaluating the
equation for cell c (generated from allocation template Equation
2).

Thus, processing edges in G is equivalent to evaluating these
equations. Notice each iteration t requires 2 passes over the edges
of G, and in each pass, each edge of G is processed exactly once.
Moreover, the 2 passes cannot in general be replaced by a single
pass because the second pass uses values computed for Γ(t) in the
first pass of the current iteration to update the values for ∆(t).

Algorithm 1 Basic Algorithm
1: Input: Allocation graph G with cells C and imprecise facts I
2: for (each cell c) do
3: ∆(0)(c)← δ(c)

4: for (each iteration t until all ∆(t)(c) converge) do
5: for (each imprecise fact r) do
6: Γ(t)(r)← 0
7: // Compute t-th step estimate for Γ’s
8: for (each imprecise fact r) do
9: for (each cell c s.t. edge (c, r) ∈ G) do

10: Γ(t)(r)← Γ(t)(r) + ∆(t−1)(c)
11: for (each cell c) do
12: ∆(t)(c)← δ(c)
13: // Compute t-th step estimate for ∆’s
14: for (each cell c) do
15: for (each imprecise fact r s.t. edge (c, r) ∈ G) do
16: ∆(t)(c)← ∆(t)(c) + ∆(t−1)(c)/Γ(t)(r)

3.4 Scalability of The Basic Algorithm
As presented, the Basic Algorithm has several issues in scaling

to large fact tables (i.e., fact tables such that C and I are larger than
main memory). From the pseudocode in Algorithm 1, we observe

the nested loops in lines 8 - 10 require access to all cells c ∈ C in
reg(r) for each imprecise fact r. In general, no single ordering of
C exists which provides such locality for all imprecise facts r ∈ I .
From the example in Figure 2, notice, that an ordering of C that
works for fact p8 would not work for p12. The nested loops in
lines 14 - 16 require access to all imprecise facts r ∈ I overlapping
c for each cell c. Again, there is no single ordering of the imprecise
facts I that results in all imprecise facts overlapping a cell being in
a contiguous block. We refer to this problem as the locality issue.

A second orthogonal issue arises from the iterative nature of the
allocation algorithm. Assume a “good” ordering of the cell data C
and imprecise facts I addressing the locality issue were available.
Even then, both C and I need to be scanned completely for each
iteration to execute the Basic Algorithm. This issue, which we refer
to as the iterative issue, is significant in practice, since a non-trivial
number of iterations are required before the allocation algorithm
completes (i.e., the allocation weights converge)

The approaches presented to address the locality issue in Sec-
tion 4 are incorporated into the Independent (Section 5) and Block
algorithms (Section 6). Section 7 details our solution to the iter-
ative issue, which serves as the basis for the Transitive Algorithm
presented in Section 8.

4. ADDRESSING THE LOCALITY ISSUE
In this section, we present strategies addressing the locality is-

sue which serve as the basis for creating I/O aware variants of the
Basic Algorithm. In the pseudocode, notice each iteration involves
two passes over all edges in allocation graph G (i.e., one pass for
the nested loops in lines 8 - 10 and a second for the nested loops
in lines 14 - 16.) Addressing the locality issue involves carefully
ordering the computations for each pass. In terms of G, this could
be considered determining the best order for processing edges in
G. We first consider whether we can partition the imprecise facts
in some clever manner so that each group of imprecise facts can
be processed separately within each pass. Before we study what
partitions lead to efficient I/O computations, we first address the
correctness of the proposed approach.

Theorem 2 (Ordering Of Edges). Suppose the update equation for
∆(t)(c) is computed using a operator that is commutative and as-
sociative (e.g., sum). Let P be a partitioning of the edges of G into
s subgraphs G1, G2, . . . , Gs.

Then, the final values for ∆(t)(c) and Γ(t)(r) are unaffected by:
1) the choice of partitioning P , 2) the order in which subgraphs
are processed or 3) the order in which edges within a subgraph are
processed.

The above theorem shows that we are free to choose any par-
titioning of the imprecise facts into groups, and can arrive at the
same result. Pseudocode for a variant of the Basic Algorithm uti-
lizing this partitioning concept, called Partitioned Basic, is given in
Algorithm 2. For ease of presentation, details regarding initializa-
tion and the update equation have been omitted.

Corollary 1. From Theorem 1 and Theorem 2, the Partitioned Ba-
sic Algorithm computes the same results as the Basic Algorithm.

4.1 Summary Tables
In order to study appropriate partitions of the imprecise facts for

Algorithm 2, it will be helpful to group together imprecise facts ac-
cording to the levels at which the imprecision occurs. We formalize
this notion below.



Algorithm 2 Partitioned Basic Algorithm
1: Input: Allocation graph G with cells C and imprecise facts I
2: Input: Partitioning P1, P2, . . . Ps of the imprecise facts I
3: for (each iteration t until all ∆(t)(c) converge) do
4: // Compute t-th step estimate for Γ
5: for (each partition Pi) do
6: for (each cell c) do
7: for (each imprecise fact r in Pi) do
8: // Update Γ(t)(r)
9: // Compute t-th step estimate for ∆

10: for (each partition Pi) do
11: for (each cell c) do
12: for (each imprecise fact r in Pi) do
13: // Update Γ(t)(r)

Definition 7 (Summary Tables). Fix an allocation graph G, and let
I be the set of imprecise facts and C be the set of cells. Partition the
facts in I by grouping together facts in I that have identical assign-
ment to their level attributes. We refer to each such grouping of the
imprecise facts as a summary table. Note that each summary table
is associated with a distinct assignment to the level attributes. Since
all cells in C correspond to the lowest level of the dimensional hi-
erarchies, for convenience we refer to C as the cell summary table.
�

Intuitively, the summary tables are “logical” groupings which are
similar to the result of performing a Group-By query on the level
attributes. The main difference is that summary tables only con-
tain entries corresponding to either imprecise facts in D or cells in
C. As a consequence, there is a partial ordering between summary
tables similar to the one between Group-By views, described in [9].

Definition 8 (Partial Ordering of Summary Tables (	)). Let S be
the collection of summary tables for D, with the level-vector for
summary table Si denoted as level(Si). Then, for each Si, Sj ∈
mathcalS, Si 	 Sj iff each element in level(Si)
leqlevel(Sj) and there does not exist any Sk ∈ mathcalS such
that level(Si)
leqlevel(Sk)
leqlevel(Sj).

We note that that 	 is transitive, but not closed since S does not
include every possible summary table.

Since each summary table is associated with a unique level vec-
tor, it is possible to materialize the separate summary tables using
a single sort. The sorting key is formed by concatenating the level
and dimension attributes. This “special sort”, which we refer to as
sorting D into summary table order, can be thought of as simulta-
neously accomplishing the following: 1) partition the precise and
imprecise facts, 2) process the precise facts to materialize C (i.e.,
determine δ(c) for each c ∈ C, and 3) further partition the impre-
cise facts into the separate summary tables. In the descriptions of
the algorithms that follow, we assume this pre-processing step has
been performed. In terms of I/O operations, it is equivalent sorting
D.

Example 2. Consider the sample data in Table 1, with the EM-
Count allocation policy. For this data set, there are 6 summary
tables—the cell summary table C and 5 imprecise ones S1, . . . , S5—
as indicated by labels for each of the tables in Figure 3. The multi-
dimensional representation for each summary table is shown. Each
summary table is labeled by a pair of level sets associated with that
table. For example, the summary table (State,Category) consists of

all facts whose level attribute assignment equals (1, 2). Notice the
entries in C are not precise facts. �

c1

c4 c5

S4: <3,1>
<ALL, Model>

S2: <1,3 >
<State, ALL>

S1: <1,2>
<State, Category>

11

6 7

8

S5: <2,1>
<Region, Model>

S3: <2,2>
<Region, Category>

9

10

1413

M
A

N
Y

TX
C

A

12

CamryCivic SierraF150
C: <1,1>
<State, Model>

c3

c2

Figure 3: Summary Tables for Example Data (with partial or-
der indicated)

Why are summary tables important in the context of Algorithm 2?
The answer is that computing a single pass for each summary table
Si can be achieved using one scan of Si and C, as shown below.

Theorem 3. For every imprecise summary table Si, there exists a
sort of Si and the cell summary table C such that a single pass
through the edges of the subgraph between C and Si can be exe-
cuted using a single scan of C and Si. �

The proof of the above theorem relies on the fact that the above
subgraph has a simple structure: every cell c is overlapped by at
most one imprecise fact in Si. Since the degree of each cell c is
at most 1 in this subgraph, it is possible to order C and Si so that
for every imprecise fact r ∈ I , cells overlapped by r (i.e., nodes
adjacent to r in G) form contiguous blocks, and these blocks are
pairwise disjoint across the imprecise facts. The sort order can be
achieved by sorting on a key formed by concatenating together the
level and dimension attribute vectors. The Independent algorithm
described in the next section builds on this idea by considering sort
orders that are consistent with multiple summary tables so that big-
ger groupings of imprecise facts are possible.

4.2 Partitions
What happens when the sort order of C is not consistent with the

imprecise summary table? In this case, we no longer have pairwise
disjoint contiguous blocks. This is easily seen in the allocation
graph in Figure 2. Let the order on the cells be from top to bottom
as shown in the figure. The cells adjacent to p11 of summary table
S4 are c1 and c4; however, any contiguous block including these
two cells also intersects imprecise fact p12. Thus, it appears we
have to re-sort C to process S4. However, if we had enough space
available in memory to simultaneously hold all imprecise facts in
S4 whose processing has not been finished, it is still possible to use
the present sort order. We now formalize this intuition.



Definition 9 (Partition Size). Let C be a cell summary table sorted
with respect to some sort order L and let Si be a summary table.
We say that the division of cells of C into contiguous blocks (i.e.,
respecting the sort order) is legal if for every imprecise fact, all of
its neighbors are within exactly one of the contiguous blocks. The
partition size of Si with respect to the sort order L on C is the
largest number of facts that map to the same contiguous block of
cells given the best legal division of cells into contiguous blocks,
i.e., this number must be as small as possible.

Theorem 4. Let C be a cell summary table sorted with respect
some sort order L (i.e., ordering of the values in the level and di-
mension attribute vectors) and let Si be a summary table. Then a
single pass on the subgraph between C and Si can be executed us-
ing a single scan of C and Si provided that the memory available
is as large as the partition size of Si with respect to sort order L on
C. �

Thus, the partition size of summary table Si is the largest amount
of memory that needs to be reserved for processing Si in a single
pass, and depends on the chosen sort order of the dimensions L.
We make the observation that the partition size for each Si can be
computed during the step where D is sorted into summary table
order. Consider summary table Si. During the final “merging step”
of the sort into summary table order, each consecutive pair of en-
tries r1, r2 in Si are compared to determine their ordering in Si.
The partition boundaries can only occur between these sorted pair
of facts. For each r ∈ Si, we can easily determine the smallest and
largest indexes of entries in C such that edge (c, r) ∈ G, which
we denote r.first and r.last respectively. A partition boundary in
Si occurs between entries r1, r2 if r2.first > r1.last. This signi-
fies that all edges have been visited for r1 before the first edge of
r2 will be visited. This corresponds to the equation Γ(t)(r1) being
completely evaluated (i.e., all terms in the equations seen) before
evaluation of Γ(t)(r2) starts (i.e., first term in the equation is seen).

Example 3. Consider a “pathological” fact table similar to the ex-
ample, but which has every possible fact in each imprecise sum-
mary table and generates cell summary table C containing a δ(c)
entry for all possible cells. Figure 4 shows the multidimensional
representation of this new example fact table after it has been sorted
into summary table order. Assume the sort order L is {Location,
Automobile}, and that summary table entries are sorted in the order
indicated by the labels on each entry. The sort order of the cells is
c1, . . . , c12.

From Theorem 4, any of the Si can be processed in a single scan
of both Si and C if enough memory is available to hold the block of
entries with the “thick” edges for each Si. For example, S1 and S2

require 1 entry, S2 and S4 require 4 entries, and S3 requires 2 en-
tries. This number of required entries is the corresponding partition
size for each Si respectively. �

The Block algorithm, described in Section 6, exploits this idea by
finding a single sort that can be used to process all summary tables
in multiple scans, where each scan involves processing as many
summary tables as possible whose total partition size fits within
available memory.

5. INDEPENDENT ALGORITHM
In this section we introduce the Independent algorithm which

improves upon the Partitioned Basic Algorithm by exploiting struc-
ture of the summary table partial order. A great deal of inspiration
for Independent came from the PipeSort algorithm, introduced in
[1]. A comparison between the two is provided in Section 9.

S4: <3,1>
<ALL, Model>

S2: <1,3 >
<State, ALL>

S1: <1,2>
<State, Category>

S5: <2,1>
<Region, Model>

S3: <2,2>
<Region, Category>

N
Y

TX
C

A
M

A

CamryCivic SierraF150
C: <1,1>
<State, Model>

c2c1 c4c3

c6c5 c8c7

c10c9 c12c11

c14c13 c16c15

21 43

65 87

21

43

65

87

21 43

1 2

3 4

1

2

3

4

Figure 4: Illustrative Example of Determining Partition Sizes

5.1 Summary Table Structure
We now re-consider the partial order between summary tables

noted in Section 4.1. First, we generalize Theorem 3 to groups of
summary tables.

Theorem 5. Consider a path through the summary table partial
order, containing in order summary tables C, S1 	 S2 	 · · · 	
Sk. There exists a sort order L over all Si and the cell summary
table C such that all edges in the subgraph of G between the Si

and C can be processed by executing a single simultaneous scan of
C and the Si. �

The proof for Theorem 5 relies on the same observation of the
graph structure that Theorem 3 does, namely the degree of each
cell node in the allocation graph for each Si has degree 1. In the
pseudo-code below, we refer to the single current fact for each sum-
mary table as the summary table cursor.

After performing the step where D is sorted into summary table
order, we have information about which imprecise summary tables
have records in the given fact table D. Thus, we can construct
the summary table partial order for D. For a given summary table
partial order, the result from [10] can be adapted to provide a lower
bound on the number of distinct chains (i.e., summary table groups)
in this partial order, which also happens to be the minimum number
of sorts required of C. The lower bound is the length of the longest
anti-chain in the summary table partial order (i.e., the “width”).
The algorithm in [10] for generating the minimal number of chains
in the Group-By lattice can be easily adapted to a summary table
partial order.

5.2 Independent Details
For each summary table in the chain (including the precise sum-

mary table C) we only need enough memory to hold a single fact.
Since we consider records in page-sized blocks, we actually per-
form I/Os for an entire page of records. The pseudo-code for the
Independent algorithm is given in Figure 3. For ease of presenta-
tion, the initialization steps are omitted (since they are identical to
those described in the Partitioned Basic Algorithm), and we assume



that D has been sorted into summary table order and summary table
partial order information is available.

Corollary 2 (Correctness of Independent Algorithm). From Theo-
rems 2 and 4, the Independent Algorithm computes the same results
as the Partitioned Basic Algorithm.

The pseudo-code in Algorithm 3 contains the step “Update cur-
sor on Si to fact r that could cover c.” This step can straightfor-
wardly be implemented by examining the dimension attribute val-
ues of c and r, and the details are implementation specific. The
correctness of this algorithm was established by Theorem 5.

Algorithm 3 Independent Algorithm
1: Input: Cell-level summary table C, Imprecise Summary Table

Groupings S , Sort-Order Listings L
2: for (each iteration t until all ∆(t)(c) converge) do
3: for (each summary-table group S ∈ S) do
4: Sort C and summary-tables in S into sort-order L
5: // Compute t-th step estimate for Γ
6: for (each cell c) do
7: for (each summary table Si ∈ S) do
8: Update cursor on Si to fact r that could cover c
9: if (r 
= NULL) then

10: Γ(t)(r)← Γ(t)(r) + ∆(t−1)(c)
11: // Compute t-th step estimate for ∆
12: for (each summary table group S ∈ S) do
13: for (each cell c) do
14: for (each summary table Si ∈ S) do
15: Update cursor on Si to fact r that could cover c
16: if (r 
= NULL) then
17: ∆(t)(c)← ∆(t)(c) + ∆(t−1)(c)/Γ(t)(r))

Following our convention, we omit the costs of sorting D into
summary table order and the final cost of writing out the Extended
Database D∗, since these are common to all algorithms.

Theorem 6. Let |I |, |C| be the number of pages for imprecise facts
I ∈ D and the cell summary table C respectively. Let W be the
length of the longest anti-chain in the summary table partial order,
and T be the number of iterations. The Independent Algorithm in
the worst case requires 7WT |C|+ 7T (|I |) I/Os.

Proof. We make the standard assumption that external sort requires
two passes over the relation, with each page requiring a read and
write I/O. Each summary table group is sorted into the correspond-
ing sort-order of L. Then, two passes are required over each sum-
mary table in the group and the cell-level summary table C. During
the first pass, each page of C is read only, and during the second
pass, each page of C is read and written. Thus, the two allocation
passes require 3 I/Os per page in C. Each page in an imprecise
summary table requires 3 I/Os: a read and write for the first pass,
and only a read for the second pass.

The total number of required I/Os per iteration is given by the
following expression.

�W
i=1[sort C + sort of each imprecise sum-

mary table in summary table group i + 2 scans of C] + [2 scans of
each summary table in group i]

= 4W |C| I/Os + 4(|I |) I/Os + 3W |C| I/Os + 3(|I |) I/Os. It is a
straightforward exercise to simplify this expression to the one given
in the Theorem.

6. BLOCK ALGORITHM
In practice, the cost of repeatedly sorting the cell-level summary

table C is likely to be prohibitive. In the general case, the number

of entries in C will be much larger than the total number of size of
the other summary tables. If C does not fit into memory, each sort
of C is equivalent to reading and writing every page of C twice, or
4|C| I/Os.

What was the motivation for the repeated sorts used in Indepen-
dent? During any given point of execution, we only need to keep
in memory entries of Si for which we have seen at least one fact
in C and may see at least one more fact in C. Re-sorting C for
each summary table group (i.e., the set of summary tables on a path
through the summary table partial order) reduced this to 1 fact for
each imprecise summary table Si and the precise summary table
C.

Building on the intuition presented in Section 4.2, we observe
that any summary table can be processed using the same sort or-
der if we can hold partition size of Si records in memory for each
Si. Conceptually, this is equivalent to increasing the size of the
summary table cursor from a single fact to a contiguous block of
records, which we called the partition of Si. Only a single partition
of Si needs to be held in memory for a summary table as we scan
C.

Algorithm 4 Block Algorithm
1: Method: Block Algorithm
2: Input:Cell-level summary table C, Imprecise Summary Table

Groupings S , Allocation Policy A
3: for (each iteration t until all ∆(t)(c) converge) do
4: for (each summary-table group S ∈ S) do
5: for (each precise fact c in D) do
6: for (each summary table Si ∈ S) do
7: Update cursor on Si to partition p that could cover c
8: Find r in p that could cover c
9: //If p contains such an r, perform allocation

10: if (r 
= NULL) then
11: Γ(t)(r)← Γ(t)(r) + ∆(t−1)(c)
12: for (each summary table group S ∈ S) do
13: for (each precise fact c in D) do
14: for (each summary table Si ∈ S) do
15: Update cursor on Si to partition p that could cover c
16: Find r in p that could cover c
17: // If p contains such an r, perform allocation
18: if (r 
= NULL) then
19: ∆(t)(c)← ∆(t)(c) + ∆(t−1)(c)/Γ(t)(r)

6.1 Implementation Details for Block
The complete pseudo-code for Block is given in Algorithm 4.

The upper bound on a partition size for each summary table Si

can be exactly determined during the step where D is sorted into
Summary Table order. The step “Update cursor on Si to partition
p that could cover c” is implemented in a similar fashion to the
analogous step in Independent. Following our convention, we omit
the costs of sorting D into summary table order and the final cost
of writing out the Extended Database D∗, since these are common
to all algorithms.

Theorem 7. Let |B| be the sum of the partition sizes for all sum-
mary tables and |M | the size of the memory buffer (both given in
pages). Let T be the number of iterations being performed. Let
W ′ = � |B|

|M|� be the number of summary table groups. The to-
tal number of I/Os performed by the Block algorithm is between
3W ′T |C|+ 3T (|I |) I/Os and 2[3W ′T |C|+ 3T (|I |)].
Proof. Finding the smallest value of W is an NP-complete prob-



lem, and there exists a trivial reduction of the problem to the 0-1
Bin Packing problem for which several well-known 2-approximation
algorithms exist [7]. For each iteration, the total number of re-
quired I/Os per summary table group is given by the following ex-
pression

�W ′
i=1[2 scans of C] + [2 scans of each summary table in

group i], which when expanded gives the expression in the theorem
since each summary table appears in exactly one summary table
group.

7. ADDRESSING THE ITERATIVE ISSUE
Both the Independent and Block Algorithms address the local-

ity problem, and reduce the number of I/O operations required in
each iteration. However, for these algorithms, the work performed
for an iteration is independent of work for subsequent iterations.
Specifically, once a cell or imprecise fact are read into memory
for an iteration, only work specific to that iteration is performed.
Additionally, for both Block and Independent, the amount of work
performed for each iteration is the same as the amount of work per-
formed in the first iteration of the algorithm.

In this section, we consider improvement to the Block algorithm
that exploits “iterative” locality, allowing the re-use of I/O opera-
tions across several iterations. Once an imprecise fact r has been
read in memory, we would like to determine the final allocation
weights pc,r for r. More generally, we consider the following prob-
lem: Is it possible to partition the allocation graph into parts so
that each part can be processed independently for all iterations? If
so, we obtain a significant improvement because the smaller parts
that fit into memory can be processed fully without incurring any
additional I/O costs for all the iterations. The remaining parts can
be handled by reverting to the Block algorithm described earlier.

To address this problem, let us re-examine the Basic Algorithm,
and first consider a simpler question: For a fixed imprecise fact r
in the allocation graph G, and a fixed iteration t′, what quantities
are required to compute Γ(t′)(r) in the first pass? From Line 10,
the answer is simple—we need all the values ∆(t′−1)(c) for all
cells c that are neighbors of r in G. Since Γ(t′)(r) is updated in-
crementally, this effectively means that for each iteration, the only
nodes that are touched (i.e., value in that node is used) for comput-
ing Γ(t′)(r) are just r and its neighboring cells in G. Similarly, the
nodes that are touched for computing ∆(t′)(c) are the cell c and
its neighboring imprecise facts in G. More generally, we have the
following:

Theorem 8. Fix a set of imprecise facts I′ ⊆ I . Let C ′ = {c |
(c, r) for some r ∈ I ′} denote the cells that are the neighbors of
the facts in I ′. Then, the nodes that are touched in an iteration t′ in
order to compute the values Γ(t′)(r) for all r ∈ I ′ in the first pass
belong to I′ ∪ C′. Similarly, for a set of cells C′, the nodes that
are touched in order to compute the values ∆(t′)(c) for all c ∈ C′

in the second pass belong to C′ and the neighbors of C′ in G, I ′′.
Thus, the set of nodes touched per iteration is I′ ∪ C′ ∪ I ′′. �

Example 4. In the allocation graph for the sample data in Figure
2, assume we initialize I ′ = p9. Then, C′ = c2, c3, and I ′′ =
p7, p12.

Intuitively, the set of nodes touched for a particular I′ increases
in each iteration, until all nodes reachable from I′ are visited. When
I ′ is initialized to a single node r in the graph, this is the (strongly)
connected component of the allocation graph G containing r. Since
edges in G are undirected, all connected components are strongly
connected as well.

Example 5. In the allocation graph for the sample data in Figure
2, there are 2 connected components: CC1 = {p1, p4, p5, p6, p10,
p11, p12, p13, p14} and CC2 = {p2,p3,p7,p8,p9}. In the exam-
ple allocation graph in Figure 2, the “thick” edges correspond to
edges in CC2.

Theorem 9. Let P be a partitioning of the edges of G into sub-
graphs G1, G2, . . . , Gs such that each subgraph corresponds to
a connected component of G. Then, running the Basic Algorithm
with G as the input is equivalent to running the Basic Algorithm on
each component G1, G2, . . . , GS separately across all iterations.

Notice the above theorem differs from Theorem 2, which only
describes ordering issues within an iteration. This suggests that we
should consider partitioning G into the connected components, and
the next section presents the Transitive Algorithm based on this
idea.

8. TRANSITIVE ALGORITHM
At the highest level, the Transitive Algorithm has two parts. The

first part identifies the connected components in the allocation graph.
The second part processes the connected components to perform al-
location and create the EDB entries for the facts in the connected
component.

For ease of explanation, we will refer to both cells and impre-
cise facts as tuples, unless they are treated asymmetrically. Thus,
the set of all tuples is the union of all cells c and imprecise facts r.
We introduce for each tuple t a connected component id ccid indi-
cating which connected component t is assigned to. The algorithm
assigns ccid only once. However, during algorithm execution, mul-
tiple connected components may need to be “merged” (i.e., a single
component was identified as multiple separate components, with
each assigned a unique ccid). We now need to update the ccid
of all tuples in the merged component. This is accomplished “im-
plicitly” by introducing an auxiliary memory-resident integer array
ccidMap , where ccidMap[i] corresponds to the “true” ccid of
the component assigned ccid i. The size of ccidMap is the smaller
of the number of cells or number of imprecise facts. We note the
size of ccidMap is comparable to memory-resident data structures
used by existing Transitive Closure algorithms [8, 2]. Our conven-
tion is to assign the new “merged” component the smallest t.ccid
of any tuple t identified to be in the component.

The Transitive Algorithm has three steps. In the first step the
connected components are identified. In other words, a ccid is
assigned to every tuple t, and ccidMap is appropriately updated.
The processing of cells and imprecise facts for this step is identi-
cal to a single pass of the Block algorithm. For the second step,
all tuples t are sorted into component order by using the sort key
ccidMap[t.ccid]. Finally, in step 3, each connected component
is processed, and the Extended Database entries for the tuples in
the component are generated. Connected components CC which
are smaller than the buffer B are read into memory, with allocation
performed using an in-memory variant of the Block Algorithm, and
the EDB entries for tuples in CC are written out. If CC is larger
than B, then the external Block algorithm (described in Section 6)is
executed, and afterwards, the final EDB entries are generated.

The complete pseudo-code for the Transitive Algorithm is given
in Figure 5.

Following our convention, we omit the costs of sorting D into
summary table order and the final cost of writing out the Extended
Database D∗, since these are common to all algorithms.

Theorem 10. Let |B| be the sum of the partition sizes for all sum-
mary tables and |M | be the size of the memory buffer (both given in



Algorithm 5 Transitive Algorithm
1: Method: Transitive Algorithm
2: Input: Allocation Policy A, Cell-level summary table C, Im-

precise Summary Table Groupings S
3: Let |c| be number of cells, |r| number imprecise facts
4: ccidMap← integer array of size min{|c|, |r|}
5: for (i = 1 to ccidMap.length) do
6: ccidMap[i] = i
7: // Step 1: Assign ccids to all entries
8: for (each summary table group S ∈ S) do
9: for (each cell c ∈ C) do

10: currSet← {set of r from Si ∈ S s.t. (c, r) ∈ G} ∪{c}
11: currCcid← {set of t.ccid values for t ∈ currSet}
12: if (currCcid is empty) then
13: set t.ccid to next available ccid for all t ∈ currSet
14: else
15: minCcid← smallest value for currMap[t.ccid] where

t ∈ currSet and t.ccid is assigned
16: for (all t ∈ currSet with unassigned t.ccid) do
17: t.ccid← minCcid
18: for (each cid ∈ currCcid) do
19: currMap[cid]←minCcid
20: // Step 2: Sort Tuples into Component Order
21: for (i= 1 to currMap.length) do
22: Assign currMap[i] = k where k is smallest reachable ccid

from currMap[i]
23: Let R = C ∪ I
24: Sort tuples t ∈ R by key currMap[t.ccid]
25: // Step 3: Process connected components
26: for (each connected component CC) do
27: if (|CC| < B) then
28: read CC into memory
29: evaluate A for tuples in CC
30: write out EDB entries for CC
31: else
32: for (each iteration t) do
33: perform Block Algorithm on tuples in CC
34: write out EDB entries for CC

pages). Let W = � |B|
|M|�. Let T be the number of iterations being

performed, and L be the total number of pages containing large
components (i.e., components whose size is greater than |B|). As-
sume that ccidMap remains in memory at all times, but is outside
of buffer M .

The total number of I/O operations performed by the Transitive
Algorithm for all iterations is between (2W + 5)(|C|) + 7|I | +
(3T + 2)|L| and (4W + 5)(|C|) + 7|I | + (3T + 2)|L| �

Proof. As with Block, finding the smallest value of W is an NP-
complete problem with a well-known 2-approximation. For the first
step, we are required to scan C for each of the W summary table
groups and each summary table once to assign the ccids to all tu-
ples, for a total cost of 2W |C|+2|I |. The second step requires sort-
ing C and all summary tables based on ccid value, and we assume
external sort requires 2 passes, for a total of 4(|C|+ |I |) I/Os. The
final step involves processing the connected components. Compo-
nents smaller than |B| are read into memory and have all iterations
of allocation evaluated. Only the Extended Database entries are re-
quired to be written out, thus the total cost is (|C| + |I | − |L|).
Large components must be processed using Block for each itera-
tion, for a total for all large components of (3T +3)|L| I/Os. First,
each large component must be re-sorted again into summary table
order, for a total cost of 4|L| I/Os. The Block algorithm requires
(3T − 1) I/Os, with the final write of the component replaced by
only writing out the EDB entries. Combining these terms together
yields the above expression.

Observe the only term in the cost formula dependent on the num-
ber of iterations T depends on the total size of the large components
|L| as well. Thus, if there are no large connected components in
G (i.e., no components larger than B), the number of I/O opera-
tions would be completely independent of the number of iterations.
Since we have established that using the connected components for
evaluating the allocation equations is correct, all that remains to be
shown is that Transitive correctly identifies these components.

Theorem 11. The Transitive Algorithm correctly identifies the con-
nected components in the allocation graph G.

9. RELATED WORK
Independent uses the structure between summary tables in a man-

ner similar to how PipeSort uses the structure between Group-By
views to materialize the cube. In PipeSort, the idea was a single
entry in each Group-By view in the pipe needed to be held in mem-
ory. The concept of a Group-By view is identical to our notion
of a summary table. While PipeSort will generate all entries in a
Group-By view with corresponding precise records, Independent is
interested only in the summary table entries that have facts in the
given instance D.

The other major difference is how the “pipes”, or “chains”, are
used. A reasonable implementation of PipeSort would explicitly
traverse the chains in order. For Independent, the chains are “im-
plicit”, in the sense that a reasonable implementation would con-
sider the summary tables in the chain in any order (i.e., allocation
equations are evaluated using only allocation statistics from the pre-
cise summary table C and one of the imprecise summary tables in
the chain). Thus, the chain is used only to describe the grouping
of summary tables for processing. The reason for this difference is
that Independent must traverse the chains in both the “up” direction
from C to the end, and “down” direction. Also, for Independent,
the precise summary table C is part of every chain, or summary ta-
ble group. The reason is that the “down” direction involves actually
modifying the allocation statistics for each precise fact in C.



The Block algorithm is similar in spirit to the Overlaps algorithm
for materializing the OLAP cube, presented in [1]. The Overlaps
algorithm was based on re-using the same sort order to compute
several Group-By views. There are two main differences between
Overlaps and Block, which are analogous to the differences be-
tween PipeSort and Independent. First, since Overlaps handled
precise facts, every entry containing a fact in a Group-By view
was created (similar to PipeSort). For Block, we are only inter-
ested in entries in the Group-By view (i.e., facts in a summary
table) corresponding to an imprecise fact in D. In practice, this
provides two distinct advantages. First, the latter is significantly
smaller than the number of entries in the Group-By view. Second,
the exact partition size for each summary table is available after
D has been sorted into summary table order. As presented in [1],
Overlaps could either place an analytical upper bound on partition
size based on the dimension hierarchies (and dimension ordering)
or could use a tighter heuristical estimate based on the statistics of
the data instance. Having the exact size of each summary table par-
tition available makes such estimates unnecessary for the proposed
Block algorithm.

Second, the Block algorithm requires processing summary tables
in the “up” direction and the “down” direction. For this reason, a
reasonable implementation of Block would disregard the structure
between summary tables. The reason is that the “down” direction
involves actually modifying the allocation statistics for each precise
fact c, and it would be easier to directly process the entries in C for
each Si directly.

The Transitive Algorithm was inspired by algorithms to com-
pute the Direct Transitive Algorithm [2], and a comparison between
these algorithms and Transitive is made in Section 9.

[8]
[2]
[4]
[3]

10. EXPERIMENTS
To empirically evaluate the performance of the proposed algo-

rithms, we conducted several experiments using both real and syn-
thetic data. All algorithms were implemented in Java, and the ex-
periments were carried out on a machine with a single Pentium 2.66
MHz processor, 1GB of RAM, and a single IDE disk.

Since existing data warehouses cannot directly support impre-
cise data, there are not many ”real-world” examples of multidimen-
sional imprecise data with hierarchical dimensions. However, we
were able to obtain one such real-world dataset from an automo-
tive manufacturer. The fact table contains 797,570 facts, of which
557,255 facts were precise and 240,315 were imprecise (i.e., 30.1%
of the total facts are imprecise). There were 4 dimensions, and the
characteristics of each dimension are listed in Table 3. Two of the
dimensions (SR-AREA and MODEL) have 3 attributes (including
ALL), while the other two (TIME and LOCATION) have 4. Each
column of Table 3 lists the characteristics of each attribute for that
dimension. Next to each attribute name are two numbers. The first
lists the number of distinct values the attribute can take, and the
second gives the percentage of facts in the fact table taking a value
from that attribute for the particular dimension. For example, for
the SR-AREA dimension, 92% of the facts take a value from Sub-
Area attribute, while 8% take a value from the Area attribute.

Although a significant number of facts were imprecise, most im-
precise facts has imprecision which was fairly moderate. Most im-
precise facts had imprecise values for a single dimension, and most
imprecise values were from attributes one level above the lowest
leaf level in the dimension. Of the imprecise facts, approximately

SR-AREA BRAND TIME LOCATION

ALL(1)(0%) ALL (1)(0%) ALL (1)(0%) ALL (1)(0%)

Area(30)(8%) Make(14)(16%) Quarter(5)(3%) Region (10)(4%)

Sub-Area(694)(92%) Model(203)(84%) Month(15)(9%) State (51)(21%)

Week(59)(88%) City (900)(75%)

Table 3: Dimensions of Real Dataset

67% were imprecise in a single dimension (160,530 facts), 33%
imprecise in 2 dimensions (79,544 facts), 0.01% imprecise in 3 di-
mensions (241 facts), and none were imprecise in all 4 dimensions.
No imprecise fact had the attribute value ALL.

An alternative characterization of the imprecision in a given fact
table involves the relative number of facts in each summary table.
Recall the summary table partial order, introduced in Section 4.
Consider two summary tables S1, S2. If S1 	 S2, then facts in S2

are more imprecise then facts in S1, since each fact in S2 corre-
sponds to a larger region.

Since we are interested in the performance of our proposed algo-
rithms in real-world scenarios, many of the parameter settings for
the synthetic data we used in the experiments attempt to mimic this
real-world data. To be concrete, the synthetic data used the same 4
dimensions as the real-world data. The general process for generat-
ing synthetic data was to create a fact table with a specific number
of precise and imprecise facts by randomly selecting dimension at-
tribute values from these dimensions. The

The first groups of experiments attempts to determine which fac-
tors affect the size of the connected components in the allocation
graph for a imprecise fact table D. The second groups of experi-
ments evaluate the performance and scalability of the proposed al-
gorithms. The third group of experiments evaluates the efficiency
of the proposed maintenance algorithm for the Extended Database
using the R-tree.

10.1 Connected Component Size

10.2 Algorithm Performance
This set of experiments evaluates the performance of the algo-

rithms. ll algorithms were implemented to use a buffer pool, thus
we could control the memory available to the algorithms. This al-
lowed us to study disk I/O behavior, while running experiments
small enough to complete in a reasonable amount of time. We set
the page size to 4KB. Each tuple is 40 Bytes, and each page holds
90 tuples.

Experiment 1: Everything fits into memory
For the first experiment, we considered the case where the buffer

is larger than the entire dataset, and evaluted the algorithms on two
datasets. The first dataset was the Automotive dataset. The second
was a synthetically generated dataset with the same number of pre-
cise and imprecise facts as the Automotive dataset, but generated
to contain a connected component of 200,000 facts.

For this experiment, we set the buffer size to 40 MB. We ran each
algorithm on 2 datasets until the values for all cells c converged for
different values of epsilon. This is a commonly technique for nu-
merical EM algorithms. Each value of epsilon corresponds to a
number of iterations. For example, in the Automotive data, 2,3,4
and 6 iterations corresponded to epsilons of 0.1, 0.05, 0.01, and
0.005 respectively. In the synthetic data with the large connected
component, 3,4,6 and 10 iterations corresponded to epsilons of 0.1,
0.05, 0.01, and 0.005 Again, one should be careful reading too
much into these single dataset. In many practical settings, tens of



iterations may be required to achieve the desired epsilon.
However, we observed the values for some cells converged in

fewer iterations than for other cells. Independent and Block can
exploit this observation as follows: During the first iteration, iden-
tify cells c not overlapped by any imprecise facts. Such cells can
be ignored in subsequent iterations. The Transitive algorithm can
make the further optimization to vary iterations for different com-
ponents; each component is iterated on until all cells in the compo-
nent converge. This observation can significantly reduce the num-
ber of allocation equations that Transitive must evaluate relative to
the other two algorithms.

Figure ?? shows the results for running the experiment on the
Automotive dataset. Independent does much worse than Block
and Transitive. Even though Independent and Block evaluate the
same number of allocation equations, Independent requires more
processing to re-sort the cell summary table multiple times for each
iteration. Block outperforms Transitive for a small number of iter-
ations, since Transitive has the additional overhead of component
identification (Steps 1 and 2 of the Transitive Algorithm). How-
ever, for many iterations, the savings from reducing the number of
allocation equations evaluated by Transitive relative to Block dom-
inates the extra overhead.

Figure 5b shows the results for the synthetic dataset with the
large connected component. Independent still does worse for rea-
sons given above. Due to the large conencted component, the op-
timization for Transitive described above does not provide enough
of a savings to overcome the extra overhead of component identifi-
cation relative to Block.

Experiment 2: Everything does not fit into memory.
We also ran several experiments on datasets with

10.3

11. REFERENCES

[1] AGARWAL, S., AGRAWAL, R., DESHPANDE, P., GUPTA,
A., NAUGHTON, J. F., RAMAKRISHNAN, R., AND

SARAWAGI, S. On the computation of multidimensional
aggregates. In VLDB (1996), T. M. Vijayaraman, A. P.
Buchmann, C. Mohan, and N. L. Sarda, Eds., Morgan
Kaufmann, pp. 506–521.

[2] AGRAWAL, R., DAR, S., AND JAGADISH, H. V. Direct
transitive closure algorithms: Design and performance
evaluation. ACM Trans. Database Syst. 15, 3 (1990),
427–458.

[3] BOLLOBÁS, B. Random Graphs. Academic Press, London,
1985.

[4] BRADLEY, P., FAYYAD, U., AND REINA, C. Scaling em
(expectation maximization) clustering to large databases,
1998.

[5] BURDICK, D., DESHPANDE, P. M., JAYRAM, T. S.,
RAMAKRISHNAN, R., AND VAITHYANATHAN, S. OLAP
Over Uncertain and Imprecise Data. In Submitted to the
VLDB Journal.

[6] BURDICK, D., DESHPANDE, P. M., JAYRAM, T. S.,
RAMAKRISHNAN, R., AND VAITHYANATHAN, S. OLAP
Over Uncertain and Imprecise Data. In VLDB (2005).

[7] CORMAN, T. H., LEIERSON, C. E., AND RIVEST, T. L.
Introduction to Algorithms. The MIT Press, 2001.

[8] DAR, S., AND RAMAKRISHNAN, R. A performance study
of transitive closure algorithms. In SIGMOD (1994),
pp. 454–465.

2 iterations

0

200

400

600

800

600 KB 1MB 2MB 12MB

Buffer Size

R
un

ni
ng

 T
im

e 
(s

ec
)

Independent
Block
Transitive

6 iterations

0

500

1000

1500

2000

2500

600 KB 1MB 6MB 12MB

Buffer Size

R
un

ni
ng

 T
im

e 
(s

ec
)

Independent
Block
Transitive

2 iterations

0
200
400
600
800

1000
1200
1400

600KB 1MB 6MB 12MB
Buffer Size

R
un

ni
ng

 T
im

e 
(s

ec
)

Independent
Block
Transitive

10 iterations

0
500

1000
1500
2000
2500
3000
3500
4000

600 KB 1MB 6MB 12MB
Buffer Size

R
un

ni
ng

 T
im

e 
(s

ec
)

Independent
Block
Transitive

10 iterations

0

2000

4000

6000

8000

600 KB 1MB 6MB 12MB
Buffer Size

R
un

ni
ng

 T
im

e 
(s

ec
)

Independent
Block
Transitive

0
50

100
150
200
250
300

0 2 4 6 8
Iterations (until converged)

Ti
m

e 
(s

ec
)

Independent
Block
Transitive

0

100

200

300

400

500

0 5 10 15

Iterations (until converged)

Ti
m

e 
(s

ec
)

Independent
Block
Transitive

0

2000

4000

6000

8000

4 MB 10 MB 40 MB 50 MB

Buffer Size

R
un

ni
ng

 T
im

e 
(s

ec
)

Block (time)
Transitive (time)

0
2000
4000
6000
8000

10000
12000
14000
16000

7 MB 20 MB 50 MB

Buffer Size

R
un

ni
ng

 T
im

e 
(s

ec
) Block (time)

Transitive (time)

6 iterations

0

500

1000

1500

2000

2500

3000

3500

4000

600 KB 1MB 6MB 12MB
Buffer Size

R
un

ni
ng

 T
im

e 
(s

ec
)

Indpendent
Block
Transitive

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5: Experimental Results



[9] HARINARAYAN, V., RAJARAMAN, A., AND ULLMAN,
J. D. Implementing Data Cubes Efficiently. In SIGMOD
(1996).

[10] ROSS, K. A., AND SRIVASTAVA, D. Fast Computation of
Sparse Datacubes. In VLDB 1997, pp. 116–125.


