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Abstract

Large-scale storage systems often hold data for multiple

applications and users. A problem in such systems is isolat-

ing applications and users from each other to prevent their

workloads from interacting in unexpected ways. Another is

ensuring that each application receives an appropriate level

of performance. As part of the solution to these problems,

we have designed a hierarchical I/O scheduling algorithm

to manage performance resources on an underlying storage

device. Our algorithm uses a simple allocation abstraction:

an application or user has a corresponding pool of through-

put, and manages throughput within its pool by opening ses-

sions. The algorithm ensures that each pool and session re-

ceives at least a reserve rate of throughput and caps usage

at a limit rate, using hierarchical token buckets and EDF

I/O scheduling. Once it has fulfilled the reserves of all ac-

tive sessions and pools, it shares unused throughput fairly

among active sessions and pools such that they tend to re-

ceive the same amount. It thus combines deadline schedul-

ing with proportional-style resource sharing in a novel way.

We assume that the device performs its own low-level head

scheduling, rather than modeling the device in detail. Our

implementation shows the correctness of our algorithm, im-

poses little overhead on the system, and achieves through-

put nearly equal to that of an unmanaged device.

1. Introduction

Companies looking to reduce the high cost of storage of-
ten aggregate data onto shared virtualized storage systems,
which can reduce the infrastructure and management over-
head but can lead to unexpected interference between ap-
plications with potentially divergent performance require-
ments. For example, one user may be running a media
player with deadlines when another user starts a storage-
intensive file indexer. If the two users share some storage

∗Computer Science Department, Unversity of California at Santa Cruz,
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device, then the applications will compete with each other
for performance resources, which may result in the media
player missing deadlines. On a larger scale, a transaction-
processing application may experience performance degra-
dation when a backup process begins. In our experience,
such competition is not a rare occurrence, and will likely
become more frequent as these systems grow and as more
applications share them.

The alternative to aggregation is to dedicate a storage
device or logical unit to an application, which isolates ap-
plications but at the cost of complex manual configuration
and inefficient resource utilization. Moreover, configura-
tions are usually based on a snapshot of application behav-
ior, and must be revisited as either the application require-
ments or the hardware infrastructure change.

A virtualized storage system must therefore provide as-
surances that the behavior of one application will not in-
terfere with the performance of other applications. We are
developing a storage system called Kybos1 that manages the
resources allocated to an application according to a specifi-
cation of reserves and limits. A reserve specifies the amount
of a resource whose availability Kybos will guarantee for
the application. A limit restricts the additional amount of
a resource that Kybos will provide to the application if un-
used resources exist. The limit can be used, for example, to
ensure that housekeeping operations or backup do not use
more than a certain amount of system performance, always
leaving the remainder for regular applications.

Kybos provides virtualized storage in a distributed sys-
tem that is built from many small, self-contained storage
servers called bricks. Each brick enforces isolation lo-
cally between applications that share it. Internally, Kybos
places data on bricks such that the system delivers reason-
able overall performance, and reorganizes data in response
to changes in the application behavior or the infrastructure.

Each brick in Kybos has the following goals for manag-
ing its performance resources:

• Reserve enforcement. An active application should get

1From the Greek κυβoς (cube).
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at least its reserve amount on average from the brick,
regardless of the behavior of any other applications.

• Limit enforcement. An application should receive at
most its limit amount on average from the brick.

• Fair sharing of additional resources. Each active ap-
plication should receive a fair share of any unused re-
sources on a brick.

We have designed a brick-level hierarchical I/O schedul-

ing algorithm to achieve these goals, and analyzed the per-
formance results obtained from an implementation called
Zygaria.2 Zygaria is layered over a disk or a RAID device
that performs its own low-level head scheduling. In addi-
tion to meeting the above goals, the I/O scheduler in Zy-
garia tries to keep the device busy with enough I/O requests
to yield efficient head movement, and helps the device to
take advantage of locality in the workload of an applica-
tion by batching I/Os together. The scheduler only controls
throughput over time intervals of one second or so, rather
than providing hard real-time guarantees. Thus, the sched-
uler can treat the underlying device essentially as a black
box, unlike those that model devices in detail.

The Zygaria I/O scheduler is novel in combining reserve
and limit enforcement on I/O performance resource usage
with fair sharing of best-effort resources. It uses token buck-
ets [21] to track how close an application is to its limit and
how far it is operating below its reserve. It also maintains
a moving average measurement recent performance that is
used to determine how best to distribute any unused re-
sources.

Our experimental results in §5 confirm that our algorithm
enforces reserves and limits, and thus isolates the workloads
of competing applications. They also demonstrate how oth-
erwise unused resources are shared fairly between active ap-
plications, and that the advantages of managed performance
come at low CPU and throughput costs.

2. System model

We have designed Zygaria to be layered over a disk or a
RAID device. We assume that the device performs its own
low-level head scheduling, instead of modeling the device
in detail. We also assume that the device:

• Has a known worst-case throughput. We measure the
throughput with a stream of small, random I/Os.

• Has an approximately constant average seek time.

• Is more efficient if it has a queue of several outstanding
I/Os. Efficiency should increase rapidly when going
from one I/Os to a few, and more slowly thereafter.

2From the Greek ζ υγαρια (balance; scales).
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Figure 1. Relationship between sessions, pools,

and a brick.

• Has a starvation-free driver.

• Executes a sequential run of I/Os nearly as fast as the
first I/O in the run, up to a reasonable run length.

These assumptions are reasonable for modern disks [17].

3. Hierarchical resource allocation

Zygaria models performance resource allocation policies
as a hierarchical arrangement of pools and sessions (Fig-
ure 1). A pool is a long-term entity that an administrator
creates to manage the I/Os for an application. The adminis-
trator controls the amount of resources allocated for a pool.
A session is a short-term entity that an application process
creates from within a pool to manage one stream of I/Os.
Processes can create an arbitrary number of sessions pro-
vided that the total amount of resources allocated for the
sessions does not exceed the amount allocated for the pool.
For example, the administrator might configure the pool for
a media server application to support ten concurrent media
streams across all the files in the library of the server. Up to
ten media player processes could then open sessions to play
one media stream each.

Each pool or session specifies a {reserve, limit} pair of
requirements on their average received I/O rate, where the
limit is greater than or equal to the reserve. Zygaria guar-
antees that an application can execute I/Os at a rate up to
its reserve, and allows the application to execute at a rate
up to the limit when unused resources are available. These
resources may be unreserved, be from other pools or ses-
sions that are operating below their reserve, or be from re-
cent I/Os that execute more efficiently than expected. The
reserve may be zero, meaning that all I/Os are best-effort,
while the limit may be infinite.

Pools and sessions specify their requirements in terms of
I/O runs per second, rather than I/Os per second or bytes
per second. An I/O run is a set of sequential I/Os, up to
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a fixed maximum amount of data. We expect each run to
require a disk head seek and rotation, thus a runs per second
specification is a rough proxy for the disk utilization that a
given requirement implies.

Feasible reserve and limit values for a pool or session
depend on the resources available from the underlying de-
vice. The pools in the system are feasible if the sum of their
reserves does not exceed the worst-case throughput of the
device, thus defining the admission criterion for pools. Sim-
ilarly, the sessions in a pool are feasible if the sum of their
reserves does not exceed the reserve of a pool. Limit values
are arbitrary, but Zygaria ensures that any session will never
get more than the limit of its pool.

4. I/O scheduling algorithm

Our hierarchical I/O scheduling algorithm ensures that
sessions and pools receive their reserve I/O rates on aver-
age, and that they receive no more than their limit I/O rates,
by combining the characteristics of an earliest-deadline-
first (EDF) algorithm [15] with those of slack-stealing al-
gorithms for CPU schedulers [14, 25, 2] and proportional-
share schedulers [29]. To accomplish these objectives, the
scheduler computes for each I/O a release time, which is
the time after which the I/O can be executed without its ses-
sion and pool exceeding their limits, and a deadline, which
is the time by which the I/O must be executed for its ses-
sion and pool to receive their reserves. The release time can
never be later than the deadline, given that the limit is never
lower than the reserve (§3). Release time and deadline are
computed using a token bucket, as described in §4.1. If the
scheduler finds that the deadline of the I/O with the earliest
deadline has expired, it sends that I/O to the underlying de-
vice for execution. Otherwise, it takes advantage of the im-
plicit slack in the schedule to execute other I/Os, selecting
I/Os such that the unused resources are shared fairly among
sessions and pools (§4.2).

Figure 2 shows the scheduler data structures; note how
they mirror the session and pool architecture in Figure 1.

4.1. Limits and reserves

Our algorithm maintains two token buckets for each ses-
sion and pool to ensure that they are staying within their
limits and reserves.

The reserve bucket measures how much a session or pool
is operating below its reserve. It has a refill rate r equal to
the reserve rate, or zero if there is no reserve. An I/O must
run as soon as possible after the reserve bucket accumulates
a token for the I/O, which sets the deadline at (n− nr)/r

seconds into the future; n is the number of tokens the I/O
requires, and nr is the number of tokens currently in the
reserve bucket.

L R F L R F L R FL R F L R F
sessi ons

p o o l s
d i s kq u e u e d i s k

Figure 2. Token bucket hierarchy and I/O queue

structure for sessions, pools, and the underlying

device. (R) and (L) are reserve and limit token

buckets; (F) is a moving average estimator used

for fair sharing.

The limit bucket tracks how close a session or pool is to
its limit. It has a refill rate l equal to the limit rate, or +∞
if there is no limit. An I/O must wait until the limit bucket
has accumulated a token for the I/O, which sets the release
time at (n− nl)/l seconds into the future; n is the number
of tokens the I/O requires, and nl is the number of tokens
currently in the reserve bucket.

4.2. Fair sharing

Our algorithm supports a model of resource sharing that
we call water-level fair sharing. Once all active sessions
and pools have received their reserve, they will receive ad-
ditional best-effort resources such that they will tend to
obtain the same I/O rate, subject to any limit constraints.
Water-level sharing behaves as if the extra resources were
being poured into the pools, and thus will tend to give per-
formance to the lowest pools until all pools get the same
amount. Similar resource sharing occurs among sessions
within a pool.

Our algorithm maintains a moving average of the recent
performance of each session and pool. The current imple-
mentation keeps a window over the last five seconds, in
20 buckets that are a quarter-second in width. The recent
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throughput of I/Os is estimated by taking a weighted av-
erage over the buckets: T = ∑19

i=0 bi · α i, where b0 is the
throughput of the current quarter-second period, and α is
a decay factor. To understand why we chose this unusual
weighted average over a traditional non-weighted average,
we consider the algorithm to be a control system with neg-
ative feedback when it makes a fair sharing decision: the
input signal (the throughput received by a session or pool)
is filtered with an averaging function, and then used in a
feedback function. In our algorithm, the feedback function
operates by comparing the throughput from different ses-
sions or pools. A traditional moving average has a “top-
hat” shape as the impulse response, which Fourier trans-
forms into the spherical Bessel function jo(ω) = sinc(ω)
in frequency space. Unfortunately, the first negative mini-
mum of j0(ω) comes close to violating the Bode criterion
[18], which causes the control system to react to workload
transients by oscillating for extended periods. The Bode di-
agram of the exponential-weighted average we have chosen
has a very large phase margin, causing the fair sharing con-
trol system to stabilize.

If the algorithm determines that all releasable I/Os have
deadlines in the future, it takes advantage of the implicit
slack in the I/O schedule to schedule additional I/Os. It finds
the pool with the lowest moving average, finds the session
with the lowest moving average in that pool, and schedules
an I/O from that session. This process moves the system
toward water level.

When an inactive session becomes active, the combina-
tion of a five-second moving average with the approach of
always picking the pool and session with the lowest average
means that the session will preferentially get extra perfor-
mance until it has caught up with other sessions. However,
the algorithm dampens this transient effect quickly.

Our decision to implement water-level sharing is orthog-
onal to the other design decisions made for our schedul-
ing algorithm. One could implement other definitions of
fair sharing—such as proportional shares or equal incre-
ments over reserve—by replacing the algorithm described
here with other algorithms to choose the pools and sessions
that should receive unused resources. For example, we have
begun (but not yet completed) an investigation into using a
lottery algorithm [24, 26] to select the I/O to schedule, on
the hypothesis that this would help smooth transient behav-
ior.

We demonstrate water-level fair sharing behavior in the
experiments discussed in §5.1.

4.3. I/O scheduler

The scheduler in Zygaria takes I/Os for different sessions
and determines when to send them to the underlying device
for execution, as shown in Figure 2. The scheduler runs

each time an I/O arrives or completes, and when the release
time or deadline passes for an I/O queued in any session.

The scheduler restricts the number of I/Os outstanding
at the device to balance device efficiency with accurate
scheduling. Disk head schedulers in particular are more ef-
ficient if they have more I/Os to choose from, especially
if they can process multiple adjacent I/Os without a head
seek. However, our scheduler has no control over I/Os once
it sends them to the device, thus if it sent several I/Os be-
fore their deadline, and an I/O with a short deadline subse-
quently arrived, the new I/O might be delayed long past its
deadline.

Each time the scheduler runs, it enters a loop to sched-
ule as many I/Os as it can. For each iteration, the scheduler
picks one I/O to send to the device queue. When the sched-
uler sends an I/O to the device, it updates all of the token
buckets and moving average statistics for the pool and ses-
sion of the I/O. The scheduler stops either when no more
I/Os are past their release time or when too many I/Os are
outstanding at the device. It then arranges to wake up at the
earliest deadline or release time of any I/O queued in any
session, if there is one.

The scheduler begins a loop iteration by identifying re-
leasable I/Os. For each session with a non-empty queue,
the scheduler computes two release times for the I/O at the
head of the queue: the time given by the limit bucket of the
session, and the time given by the limit bucket of the pool
of the session. If either of these times is in the future for an
I/O, the scheduler excludes the I/O from further considera-
tion, ensuring that no session or pool exceeds its limit.

The scheduler next runs a modified EDF algorithm to
select an I/O whose deadline has expired. For each session
with a releasable I/O, the scheduler assigns a deadline to the
I/O that is the earlier of the deadline given by the reserve
bucket of the session, and the deadline given by the reserve
bucket of the pool of the session; by assigning the earlier of
the two deadlines, it ensures that both the session and the
pool will receive their reserves. The scheduler selects the
I/O with the earliest deadline, and queues the I/O at the disk
if the deadline has expired; note that waiting until deadlines
have expired does not affect the average throughput of an
I/O stream.

When running the modified EDF algorithm, the sched-
uler tries to send batches of I/Os rather than single I/Os
to help the device to take advantage of locality in the I/O
stream of a session. To achieve this, the scheduler treats a
run of up to 32 KB of sequential I/Os in a session queue as a
single I/O, counting them as a single I/O run for token buck-
ets and moving averages. It also batches I/Os from one ses-
sion and sends them to the device together. The size of the
batch is limited to the maximum of the number of releasable
I/Os in the session queue and the session reserve rate r. The
scheduler will thus batch at most one second of I/Os at the
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reserve rate, which can increase device efficiency but can
also increase the variability of service time—but only for
sessions that have many I/Os in flight and are thus likely to
be throughput- rather than latency-sensitive.

If the scheduler determines that all releasable I/Os have
deadlines in the future, then it can take advantage of implicit
slack in the schedule to insert additional I/Os ahead of those
with deadlines. To accomplish this, it selects I/Os that will
achieve water-level fair sharing (§4.2).

5. Results

We have evaluated Zygaria for correctness and effi-
ciency. We found that in the long term it provided reserves,
enforced limits, and shared fairly, and that in the short term
it behaved well as I/O streams started and stopped. We also
found that the benefits of managed performance came at low
cost: CPU usage was low, and throughput was nearly as
good as running without Zygaria.

Zygaria is a loadable block device driver for the Linux
2.6.11 kernel, in about 2200 lines of commented C code.
The driver sits above a disk device, and exports a set of
block devices named /dev/zygariaPS, where P is the
pool and S is the session. The pools and sessions all share
the underlying device. A user-level program sets reserves
and limits on the pools and sessions via an ioctl() call.

Zygaria does not supply or use a cache, and does not
sort its queues in elevator order. In our experiments, we
restricted the number of I/Os that Zygaria had outstanding
at the underlying device to 10. We configured the under-
lying device driver to use the Linux 2.6 “anticipatory” disk
scheduler, but disabled its support for deadline scheduling
and anticipatory scheduling, thus turning it into a traditional
one-way elevator scheduler.

We collected all the experimental data on an IBM To-
talStorage NAS100 server—a 1U rack-mount server, with a
1.2 GHZ Pentium III processor, 512 MB memory, and four
IBM IC35L120 DeskStar disks (120 GB, 7200 RPM, sepa-
rate IDE interfaces). We used one of these disks for Zygaria,
and a second disk for the root file system.

We found that the disks performed 112 IOPS for a ran-
dom workload of 1024-byte reads over the whole disk, with
10 I/Os outstanding at the disk at a time. We fixed this rate
as the reservable throughput of the disk, and in some exper-
iments we report results as a percentage of this reservable
throughput.

For all experiments, we set the decay factor α for the fair
sharing moving average filter (§4.2) to 0.9.

A simple user-level workload generator created a variety
of I/O patterns, including sequential (starting at arbitrary
offsets) and random (within a range of disk addresses). In
most experiments, the generator used a closed arrival pro-
cess with zero think time and a fixed number of I/Os out-

standing at any time. For other experiments, the generator
used an open arrival process with a fixed inter-arrival time
to simulate periodic traffic; since the generator had only one
I/O outstanding at a time, an I/O that could not be scheduled
at the desired time executed as soon as possible afterward.

The generator also recorded a trace of the I/Os it exe-
cuted. With cooperation from the Zygaria driver, the trace
contained information on when an I/O arrived and com-
pleted, and when it passed various control points in the
driver. We used these traces to generate the time-series
graphs in the following sections.

We report 95% confidence intervals for several experi-
ments. We used a batch-means analysis to determine the
confidence interval width.

5.1. Correctness

The first experiment showed that the algorithm handles
reserves and limits properly, and shares throughput fairly.
Recall that the scheduler provides water-level fair sharing,
which behaves as if extra throughput were being poured into
sessions, tending to give throughput to the lowest sessions
until all sessions get the same amount.

The experiment measured the amount of throughput that
each of several sessions got as the system was able to pro-
cess more I/Os. This happened because some of the ses-
sions caused the disk head to seek less than in the worst
case that fixed the reservable throughput. This experiment
had three sessions, all in the same pool. The experiment
varied the range of disk addresses accessed by some ses-
sions:

Session Reserved Limit Range
1 15% 40% full disk
2 35% none fraction
3 50% none fraction

Each session read data at uniformly random offsets. Ses-
sion 1 distributed I/Os over the entire disk, while the other
two sessions distributed I/Os over only a fraction of the disk.
The reserve and limit values are expressed as a percentage
of the reservable throughput of 112 IOPS.

Figure 3 shows that the scheduler implemented reserves,
limits, and sharing properly as sessions 2 and 3 accessed
smaller fractions of the disk, which decreased the seek dis-
tance for the disk head. Point 1/1 is the least efficient, at
which all I/Os ranged over the full disk; all sessions re-
ceived their reserve or slightly more. As sessions 2 and 3
accessed smaller fractions of the disk, head movement be-
came more efficient, and the scheduler could admit more
best-effort I/O. Water-level sharing worked to give all ses-
sions the same throughput, and ensured that the session with
lowest throughput received the benefit as more I/Os can be
scheduled. This happened even though the I/Os in session 1

5



1/1 1/4 1/16 1/64 1/256 1/1024 1/4098 1/16392

Fraction of disk accessed

0

20

40

60

T
h

ro
u

g
h

p
u

t 
(p

e
rc

e
n

t 
o

f 
re

s
e

rv
a

b
le

)

session 1

session 2

session 3
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Experiment varied the disk address range that two

of the streams accessed to the fraction of the disk

shown on the xaxis, increasing efficiency and

making increased throughput possible. Results

are the average of 10 runs; bars show the 95%

confidence interval.

could not be processed as efficiently as those in other ses-
sions. Session 1 was also capped when it reached its limit.

We performed a similar experiment where the sessions
were spread across multiple pools. Those results, omitted
here for brevity, showed that the scheduler enforced both
reserves and limits of both pool and session. They also
showed that sharing works correctly in the hierarchical sys-
tem: pools first shared any best-effort throughput from the
device, and sessions then shared any best-effort throughput
from within their pool.

5.2. Timevarying behavior

The next experiment illustrated how Zygaria behaved in
the short term as the offered workload changed. Figure 4
shows an example of a 60-second run with three sessions:

Session Reserved On at Off at
1 10% / 11 IOPS 0 s 60 s
2 20% / 22 IOPS 10 s 30 s
3 40% / 45 IOPS 20 s 50 s

Each session was driven by a generator with a closed
arrival process with zero think time that maintained 20
I/Os outstanding, which used up as much throughput as the
scheduler would give it.

The experiment showed how resources were shared by
multiple sessions. A solo active session received the en-
tire throughput of the disk. Two active sessions shared the
throughput equally. In the period from 20–30 seconds, there
were three active sessions, but session 3 had a high reserve.
Session 3 received its reserve while the other two sessions
shared the remaining throughput equally.

Figure 4(a) shows that changes in the offered workloads
caused only short transient effects. For example, at 10 sec-
onds, when session 2 started, it received almost all of the
extra throughput, until the moving average of its recent
throughput (shown in Figure 4(b)) caught up to the other
stream. A short, quickly dampened period of oscillation
occurred. The scheduler ensured that session 1 contin-
ued to receive at least its reserved throughput during the
startup transient. Similar effects happened at 20 seconds,
when session 3 started, and at 30 seconds, when session 2
stopped. Between changes, however, the share of through-
put received by each session remained stable.

5.3. Overhead

The performance management benefits of Zygaria come
at the price of having to perform the scheduling computa-
tions, and potentially restricting the set of I/Os that the un-
derlying device has for head scheduling. Each run of the
scheduler loop is an O(n) computation in the number of ses-
sions and pools.

We conducted two experiments to see how the CPU
utilization and disk throughput with Zygaria compared to
those with the normal Linux disk driver. The first experi-
ment looked at CPU utilization and throughput for random
I/Os; the second looked at throughput for concurrent se-
quential I/O streams.

In the first experiment, we ran 100 I/O generator pro-
cesses with and without Zygaria. Each generator process
performed random I/Os to the whole disk as fast as possible.
We compared three basic configurations: without Zygaria;
with all hundred generators running against a single session
in a single pool; and one generator in each of a hundred
sessions, divided as ten sessions in each of ten pools. We
compared the first two configurations to determine the ba-
sic overhead of Zygaria. The configurations with different
numbers of sessions gave an indication of how the perfor-
mance would scale as the number of sessions increased—
recall that the complexity of the scheduler is linear in the
number of sessions and pools.

To measure the CPU utilization overhead for each run,
we sampled the kernel-reported idle and wait time using the
vmstat command once a second for 60 seconds, and com-
puted the average amount of non-idle time over those 60
samples. As a result, the accuracy of our CPU overhead
measurements was limited by the accuracy of the vmstat
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command, and may include effects from our generator pro-
cesses as well as from Zygaria.

In general, Zygaria introduced a small but measurable
CPU overhead, but only a slight difference in throughput, as
shown by the following results. The results are the average
of 20 runs; 95% confidence intervals are in [brackets].

Total CPU Throughput
Configuration usage (%) ( IOPS)
Without Zygaria 1.17 [0.020] 86.8 [0.17]
1 pool × 1 sess 1.44 [0.023] 86.6 [0.14]
10 pool × 10 sess 1.54 [0.032] 86.9 [0.16]

In the second experiment, we evaluated a system with
multiple concurrent sequential I/O streams. Disk head
scheduling can be poor in this situation: at worst, the disk
head seeks for every I/O request. At best, the head can pro-
cess many requests together before seeking to where an-
other stream is accessing.
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Figure 5. Total throughput across several concur

rent sequential streams. Results are the average

to 10 runs; error bars show the 95% confidence

interval.

We ran between one and seven concurrent sequential
workloads for 60 seconds. Each workload was driven by a
generator with a closed arrival process that had 20 outstand-
ing 16KB I/O requests and zero think time (i.e., it worked
as fast as possible). The ith stream of n streams started at
address 50GB · i/n, thus spreading the streams widely over
the disk surface. When run with Zygaria, each stream had
its own session with zero reserved throughput.

Figure 5 shows the total throughput with and without Zy-
garia. We found that streams received throughput from Zy-
garia similar to that from the normal Linux disk driver. The
experiment did not involve a cache, so pre-fetch and write-
behind did not occur.

In general, these results show that the cost of using Zy-
garia is negligible or low. Moreover, they show that Zygaria
is able to manage both random and sequential I/O streams
well.

5.4. Mixed workload

The performance management that Zygaria provides has
its greatest value for mixed workloads—for example, when
some sessions have variable offered load, and others want
steady throughput. Our I/O scheduler supports this situation
in two ways that simple head schedulers do not: it supports
throughput reserves and it smooths out variations in demand
by enforcing limits and fair sharing.

To evaluate how well Zygaria handles mixed workloads,
we constructed a synthetic workload that generated a mix-
ture of media-like, transaction-like and housekeeping-like
I/O streams. Some streams were sequential, some random;
some presented constant demand, others presented variable
demand. We constructed the streams with the same work-
load generator used in our other experiments.
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The mixed workload consisted of the following three
types of streams:

• background: modeled random-access management
traffic, such as a file system backup. One pool, with
reserve 10% and limit 25%.

• media: modeled three constant bit rate media accesses
with three constant-rate sequential streams in one pool.
One pool with reserve 30% and limit 35%; three equal
sessions in that pool.

• transaction: modeled short bursts of random-access
traffic, such as a transaction-processing application
might generate. Two pools, each with a 30% reserve
and no limit. Within a pool, bursts arrived at a random
time and lasted for a random duration. Each burst had
its own session. The burst arrivals were admission-
controlled to ensure that sessions remained feasible.

The total offered load was almost enough to saturate the
disk. A script drove the generators, so that the sequence of
transaction burst arrivals could be executed repeatedly.

Figure 6 shows traces of the resulting throughput with
and without Zygaria. In general Zygaria ensured that the
streams did not interfere with each other.

The transaction-processing workloads exhibited variable
demand. Unregulated, these swamped the system and inter-
fered with other streams—often, there would be more I/O
requests outstanding from the transaction streams than from
the other streams combined. With Zygaria, the transaction
streams completed the same amount of work but the rates
were throttled to ensure the other streams received their
share of throughput.

The media streams, which had a narrow range of accept-
able throughput between their reserve and limit, received
their proper throughput with Zygaria, regardless of other
activity in the system.

The background stream was designed to receive a mod-
est minimum throughput, but soak up a share of best-effort
throughput. It completed more work with Zygaria than
without, partly because Zygaria ensured that it received its
reserve, but mostly because the fair sharing algorithm allo-
cated its pool a share of throughput equal to each of the two
transaction-processing pools.

The greatly improved responsiveness of the media appli-
cations demonstrated that one can use Zygaria to achieve an
effect like traditional priority-based schedulers: by giving
the media streams a reserve that matched their I/O demands,
Zygaria would schedule their I/Os immediately as the appli-
cation submitted them, ahead of I/Os from the other appli-
cations.

Overall, this experiment showed that Zygaria handles
mixed workloads well.
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Figure 6. Trace of one 1000second run, showing

the behavior of multiple workloads over a longer

term, with and without Zygaria. Points shown are

the average for 20second intervals.

6. Related work

The problem of managing I/O performance resources
can be divided into two separable problems: how to specify
allocations for pools and sessions, and then how to deliver
on those allocations. Delivering performance resources
combines issues of soft real-time scheduling for fulfillment
of reserves and of sharing extra resources fairly. For all
these aspects, our I/O scheduling algorithm builds on the
large body of previous work.

Resource allocation. Our algorithm uses a hierarchical
pool and session model with reserves and limits to manage
resource allocation. These notions of hierarchical structure
and of reserve/limit specifications have precedent in QoS
allocation models.

Traditional QoS resource allocation models support po-
tentially multiple levels of specification—for example, a
reserve, a limit, and points in between. For each level,
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the specification sets the performance that the system must
guarantee. Simple models support only a single level, and
use metrics such as bandwidth (first seen in XFS [8]) to
express requirements. More complex models use benefit-
value (DQM [3]) or utility functions (Q-RAM [19]) to ex-
press requirements, and the system uses these functions to
maximize the overall benefit or utility over all applications
while ensuring that minimum levels are met; the user or ap-
plication must specify the function, which is often difficult.
We opt for a simple QoS specification: a minimum QoS
level for reserve and a maximum QoS level for limit.

Several hierarchical allocation models exist for resource
management. Generalized models exist for the management
of multiple resources, including Eclipse [5] and hierarchi-
cal Q-RAM. Models also exist for CPU scheduling [11, 20]
and network sharing [1, 9]. Most of these examples support
arbitrary hierarchy depths; for our purposes, a two-level hi-
erarchy suffices.

Our allocation model is most similar to the one used
by Wu et al. [29]. Their I/O scheduling algorithm uses
an arbitrary hierarchy of token buckets to provide propor-
tional resource guarantees to applications. It allows applica-
tions to borrow performance from other applications that are
not using their share of performance, but does not address
fair sharing of best-effort performance. Their algorithm re-
quires a priori knowledge of the actual device throughput
under the current workload, whereas ours only requires the
worst-case throughput.

Soft real-time scheduling. Our algorithm supports soft
real-time scheduling. As such, we guarantee that the av-
erage throughput will meet the reserves specified for pools
and sessions over the long term, but allow occasional viola-
tions in the short term. Our work draws upon soft real-time
scheduling algorithms for various kinds of resources.

Several projects have investigated disk schedulers that
support a mix of multimedia and non-multimedia applica-
tions. Clockwise [2] handles a combination of both periodic
real-time and best-effort streams. It gives priority to best-
effort streams, delaying real-time I/Os as long as possible
without violating their requirements. Cello [22], MARS [6],
and the work by Wijayaratne and Reddy [27] all implement
a two-level hierarchy of schedulers for multiple classes of
traffic. Compared to these systems, we only guarantee the
fulfillment of reserves on average. On the other hand, we do
not require detailed information (such as their periodicities)
about the application workloads.

Other work on disk scheduling for multimedia applica-
tions often assumes that no other applications will access
the storage, which allows for greater optimization in algo-
rithm design. A survey paper by Gemmell et al. covers sev-
eral representative systems [10].

Response time control. In our work, we focus on re-
serve and limit throughput specifications. Related systems

exist to control other storage system characteristics, most
notably response time. Façade [16] uses an EDF scheduler
that bases the deadline of an I/O on the response time re-
quirement its stream, with adaptive mechanisms to adjust
the response time target as the offered load of the stream
changes. SLEDS [7] provides per-stream I/O rate throttling
so that all streams will receive specified response latencies.
SLEDS is adaptive: a central server monitors the perfor-
mance each stream is receiving and changes the acceptable
rates for other streams when one stream is getting response
time longer than its requirement.

Fair and proportional sharing. Several alternatives ex-
ist for sharing performance resources from storage devices,
many of which are related to methods for sharing CPU cy-
cles and network bandwidth. The most obvious is lottery
scheduling [24, 26], which supports proportional sharing
of resources among multiple users, and includes a hierar-
chical approach for defining the shares. Another is Start-
time Fair Queuing (SFQ) [12] and its successors YFQ [4],
SFQ(D) [13], and FSFQ(D) [13], which give each active I/O
stream a share of resources in proportion to its weight rela-
tive to any other active streams. Our algorithm differs from
these alternatives in two ways: it gives each active stream
its requested reserve of resources regardless of the demands
of other streams, and (in contrast to lottery scheduling) it is
deterministic in its scheduling decisions.

Underlying devices. We have assumed that the underly-
ing device has an approximately constant average seek time.
This behavior is in contrast to more complex devices such
as Iceberg [23] or AutoRAID [28], whose seek time may
change as the data layout changes. For such devices, we ex-
pect that the performance benefits of our scheduling algo-
rithm would be gained by incorporating it into the device.

7. Conclusions

We have implemented an I/O scheduler that provides iso-
lation between the pools of applications that share resources
on a storage device, and also between the sessions of clients
of the same application. It accomplishes these goals through
the enforcement of simple reserve and limit policies on per-
formance resource allocation. The scheduler guarantees a
reserve I/O rate to each session and pool, limits each session
and pool to a maximum I/O rate, and provides fair sharing
of any available unused resources. It is implemented in a
Linux kernel module over real underlying disks, and causes
little overhead. We have verified that the implementation
operates as we had intended by experimentation.

Our implementation can be used as one of the building
blocks to construct a large, scalable storage system that is
built from small storage bricks. Such a system can in turn be
used to aggregate the data and workloads of multiple appli-
cations onto a cluster of storage systems. Our experimental
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results give us confidence that brick-level enforcement of
resource allocation policies can translate into cluster-wide
isolation of applications.
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