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Abstract 
 

Commercial forecasting systems are commonly used in manufacturing businesses to generate 
sales forecasts for thousands of products.  These systems typically feature a number of built-in 
options to select and estimate the statistical forecasting model, from a pre-specified collection of 
models, and are targeted to provide a low cost and efficient method of forecasting.  However, it is 
often observed that after prolonged use (e.g. two or more years), these systems suffer from serious 
performance degradation in terms of large forecast errors for a significant number of products.  An 
immediate and tangible consequence of inaccurate forecasts is increase in inventory levels, 
rendering the entire supply chain less efficient.  It is therefore important to diagnose and tune the 
statistical forecasting systems as part of their regular maintenance and operation.  

This chapter describes a case study in which simple but useful tools were devised for the 
forecast practitioner to (i) diagnose a statistical forecasting system systematically and identify 
products that require forecast performance improvement; and (ii) tune the parameters of a 
statistical forecasting system to improve its overall forecast performance.  The proposed tools were 
developed for a large manufacturer of consumer and industrial products in the USA.   

 

1.  Introduction and Background 
 
 Most, if not all, commercial enterprises require some form of demand forecasting for 
financial and operations planning.  For financial planning, a high level forecast (e.g., in 
dollar value) of major product groups or geographies is sufficient.  For operations planning, a 
more detailed forecast, such as forecast by product or even by product-location, is necessary.   
A manufacturing enterprise employing a make-to-stock strategy needs a demand forecast to 
plan what products and how much of each to build.  A make-to-order manufacturer uses a 
demand forecast to plan the purchase of parts and materials and its production capacity.  A 
retailer needs a demand forecast to determine how much of each product to stock at the 
different retail locations.  Other service enterprises utilize a demand forecast to plan and 
locate their capacity (for both labor and equipment).  We focus on the latter situation in this 
paper, namely detailed, product level forecasts that drive the planning of a supply chain. 
 Most often, a supply chain is engaged in the production of thousands or even tens of 
thousands of products, where each individual product may account for only a small portion 



of the total revenue.  (See Fildes and Beard 1992.)  Therefore it is neither practical nor 
economical to spend a lot of effort in forecasting a single product, except for the few top-
selling products dominating a significant fraction of the total business.  A relatively 
inexpensive and efficient way to forecast the sales of each of a large number of products 
repetitively is to use an automatic forecasting system.  Such a forecasting system can be 
based on heuristics (e.g., as in “focus forecasting” (Smith 1991)), statistical methods (e.g., 
time series, regression; see Makridakis et al. 1997, Chapters 3-7), expert system like rules, or 
a combination.  The most popular approach seems to be statistical methods, as evidenced by 
the large number of available software packages for statistical forecasting (Yurkiewicz 
2004).  Due to the large number of products involved, it is common that the system runs on a 
server computer and is part of a larger supply chain management system.  In principle, these 
forecasting systems, once set-up, require minimum human intervention to operate and 
generate a forecast.  This, however, only means that little human effort is required to produce 
some forecast; whether the forecasts are accurate or suitable for use is a different issue 
altogether.  In addition, over time, the forecast performance of such a system tends to 
deteriorate if they are not diagnosed and tuned in a continuing basis.  In this paper, we 
propose some practical ways to diagnose and tune the forecast performance of a typical 
statistical forecasting system under such an environment.  Indeed, it has been shown, at least 
in one case of the Holt-Winters forecasting procedure, that an automatic version can be 
significantly improved by subjective modifications (Chatfield 1978). 
 We present a case study in which practical tools were developed to help an 
operations planner or a forecast analyst manage an automatic forecasting module of an 
integrated supply chain management system.  Having gained wide acceptance in the last 15 
years, these systems cover a wide range of supply chain management activities, including 
sales forecasting, inventory management, distribution requirements planning, master 
production planning, materials requirements planning, and even shop floor scheduling and 
control.  Due to the enormous scope and the necessary complexity of such a system, the 
system designer has no choice but to limit individual modules to a relatively small set of key 
functionalities.  In forecasting, for instance, there is usually very little provision for diagnosis 
and tuning such as forecast error analysis or parameter optimization.  The simple but 
practical tools developed in this paper represent one way to fill this gap. 
 Specialized forecasting software provides more in-depth functionalities to forecast 
an individual product.  Most notably, many of such specialized packages provide the ability 
to find optimal parameter settings of the chosen forecasting model (see Table of software 
survey in Yurkiewicz 2004 and other software surveys listed in Rycroft (1999)).  But because 
of their standalone nature, significant integration effort has to be spent in utilizing these 
packages to develop an overall system suitable for managing thousands of products on a 
daily basis.  For this reason they are not nearly as popular as forecasting modules of 
integrated supply chain management systems. 
 In this study, our manufacturing enterprise produces industrial and consumer items 
of a commodity and semi-commodity nature.  It adopts a make-to-stock strategy and utilizes 
a demand forecasting module of a commercially available supply chain management system.  
At any one time there are more than 3000 active products for which demand forecasts are 
made regularly. We assume that this forecasting module will continue to be used in the 
future.  The complex issues of whether there is much to be gained by switching to a 
specialized, standalone forecasting system, what kind of models should be considered, and 
how the system fits in the business process of forecasting are outside the scope of this work.  
(See, for example, Chambers et al. 1971, Jenkins 1982.)  Our objective is to improve the 
forecast performance of the system in use.  To this end, we assume that the principal 
quantitative measure of forecast performance is the mean squared error of the one-period-



ahead forecast of the recent past 12 periods, i.e., we attempt to minimize this mean squared 
error.  A key reason to use the mean squared error is that the direct cost of the forecast error 
is inventory in the supply chain, since the root mean squared error is typically used to 
calculate the necessary safety stock to serve a demand point.   
 Note that we use the terms “sales” and “demand” interchangeably.  Strictly speaking, 
we should be performing demand forecasting as sales may be influenced by the actions or 
constraints of the business itself. 
 

2.  Role of Forecasting in Production Planning 
 

The role of forecasting in production planning is characterized here in general in the 
context of supply chain planning and execution. Forecasting processes play a critical role in the 
demand planning function in a supply chain, which specifies how much demand we would like to 
satisfy, where, and at what selling price.   

 

Figure 2.1:  Business Processes in Demand Planning 

Figure 2.2: Business Processes in Production Planning 
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Demand planning is an aggregation of forecasting, target marketing, and product-planning 
processes (see Figure 2.1). The forecasting processes use sales data such as point-of-sales scanner data, 
customer and market segment information from target marketing, promotion plans and product 
categories from product planning to generate demand forecasts. These dependencies also highlight the 
collaborative nature of the forecasting activity in an enterprise and typically involve many role players 
in a supply chain such as the forecast analyst, the promotion planner, and the merchandizing manager. 
Forecasting processes are also supported by a number of demand-planning related analytics such as 
analysis of promotional elasticity and sensitivity of sales to promotional events, analysis of demand for 
products that are considered as slow movers, impact of clearance pricing, data mining of customer 
buying patterns etc.   

The Master Scheduling process, in the production-planning function, uses the forecasts, the 
material constraints from material planning processes, the capacity constraints from the capacity 
planning processes, and the current schedule status from the finite capacity scheduling process to 
formulate the production plan (see Figure 2.2).  
 

3.  Practical Issues in Using a Statistical Forecasting System 
 
 A statistical forecasting system typically contains forecast procedures that determine 
how the user can interact with a forecasting model to generate a forecast.  A “user” in this 
context refers to someone who is knowledgeable about the data and is using the 
mathematical methods contained in the statistical forecasting system to obtain forecasts. 
More importantly, the user is typically very knowledgeable about the manufacturing 
operation and the business, but is not someone who is an expert in statistics or mathematical 
modeling.  More often than not, the users regard a forecasting model as a black box.  How 
then do they use the system?  In some cases the forecasting system vendors or system-
integration consultants fine tune the software and set the parameters during installation, and 
provide users with canned recipes which they can then use to operate the system.  In other 
cases the users install the system using default parameters programmed into the system by 
the vendor and let the system work.  Ad hoc methods are then devised as needed to adjust the 
parameters, often with unpredictable but significant consequences on the supply chain 
performance.  The forecasting system manuals accompanying the software generally offer 
very little help to the user.  The software vendors encourage the formation of “user groups” 
which allow users to exchange information.  Such a forum is useful to resolve procedural 
issues but do not provide technical information on what parameters or which forecast models 
are relevant for the data at hand.  The diagnostic and tuning procedures reported here were 
developed to help the user maintain the forecasting system so that forecasts of acceptable 
quality can be obtained throughout the life of the system. 
 It is important to distinguish what is done here as part of the maintenance of a 
forecasting system and what is typically meant by “maintenance” from the system point of 
view.  The latter includes maintaining the required data and the software itself.  This is 
usually recognized as a significant effort and financial and human resources are allocated for 
it.  Maintenance as referred to here is forecasting model maintenance which is different and 
complementary to the system maintenance effort.  At present, model maintenance is 
unfortunately not routinely budgeted as regular activities.  Consequently the forecast 
accuracy decreases over time.  In some cases, this will eventually lead to the perhaps 
unjustified conclusion that the system is no longer adequate; a new forecasting system is 



purchased and the cycle starts all over again.  Regular model maintenance will help avoid 
pre-mature abandoning of existing forecasting systems in which significant investments have 
already been made.  It will also help direct efforts towards situations where more advanced 
models or methods are really needed while leveraging well known and well proven methods 
for most of the forecasts.  Gung et al. (2002) discusses reasons and opportunities for new 
forecasting models.  
 Model maintenance is covered in the subsequent sections.  Next we discuss some 
issues that typically occur in the ongoing application and use of forecasting systems.  
Addressing these issues involve subjective judgments and governance policies associated 
with forecasting in supply chain management.  
 Product lifecycles, especially short lifecycles, complicate the application of 
forecasting systems in at least two ways.  First, the system has to support new product 
introductions.  Complex, manual procedures to create a new product in the forecasting 
system can become too expensive very quickly.  Second, in order to be able to obtain some 
reasonable forecast at the beginning of the product’s life, it is common to borrow the sales 
history of another “similar” product or that of the predecessor product.  If the new product 
has significant new features or if the market has changed (e.g., with the entry of a new 
competitor), using the history of the predecessor product may be questionable.  Finding a 
similar product is not trivial.  Subjective judgment often plays an important role.  The 
forecasting system should at least provide reasonable reporting or data visualization to 
support the user in making the necessary judgments. 
 Even for mature products, market conditions can change over its lifecycle such that 
the historical sales data of the product need to be adjusted to reflect the changing conditions.  
For example, in a wholesale business, a significant customer is gained or lost; in a retail 
business, a new market segment may be gained through product bundling, or a new 
competitor has entered the market.  Custom procedures to adjust the product history have to 
be devised based on the individual situation.  Once again, subjective judgment plays an 
important role. 

Supply chains feature multiple products and/or multiple geographic regions (or 
customer segments). This is set up as a product hierarchy in forecasting systems to support 
various business processes including marketing, financial planning, and production planning.  
Different levels of the hierarchy are used for different purposes.  For example, for financial 
planning one uses the forecasts at the top one or two levels (most aggregated); for detailed 
production planning the forecasts at the bottom one or two levels (most detailed, say the 
bottom level being the SKU(Stock Keeping Unit)-location) are used.  Clearly the forecasts 
within the entire hierarchy need to be consistent, in the sense that the sum of the lower level 
forecasts is equal to the higher level.  In one common approach, the forecasting systems 
derive the forecast for each product or each node in the hierarchy using an independent 
model, then enforce consistency through taking the upper level as the reference forecast and 
splitting that forecast based on the lower level forecasts.  Fliedner (2001) reviews different 
approaches in forecasting a hierarchy.  Such a hierarchy makes the forecasts of the different 
products dependent on each other, even though the underlying forecasting models for each 
product may be independent.  A consequence is that when some products are changed (e.g., 
new product introduction or product discontinuation), the entire hierarchy has to be re-run 
from the beginning of time in the forecasting system.  Besides the additional effort required 
for re-running the forecasts, the new forecasts will not be identical to the historical ones, 
causing potential confusion.  For example, historical forecasts on which business decisions 
had been made cannot be traced back and analyzed. 
 



4.  Diagnosis of the Statistical Forecasting System 
 
4.1.  Diagnosis of the overall system 
 
 The first question we ask of the performance of a statistical forecasting system is that 
how it compares to the case of no forecasting.  Even though an automatic forecasting system 
is used, time and other resources are needed to manage the input data and the system itself.  
Therefore we expect some return on our investment.  If we do not wish to perform any 
serious forecasting, one of the simplest and least expensive ways to obtain some input for 
planning is to use historical sales data of the recent past.  For example, we can take the 
average and standard error of sales in the past 12 months as the forecast and the basis for 
safety stock calculation.  Indeed, an informative way to evaluate the forecast performance is 
to perform such a comparison, using a histogram of the coefficient of variation (CV) of the 
historical sales and one-period-ahead historical forecasts1, over the past 12 months, of all the 
products we are trying to plan.  The cumulative plots of the same quantities indicate the 
percentiles.  Figures 4.1 and 4.2 contain an example of these plots2. 
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Figure 4.1:  Sales and Forecasts CV Distribution Plot 
 
 

 

                                                           
11  The coefficient of variation (CV) of sales is its standard deviation divided by its mean.  The CV of the 
forecasts is defined to be the root mean squared error of the forecasts divided by the average forecast. 
2 The data used in all the examples of this paper were taken from a system in real life but were arbitrarily 
rescaled. 
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Figure 4.2:  Cumulative Plot of Sales/Forecasts CV 
 
 
 From Figure 4.1, we can see that the forecasting system did shift the distribution of 
CV to the left, showing a general improvement (reduction) over the raw sales.  However, the 
shift is relatively small, meaning that the improvement is not large.  This is confirmed in 
Figure 4.2.  Ideally, a good forecasting system should produce a steeper cumulative plot of 
forecast CV than that of sales. 
 The CV analysis can be repeated with deseasonalized sales data.  An important usage 
of this CV analysis is that it shows a profile of the products in terms of their suitability or 
necessity of forecasting using a statistical model.  The products with very high sales CV 
(outliers or the top few percentiles) are naturally difficult to forecast statistically with good 
accuracy.  For these products, we may have to seek alternative methods of planning without 
relying heavily on sales forecasts.  For example, if the sales volume of the product is low or 
the unit value of the product is very low, then one way to plan production is to follow a 
cyclic schedule with relatively large production runs (say, one production run per half year or 
a year).  Then little to no safety stock will be necessary due to the large order size but the 
stocking cost is still low because of the low volume or low unit value. 
 For products with a small CV of sales (e.g. less than 0.2 for raw sales data and less 
than 0.1 for deseasonalized data), there is no need to use a sophisticated statistical model for 
forecasting.  We can simply take the moving average of historical sales in the past several 
(up to 12) months and its standard deviation.  Even if we had made good effort to forecast 
the sales statistically, the improvement in accuracy (in terms of reduction in CV) would not 
have been significant in practice. 
 The remaining products with sales CV’s falling in the middle range are the ones for 
which we should try to tune the statistical forecasting models.  They are most likely to result 
in significant forecast accuracy improvements with our effort; in other words, they give the 
best return of our investment in time and other resources.   
 The CV analysis also identifies which products need to be improved in terms of 
forecast accuracy.  Excluding products with the largest or smallest sales CV as explained, we 
can start with products with the largest 20% of all forecast CV’s and cross-check with our 
high volume or high dollar value products.  (Similarly, we can cross-check with strategically 
important or other management selected products.)  If there are products falling in both 
categories, these are the products with the most urgent need of forecast improvement.  If 
there is no product in both categories, we can take the next lower 20% of all forecast CV’s 



and so on.  Once the products to be considered are selected, we next investigate their forecast 
performance. 
 
4.2.  Diagnosis of individual products 
 
4.2.1.  Sales Analysis 
 
 For a selected product, analysis of the historical sales data can give some insight into 
how a statistical forecasting model would behave.  For example, if the historical sales is smooth, 
then we know a simple method like the moving average would be quite accurate and a very 
sophisticated or computationally intensive model is not necessary. Clearly, sales data analysis is 
useful in the selection of statistical models also; but we restrict our attention to whether our 
forecasting system in use (assuming its existence) is adequate.  To start the sales data analysis, 
we consider the standard descriptive statistics of the sales data over the full historical horizon 
and the past 12 periods separately: sample mean, standard deviation, coefficient of variation, 
mean absolute deviation, mean absolute deviation as a fraction of the sample mean, the quartiles, 
the minimum and maximum.  Besides the obvious patterns these quantities indicate, they are very 
useful in seeing quickly whether the past data are reasonable.  For example, if the second or the 
third quartiles show zeroes, then we know that over half of our data are zero.  This may mean 
that we do not have much past data, or our past sales were indeed very sporadic.  In the former 
case, we can shorten the historical data horizon and in the latter case find a model which is 
particularly designed for intermittent demands (e.g. Johnston and Boylan 1996).  In any case, the 
point of this exercise is to diagnose - to raise warning flags.  The difference in the statistics 
between the full horizon and the recent past indicates the trend in the data pattern and whether 
our collection of data has improved so that a smaller horizon may lead to better forecasting 
results.   

These simple methods are also useful during diagnosis of the overall system in the 
following way.  Instead of presenting screens of historical sales data across products to the 
analyst, a table of selected summary statistics, say the second quartile and difference of it 
between the full horizon (e.g. 36 months) and most recent past (e.g. 12 months), across products 
is shown.  In this way, it would be easier for the analyst to obtain general insight on the products 
and their relative behavior.  Further, automatic warning procedures can be easily programmed to 
monitor a few summary statistic values. 

For an overview of the data, it is useful to plot the historical sales data as a function of 
time for visual detection of data pattern and the data’s general behavior.  If the randomness of the 
data is not too high, then patterns like seasonality and increasing/decreasing trends can be 
detected by visual inspection.  Otherwise, an autocorrelation plot of the full data set and data of 
the recent past can help in detecting seasonality in the presence of noise. 
 Figure 4.3 shows our implementation of the above sales data analysis in a spreadsheet.  
The tools provided are meant to help indicate the general pattern of the historical sales data, from 
which we may infer whether the class of statistical forecasting models we are using is 
appropriate (i.e., overkill or inadequate) or, moving back one step, whether we should use 
statistical forecasting for this product at all.  Assuming that the answers to both questions are in 
the affirmative, we may move on to analyze the forecasts made by the automatic forecasting 
system for this product. 
 
4.2.2.  Forecast Analysis 
 
   A natural first step is to consider a time plot of the historical sales and forecasts, together 
with the future forecasts, as shown in Figure 4.4.  The general forecast-vs-sales pattern in the 



recent past (e.g. past 12 periods) provides a visual representation of major forecast inadequacies, 
if any, such as bias, time lag, over-reaction, over-damping effects, or missing seasonality.  
Standard descriptive statistics such as the average, standard deviation, mean absolute deviation, 
mean absolute deviation as a fraction of the average, quartiles, minimum and maximum of the 
recent past historical forecasts are useful for comparison with that of historical sales.  For 
example, if sales are relatively stable (statistically stationary), there should be a reasonably close 
match of the averages and standard deviations.  Matching the average is particularly important 
since a yearly or other aggregate forecast is often used for financial planning purposes. 
 One way to analyze the performance of the forecasting system is to see whether the 
forecasted change in sales from one period to the next matches well with the actual change.  We 
use three tools for this purpose: the correlation coefficient, Theil’s U-statistic, and Prediction-
Realization (P-R) diagram for the forecasted and actual changes in the recent past.  The 
correlation coefficient measures our forecasted changes against a perfect forecast.  This measure 
gives some information on the absolute performance of our forecasts.  However, a perfect 
forecast is unrealistic and we need an additional measure based on a more practical baseline.  
Theil’s U-statistic is one such measure. 
   Let fi and si be the forecast and actual sales for period i respectively.  Theil’s U-statistic 
(Theil 1966, pp26-32) is defined as 
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This statistic essentially provides a comparison of the current forecasting method with the naive 
method of using the current period’s sales as the forecast for the next period.  When we use the 
naive method, FPE = 0 and U = 1.  On the other hand, if the forecasted changes are perfect (FPE 
= APE), then U = 0.  If we are using a computationally intensive method of forecasting but 
getting a value of U close to 1, we are not getting very good value of our forecasting investment. 
 The Prediction-Realization (P-R) diagram (see Figure 4.5) offers a pictorial view of the 
forecasted vs actual changes.  Clearly, we would like all the points to lie in the first or third 
quadrant of the graph.  A perfect forecast has all points lying on the y = x diagonal line.  Points 
appearing in the second or fourth quadrant indicate that even the direction of change was 
predicted incorrectly in those instances.   

To determine whether the forecasting model is missing significant patterns in the 
historical sales, we use two simple tools: a time plot of the forecast errors and a plot of the 
autocorrelation coefficient of the forecast errors.  If the forecasting model is adequate, then the 
forecast errors are random noise with no particular pattern.  In addition, the autocorrelation 
coefficients should be small, showing a random pattern across lags.  The bottom half of Figure 
4.5 shows an example of these plots. 



Descriptive statistics of sales per period over full horizon:
Average 72808.00 Minimum 0
Std deviation 114632.85 1st quartile 0
Coeff of variation 1.5745 2nd quartile 0
Mean absolute deviation 89607.11 3rd quartile 134640
MAD / Average 1.2307 Maximum 477360

Descriptive statistics of sales per period over last 12 periods:
Average 134640.00 Minimum 0
Std deviation 106318.25 1st quartile 31680
Coeff of variation 0.7896 2nd quartile 157680
Mean absolute deviation 92160.00 3rd quartile 198000
MAD / Average 0.6845 Maximum 285120
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Figure 4.3:  Sales Data Analysis 
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Figure 4.4:  Sales/Forecasts Time Plot 



Descriptive statistics of sales forecast per period over forecast horizon:
Average 138605.29 Minimum 23638
Std deviation 136133.77 1st quartile 36294
Coeff of variation 0.9822 2nd quartile 81296
Mean abs deviation 108588.43 3rd quartile 192814
MAD / Average 0.7834 Maximum 363411

Correlation of forecast & actual changes 0.8473
Theil's U-statistic 0.4956
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Figure 4.5:  Forecast Analysis 

 



5.  Tuning of the Statistical Forecasting System  
 
 Based on an analysis of the forecasts as discussed in Section 4, one can determine 
whether to continue using the current forecasting model.  Most often, the analysis results would 
be reasonably satisfactory for some products, but also identify other products as candidates for 
improving their forecast accuracy.  The simple tool developed for tuning the parameters of the 
forecasting model was applied to a version of the well-known Winters’ method (see, e.g., 
Makridakis et al. (1997), p.161), which is used in the supply chain planning system under study.  
We note however that the concepts and the tuning process are generally applicable for most 
statistical model based forecasting systems.   

Winters’ method represents the family of exponential smoothing models, a robust 
approach commonly used in practice.  Exponential smoothing is featured in every one of the 
forecasting and supply chain planning systems available commercially (Yurkiewicz 2004).  
Sanders (1997) found from his survey of 350 U.S. manufacturers that 26% of low sales 
(<$100M) firms and 38% of high sales (>$500M) firms used exponential smoothing.  In an older 
but more general survey of 500 U.S. corporations (not just manufacturers), Sanders and Manrodt 
(1994) reported that exponential smoothing was used by 13-20% of the respondents in 
forecasting up to 1 year ahead.  Exponential smoothing has also performed favorably in past 
forecasting accuracy empirical studies (Makridakis and Hibon 1979, Makridakis et al. 1982).  
Because of its fast speed of computation, it is popular among retailers who have to generate a 
large number of forecasts (up to millions) on a regular basis.  For a comprehensive review of 
exponential smoothing and related issues, see Gardner (1985). 

In the remainder of this section, our discussion assumes the use of Winters’ method.  Our 
objective is to find the values of the model parameters such that the mean squared forecast error 
is minimized.  It addresses the issue of choosing the smoothing parameters in a discussion of 
practical use of Winters’ method in Chatfield and Yar (1988). 
 
5.1.  Tuning of individual products  
 
 Although dedicated forecasting software packages usually provide some parameter 
optimization capability (Yurkiewicz 2004), the forecasting modules of many integrated supply 
chain management systems do not provide such capability or such capability is very limited.  For 
example, they may only have built-in criteria for parameter optimization such that the user 
cannot specify their own criterion.  Choosing the appropriate criterion to measure forecast error 
is a non-trivial and important issue that impacts the performance of the business (see, e.g., Lee et 
al. 1993).  A custom-built parameter optimization tool, such as the simple tool described here, 
can accommodate criteria that are chosen deliberately for the business. 

The main parameters in Winters’ method are the three smoothing factors (one for each of 
the permanent, trend, and seasonality components; see the Appendix for details).  We developed 
a simple three-option tuning process for the nonlinear optimization problem of minimizing the 
mean squared forecast error.  (An implementation in Excel is shown in Figure 4.6.)  Each option 
is more refined than the previous one, producing an improved parameter set, but requires a larger 
amount of computational time.  The options are: 
 
1. Grid search.  It simply performs a search over a grid formed by the feasible ranges of a given 

set of parameters and chooses the point which yields the lowest mean squared error of the 
historical forecasts in the recent past (say 12 periods).  We chose the feasible parameter set 
in the following way.  
 The smoothing factors control the “responsiveness” of the forecasting model.  When 



the factors are large (i.e., close to 1), the model reacts quickly to recent changes in sales.  
The forecasts may be more accurate, but are usually less robust in the long run.  With large 
smoothing factors, the forecasts for a given future period generated in successive periods 
may be very different.  This can create a certain degree of “nervousness” to the production 
plan driven by the forecasts.  An organization needs to determine the extent of plan changes 
its production-distribution system can handle.  For example, if the system is flexible because 
of investments in the production facilities, then we can use a larger smoothing factor to take 
advantage of the system flexibility.  Otherwise, it may not be very useful to have highly 
adaptive forecasts while the production-distribution plans cannot be changed frequently.  In 
the latter case the organization pays the price of having higher inventory costs.  In addition, 
the nature of the business influences whether we need a responsive forecast.  When sales are 
relatively stable, a large smoothing factor may actually decrease the forecast accuracy 
because the forecast will be too sensitive to occasional fluctuations.  It is therefore prudent 
that the range of the smoothing factors be chosen based on the knowledge of the business and 
the capability of the organization.   

The chosen range limits the grid search to a smaller set than the unit cube (which is 
the entire feasible set for the three smoothing factors).  For our implementation we used a 
maximum of 0.45 for all three factors.  The specific parameter sets for the grid search are 
then chosen by uniformly placing 125 points in the feasible cube.  Obviously, the larger 
number of points will give better results but require more computational time.  For our 
implementation, we find, after some experimentation, that 125 seems to be a reasonable 
number in terms of tradeoff between computational time and forecast error. 

Grid search, although somewhat old fashioned and rather cumbersome, is a general 
approach for parameter optimization in Winters’ forecasting method (Chatfield and Yar 
1988). 

 
2. Grid search with fine tuning.  This option first runs a grid search as described, then takes the 

selected parameter set from the grid search as a starting solution for a nonlinear optimizer to 
find the final parameter values.  In our implementation we used the Microsoft Excel Solver 
with a nonlinear optimizer based on the GRG2 algorithm (Lasdon et al. 1978). 

 
3. Multiple-start optimizer for global optimization.  Because the mean squared forecast error 

function of the three smoothing factors is likely to contain many local extrema, we couple the 
nonlinear optimizer with multiple starting points to attempt global optimization.  We run the 
optimizer to find a local minimum using each point selected for the grid search described in 
option 1 as a starting solution.  The final parameter set is chosen to yield the least of all the 
local minima.  From our experience, when the sales data were fairly smooth (e.g., the sales 
data for a large class of products in the national market), the multiple-start optimizer would 
produce the same solution as the grid search with fine tuning.  In other words, the GRG2 
algorithm was able to find the global optimum with a single starting point. 

 



 
 

Figure 4.6:  Implementation of tuning method in Excel spreadsheet 
 
 
5.2.  Tuning of the overall system 
 
 In the previous section, we discuss how we can gain some insight about the behavior of 
the forecasting model and tune it for a single product.  Now we need to find a way to tune the 
system as a whole.  The simplest but the most cumbersome way to optimize the system is to 
perform the above tuning process for each product and then upload the resulting parameters to 
the forecasting system.  As we are dealing with many products, this may not be practical on a 
regular basis.  We developed an alternative scheme as follows. 
 First, products that are important to the business need to be optimized individually.  
Often, these include the top sellers (or class A products in a Pareto classification of sales), 
products with consistently high inventory levels in the past (which can be identified using a 
Pareto analysis of the total inventory), products strategically important to the survival or growth 
of the business (e.g. products with advanced proprietary technology), and products which 
consume the largest amounts of the most critical resources of the business.  In addition, forecast 
parameters for each of the large families of products (i.e. the top levels in the forecasting 
pyramid) should be tuned individually.  In this way, we are assured that the overall volume of the 
business is forecasted reasonably well. 
 For the rest of the products, we need to classify them into a manageable number of 
categories according to the sales pattern of the products.  (The actual number of categories will 
depend on the resources available for forecasting and the relative importance of the sales forecast 



to the business.)  For example, we can group all products whose sales are known to be highly 
seasonal or, in the other extreme, very “flat”, products in the same stage in their life cycles (new 
products, mature products, etc.), products which are by their nature often sold together, products 
sold according to some common industry practice.  For each of the category, we choose a 
representative product and optimize its forecasting parameters as above.  These parameter values 
are then used for all products in the same category. 
 In general, parameter tuning need not be performed very frequently.  For the Winters’ 
method, Chatfield and Yar (1988) suggested updating the parameters every year or two.  For the 
types of products in hand, we also feel that once a year is a reasonable interval.  Many 
forecasting systems have built-in forecast error tracking, so that the system will issue a warning 
when its tracking criterion is violated.  Even with such features, we still suggest that a yearly 
parameter tuning activity be used.  This will ensure that we are getting the most of the 
forecasting system and will also serve as a forecast monitor as well. 
 

6.  Conclusions 
 
 The use of automatic demand forecasting modules in the context of an integrated supply 
chain management system provides many advantages and is now widely popular.  Maintaining 
the forecasting system, however, takes more effort than routine data and software maintenance.  
It requires regular effort in maintaining the forecasting models throughout the life of the system 
and such activities need to be planned and budgeted for.   
 We illustrate the type of model maintenance that is needed through a case study.  Simple 
tools were developed to diagnose where forecast accuracy improvements may lie and to 
subsequently tune the forecasting models in these cases.  The tools developed complement the 
statistical forecasting capabilities provided by a commercial supply chain management system.  
While the latest forecasting software packages may provide similar parameter optimization 
capabilities, we have not seen any that provides similar forecast diagnostic functions.  Our work 
also accompanies the list of features described by Fildes et al. (2003) as desirable design points 
of a forecasting system. 
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Appendix:  Forecasting Processes & Winters’ Forecasting Method 
 

The Forecasting Process 
 

The forecasting method is best understood in the context of the overall forecasting 
process.  Figure A.1 provides a simple functional overview of the overall forecasting process. 
It has essentially two main components: a hierarchical statistical forecasting process and a 
management interaction to adjust the statistical forecasts based on business considerations 
(also referred to as management overrides).  The resultant forecast is then what primes the 
production and distribution planning processes.  The ensuing description is focused on the 
hierarchical statistical forecasting process.  

The hierarchical statistical forecasting is based on independently forecasting each 
level of the forecast pyramid, i.e., using independent forecasting models, and then 
reconciling the forecasts across the levels using a mechanism referred to as “forcing”.  First, 
the basic statistical forecasting model used for any single entity at any level (for example, an 
item at level L3 or an item at a particular stock location at level L2) is described.  This is 
followed by a description of the forcing mechanism.  
 
 

 

The Statistical Forecasting Model 
 
The statistical forecasting model considered here is an embellishment of the basic 

Winters' exponential smoothing forecasting technique.  Exponential smoothing is commonly 

Figure A.1: Functional Overview of Overall Forecasting Processes 
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used in forecasting product demand that is then used as input to production and distribution 
planning in manufacturing and supply chain management systems.  Among exponential 
smoothing techniques the Winters’ method (with extensions) is typically used to account for 
trend and seasonal variations in demand. 

Assumptions 
 
The description of the forecasting model is predicated on the following assumptions. 
 

1. The forecasting system filters the actual demand to remove outliers based on a 
parameter referred to as the “demand filter factor” and the mean absolute deviation 
of the demand.  It is assumed for describing the forecasting model that the actual 
demand has been filtered and is available as data. The filtering procedure is therefore 
outside the scope of the forecasting model described here.   

2. The forecasting model is described assuming that the model is RESTARTED (i.e., 
all historical and future forecasts are computed from scratch using the entire array of 
historical data available).  When the model is REINITIALIZED (i.e., historical 
forecasts computed previously are retained; future forecasts are computed from 
scratch using the entire array of historical data available), the model is applicable 
except that part of the forecast array still contain previously computed values.  It may 
be noted that in this case the standard deviation of the error is based on the 
previously computed forecast values (Ft).  When the model is operating under 
NORMAL condition (i.e., neither restarted nor reinitialized) the algorithmic step of 
generating future forecasts using the Winters equations is applicable.  However, all 
other steps of the algorithm are in such a case irrelevant. 

3. The forecast periods are assumed to be uniform, i.e., either they are of same time 
duration or can be considered as such.  This assumption must be relaxed to 
accommodate the calendar effect such as (4-4-5 week pattern) calendar.   

The Forecasting Algorithm 
 
A1 Regression  

 
A two-phase regression approach is performed on the actual demand to calculate the 
initial permanent and trend components. In the first phase, the actual raw demand is 
deseasonalized. A simple regression is then performed on the deseasonalized raw 
demand to fit a trend line. This trend line represents the fitted deseasonalized demand 
and yields the initial permanent and trend components. A double moving average method 
(also referred to as the centered moving average) is used in deseasonalizing the raw 
demand. This procedure is similar to that contained in the Census II procedure employed 
by the U.S. Department of Commerce.  
 
 

A2 Computing Seasonality  
 
If the model is seasonal, then the deseasonalized demand from step A1 is used to 
determine seasonality ratios for periods {t=1, 2... N}; these ratios are adjusted if 
warranted to comply with the lower and upper limits on seasonality (SL and SU 
respectively). They are then weighted using seasonality weights (Wy) and normalized to 



obtain normalized seasonality factors for periods {t=1, 2…12}. If seasonality smoothing 
indicator γ > 0 then an additional step is carried out to smooth these seasonality factors 
based on either a three or a five month moving average. If the model is non-seasonal, 
then all the seasonality factors are directly set equal to 1 bypassing the procedure 
described above.  
 

A3 Generating Historical Forecast 
 
Using the initial permanent and trend components from A1 and the seasonality factors 
from A2, Winters' basic equations are applied to generate the historical system forecast 
{ft, t=1, 2… N}. Since the model is assumed to be restarted (by assumption 2), [Ft = ft, 
∀t]. The following steps are carried out as the Winters’ equations are used to roll the 
initial permanent and trend components from period to period. The permanent and trend 
components in period t=N are referred to as the current permanent and trend 
components respectively.  

• Enforcing Non-negativity  
If the permanent component in any period is less than zero then it is set equal 
to zero.   

• Checking Trend Limit  
The trend limiting factor χ is used to check if the trend component is within 
the pre-specified percentage of the permanent component. If the limit is 
violated then the permanent and the trend components are adjusted.  

• Computing Seasonality Factors 
In the case of seasonality model, basic Winters' smoothing equation is 
applied on seasonality factors computed in A2 to obtain seasonality factors 
for the following 12 periods. These are then used to compute the seasonality 
factors for the next 12 periods and so on. Upon computation of each set of 
12 seasonality factors the following step is executed.   

• Adjusting Computed Seasonality Factors  
The seasonality factors are adjusted if they violate the lower (SL) and the 
upper (SU) limits. They are then normalized and additionally smoothed if  γ 
> 0.   

 
A4 Generating Future Forecast  

 
• Using the current permanent and trend components as well as the seasonality 

factors (in the case of seasonal model) from A3, modified Winters' overall 
forecast equation is applied to determine the future forecast.  The 
modification to the Winters' equation includes the trend  dampening  factor 
τ.  The following additional step is carried out to scale the forecasts if 
necessary.  

• Checking Forecast Reasonableness  
If the total forecast demand for the future twelve periods exceed (fall short 
of) the product of the forecast reasonable factor HI (LO) and the total 
forecast demand for the recent past twelve periods, then the forecast demand 
for the future twelve periods are appropriately scaled.   
 

The Forcing Process 
 



 The forcing process is an important element of the hierarchical forecasting process 
and applies to both statistical forecasts as well as to any management overrides of forecasts 
in slightly different ways.  Recall that for any item, the forecast pyramid consists of three 
levels: level L3 is the apex of the pyramid and represents for example the national forecasts, 
level L2 is the next lower level and represents the forecasts for example at all stocking 
locations for the item, and level L1 is the lowest level and represents the forecasts at all 
stocking locations for each business unit for the item.  Forcing affects the forecasts at all 
three levels and is meant to produce a consistent forecast for items at all three levels. The 
forcing process is described for the case when there are no management overrides.  The 
presence of the management overrides involves more complex calculations.  

When there are no management overrides the forcing is applied to the system 
forecasts (generated by Winters’ method described above).  This typically happens at the end 
of the month forecast calculations.  Let ft, ft(j), and ft(j,k) be the unforced system forecast in 
period t (independently generated) for any item at levels L3, L2, and L1 respectively, where 
index j stands for the stocking locations and k stands for the business units. Let ST be the set 
of stocking locations for the item (i.e. j ∈ ST) and BU be the set of business units (i.e. k ∈ 
BU). Since the statistical forecasts are usually more accurate at the upper levels of the 
pyramid than the lower levels, forcing proceeds downwards, i.e., forecasts are “forced 
down.”  The forced forecasts (ff) at each level are then given as follows:  
 

fft = ft 

 
fft(j) = ft(j) * [fft / ∑ (j ∈ ST) ft(j)] 

 
fft(j,k) = ft(j,k) * [fft(j) / ∑ (k ∈ BU) ft(j,k)] 

 
 

Following forcing the total forecast for the item at all three levels will be consistent:  
 

fft = ∑ (j ∈ ST) fft(j) = ∑ (j ∈ ST) ∑ (k ∈ BU) fft(j,k) 

 

 


