
RJ10390 (A0610-018) October 4, 2006
Computer Science

IBM Research Report

Efficient Traitor Tracing

Hongxia Jin, Jeffery Lotspiech, Nimrod Megiddo
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Efficient Traitor Tracing

Hongxia Jin, Jeffery Lotspiech and Nimrod Megiddo

IBM Almaden Research Center
San Jose, CA, 95120

{jin,lotspiech,megiddo}@us.ibm.com

Abstract. In this paper we study the traitor tracing problem, which
originates in combating piracy of copyrighted materials. When a pirated
copy of some copyrighted material is observed, a traitor tracing scheme
should identify at least one of the real users (traitors) who participate
in the construction of the pirated copy. Content is divided into multiple
segments and each segment comes with multiple variations. Each user can
only play back one variation through the content. Given some practical
restrictions on the number of variations one can put into the content and
the number of users to accommodate, we will show an efficient tracing
scheme that can achieve superlinear traceability in terms of the number
of recovered pirate copies of the content needed as a function of the
number of traitors involved in a coalition. The efficiency of the tracing
scheme is one of the enabling factors for the first commercial use of a
traitor tracing technology within the AACS 1 (Advanced Access Content
System) content protection standards for next generation high-definition
video optical disc.

Keywords: Content protection, media security, broadcast encryption, anti-piracy

1 Introduction

This paper is concerned with the protection of copyrighted materials. The tech-
nology is termed “traitor tracing” in the literature. The term refers to a way
of identifying the source of unauthorized copies of digital content. A number
of business models has emerged whose success hinges on the ability to securely
distribute digital content only to paying customers. Examples of these business
models include pay-TV systems (Cable companies) or movie rental companies
like Netflix, and massively distributing prerecorded and recordable media. There
is a anonymous pirate attack in these business models. For example, an attacker
re-digitizes the analogue output from a compliant device and redistribute the
content in the clear. In this case, the only forensic evidence is the unprotected
copy of the content (content attack). Or, the attackers may compromise the
tamper-resistance of one or more players to extract the content decryption keys.

1 AACS is in business available for licensing now, see press release at
http://www.aacsla.com/press

They can then set up a server that sells decryption keys on demand (key attack).
To defend against these types of attacks, one might need different versions of
the content/keys for different users.

For the rest of this paper, we will assume that the content protected is copy-
righted digital movies. We do this for concreteness, and because we were inspired
by the AACS application. This movie application is true of many different one-
to-many content distribution channels, in that it is generally infeasible to prepare
and send individualized (e.g., watermarked) movies to each user. On the other
hand, it is also infeasible, usually for security reasons, to customize each copy
at the receiving end2. A feasible technical approach is to choose certain points
in the movie and create different variations for each of those points. Each varia-
tion is differently encrypted. The movie is thus augmented by all the variations.
Each user receives the same bulk-encrypted movie. However, each user can only
decrypt one of the variations at each point. In other words, each recipient would
follow a different path through the variations during playback time. It effectively
creates multiple versions of a movie. Over time, when recovering enough pirate
movies, it may be possible to detect the devices in a copyright attack by ex-
amining the variations recovered in the unauthorized copies of the movies. The
devices/users used in the pirate attack are called ”traitors” or ”colluders”.

There have been a lot of studies in the area of traitor tracing. A traitor
tracing scheme usually consists of two basic steps:

1. Assign variations or keys for the content to devices.
2. Based on the recovered version keys/content, trace back to the traitors.

A tracing scheme is static if it pre-determines the first step before the content
is broadcast and does not change afterwards. A traitor can be identified when
enough copies of keys/content are recovered. On contrast, if the first step can
be updated based on observed pirate keys/content, the scheme is dynamic. Fiat
and Tassa introduced a dynamic traitor tracing scheme [5]. It involves realtime
computation to decide the new assignment for the first step.

A tracing scheme is deterministic if it detects at least one exact traitor with-
out any chance of incriminating an innocent user, otherwise it is probabilistic.
The first traitor tracing scheme was proposed by Chor, Fiat, Naor and Pinkas
in [3]. The traitor tracing schemes in [3],[4] are static and probabilistic. There
is also a sequential traitor tracing[6] [7] which is static and deterministic. More
formal analysis of its traceability is shown in [8], [9]. For the static assignment,
it can be random or systematic. The traitor tracing schemes in [3],[4] randomly
assign the decryption keys to users before the content is broadcast. The main
goal of their scheme is to make the probability of exposing an innocent user
negligible under as many real traitors in the coalition as possible. The traitor
tracing schemes in [6] [7] used systematic assignment.

The authors have been involved in what we believe is the first large-scale de-
ployment of a tracing traitors approach. It is used to defend against the anony-
2 Unauthorized copies generally imply a break the correct operation of the client. How

can a broken client be expected to correctly generate the customizing marks?

mous attack for the (Advanced Access Content System) content protection stan-
dards for next generation of high-definition optical DVDs. In the AACS context,
each movie is divided into multiple segments and each segment is augmented
with multiple variations. As one can imagine, the variations takes extra space
on the disc. A practical traitor tracing scheme on a prerecorded optical movie
disc should take no more than 10% of the space on the disc to store the varia-
tions. This puts practical restriction on the number of variations one can put into
a movie. The market for such discs is huge, involving literally a billion playing
devices or more. This means a tracing scheme needs to be able to accommodate
large number of devices. After meeting these requirements, it is also important
to detect the coalition of traitors using as few recovered movies as possible.

In summary, a traitor tracing scheme for AACS needs to meet all the following
requirements:

1. the number of variations for each movie cannot be big
2. the number of devices/users must be big
3. after the above two requirements are met, the number of movies necessary

to detect a coalition of should be as small as possible

Much of the literature on traceability codes has taken the approach of fixing
the number of colluders and the number of recovered movies and trying to find
codes to support an optimal number of devices/users for a given number of
variations of each movie. In the AACS context, a traitor tracing scheme must
first meet the above two requirements. Existing schemes do not fit here. For
example, the code shown in [7] either has too few codewords (accommodates a
small number of devices) or the number of variations is too large (requires too
much space on the disc). Bringing the long-standing theoretical work to practice
was the major effort we undertook in the AACS system.

We have designed a way to meet the first two requirements as shown in [10].
In summary, for each movie, there is an “inner code” used to assign the different
variations at the chosen points of the movie; it effectively creates different movie
versions. For example, 16 variations are created at each of the 15 points in
the movie, effectively generating 256 versions for each movie. For a sequence
of movies, there is an “outer code” used to assign movie versions to different
players. For example, each player is assigned one of the 256 versions for each
movie in a sequence of 255 movies. By concatenating the two levels of codes, we
managed to avoid having a big number of variations at any chosen point but can
still accommodate the billions of devices we anticipate.

After meeting the first two requirements, we have studied the relationship
between the number of traitors and the number of movies required. In this
paper, the efficiency of the tracing (traceability) is measured by the number
of recovered movies needed in order to detect traitors involved in a coalition,
given the practical constraints of the first two requirements. In fact, the first two
requirements have more to do with the first step in a traitor tracing scheme, and
the third requirement has more to do with the second step in the scheme.

For the second step, there is one thing common with all the existing schemes.
When the traitors in a coalition collude together in the pirate attack, these

schemes are defined to detect and incriminate the one traitor who has the high-
est score. They suppose this traitor can be disconnected and tracing continues
after that. The main contribution of this paper is to develop the first tracing
scheme that tried to detect all the traitors in the coalition together. With the
recovered movies, we try to detect which coalition of players may have involved
in the attack, instead of which one particular player may have been involved.
In other words, we could incriminate more than one player each iteration of
the algorithm. It turns out that it is much less likely that coalitions appear by
random chance, than that individual players randomly have high scores. This
truism is the essence of the efficient tracing underneath our new tracing scheme.
We believe providing an efficient tracing algorithm is one of the most important
steps to make this AACS commercial deployment possible.

In rest of the paper, we will present our tracing scheme in Section 3. We
will analyze its false positive rate in Section 4 and its performance/efficiency in
Section 5. We show simulation results in Section 6 and conclude in Section 7.

2 Pirate model

There are two well-known models for how a pirated copy (be it the content or
the key) can be generated:

1. Given two variants v1 and v2 of a segment, the pirate can only use v1 or v2,
not any other valid variant vi.

2. Given two variants v1 and v2 of a movie segment (v1 �= v2), the pirate can
generate any valid variant vi out of v1 and v2

The second model, of course, assumes the attackers have more power. As
shown in [11], when using this model, the lower bound of the number of movies
it takes to detect traitors in a coalition of T is T 2. We believe the second model
fits documents or software better than audio or video. Since in this paper we
are concerned with audio and video, assuming the first model is acceptable in
the AACS context. Indeed, this so-called marking assumption is often made by
other traitor tracing schemes shown in the literature. Also, in a key attack, the
first model says it is impossible to calculate a valid random cryptographic key
from combining two other valid random keys–which is obviously true.

3 Tracing Scheme

The AACS traitor tracing scheme also consists of two basic steps:

1. Assign movie version keys to devices.
2. Based on the recovered movies/keys, identify the devices used in the attack.

For the first step of the AACS tracing scheme, instead of directly assigning
variation keys for each movie to the devices, a level of indirection allows us to
assign movie version keys to the devices, from which the devices can obtain the

actual variation decrypting keys. This level of indirection allows us to save space
on the devices used to store the keys. In other words, the “outer code” was used
to assign keys to devices in the first step. For example, each device is assigned
a set of 255 keys, corresponding to the 255 movies in the sequence. Each key
comes with 256 versions in the world. These keys are called “sequence keys” in
the AACS specification. Many players will receive any given sequence key, but
no two players will receive exactly the same set of 256 keys. These sequence keys
are placed in the players at manufacturing time. For most types of players, it is
impossible to dynamically update those keys. So our scheme has to be static.

The sequence key assignment can be random or systematic. In rest of the
paper, we will just assume that the licensing agency assigns sequence keys to
devices uniformly at random and will focus on the second step for the actual
tracing algorithm.

The traditional approach taken in the second step is simple and straight-
forward: you take your sequence of recovered movies, and simply score all the
devices based on how many movies match with what each device has been as-
signed. You incriminate the highest scoring device.

While the classic method for detecting a traitor is to score each individual
player, a different method suggests itself: should not the problem be finding every
member of the coalition? Although this second method seems more useful, the
classic method has some obvious advantages:

1. It seems easier.
2. The number of coalitions is exponential compared to the number of individ-

uals. For example, if there are a 1,000,000,000 devices in the world, there are
roughly 500,000,000,000,000,000 pairs of devices.

3. It seems essential against the “scapegoat” strategy. In this strategy, the
coalition sacrifices a few devices and uses them heavily while using the oth-
ers lightly, to keep some in reserve. Note that even without the scapegoat
strategy, simulation results usually show some unlucky innocent devices in-
termixed with guilty players when the devices are scored in the classic way.

It may seem counter-intuitive, but we believe it is easier to find the entire
coalition than to find the individual traitor. It turns out that it is much less
likely that coalitions appear by random chance, than that individual players
randomly have high score. An example can informally illustrate the underlying
idea. Suppose there are 4 people involved in a colluding attack, and we have a
random sequence of 20 recovered movies. Each movie originally has 256 varia-
tions of which a given player only plays 1. The attackers wish to see that high
scoring device can happen by chance. If the four attackers are using round robin,
each guilty player will evenly score 5. Can we incriminate any player that share
5 movies with the recovered sequence? No, there will be about 15 completely
innocent players scoring 5 or greater due to chance alone. What can you do
then? You have to recover more movies before you can incriminate any player.
In general, with N players and q variations for each movie, the expected number

of individuals who can score x among m movies are:

N ∗ (1/q)x ∗
(

m

x

)
(1)

However, the above 4 guilty players together can explain all the movies in
the sequence. What is the chance that a coalition of size 4 might have all the
variations in the sequence? The answer is roughly 0.04. In other words, while
there are plenty of players that can explain 5 movies, it is unlikely that any four
of them can “cover” all twenty movies. If we find four players that do cover the
sequence, it is unlikely that this could have happened by chance. It is more likely
that that some devices in the coalition are indeed guilty.

On the other hand, the attackers may use scapegoat strategy. Some player is
used heavily, for example, score 9 or 10. The traditional approach can correctly
identify him, but it is hard to find the lightly used player and the true coalition
size. Our new tracing algorithm can nonetheless find the other members in the
coalitions and find out the coalition size.

In section 3.1, we will show how we find a coalition to explain the recovered
movies. After we find the suspect coalition, in section 3.2 we will how we identify
the actual guilty players in the suspect coalition and filter out the innocent ones.

3.1 Finding a coalition

Let us formalize the above intuition a bit more. If there are N players, and a
sequence of m movies are selected, each movie having one random variation out
of q, the expected number of coalitions of size T are:

(
N

T

)
∗ (1 − (1 − 1/q)T)m (2)

If the expected number of coalitions is less than 1, this formula also gives an
upper bound on the probability that a random sequence of m movie variations
is covered by a coalition of size T .

If T is noticeably less than q, a simplification of this is a close upper bound:
(

N

T

)
∗ (T/q)m (3)

The problem of finding a coalition of players that covers a sequence of movies
is equivalent to a well-known problem in computer science called Set Cover. It is
NP hard. But in reality the calculation time is still reasonable, for the parameters
that AACS is concerned with. Below we show a sample Set Cover algorithm that
can be used in the tracing.

Assume the licensing agency has observed a sequence of movies and deter-
mined the particular variation (the “symbol”) in use for each. We also introduce
the parameter k, the number of symbols that would probabilistically identify a
single player. For example, k could be set to logqN , where N is the total number
of players.

The following recursive procedure COVER, if given a suspected number of
traitors T and a list of the m encoded symbols discovered, returns true if and
only if there is at least one coalition of size T that can explain the observed
symbols:

1. If T ∗ k is greater than the number of symbols, print “many” and return
true.

2. Calculate the minimum number of symbols that the largest-scoring traitor
must have:

min = �m

T
�

3. For each possible combination of k symbols, calculate whether the single
player assigned to that combination covers ’min’ number of symbols. If it
does, perform the following:
(a) If T = 1, print the player ID and return true.
(b) If T > 1, recursively call COVER passing the symbol list after removing

all the symbols from the suspect player and with T = T − 1.
i. If the recursive call returns false, continue to loop through the other

combinations.
ii. If the recursive call returns true, print the player ID and return true.

(c) If all combinations have been checked, return false.

The tracing algorithm assumes that the size of the coalition is unknown, and
proceeds to calculate both the size of the coalition as well as the actual players
involved. Below is the method that uses the above procedure COVER (or any
other Set Cover procedure):

1. Set T = 1.
2. Run COVER.
3. If COVER returns true, exit.
4. Otherwise set T = T + 1 and loop to step 2.

Eventually the procedure must exit at step 3. Why? Once the number of
movies is less than T ∗ k, COVER is guaranteed to return true (see step 1 in
COVER). But the interesting thing happens if you exit “early”. In this case,
you have found a coalition, and you can calculate the probability that a larger
completely different coalition could have incriminated this coalition of size T, as
explained in Lemma 1.

3.2 Identify guilty individuals in the found suspect coalition

Once we have found a coalition, who in the coalition should we incriminate?
What is the chance that some of the players in the purported coalition of size
T might be actually innocent, being victimized by a scapegoat strategy that is
hiding a few lightly used guilty players? We calculate this as follows:

For each combination of T players, perform the following steps:

1. Temporarily assume that the players in the particular combination are guilty.
2. If the number of players in this combination is c, subtract c from T
3. Temporarily subtract from the list of movies all the movies that can be

explained by this combination of players.
4. Use the formula 2 above using the new number of movies m and T , to

evaluate the probability that the remaining players are completely innocent.
If the formula yields a number greater than 1, assume the probability is 1.

When this procedure has ended, there will be a list of all possible combina-
tions of players together with the chance that the remaining players are innocent.
If some of these combinations indicate that there is a good chance that a player is
innocent under those circumstances, the licensing agency would be well advised
not to take action against the player (yet). On the other hand, some players will
seem guilty under all combinations. In other words, the license agency can use
the minimum guilty probability of the each player under all combinations as the
probability of guilt of the player. In general, players that score higher in terms
of the number of movies they could have encoded are also more likely to show
up as guilty after the procedure. It is also reassuring that after this procedure
any player that is identified only as “many” in the COVER procedure will show
up as likely innocent.

Note it is possible that two of the players in the coalition may have a high
overlap in movies. In this case, the procedure above might reveal that if player
A is guilty, there is a good chance that player B is innocent, and vice versa. In
this case, the licensing agency would be well advised to avoid making a decision
about either of them until more movies have pointed to one or the other. Note
that using the “min” probability rule, both players show up as likely innocent
for the time being. However, the policy used by the licensing agency is outside
of the scope of this paper. This algorithm provides the necessary tool to the
licensing agency: a short list of potentially guilty players and probability of their
actual innocence or guilt.

We now discuss a few optimizations. Before calling COVER the first time,
it is usually faster to pre-calculate the

(
m
k

)
potential players. Then, in step 3 of

cover, you simply iterate through the pre-calculated list, seeing if each player
is still a candidate under the current circumstances. Determining which player
corresponds to particular list of k symbols can often be optimized. It is always
possible to exhaustively search through all the players to see which one is in-
dicated, but this can be obviously sped up by well-known techniques like table
look-up and hashing. Furthermore, if the encoding method used is a linear code,
as it was shown in our previous paper [10], it is possible to identify the player
by algebraic means. For example, each list of k symbols defines k equations in k
unknowns, which can be solved by Gaussian elimination.

4 False positive

Our tracing algorithm assumes that the size of the coalition is unknown, and
proceeds to calculate both the size of the coalition as well as the actual players

involved. If the size of the coalition is known from other sources, the answers
may be exact; otherwise, the answer is always probabilistic. The problem is,
from the attackers side, they do not know what sequence would incriminate an
innocent player, so they are just guessing. We can make the probability they
guess correctly arbitrarily small by just collecting more movies. The following
lemma shows the false positive rate in our detection.

Lemma 1. Assume that a coalition of guilty players cannot deduce the movie
assignment of any other player in the world, for a coalition C, |C| = T , found by
algorithm COVER, the probability that every member in coalition C is innocent
is bounded by formula 2. In other words, the formula gives the false positive
probability in the detection.

Proof: Imagine that the process of assignment is the opposite of the way it
works in real life: instead of starting with the assignment of variations to the
population, the coalition randomly picks their assignment and then picks the
particular variations of m movies in any way they choose. Only then does the
licensing agency, not knowing what the coalition has picked, assign the variations
for the remaining innocent players randomly. The chance that this assignment
would result in a coalition of size T amongst the innocent players is clearly
bounded by equation 2. And since there is no way to distinguish the “real
life” case from the “thought experiment” case based on the player assignment
(they are both equally random), the equation does represent the best that the
attackers can do. ��

The licensing agency can choose any acceptable value for the false positive
rate. The smaller the false positive rate, the more pirate movies it needs to
recover. We can get any kind of confidence level desired, but it will just take us
more recovered movies to achieve. If the attack is ongoing, we always have the
option of increasing our confidence by recovering more movies. In general, for
each movie recovered, our confidence that the guilty players are, in fact, guilty is
increased by roughly q/T. Since our entire tracing is probabilistic, we can factor
in some false positives from the underlying watermarking technology (that is
determining which variations were recovered) as well.

5 Tracing efficiency

From formula 3, we can calculate the number of movies m it takes for a coalition
of size T to achieve any level of confidence (or false positive rate), for example,
λ. We obtained a superlinear relationship between m and T .

(
N

T

)
∗ (T/q)m = λ (4)

Because N is much larger than T ,
(
N
T

)
can be approximated to be NT . Solving

the above equation gives us:

m =
T ∗ lnN − lnλ

lnq − lnT
(5)

For the parameters of our choice for AACS, it is easy enough to use a spread-
sheet on the formula 3 to show the relationship among these numbers. The fol-
lowing two graphs show this relationship when the number of device is 1 billion.

Size vs. Movies for different false
positive rates (q=256)

0

20

40

60

80

100

120

1 2 4 8 16

Coalition Size

M
o

vi
es 1/1,000

1/1,000,000

Size vs. Movies for Different q’s
(false positive rate:0.0001%)

0

50

100

150

200

250

300

1 2 4 8 16

Coalition Size

M
o

vi
es

q=256
q=128
q=64
q=16

Interestingly, it takes almost the same number of movies(roughly 6T) to
achieve a super high confidence (below 0.0001%) as it does to achieve a moder-
ately high confidence (below 0.1%) We also notice that, for a fixed-size coalition,
when one uses a larger q, it takes fewer movies to detect traitors. Of course this
is not surprising. A larger q means better traceability.

The traditional approach incriminates the highest score device, i.e. the device
whose codeword is at the smallest Hamming distance from the pirated copy. This

is same as the standard decoding rule for error correcting codes. Of course, you
have to have confidence, based on your key assignment scheme, that a high-
scoring device is not just an unlucky innocent device that just happened to have
many movies in common with the attackers. A traceability code enables one
to decode to the nearest neighbor of a pirate code and the nearest neighbor is
deterministically a traitor.

A sufficient condition is shown in [4, 8] for a t − traceability code.

Lemma 2. [4] Assume that a code C with length n and distance d is used to
assign the symbols for each segment to each user and that there are t traitors.
If code C satisfies

d > (1 − 1/t2)n, (6)

then C is an t-traceability-code.

Based on the above formula, if using the parameters of choice for AACS, a
simple Reed-Solomon assignment for both inner and outer code will allow one
to deterministically identify traitors in a coalition of nine after recovering 256
movies. In contrast, for the same coalition size, our algorithm takes 56 movies
and the false positive rate can be low at 0.0001%. While we believe this already
gives us super high confidence, it seems deterministic tracing takes a lot more
movies in order to exclude even the tiny possibility of being wrong.

However, one cannot perform deterministic tracing in real applications like
AACS, because in real life, the tracing agency rarely knows the size of the coali-
tion in advance. As a result, the answers the tracing scheme gets are always qual-
ified. For example, an answer might be as follows: “If N players are involved, it
must be exactly this N . However, different innocent coalitions of N +M players
may have produced the same result.” In our probabilistic tracing, we suppose
the coalition size is unknown and try to find a coalition that can explain all the
recovered movies. If we succeed, the algorithm outputs a probability. This prob-
ability is both a confidence that the identified coalition contains guilty players
and a confidence that the attack is of that size. However, the identified coali-
tion may contain some innocent players, so we go to a refinement phase, where
we examine the individual guilty probabilities of each player in the identified
coalition. We can also calculate the probability that a completely different coali-
tion could have incriminated the suspect coalition we found. This so-called false
positive rate—i.e. the probability that all members in the suspect coalition are
innocent—can be made to be arbitrarily small.

Please also note that the probabilistic tracing we have is also different from
the probabilistic tracing in [3, 4]. Their goal is to make the probability of exposing
an innocent user as small as possible, while we try to make the probability of
catching the actual traitor to be reasonably high.

6 Simulation results

We have also performed simple simulations to confirm the above analysis. Be-
cause of the nature of the probabilistic detection, it means some false positive.
For a coalition of size 4, we know it takes about 22 movies to detect the traitors
with very high confidence. Of course, to confirm a very low probability like that
would take an unreasonably large number of simulations. Instead, we used a test
with a larger false positive rate, namely a 20 movie sequence. We randomly picked
a coalition of size 4, and create 20 pirate movies out of the chosen 4 traitors.
We tried both random and round robin methods for the traitors’ strategy. We
confirmed (at the 95% confidence level) that equation 2 holds. Similarly, for a
coalition size of 6, from the formula we know it takes about 34 movies to reach
a confidence 0.005% false positive. We simulated using only 32 movies. After
100 simulations we tested, we found 6 cases that involve a completely innocent
coalition, which is consistent with the bound from equationa 2, which is 9.5%.

We also notice a slight difference of the behavior when we use round robin
to create the pirate movies than when we use random selection. In the case of
random selection, one player often contributes a lot. In other words, the highest
score is significantly above the average number that would evenly distribute
among attacker players. For example, in the case of coalition of size 4 and with
20 movies, many times the highest score is above 6, sometimes 9 or 10. That
particular player dominates all the coalitions found, so much so even the other
guilty players are identified with low confidence. This partially explains why
traditional score ranking could work to some extent against the random selection
attacker strategy. But with our new tracing scheme, the other coalition members
are nonetheless found, unless they made a negligible contribution to the attack.

On the other hand, in the case of round robin, the movies are contributed
evenly from the attackers. None of the attackers particularly stands out, as some
do with random selection. It is hard to incriminate the highest scoring player in
this case. For example, in the case of a coalition of size 4 and with 20 movies,
all 4 players explain 5 movies. In our simulation, in most cases, the new tracing
algorithm found the exact one coalition that together can explain all 20 movies.
Once again, this explains why our new tracing algorithm is more efficient than
the traditional approach.

7 Conclusions

In this paper, we study the problem of tracing the legitimate users (traitors) who
instrument their devices and illegally resell the pirated copies by redistributing
the content or the decryption keys on the Internet. In particular, we focus on dis-
tributing prerecorded movies in the context of Advanced Access Content System
copy protection standard for the next generation of high-definition DVDs.

Given the restrictions on the number of variations within a movie and the bil-
lion devices needing to be supported, we measure the efficiency of tracing (trace-
ability) using the number of recovered movies it takes to identify the traitors in

the coalition. We have designed the first tracing scheme that is efficient enough
for commercial use. Our probabilistic tracing scheme achieves super linear trace-
ability. Different from existing approaches which try to detect traitors one by
one, we detect traitors in the coalition all together. This idea enables faster trac-
ing with less recovered content, at the cost of higher computational overhead.
The traceability becomes one of the enabling factors for its commercial use. In
the future, we will continue to improve its traceability, not only theoretically, but
also by taking into consideration of real implementations. We are also interested
in overcoming different barriers during its deployment.

References

1. http://www.aacsla.com
2. A. Fiat and M. Naor, “Broadcast Encryption,” Crypto’93, Lecture Notes in com-

puter science, Vol. 773, pp480-491. Springer-Verlag, Berlin, Heidelberg, New York,
1993.

3. B. Chor, A, Fiat and M. Naor, “Tracing traitors,” Crypto’94, Lecture Notes in
computer science, Vol. 839, pp480-491. Springer-Verlag, Berlin, Heidelberg, New
York, 1994.

4. B. Chor, A, Fiat, M. Naor and B. Pinkas, “Tracing traitors,” IEEE Transactions
on Information Theory, Vol 46(2000), 893-910.

5. A. Fiat and T. Tassa, “Dynamic traitor tracing,” Crypto’99, Lecture Notes in
computer science, Vol. 1666, pp354-371. Springer-Verlag, Berlin, Heidelberg, New
York, 1999.

6. R. Safani-Naini and Y. Wang, “Sequential Traitor tracing,” IEEE Transactions on
Information Theory, 49, 2003.

7. Tran van Trung and Sosina Martirosyan, ”On a class of Traceability Codes”, De-
sign, code and cryptography, 31(2004), pp 125-132.

8. J. N. Staddon, D.R. Stinson and R. Wei, “Combinatorial properties of frameproof
and traceability codes,” IEEE Transactions on Information Theory, 47 (2001),
1042-1049.

9. D.R.Stinson and R. Wei, “Combinatorial properties and constructions of trace-
ability schemes and frameproof codes,” SIAM Journal on Discrete Mathematics,
11:41-53, 1998.

10. anonymous
11. G. Tardos, ”Optimal Probabilistic fingerprint codes”, in proceedings of the Theory

of Computing, pp. 116-125, June 9-11, 2003, San Diego, CA.

