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NOTES ON RELIABILITY MODELS FOR NON-MDS ERASURE CODES

James Lee Hafner
KK Rao

ABSTRACT: We discuss two variations on the standard model for determining the reliability (or
Mean Time To Data Loss, MTTDL) for storage arrays with erasure codes. The standard model
assumes the erasure code is MDS and has a certain erasure fault tolerBineéHamming fault
tolerance't is one less than the Hamming distance of the code. Such codes can tallars@ances

of k failures fork <t butnoinstances of more tharfailures. The first variation extends the model

to non-MDS codes that have resilience to some (but not all) instances of failures that exceed the
Hamming fault tolerance. We say such codes have “elastic” fault tolerance. We apply this model to
LDPC and WEAVER codes which have high average fault tolerance, but have very low Hamming
fault tolerance. A second application of this model is to the case of multiple instances of arrays,
each with an independent MDS code. Additionally, the standard model also assumes that rebuild
occurs incrementally, that is, one disk at a time. We vary the model to better reflect some actual
systems where rebuild is done in parallel on all failed disks.



1. Introduction

Most Markov models for reliability for storage arrays with RAID-style erasure codes assume
that the code is MDS. This implies that it can tolerate all instances of some numbet, clay
erasures, but it also means that it can never tolerate mord fadares. We calk the “Hamming
fault tolerance” of the code, since it is derived from the Hamming distance. Codes such as LDPC
codes, which are not MDS, have an “average” erasure tolerance. This means that they may only
tolerateall instances of some small number of erasures (the true Hamming fault tolerance) but, in
general, can tolerate many instances of more failures (so the average can be large). We say such
codes have “elastic fault tolerance”. For LDPC codes, wittlata blocks and size -+ m, this
fault tolerance is usually measured by the average number of blocks (elements) that are required to
recover then data blocks if then+ m blocks are read one at a time in random order. An MDS code
sets this number to exactly for good LDPC codes, this is asymptoticatly but always greater
thann.

Another issue with modeling erasure code reliability is that the reliability models for a single
array, are extrapolated to more arrays by multiplying (or dividing, depending on the measure), the
reliability for one array by the number of arrays. So, for example, if a single RAID arralydisks
has MTTDL= T, thenr such arrays will have MTTDE=T /r. We show here that this is not exactly
correct, though it is very close. In fact, one can madafrays ofd disks each by a single array
of sizerd that has a single non-MDS erasure code with average fault tolerance. For example, two
8-drive RAID5 arrays can tolerate all instances of one failure (16 such cases, so the Hamming fault
tolerance is just 1), 64 of the 120 cases of 2 drive failures (53%) but no three drive failures. Because
53% is not 50%, the MTTDL formula for this system with two arrays is not exactly 1/2 of that of
a single 8-drive array. This system of two arrays is then analogous to, and can be modeled by, the
same techniques as elastic fault tolerant erasure codes such as LDPC codes.

Finally, typical Markov models for RAID storage system reliability, such as in [4], assume a
rebuild model of the following type: a single parameter is used to model rebuild rate of one drive
at a time, regardless of the number of drives that have failed. That is, the rebuild rate is dependent
on the array size, disk sizes and, typically, overall fault tolerance of the erasure code, but not on
the specific failure state. In addition, they assume a compound rate from two-down to one-down to
fully functional and perform the rebuild incrementally. In fact, most systems will return from the
two-down state directly to the fully functional state (by rebuilding two drives in parallel) at a rate
which could be the same or slightly slower than the rate from one-down to fully functional. The
rate may be the same if the progress of the rebuild is gated by policy that throttles back the rebuild
(of any number of drives) in order that it consumes minimal resources from the foreground process.
Alternatively, the rebuild may take longer as more resources would be required for rebuilding two
drives over one drive. But that rate is not necessarily compounded. For example, to rebuild one
drive on a Reed-Solomon two-fault tolerant array with 8 drives, requires reading only 6 drives, and
writing one. To rebuild two drives, requires again only reading 6 drives but now writing two (as well
as additional computations). The rate for two-disk rebuild then mai6be2)/(6+ 1) times the
rate for a single rebuild. We address this issue by revising the standard model. It turns out, however,
that this change has essentially no effect on the MTTDL numbers, so need not be applied in general.



In the following sections, we describe the Markov models that we use to address all three of
these issues. We then apply the models to determine and compare reliabilty (MTTDL) numbers
with reasonable choices for the parameters.

1.1. Methodology

We used Mathematica as a tool to assist in both symbolic and numerical calculations. The
methodology involved building the transition matrixfor the Markov model. Each column rep-
resented a state of the model, with the last column representing the absorbing state. Each row
represented a non-absorbing state. The entries in the off-diagonal of the matrix were the transition
rates between the row state and the column state. The diagonal entries were the negative of the row
sum of the off-diagonals (so i all row sums are zero). We then computed the maarixhich is
the negative of after removing the last column. The MTTDL then computed was

MTTDL (A) = (1,0,...,00A%(1,1,...,1)!

which is just the sum of the entries in the first rowAofl. This can also be computed by findipg
in the matrix equation

A1, Yo, W) = (1,1, D)t
In our computations with Mathematica, both methods can be used for certain small examples, par-
ticularly the symbolic cases. However, numerically, these matrices were rather ill-conditioned.
Consequently, not all computational methods ran without warnings. Ultimately, we used the second
formulation above and MathematicdmearSolve  function, withMethod — Multifrontal
as the most numerically stable method. All methods that ran warning-free produced identical nu-
merical results to the accuracy reported here (there was an exception in one table entry where the
defaultMethod produced a value that differed from what is reported here in the 4th decimal place).

2. Basic Model

The diagram in Figure 1 shows one standard Markov model for a RAID storage system (see [4])
that hagd drives and an MDS erasure code that can toldrat@ failures. We modify the notation
a bit from [4]. First, we suppress subscripts since we only deal with disks. Second, \mdarse
the “per drive” probability of uncorrectable error, whereas in the cited papepresented the total
probability overd —t drives. Finally, we model a drive rebuild rate from Stht® Statek — 1 with
the parametep, as it may depend on the number of drives that have failed. Note that the model
shows that rebuild only restores one drive at time. For MDS codes, the cost to rebuild any single
drive from any state is independent of that state (e.g., in a Reed-Solomon codetatisks and
fault tolerance, any single disk can be restored from anglisks of data, regardless of how many
disks are failed). Consequently, in our numerical calculations and the rest of the paper we assume
W, = U, a constant, unless otherwise noted.

The parameter definitions and the numerical values we use in our results are given in Table 1.
The drive reliability number is approximate: it is lower than most drive vendors claim (approxi-
mately MTTF,; = 1,000 000hrs); however, it is higher than field data would suggest (approximately
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MTTF, = 300000hrs). The rebuild times seen in practice and provided by detailed modelling (see,
for example, [1] with a value of 9.3hrs for Fibre Channel drives) are in the range of 8—24hrs and can
depend on the drive generation, the drive interconnect and the system memory bandwidth (and to a
lesser extent on the number of drives). We chose a value of 12hrs rebuild time as an approximation,
so the rebuild rate in the tableis= 1/12hrs. Note that our purpose here is not so much to provide
accurate numerical reliability results, but to show the relative structure of the mathematical models,
SO precise values are not so important.

di @11 (d-t2)1  (d-(t-1)A(L-(d-)h) (d-t)2

L, D

(d-(t-2)) A(d-)h

Figure 1:A typical reliability model for a storage array with MDS t-fault toler-
ant erasure code.

The arc from State— 1 to State DL shows the rate at which the system encounters a hard error
during rebuild oft disks. This rate is computed as the product of the rate that a disk fails after
(d—(t—1)) disks have failed, namelfd — (t — 1))A, and the probability of encountering a hard
error when reading the necessédy-t) disks for rebuild, namelyd —t)h.

| Label | Description | Value |
A drive failure rate, or IMTTF 1/500000hrs
u drive rebuild rate, or IMTTR 1/12hrs

h probability of an uncorrectable error during re- C.HER
build per drive read
C drive capacity 300GB
HER | hard error rate, in errors per number of bytes rea® x 10~ 1°

Table 1:Model parameters and their numerical assignments. The drive rebuild
rate is assumed to be independent of number of failed drives.



The transition matrix for this model is given by

—8 % 0

o —(m+a) 3 0
(2.2)

Mo —(H o8 ) a_, 0

He_1 —(M_1+a 1) a_1(1-b) a_qb
1y —(+a) &
wherea, = (d —k)A andb, = (d—k)h, fork=0,...,t
Settingy, = 1 and solving this model (as in [6]), we derive the formula
t

MTTDL — WM (A/p,d,h) 2.2)

d(d—1)---(d—t)AL(A +hy)’

whereM; (x,d, h) is a polynomial of degreg with constant term 1 that is also linearhinHere are
a few examples:

M,(x,d,h) = (2d—2)+h(d—1)(d—2)
x%((3d* — 6d +2) —hd(d — 1)
2d —3)+h(d—2)(d—-3))
(d—1)(d—2)+h(2d-1)(d—-3))

(d?> —3d +1)(2d — 3) —hd(d — 1)(d — 2)(d — 3)).

)
(d-2))
(
3

1+x(

X

M;(x,d,h) = 14x(
X

x3(2

In general, the coefficient ofin these polynomials is given by
(2d—t)+h(d—(t—121))(d—t)
and the coefficient of is given by
R(d)—hd(d—1)---(d—t)

wherePR, (d) is a (complicated) polynomial of degrem d. It may be possible to determine recursive
formulas forM; but we have not done so yet.

Typically, h is many orders of magnitude smaller then this means thaM;(A/u,d,h) ~
M;(A/u,d,0), which simplifies the formulation of the result. Also, as in [4];> A; this implies
thatM; (A /u,d,h) ~ 1 and so the above formula simplifies further to

ut

d(d—1)- (d—O)A(A +hy)’

MTTDL ~ (2.3)



3. Non-MDS codes with elastic fault tolerance

In this section we generalize the basic model to cover the case where the erasure code can
tolerate many (but not necessarily) all instance& efasures fok = 1,...,t wheret is the limit
after which no erasures can be tolerated. We calltthie “upper threshold fault tolerance”. (If
the code has data inputs and codeword sime+ m, then necessarily < m. We do not need this
fact explicitly, but it is useful when trying to determine the parameters in the model.) The Markov
model for this system is given by the diagram in Figure 2; we describe the transitiowyated 5,
below and as before, for the numerical calculations weuget 1.

Figure 2:Reliability model for a storage array with non-MDS erasure code.

Let p, be the probability that the erasure code can tolerate one more disk failure, given that
it has already tolerateki failures (and so is in rebuild mode). The numbero longer represents
the Hamming fault tolerance of the code, but the upper threshold fault tolerance, or the maximal
number of faults for which the erasure code can tolerate at least one instance of that many failures.
For 0< k <t —1, the transition rates are given by

8 = (d=KA{(1-p)+P(1— P 1)(d—(k+1))h} (3.1)
o, = (d=KAp{1—(1-p4)(d—(k+1))h} (3.2)

and§ =0, oy = (d—t)A. Note thato, + 6, = (d—K)A =a,.

There are two scenarios that can lead from a non-data loss IStat&tate DL. First, from
Statek wherek disks have failed, a transition may occur becaugetd st disk failsand the code
cannot tolerate this additional failure. This contributes a t@m k)A (1 — p,) since(d —k)A is
the rate that another disk may fail a(i— p, ) is the probability that, given the system has survived
k disk losses, itannottolerate another. This conditional probability reflects the present state at
Statek. Second, from Statk, it is possible to arrive at State DL because (a) another disk fails, (b)
the erasure code in principle can tolerate this failure, (c) a hard error occurs during rebuild and (d)
the erasure codsannottolerate this hard error (essentially equivalent to yet another disk failure that
cannot be tolerated). This contributes a t¢dn-k)A p, (1— p,,)(d — (k+1))h. These two terms
explain (3.1).

In order for the system to transition from St&téo Statek+ 1 (and not incur a data loss), it
must be the case that (a) a disk fails, (b) the erasure code can tolerate this additional failure and
(c) during rebuild, either no hard error occurs that the code cannot tolerateéhard error does
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occur but the codeantolerate it. The first item contributes a fact@ — k)A. The second item
contributes a factop, and the third item contributed — (d — (k4 1))h) + p,;(d — (k+1))h =
{1-(1-py)(d = (k+1)h}.

Observe that for an MDS code with fault tolerance exactigenp, =1 fork <t —1andp, =0
for k > t. In this case, the model reduces to the model presented above in Section 2. Note that in
our model,p; = 0.

The transition matrix for this model is given by

) 0 )

vy —(+a) o 8y
(3.3)

Mo —(K p+3 ) ) 62

Hi 1 —(M_1+3_q) Or_1 &1

Mt —(m+a) &

wherea, = (d —k)A and§, ando, are given by (3.1) and (3.2), respectively. This is very similar
to that given in (2.1). The main diagonal of the transition matrix is unchanged. The upper diagonal
is now replaced by,, which reflects the probabilities of surviving an extra disk loss without a
hard error (as described above) and generalizes theaeytil — by) in the next to the last row and
column of (2.1). The last column (except for last row) is replaced nd generalizes the element
in the last column, next to last row.

The formula for the solution can be given explicitly, but it is quite complicated. However, we
apply the model to various examples in each of the next subsections.

3.1. Computing the conditional probabilities

To the compute the conditional probabilitipsdefined as the probability that the erasure code
can tolerate an additional disk failure given that it has failed and tolekatdésk losses, we proceed
as follows. As above, ledl be the number of drives in the array. Lgtbe the total number of

i . Lets be the number of suck-disk failure

instances which the erasure code can tolerate. fpetheunconditionalprobability that the code
can tolerate failures, is given by

X

n

possiblek disk failure instances, so tha =

O =

To compute the conditional probabilitieg,, we use the formula PX|Y) = Pr(XNY)/Pr(Y). If
X = X, the event of surviving faiulres, then RiX, ; N X,) = Pr(X,), since a system cannot
survivek + 1 failures without also surviving every instancelofailures that it contains. Hence,



with g, = s, = 1, we havep, = q,,,/d,, or, by the above,
Sct1 S _ Scalk+1)

NG

To computes,, we simply test a specific erasure code to determine whesk failure combinations
it can tolerate (we do with with simple tests on the generator matrix as in [3]).

3.2. LDPC code example

The general model of reliability given here is ideally suited to understanding the reliability of
LDPC codes as they might be applied to storage arrays. For more complex systems, for example,
distributed systems, the model given here is insufficient since there are many more components in
such systems (nodes, networks, switches, etc.) and these need to modeled more carefully. However,

the notions described here can be (and should be) extended to the more complex systems.
For this section, we give one example — that taken from the RAID tutorial given by Plank [5].
Plank’s example LDPC code has generator matrix:

10000000000

(3.4)

RPORRPRORRPRRORRE

[cle]elololololololololololole]
[ole]ololololololololololela)
[o]elololololololololololo) Jo
[ejeololololololololololo) Jolo]
[ole]elololololelololo)l Jolole]
[oleololololololololo)l Jololele]
[ofe]ololololololo] Jolololeole]
[olelololololele] Heololololole]
[ofelololololo] Jeolololololole]
[ofelolololo] Jeololololololole]
[elelelolo] Helololololololole]
[olelolo)] Jolololololololololole]
[olelo)] Jololololololololololole]
[elel Jolololololololololololole]
(el Jeolololololeleololololololole]
OCOORRFRFRORFRPRFRPROOORKRO
OrRFROOFRORRPRPRPFRPFRLROOO
PRORPRFRPFRPFRPOOROOOOO

o

By examining this matrix, it is not hard to see that the Hamming fault tolerance of this code is 1
(that is, it can tolerate all instances of 1 fault, but not all 2-fault instances). For example, the first
row implies that the first data element appears only in the first parity, hence the loss of that row and
that parity is a data loss event. Clearly, it has maximum fault tolerance at most 4 since there is one
data element that touches all four parity.

Clearly,t < 20— 16 for this code (by a simple dimensionality argument). By a straightforward
calculation, the counts can be computed as

{59:51,5,, 83,84} = {1, 20, 185 969, 2515},

out of {1,20,190, 1140 4845} possibilities, respectively, argl = 0 for k > 5. Consequently, the
unconditional probablitieg, for this code are

{qo’qlvq27q3vq4} = {1a %8’ %g, 1917649(» %4112
— {1.0, 1.0, 0.97, 0.85, 0.52}

7



and the conditional probabilitigs, are given by
10060

{1, &, &
) 387 3707 16473

{1.0, 0.97, 0.87, 0.61, 0.0}

{Pg P1; P2, P3, Pa}

The WEAVER codes [2] also have elastic fault tolerance. We consider here four WEAVER
codes with Hamming fault tolerance 1, 2, 3 and 4. The WEAVER parameter sets we ydg are
{1,2}, {2,3,4y and{1,2,3,8, respectively. Among the many choices, these have the smallest maxi-
mal value in each set, so should have better elastic fault tolerance (because their localization prop-
erty is optimal). The last code of 4-fault tolerance may be the one used by Plank [5], though for his
calculations, the specific choice did not matter.

On 20 drives, the count; for each of these WEAVER codes are given in Table 2 (the last row
gives the total number of failure combinations). It seems remarkable that these codes, though they
have relatively small Hamming fault tolerance, have such high survival rates even when half the
drives are lost.

Number of disk failures k
params |FT|0| 1| 2 3 4 5 6 7 8 9 10
{1} 1 |1/20]170| 800 [2275| 4004 | 4290 | 2640| 825 100 2
{1,2} 2 11/20{190{1100|4225|11044 19440 21960 14300| 4200 | 246
{1,2,4} | 3 |1]20|190|1140|4785| 1454431940 48960 48040 24460| 3166
{1,2,3,6} | 4 |1]/20|190|1140|4845|15444 37780 70120 93080| 75320 | 19084
N, 1|/20|190|1140|4845| 15504 38760 77520 125970 167960 184756

Table 2:WEAVER code survival counts on 20 drives. The last rowndicates
the total number of failure combinations.

Hamming fault tolerance t
n=1/8 1 2 | 3 | 4
LDPC 2.07x 107
WEAVER | 5.17x 1P | 5.39x 100 | 5.61x 10'* | 6.82x 108
MDS 5.45x 10° | 1.89x 10° | 6.96x 102 | 2.72x 10'®
u=1/12 \ \
LDPC 2.06x 107
WEAVER | 5.16x 10° | 3.58x 1010 | 2.48x 10™ | 2.09x 10™®
MDS 543x 10° | 1.26x 10° | 3.08x 10 | 8.03x 10™

Table 3:Comparison oMTTDL of an LDPC on 20 disks (with Hamming fault
tolerancel and average fault tolerance 3.81) versus WEAVER and MDS codes
on 20 disks with Hamming fault tolerance-t1, 2, 3, 4.

Table 3 shows the MTTDL for the LDPC code above, the four WEAVER codes and MDS codes
on 20 drives with Hamming fault tolerance between 1 and 4. We do not specify a particular MDS



code here, since all MDS codes on 20 drives with a specified fault tolerance will have the same
conditional probabilites (1 up to fault tolerance) and so the same MTTDL. For these calculations,
we used the values for the parameters in Table 1 and add an additional taple-fby8hrs. The

results indicate that the LDPC code, though it has high average fault tolerance, does not have the
system reliability of either an MDS or a WEAVER two-fault tolerant code (the LDPC code is two

or three orders of magnitude less). However, in spite of the fact that the LDPC code has Hamming
fault tolerance equal to one, it has two orders of magnitude better reliability than a 1-fault tolerant
MDS code (e.g., RAID5). The WEAVER code has better fault tolerance than an equivalent MDS
code, by one or two orders of magnitude across all the fault tolerance levels. It should be noted,
however that the storage efficiency of the WEAVER codes is exactly 50%, and of the MDS codes is
95%, 90%, 85% and 80%, respectively. The LDPC code has storage efficiency 80%. So the extra
reliability comes at a cost of storage efficiency.

3.3. Multiple Independent Arrays

As discussed in the introduction, when extrapolating reliability from one array to many arrays,
the typical approach is to simply divide (or multiply depending on the metric) by the number of
arrays. However, this is not entirely accurate, though it is a good approximation in practice as
we now show. To see the model difference heuristically, consider two RAID5 arrays on 8 disks
each. Nominally, each has Hamming fault tolerance one and with two such arrays, the expected
extrapolation factor is exactly 2. Clearly, thegstentan tolerate all instances of one disk failure.
However, it can tolerate 64 of the 120 possible instances of two drive failures (or 53%), that is,
more than half. (It cannot tolerate any three failures so it has upper threshold fault tolerance 2.)
This suggests that the MTTDL of this system may be somewhat better than exactly half that for a
single array of 8 disks. It also shows that our “elastic fault tolerance” model applies directly.

To apply our model, we need the survival counts. Suppose we have a systesmrays, and
each array hasd disks with an MDSt-fault tolerant erasure code. This means that each array
can independently tolerate all instances dfsk failures but no instances bo#- 1 failures (though
the system as a whole certainly can). Furthermore, it is clear that the system cannot tolerate any
combination otr 4 1 disks failures as that would imply at least 1 on at least one array.

So, rd plays the role od (number of disks) andr plays the role ot (upper threshold fault

k

r Lo/d\"
&= roﬁlzﬁtzr <r0,r1,...,ri>i|j|<i> . (3.5)

Org+Iry +2r,+-+rg=k

tolerance) in the model. Consequently= (rd)_ The survival counts, are given by

The expression before the product is the multinomial coefficient, which counts the number of com-
binations ofr rolls of at + 1 sided dice. This equals the number of ways we can distribute O failures
onr, arrays each, 1 failure an arrays, etc., up tofailures onr; array. The total number of arrays
must ber and the total number of failures mustkerhis explains the conditions on the sum. Given



i

e d . I
that there are, arrays withi failures, there ar i > ways those failures can be distributed on those

arrays, which accounts for the product term in each summand. Another way to determine this value
is as the coefficient of€ in the expansion of

(11 (9 ()4 (B)2)'

Table 4 gives a summary of the MTTDL for various configurations of drives and array sizes and
Hamming fault tolerance (witi, h andy, = p as in Table 1). The first number in each cell is the
MTTDL number computed with the parameter values from Table 1. The second number in each
cell is ther times the ratio of the 1-array case to tharray case, that is, comparing the traditional
model to this more accurate model. Over this broad range of parameters, the traditional model,
though quite close to the more accurate model, does not in fact agree with it.
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number of arrays r

t=1[1 2 4 8 16 32
4 [1.7192x 107 [85952x 10F | 4.2968x 10° |2.1476x 10°F | 1.0730x 10° |5.3567x 10P
1.0000 0.9999 0.9997 0.9993 0.9986 0.9970
8 [3.6847x 10°F |1.8420x 1P [ 9.2066x 10° | 4.5998x 1P | 2.2964x 10° | 1.1447x 10*
d 1.0000 0.9998 0.9994 0.9987 0.9972 0.9942
12| 1.5635x 10° | 7.8153x 10° | 3.9055x 10° | 1.9506x 10° | 9.7309x 107 | 4.8436x 107
1.0000 0.9997 0.9992 0.9980 0.9958 0.9913
16]8.601x 10° |4.2989x 1(P | 2.148x 10° |1.0723x 1(P |5.3458x 10* | 2.6571x 10%
1.0000 0.9996 0.9989 0.9974 0.9945 0.9886
t=2
4 [3.5816x 10| 1.7904x 10™ | 8.9485x 1010 | 4.4708x 10™0 | 2.2320x 100 | 1.1125% 10™
1.0000 0.9998 0.9994 0.9986 0.9971 0.9940
8 | 2.5588x 10™0 | 1.2788x 10| 6.3889x 10° |3.1895x 10° | 1.5898x 10° | 7.9003x 1(F
d 1.0000 0.9995 0.9987 0.9972 0.9941 0.9880
12]6.5145x 10° | 3.2550x 10° | 1.6256x 10° |8.1088x 1(F | 4.0357x 10° | 1.9992x 10P
1.0000 0.9993 0.9981 0.9958 0.9912 0.9820
16| 2.5598x 10° | 1.2787x 10° | 6.3833x 10°P |3.1817x 1(F | 1.5811x 10° | 7.8079x 10’
1.0000 0.9991 0.9975 0.9944 0.9882 0.9761
t=3
4 11.4923x 10| 7.4592x 101° | 3.7274x 10™° | 1.8615x 10™ | 9.2864x% 10 | 4.6218x 10™4
1.0000 0.9997 0.9991 0.9980 0.9957 0.9911
8 [2.1323x 10™ | 1.0654x 10 | 5.3209x 10™3 | 2.6543x 10" | 1.3210x 10™3 | 6.5443x 102
d 1.0000 0.9993 0.9982 0.9959 0.9913 0.9821
12]3.0159x 103 | 1.5064x 10" | 7.5187x 102 | 3.7463x 10*2 | 1.8602x 102 | 9.1726x 10*
1.0000 0.9990 0.9972 0.9938 0.9869 0.9732
16| 8.2043x 102 | 4.0964x 10™2 | 2.0434x 102 | 1.0170x 10*2 | 5.0380x 10 | 2.4726x 10™
1.0000 0.9986 0.9963 0.9916 0.9825 0.9644

4. Rebuild-in-parallel

In the two models above, the rebuild occurs incrementally, fkofialed disks tok — 1 failed
disks. This does not necessarily model actual system behaviors. There are systems which apply the
rebuild in this manner in order to reduce vulernability of a system as quickly as possible, especially,
if the rebuild time for more than one drive is significantly more than that for a single drive. However,
many other systems implement rebuild of multiple drives in parallel; that is, they go from a multi-
failure state back to the errror-free state directly. Figure 3 shows a model that more closely resembles
a standard implementation for an MDS code where rebuild returns to the fully operational state from
any given failure state (except the DL state). Hergjs the rate at which the system can rebuild
from k failures to fully functional; that is, rebuill failed disks simultaneously. The same variation

Table 4: MTTDL comparison for multi-arrays versus a single array.

Each cell

contains the computeMTTDL according to the multi-array model and the
ratio r « MTTDL (1) /MTTDL((r).
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can be applied to the model in Figure 2 but we do not do so here.

It can be argued that in most systems and depending on system resources, the rebuildtime for
drives is essentially equal to the rebuild times for 1 drive. In particular, this will happen unless there
are a huge number of drives and the memory or disk interconnect bandwidth becomes a bottleneck.
Consequently, for the rest of this discussion, we assumeughat i, a constant. (This is also a
reasonable assumption for the purposes of this paper, since, as noted above, we are not concerned
with extremely accurate reliability predictions, but on relative comparison of different models).

di (d-1)/  (d-(t-2)2 (d-%d-t)h) (d-t)2
omons ()
MUy

-1

(d-(t-2)) A(c-)h

Figure 3: Revised reliability model for single array, with MDS t-fault tolerant
code, with rebuild proceeding in parallel directly back to “zero” loss state.

The transition matrix is given by

—8 EN) 0
o —(mt+ay) a 0
4.1)
He o (M2 +23_) & 0
Hiq —(M_atay) a(1-b) a b
M —(m+a) &

where, as before, = (d —k)A andby = (d —-t)h.
Note that this differs from the basic model in Figure 1 by left shifting all tlhe¢erms on the
lower diagonal to the first column. The solution, whgn= u, a constant, is given by the formula

_ W'My(A/p,d,h)
MTTDL = dd—1)---(d—t)AY (A +hu)’ (4-2)
whereﬂt(x,d,h) is a polynomial of degretin x, is linear inh and has constant term equal to 1.
That is, it has a form very similar to (2.2), up to first order terms. The denominators of the two
models are the same. The algebraic difference between the numerators of the two MTTDLSs is given
by
Aﬂtith_z(/’L/Ha d7 h)
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whereQ,_,(x,d, h) is a polynomial of degree— 2 in x, is linear inh and has constant term given by
(t—1)(d—t/2)—h(d—(t—1))(d—t).

Consequently,

MTTDL MTTDL.

dtA
(057
With u > A, we get the same approximation result as in (2.3).

Table 5 shows that, numerically, the MTTDL is essentially the same between the two models.
The parameterd andh are fixed as in Table 1. We vary the number of drives in the array and the
mean time to rebuild at 8hrs and 12hrs; these are the two “tunable” parameters (MndF are
determined by the inherent characteristics of the drives). There are two subtables, one each for
andt = 3. Clearly, though the models and the closed form solutions are different, the impact on the
MTTDL results is minimal. In each cell, the top number is the MTTDL for the traditional model,
the middle number is the MTTDL for this revised model and the bottom number is the ratio.

parallel

number of drivesd
u=1/8 8 12 16 20 24
3.8505x 1010 | 9.8024x 10° | 3.8515x 10° | 1.8922x 10° | 1.0659x 1(°
t=2 3.8509x 101° | 9.8041x 10° | 3.8524x 10° | 1.8927x 10° | 1.0663x 1(°
0.9999 0.9998 0.9998 0.9997 0.9997
4.8130x 10 | 6.8071x 10™3 | 1.8516x 10™° | 6.9565x 102 | 3.1723x 10%2
t=3 4.8140% 10 | 6.8094x 1013 | 1.8525x 103 | 6.9605x% 10'2 | 3.1745x 102
0.9998 0.9997 0.9995 0.9994 0.9993
u=1/12
2.5588x 1010 | 6.5145x 10° | 2.5598x 10° | 1.2577x 10° | 7.0853x 1(P
t=2 2.5592x 101° | 6.5162x 10° | 2.5607x 10° | 1.2582x 10° | 7.0890x 1(?
0.9998 0.9997 0.9997 0.9996 0.9995
2.1323x 10 | 3.0159x 10™ | 8.2043x 10™2 | 3.0825x 102 | 1.4058x 10%2
t=3 2.1329x 1014 | 3.0174x 103 | 8.2099x 10'2 | 3.0852x 10'2 | 1.4073x 102
0.9997 0.9995 0.9993 0.9991 0.9989

Table 5:Comparison of basic rebuild-incremental model to the revised rebuild-
in-parallel model.
incremental model, thITTDL for the rebuild-in-parallel model and the ratio.

5. Summary

Each cell contains thRITTDL for the basic rebuild-

In this paper, we discussed two variations on the basic model used to measure reliability (or
MTTDL) for storage arrays with MDS erasure codes. The first variation extends the traditional
model to non-MDS erasure codes with elastic fault tolerance by reflecting the fact that a non-MDS
code can recover from some (but not all) instances of multiple failures, more than that determined
by the Hamming fault tolerance. We applied this model to two examples: (a) an LDPC code and
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WEAVER codes compared to the MDS model and (b) multiple independent arrays. In the first
example, we showed the the LDPC code’s MTTDL does not reflect the large average fault tolerance;
in the second example, we showed that the traditional method of treating each array independently
is a very good approximation to the more accurate model given here. The second model variation
reflected the fact that most storage systems rebuild all failed disks simultaneously and restore to
the “fully functional” state in one transition; that is, they do not incrementally restore disks. The
numerical results indicate that this variation has little effect on the predicted MTTDL.
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