
RJ10391 (A0610-035) October 24, 2006
Computer Science

IBM Research Report

Notes on Reliability Models for Non-MDS Erasure Codes

James Lee Hafner, KK Rao
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

NOTES ON RELIABILITY MODELS FOR NON-MDS ERASURE CODES

James Lee Hafner
KK Rao

ABSTRACT: We discuss two variations on the standard model for determining the reliability (or
Mean Time To Data Loss, MTTDL) for storage arrays with erasure codes. The standard model
assumes the erasure code is MDS and has a certain erasure fault tolerancet. The “Hamming fault
tolerance”t is one less than the Hamming distance of the code. Such codes can tolerateall instances
of k failures fork≤ t but no instances of more thant failures. The first variation extends the model
to non-MDS codes that have resilience to some (but not all) instances of failures that exceed the
Hamming fault tolerance. We say such codes have “elastic” fault tolerance. We apply this model to
LDPC and WEAVER codes which have high average fault tolerance, but have very low Hamming
fault tolerance. A second application of this model is to the case of multiple instances of arrays,
each with an independent MDS code. Additionally, the standard model also assumes that rebuild
occurs incrementally, that is, one disk at a time. We vary the model to better reflect some actual
systems where rebuild is done in parallel on all failed disks.

1. Introduction

Most Markov models for reliability for storage arrays with RAID-style erasure codes assume
that the code is MDS. This implies that it can tolerate all instances of some number, sayt, of
erasures, but it also means that it can never tolerate more thant failures. We callt the “Hamming
fault tolerance” of the code, since it is derived from the Hamming distance. Codes such as LDPC
codes, which are not MDS, have an “average” erasure tolerance. This means that they may only
tolerateall instances of some small number of erasures (the true Hamming fault tolerance) but, in
general, can tolerate many instances of more failures (so the average can be large). We say such
codes have “elastic fault tolerance”. For LDPC codes, withn data blocks and sizen+ m, this
fault tolerance is usually measured by the average number of blocks (elements) that are required to
recover then data blocks if then+m blocks are read one at a time in random order. An MDS code
sets this number to exactlyn; for good LDPC codes, this is asymptoticallyn, but always greater
thann.

Another issue with modeling erasure code reliability is that the reliability models for a single
array, are extrapolated to more arrays by multiplying (or dividing, depending on the measure), the
reliability for one array by the number of arrays. So, for example, if a single RAID array ond disks
has MTTDL= T, thenr such arrays will have MTTDL= T/r. We show here that this is not exactly
correct, though it is very close. In fact, one can modelr arrays ofd disks each by a single array
of sizerd that has a single non-MDS erasure code with average fault tolerance. For example, two
8-drive RAID5 arrays can tolerate all instances of one failure (16 such cases, so the Hamming fault
tolerance is just 1), 64 of the 120 cases of 2 drive failures (53%) but no three drive failures. Because
53% is not 50%, the MTTDL formula for this system with two arrays is not exactly 1/2 of that of
a single 8-drive array. This system of two arrays is then analogous to, and can be modeled by, the
same techniques as elastic fault tolerant erasure codes such as LDPC codes.

Finally, typical Markov models for RAID storage system reliability, such as in [4], assume a
rebuild model of the following type: a single parameter is used to model rebuild rate of one drive
at a time, regardless of the number of drives that have failed. That is, the rebuild rate is dependent
on the array size, disk sizes and, typically, overall fault tolerance of the erasure code, but not on
the specific failure state. In addition, they assume a compound rate from two-down to one-down to
fully functional and perform the rebuild incrementally. In fact, most systems will return from the
two-down state directly to the fully functional state (by rebuilding two drives in parallel) at a rate
which could be the same or slightly slower than the rate from one-down to fully functional. The
rate may be the same if the progress of the rebuild is gated by policy that throttles back the rebuild
(of any number of drives) in order that it consumes minimal resources from the foreground process.
Alternatively, the rebuild may take longer as more resources would be required for rebuilding two
drives over one drive. But that rate is not necessarily compounded. For example, to rebuild one
drive on a Reed-Solomon two-fault tolerant array with 8 drives, requires reading only 6 drives, and
writing one. To rebuild two drives, requires again only reading 6 drives but now writing two (as well
as additional computations). The rate for two-disk rebuild then may be(6+ 2)/(6+ 1) times the
rate for a single rebuild. We address this issue by revising the standard model. It turns out, however,
that this change has essentially no effect on the MTTDL numbers, so need not be applied in general.

1

In the following sections, we describe the Markov models that we use to address all three of
these issues. We then apply the models to determine and compare reliabilty (MTTDL) numbers
with reasonable choices for the parameters.

1.1. Methodology

We used Mathematica as a tool to assist in both symbolic and numerical calculations. The
methodology involved building the transition matrix̂A for the Markov model. Each column rep-
resented a state of the model, with the last column representing the absorbing state. Each row
represented a non-absorbing state. The entries in the off-diagonal of the matrix were the transition
rates between the row state and the column state. The diagonal entries were the negative of the row
sum of the off-diagonals (so in̂A all row sums are zero). We then computed the matrixA which is
the negative of̂A after removing the last column. The MTTDL then computed was

MTTDL(Â) = 〈1,0, . . . ,0〉A−1〈1,1, . . . ,1〉t

which is just the sum of the entries in the first row ofA−1. This can also be computed by findingy1
in the matrix equation

A〈y1,y2, . . . ,yk〉
t = 〈1,1, . . . ,1〉t

In our computations with Mathematica, both methods can be used for certain small examples, par-
ticularly the symbolic cases. However, numerically, these matrices were rather ill-conditioned.
Consequently, not all computational methods ran without warnings. Ultimately, we used the second
formulation above and Mathematica’sLinearSolve function, withMethod →Multifrontal
as the most numerically stable method. All methods that ran warning-free produced identical nu-
merical results to the accuracy reported here (there was an exception in one table entry where the
defaultMethod produced a value that differed from what is reported here in the 4th decimal place).

2. Basic Model

The diagram in Figure 1 shows one standard Markov model for a RAID storage system (see [4])
that hasd drives and an MDS erasure code that can toleratet ≥ 2 failures. We modify the notation
a bit from [4]. First, we suppress subscripts since we only deal with disks. Second, we useh for
the “per drive” probability of uncorrectable error, whereas in the cited paper,h represented the total
probability overd− t drives. Finally, we model a drive rebuild rate from Statek to Statek−1 with
the parameterµk as it may depend on the number of drives that have failed. Note that the model
shows that rebuild only restores one drive at time. For MDS codes, the cost to rebuild any single
drive from any state is independent of that state (e.g., in a Reed-Solomon code onn+ t disks and
fault tolerancet, any single disk can be restored from anyn disks of data, regardless of how many
disks are failed). Consequently, in our numerical calculations and the rest of the paper we assume
µk = µ, a constant, unless otherwise noted.

The parameter definitions and the numerical values we use in our results are given in Table 1.
The drive reliability number is approximate: it is lower than most drive vendors claim (approxi-
mately MTTFd = 1,000,000hrs); however, it is higher than field data would suggest (approximately

2

MTTFd = 300000hrs). The rebuild times seen in practice and provided by detailed modelling (see,
for example, [1] with a value of 9.3hrs for Fibre Channel drives) are in the range of 8–24hrs and can
depend on the drive generation, the drive interconnect and the system memory bandwidth (and to a
lesser extent on the number of drives). We chose a value of 12hrs rebuild time as an approximation,
so the rebuild rate in the table isµ = 1/12hrs. Note that our purpose here is not so much to provide
accurate numerical reliability results, but to show the relative structure of the mathematical models,
so precise values are not so important.

d
�

(d-1)
�

(d-(t-1))
�

(1-(d-t)h)

(d-(t-1))
�

(d-t)h

(d-t)
�

(d-(t-2))
�

0 1 t-1 DLt…
�
1

�
2

�
t

�
t-1

Figure 1:A typical reliability model for a storage array with MDS t-fault toler-
ant erasure code.

The arc from Statet−1 to State DL shows the rate at which the system encounters a hard error
during rebuild oft disks. This rate is computed as the product of the rate that a disk fails after
(d− (t −1)) disks have failed, namely(d− (t −1))λ , and the probability of encountering a hard
error when reading the necessary(d− t) disks for rebuild, namely(d− t)h.

Label Description Value

λ drive failure rate, or 1/MTTFd 1/500000hrs
µ drive rebuild rate, or 1/MTTRd 1/12hrs
h probability of an uncorrectable error during re-

build per drive read
C.HER

C drive capacity 300GB
HER hard error rate, in errors per number of bytes read8×10−15

Table 1:Model parameters and their numerical assignments. The drive rebuild
rate is assumed to be independent of number of failed drives..

3

The transition matrix for this model is given by

−a0 a0 0

µ1 −(µ1 +a1) a1 0
...

...

µt−2 −(µt−2 +at−2) at−2 0

µt−1 −(µt−1 +at−1) at−1(1−bt) at−1bt

µt −(µt +at) at


(2.1)

whereak = (d−k)λ andbk = (d−k)h, for k = 0, . . . , t.
Settingµk = µ and solving this model (as in [6]), we derive the formula

MTTDL =
µ tMt(λ/µ,d,h)

d(d−1) · · ·(d− t)λ t(λ +hµ)
, (2.2)

whereMt(x,d,h) is a polynomial of degreet, with constant term 1 that is also linear inh. Here are
a few examples:

M2(x,d,h) = 1+x((2d−2)+h(d−1)(d−2))
+x2((3d2−6d+2)−hd(d−1)(d−2))

M3(x,d,h) = 1+x((2d−3)+h(d−2)(d−3))
+x2(3(d−1)(d−2)+h(2d−1)(d−3))
+x3(2(d2−3d+1)(2d−3)−hd(d−1)(d−2)(d−3)).

In general, the coefficient ofx in these polynomials is given by

(2d− t)+h(d− (t−1))(d− t)

and the coefficient ofxt is given by

Pt(d)−hd(d−1) · · ·(d− t)

wherePt(d) is a (complicated) polynomial of degreet in d. It may be possible to determine recursive
formulas forMt but we have not done so yet.

Typically, h is many orders of magnitude smaller thand; this means thatMt(λ/µ,d,h) ≈
Mt(λ/µ,d,0), which simplifies the formulation of the result. Also, as in [4],µ � λ ; this implies
thatMt(λ/µ,d,h)≈ 1 and so the above formula simplifies further to

MTTDL ≈ µ t

d(d−1) · · ·(d− t)λ t(λ +hµ)
. (2.3)

4

3. Non-MDS codes with elastic fault tolerance

In this section we generalize the basic model to cover the case where the erasure code can
tolerate many (but not necessarily) all instances ofk erasures fork = 1, . . . , t wheret is the limit
after which no erasures can be tolerated. We call thist the “upper threshold fault tolerance”. (If
the code hasn data inputs and codeword sizen+ m, then necessarilyt ≤ m. We do not need this
fact explicitly, but it is useful when trying to determine the parameters in the model.) The Markov
model for this system is given by the diagram in Figure 2; we describe the transition ratesσk andδk
below and as before, for the numerical calculations we setµk = µ.

0 1 t-1 DL

�

0

t…
�

t-1
�

t-2
�

1

�
0

�
1

�
t-2

�
t-1

�
t

�
1

�
2

�
t

�
t-1

Figure 2:Reliability model for a storage array with non-MDS erasure code.

Let pk be the probability that the erasure code can tolerate one more disk failure, given that
it has already toleratedk failures (and so is in rebuild mode). The numbert no longer represents
the Hamming fault tolerance of the code, but the upper threshold fault tolerance, or the maximal
number of faults for which the erasure code can tolerate at least one instance of that many failures.
For 0≤ k≤ t−1, the transition rates are given by

δk = (d−k)λ
{
(1− pk)+ pk(1− pk+1)(d− (k+1))h

}
(3.1)

σk = (d−k)λ pk

{
1− (1− pk+1)(d− (k+1))h

}
(3.2)

andδt = 0, σt = (d− t)λ . Note thatσk +δk = (d−k)λ = ak.
There are two scenarios that can lead from a non-data loss Statek to State DL. First, from

Statek wherek disks have failed, a transition may occur because ak+ 1st disk failsand the code
cannot tolerate this additional failure. This contributes a term(d− k)λ (1− pk) since(d− k)λ is
the rate that another disk may fail and(1− pk) is the probability that, given the system has survived
k disk losses, itcannot tolerate another. This conditional probability reflects the present state at
Statek. Second, from Statek, it is possible to arrive at State DL because (a) another disk fails, (b)
the erasure code in principle can tolerate this failure, (c) a hard error occurs during rebuild and (d)
the erasure codecannottolerate this hard error (essentially equivalent to yet another disk failure that
cannot be tolerated). This contributes a term(d−k)λ pk(1− pk+1)(d− (k+1))h. These two terms
explain (3.1).

In order for the system to transition from Statek to Statek+ 1 (and not incur a data loss), it
must be the case that (a) a disk fails, (b) the erasure code can tolerate this additional failure and
(c) during rebuild, either no hard error occurs that the code cannot tolerateor a hard error does

5

occur but the codecan tolerate it. The first item contributes a factor(d− k)λ . The second item
contributes a factorpk and the third item contributes(1− (d− (k+ 1))h)+ pk+1(d− (k+ 1))h =
{1− (1− pk+1)(d− (k+1))h}.

Observe that for an MDS code with fault tolerance exactlyt, thenpk = 1 for k≤ t−1 andpk = 0
for k≥ t. In this case, the model reduces to the model presented above in Section 2. Note that in
our model,pt = 0.

The transition matrix for this model is given by

−a0 σ0 δ0

µ1 −(µ1 +a1) σ1 δ1
...

...

µt−2 −(µt−2 +at−2) σt−2 δt−2

µt−1 −(µt−1 +at−1) σt−1 δt−1

µt −(µt +at) at


(3.3)

whereak = (d− k)λ andδk andσk are given by (3.1) and (3.2), respectively. This is very similar
to that given in (2.1). The main diagonal of the transition matrix is unchanged. The upper diagonal
is now replaced byσk, which reflects the probabilities of surviving an extra disk loss without a
hard error (as described above) and generalizes the termat−1(1−bt) in the next to the last row and
column of (2.1). The last column (except for last row) is replaced byδk and generalizes the element
in the last column, next to last row.

The formula for the solution can be given explicitly, but it is quite complicated. However, we
apply the model to various examples in each of the next subsections.

3.1. Computing the conditional probabilities

To the compute the conditional probabilitiespk defined as the probability that the erasure code
can tolerate an additional disk failure given that it has failed and toleratedk disk losses, we proceed
as follows. As above, letd be the number of drives in the array. Letnk be the total number of

possiblek disk failure instances, so thatnk =
(

d
k

)
. Let sk be the number of suchk-disk failure

instances which the erasure code can tolerate. Thenqk, theunconditionalprobability that the code
can toleratek failures, is given by

qk =
sk

nk
.

To compute the conditional probabilities,pk, we use the formula Pr(X|Y) = Pr(X ∩Y)/Pr(Y). If
X = Xk, the event of survivingk faiulres, then Pr(Xk+1∩Xk) = Pr(Xk+1), since a system cannot
survivek+ 1 failures without also surviving every instance ofk failures that it contains. Hence,

6

with q0 = s0 = 1, we havepk = qk+1/qk, or, by the above,

pk =
sk+1(

d
k+1

) /
sk(
d
k

) =
sk+1(k+1)
sk(d−k)

.

To computesk, we simply test a specific erasure code to determine whatk disk failure combinations
it can tolerate (we do with with simple tests on the generator matrix as in [3]).

3.2. LDPC code example

The general model of reliability given here is ideally suited to understanding the reliability of
LDPC codes as they might be applied to storage arrays. For more complex systems, for example,
distributed systems, the model given here is insufficient since there are many more components in
such systems (nodes, networks, switches, etc.) and these need to modeled more carefully. However,
the notions described here can be (and should be) extended to the more complex systems.

For this section, we give one example – that taken from the RAID tutorial given by Plank [5].
Plank’s example LDPC code has generator matrix:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 01 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 01 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 01 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 01 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 01 1 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 01 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 01 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 1



. (3.4)

By examining this matrix, it is not hard to see that the Hamming fault tolerance of this code is 1
(that is, it can tolerate all instances of 1 fault, but not all 2-fault instances). For example, the first
row implies that the first data element appears only in the first parity, hence the loss of that row and
that parity is a data loss event. Clearly, it has maximum fault tolerance at most 4 since there is one
data element that touches all four parity.

Clearly,t ≤ 20−16 for this code (by a simple dimensionality argument). By a straightforward
calculation, the countssk can be computed as

{s0,s1,s2,s3,s4}= {1, 20, 185, 969, 2515},

out of {1,20,190,1140,4845} possibilities, respectively, andsk = 0 for k≥ 5. Consequently, the
unconditional probablitiesqk for this code are

{q0,q1,q2,q3,q4} = {1, 20
20,

185
190,

969
1140,

2515
4845}

= {1.0, 1.0, 0.97, 0.85, 0.52}

7

and the conditional probabilitiespk are given by

{p0, p1, p2, p3, p4} = {1, 37
38,

323
370,

10060
16473}

= {1.0, 0.97, 0.87, 0.61, 0.0}

The WEAVER codes [2] also have elastic fault tolerance. We consider here four WEAVER
codes with Hamming fault tolerance 1, 2, 3 and 4. The WEAVER parameter sets we use are{1},
{1,2}, {2,3,4} and{1,2,3,6}, respectively. Among the many choices, these have the smallest maxi-
mal value in each set, so should have better elastic fault tolerance (because their localization prop-
erty is optimal). The last code of 4-fault tolerance may be the one used by Plank [5], though for his
calculations, the specific choice did not matter.

On 20 drives, the countssk for each of these WEAVER codes are given in Table 2 (the last row
gives the total number of failure combinations). It seems remarkable that these codes, though they
have relatively small Hamming fault tolerance, have such high survival rates even when half the
drives are lost.

Number of disk failures k
params FT 0 1 2 3 4 5 6 7 8 9 10
{1} 1 1 20 170 800 2275 4004 4290 2640 825 100 2
{1,2} 2 1 20 190 1100 4225 11044 19440 21960 14300 4200 246
{1,2,4} 3 1 20 190 1140 4785 14544 31940 48960 48040 24460 3166
{1,2,3,6} 4 1 20 190 1140 4845 15444 37780 70120 93080 75320 19084

nk 1 20 190 1140 4845 15504 38760 77520 125970 167960 184756

Table 2:WEAVER code survival counts on 20 drives. The last row, nk, indicates
the total number of failure combinations.

Hamming fault tolerance t
µ = 1/8 1 2 3 4
LDPC 2.07×107

WEAVER 5.17×106 5.39×1010 5.61×1014 6.82×1018

MDS 5.45×105 1.89×109 6.96×1012 2.72×1016

µ = 1/12
LDPC 2.06×107

WEAVER 5.16×106 3.58×1010 2.48×1014 2.09×1018

MDS 5.43×105 1.26×109 3.08×1012 8.03×1015

Table 3:Comparison ofMTTDL of an LDPC on 20 disks (with Hamming fault
tolerance1 and average fault tolerance 3.81) versus WEAVER and MDS codes
on 20 disks with Hamming fault tolerance t= 1,2,3,4.

Table 3 shows the MTTDL for the LDPC code above, the four WEAVER codes and MDS codes
on 20 drives with Hamming fault tolerance between 1 and 4. We do not specify a particular MDS

8

code here, since all MDS codes on 20 drives with a specified fault tolerance will have the same
conditional probabilites (1 up to fault tolerance) and so the same MTTDL. For these calculations,
we used the values for the parameters in Table 1 and add an additional table forµ = 1/8hrs. The
results indicate that the LDPC code, though it has high average fault tolerance, does not have the
system reliability of either an MDS or a WEAVER two-fault tolerant code (the LDPC code is two
or three orders of magnitude less). However, in spite of the fact that the LDPC code has Hamming
fault tolerance equal to one, it has two orders of magnitude better reliability than a 1-fault tolerant
MDS code (e.g., RAID5). The WEAVER code has better fault tolerance than an equivalent MDS
code, by one or two orders of magnitude across all the fault tolerance levels. It should be noted,
however that the storage efficiency of the WEAVER codes is exactly 50%, and of the MDS codes is
95%, 90%, 85% and 80%, respectively. The LDPC code has storage efficiency 80%. So the extra
reliability comes at a cost of storage efficiency.

3.3. Multiple Independent Arrays

As discussed in the introduction, when extrapolating reliability from one array to many arrays,
the typical approach is to simply divide (or multiply depending on the metric) by the number of
arrays. However, this is not entirely accurate, though it is a good approximation in practice as
we now show. To see the model difference heuristically, consider two RAID5 arrays on 8 disks
each. Nominally, each has Hamming fault tolerance one and with two such arrays, the expected
extrapolation factor is exactly 2. Clearly, thissystemcan tolerate all instances of one disk failure.
However, it can tolerate 64 of the 120 possible instances of two drive failures (or 53%), that is,
more than half. (It cannot tolerate any three failures so it has upper threshold fault tolerance 2.)
This suggests that the MTTDL of this system may be somewhat better than exactly half that for a
single array of 8 disks. It also shows that our “elastic fault tolerance” model applies directly.

To apply our model, we need the survival counts. Suppose we have a system ofr arrays, and
each array hasd disks with an MDSt-fault tolerant erasure code. This means that each array
can independently tolerate all instances oft disk failures but no instances oft +1 failures (though
the system as a whole certainly can). Furthermore, it is clear that the system cannot tolerate any
combination oftr +1 disks failures as that would imply at leastt +1 on at least one array.

So, rd plays the role ofd (number of disks) andtr plays the role oft (upper threshold fault

tolerance) in the model. Consequently,nk =
(

rd
k

)
. The survival countssk are given by

sk = ∑
r0+r1+···+rt=r

0r0+1r1+2r2+···+trt=k

(
r

r0, r1, . . . , r i

) t

∏
i=1

(
d
i

)r i

. (3.5)

The expression before the product is the multinomial coefficient, which counts the number of com-
binations ofr rolls of at +1 sided dice. This equals the number of ways we can distribute 0 failures
on r0 arrays each, 1 failure onr1 arrays, etc., up tot failures onrt array. The total number of arrays
must ber and the total number of failures must bek. This explains the conditions on the sum. Given

9

that there arer i arrays withi failures, there are

(
d
i

)r i

ways those failures can be distributed on those

arrays, which accounts for the product term in each summand. Another way to determine this value
is as the coefficient ofxk in the expansion of(

1+
(

d
1

)
x+

(
d
2

)
x2 + · · ·+

(
d
t

)
xt

)r

.

Table 4 gives a summary of the MTTDL for various configurations of drives and array sizes and
Hamming fault tolerance (withλ , h andµk = µ as in Table 1). The first number in each cell is the
MTTDL number computed with the parameter values from Table 1. The second number in each
cell is ther times the ratio of the 1-array case to ther-array case, that is, comparing the traditional
model to this more accurate model. Over this broad range of parameters, the traditional model,
though quite close to the more accurate model, does not in fact agree with it.

10

number of arrays r
t = 1 1 2 4 8 16 32

4 1.7192×107 8.5952×106 4.2968×106 2.1476×106 1.0730×106 5.3567×105

1.0000 0.9999 0.9997 0.9993 0.9986 0.9970
8 3.6847×106 1.8420×106 9.2066×105 4.5998×105 2.2964×105 1.1447×104

d 1.0000 0.9998 0.9994 0.9987 0.9972 0.9942
12 1.5635×106 7.8153×105 3.9055×105 1.9506×105 9.7309×104 4.8436×104

1.0000 0.9997 0.9992 0.9980 0.9958 0.9913
16 8.601×105 4.2989×105 2.148×105 1.0723×105 5.3458×104 2.6571×104

1.0000 0.9996 0.9989 0.9974 0.9945 0.9886

t = 2
4 3.5816×1011 1.7904×1011 8.9485×1010 4.4708×1010 2.2320×1010 1.1125×1010

1.0000 0.9998 0.9994 0.9986 0.9971 0.9940
8 2.5588×1010 1.2788×1010 6.3889×109 3.1895×109 1.5898×109 7.9003×108

d 1.0000 0.9995 0.9987 0.9972 0.9941 0.9880
12 6.5145×109 3.2550×109 1.6256×109 8.1088×108 4.0357×108 1.9992×108

1.0000 0.9993 0.9981 0.9958 0.9912 0.9820
16 2.5598×109 1.2787×109 6.3833×108 3.1817×108 1.5811×108 7.8079×107

1.0000 0.9991 0.9975 0.9944 0.9882 0.9761

t = 3
4 1.4923×1016 7.4592×1015 3.7274×1015 1.8615×1015 9.2864×1014 4.6218×1014

1.0000 0.9997 0.9991 0.9980 0.9957 0.9911
8 2.1323×1014 1.0654×1014 5.3209×1013 2.6543×1013 1.3210×1013 6.5443×1012

d 1.0000 0.9993 0.9982 0.9959 0.9913 0.9821
12 3.0159×1013 1.5064×1013 7.5187×1012 3.7463×1012 1.8602×1012 9.1726×1011

1.0000 0.9990 0.9972 0.9938 0.9869 0.9732
16 8.2043×1012 4.0964×1012 2.0434×1012 1.0170×1012 5.0380×1011 2.4726×1011

1.0000 0.9986 0.9963 0.9916 0.9825 0.9644

Table 4: MTTDLcomparison for multi-arrays versus a single array. Each cell
contains the computedMTTDL according to the multi-array model and the
ratio r ∗MTTDL(1)/MTTDL(r).

4. Rebuild-in-parallel

In the two models above, the rebuild occurs incrementally, fromk failed disks tok−1 failed
disks. This does not necessarily model actual system behaviors. There are systems which apply the
rebuild in this manner in order to reduce vulernability of a system as quickly as possible, especially,
if the rebuild time for more than one drive is significantly more than that for a single drive. However,
many other systems implement rebuild of multiple drives in parallel; that is, they go from a multi-
failure state back to the errror-free state directly. Figure 3 shows a model that more closely resembles
a standard implementation for an MDS code where rebuild returns to the fully operational state from
any given failure state (except the DL state). Here,µk is the rate at which the system can rebuild
from k failures to fully functional; that is, rebuildk failed disks simultaneously. The same variation

11

can be applied to the model in Figure 2 but we do not do so here.
It can be argued that in most systems and depending on system resources, the rebuild time fort

drives is essentially equal to the rebuild times for 1 drive. In particular, this will happen unless there
are a huge number of drives and the memory or disk interconnect bandwidth becomes a bottleneck.
Consequently, for the rest of this discussion, we assume thatµk = µ, a constant. (This is also a
reasonable assumption for the purposes of this paper, since, as noted above, we are not concerned
with extremely accurate reliability predictions, but on relative comparison of different models).

0 1 t-1

d
�

(d-1)
�

�
1

DL

(d-(t-1))
�

(1-(d-t)h)

(d-(t-1))
�

(d-t)h

t

(d-t)
�

…
(d-(t-2))

�

�
2

�
t-1

�
t

Figure 3:Revised reliability model for single array, with MDS t-fault tolerant
code, with rebuild proceeding in parallel directly back to “zero” loss state.

The transition matrix is given by

−a0 a0 0

µ1 −(µ1 +a1) a1 0
...

...
...

µt−2 −(µt−2 +at−2) at−2 0

µt−1 −(µt−1 +at−1) at−1(1−bt) at−1bt

µt −(µt +at) at


(4.1)

where, as before,ak = (d−k)λ andbt = (d− t)h.
Note that this differs from the basic model in Figure 1 by left shifting all theµk terms on the

lower diagonal to the first column. The solution, whenµk = µ, a constant, is given by the formula

MTTDL =
µ tM̃t(λ/µ,d,h)

d(d−1) · · ·(d− t)λ t(λ +hµ)
, (4.2)

whereM̃t(x,d,h) is a polynomial of degreet in x, is linear inh and has constant term equal to 1.
That is, it has a form very similar to (2.2), up to first order terms. The denominators of the two
models are the same. The algebraic difference between the numerators of the two MTTDLs is given
by

λ µ
t−1Qt−2(λ/µ,d,h)

12

whereQt−2(x,d,h) is a polynomial of degreet−2 in x, is linear inh and has constant term given by

(t−1)(d− t/2)−h(d− (t−1))(d− t).

Consequently,

MTTDLparallel= MTTDLincr

(
1+O

(
dtλ
µ

))
With µ � λ , we get the same approximation result as in (2.3).

Table 5 shows that, numerically, the MTTDL is essentially the same between the two models.
The parametersλ andh are fixed as in Table 1. We vary the number of drives in the array and the
mean time to rebuild at 8hrs and 12hrs; these are the two “tunable” parameters (MTTFd andh are
determined by the inherent characteristics of the drives). There are two subtables, one each fort = 2
andt = 3. Clearly, though the models and the closed form solutions are different, the impact on the
MTTDL results is minimal. In each cell, the top number is the MTTDL for the traditional model,
the middle number is the MTTDL for this revised model and the bottom number is the ratio.

number of drives d
µ = 1/8 8 12 16 20 24

3.8505×1010 9.8024×109 3.8515×109 1.8922×109 1.0659×109

t = 2 3.8509×1010 9.8041×109 3.8524×109 1.8927×109 1.0663×109

0.9999 0.9998 0.9998 0.9997 0.9997
4.8130×1014 6.8071×1013 1.8516×1013 6.9565×1012 3.1723×1012

t = 3 4.8140×1014 6.8094×1013 1.8525×1013 6.9605×1012 3.1745×1012

0.9998 0.9997 0.9995 0.9994 0.9993

µ = 1/12
2.5588×1010 6.5145×109 2.5598×109 1.2577×109 7.0853×108

t = 2 2.5592×1010 6.5162×109 2.5607×109 1.2582×109 7.0890×108

0.9998 0.9997 0.9997 0.9996 0.9995
2.1323×1014 3.0159×1013 8.2043×1012 3.0825×1012 1.4058×1012

t = 3 2.1329×1014 3.0174×1013 8.2099×1012 3.0852×1012 1.4073×1012

0.9997 0.9995 0.9993 0.9991 0.9989

Table 5:Comparison of basic rebuild-incremental model to the revised rebuild-
in-parallel model. Each cell contains theMTTDL for the basic rebuild-
incremental model, theMTTDL for the rebuild-in-parallel model and the ratio.

5. Summary

In this paper, we discussed two variations on the basic model used to measure reliability (or
MTTDL) for storage arrays with MDS erasure codes. The first variation extends the traditional
model to non-MDS erasure codes with elastic fault tolerance by reflecting the fact that a non-MDS
code can recover from some (but not all) instances of multiple failures, more than that determined
by the Hamming fault tolerance. We applied this model to two examples: (a) an LDPC code and

13

WEAVER codes compared to the MDS model and (b) multiple independent arrays. In the first
example, we showed the the LDPC code’s MTTDL does not reflect the large average fault tolerance;
in the second example, we showed that the traditional method of treating each array independently
is a very good approximation to the more accurate model given here. The second model variation
reflected the fact that most storage systems rebuild all failed disks simultaneously and restore to
the “fully functional” state in one transition; that is, they do not incrementally restore disks. The
numerical results indicate that this variation has little effect on the predicted MTTDL.

References

[1] A. Dholakia, E. Eleftheriou, X.-Y. Hu, I. Iliadis, J. Menon, and KK Rao. Analysis of a new
intra-disk redundancy scheme for high reliability raid storage systems. Technical Report RZ
3652, IBM Research, Zurich, Switzerland, 2005.

[2] J. L. Hafner. WEAVER codes: Highly fault tolerant erasure codes for storage systems. In
Proceedings of the Fourth USENIX Conference on File and Storage Technologies, pages 211–
224, San Francisco, CA USA, December 2005.

[3] J. L. Hafner, V. Deenadhayalan, KK Rao, and J. A. Tomlin. Matrix methods for lost data
reconstruction in erasure codes. InProceedings of the Fourth USENIX Conference on File and
Storage Technologies, pages 183–196, San Francisco, CA USA, December 2005.

[4] KK Rao, J. L. Hafner, and R. Golding. Reliability for networked storage nodes. InProceedings
of the 2006 International Conference on Dependable Systems and Networks (DSN’06), pages
237–246, Philadephia, PA USA, June 2006.

[5] J. Plank. Erasure codes for storage applications, December 2005.
http://www.cs.utk.edu/˜plank/plank/papers/FAST-2005.html .

[6] K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer Science Ap-
plications. John Wiley, 2nd edition, 2001.

14

