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Introduction 

This article introduces “shape writing” – a novel form of writing that uses pen strokes on 
graphical keyboards to write text. We first describe the basic concept of shape writing, 
followed by the human-performance considerations and rationales that guided its iterative 
design and development process in the past few years (Zhai & Kristensson, 2003; Kristensson 
& Zhai, 2004). We conclude the article by analyzing shape writing in relation to the multiple 
dimensions of goodness of text entry.   

The Basic Concept of Shape Writing 

Shape writing, also known as shorthand aided rapid keyboarding (SHARK), is a 
writing method designed to enable users to enter text efficiently at a faster rate than previously 
possible on mobile phones, handheld computers and other mobile devices. It can also be used 
with external tablets connected to desktop computers for those who need an effective 
alternative to two handed touch typing on a physical keyboard. Unlike the hand writing 
systems which rely on pre-defined symbols based on either widely practiced scripts (i.e. 
natural handwriting) or novel symbols (such as Graffiti), shape writing is defined on and used 
with a graphical keyboard. 

 
The basic concept of shape writing is rather simple. A shape writing system (our 

current system is named ShapeWriter) displays a graphical keyboard to the user. Instead of 
tapping each individual letter key explicitly and precisely, the user slides the pen over all the 
letter keys in a word sequentially on the graphical keyboard. Figure 1 shows the ideal trace 
(left) and one actual and acceptable input stroke (right) for the word “the”. The user’s pen 
trace can deviate and sometimes not even cross some of the intended keys as long as it is 
closer to the intended word’s ideal trace than any other word traces in a lexicon.  

 
The ideal trace is called a “sokgraph” (shorthand on keyboard as a graph) (Kristensson 

& Zhai, 2004).  In other words, a sokgraph is the continuous trace that is formed by serially 
connecting the center points of the keys on a graphical keyboard for a string of letters 
(normally a word). For shape writing, a graphical keyboard is simply an array of characters 
arranged either in the traditional QWERTY layout or in an optimized layout. To shape write a 
word, the user draws a pen stroke on the keyboard that approximates the sokgraph of the 
word. Once the pen stroke terminates (by lifting the pen for example), the shape writing 
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system in principle compares the pen stroke on the keyboard with all sokgraphs generated 
from a lexicon and returns the closest match. Figure 2 shows ShapeWriter in action ─ a user is 
shape writing the word “writing” on an optimized keyboard layout. Shape writing is 
inherently error tolerant, allowing noises such as hand tremors or faster and more “sloppy” 
writing.  

 

 
 

Figure 1. The word “the” as an ideal sokgraph (left) and a user’s actual pen input 
(right). The dot indicates the start of the pen-stroke. 

 

 
 

Figure 2. ShapeWriter on a Tablet PC 
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Information and Constraints 

Text entry can be viewed as a communication system through which information is 
transmitted from the user to the computer. Such a system can be represented by Shannon’s 
noisy channel model. With shape writing the writer encodes his message (a word) with 
geometric shapes defined on a letter map (the graphical keyboard). Such a process is “noisy” 
both because one often has to cross irrelevant letters in order to reach the intended letter and 
because the writer can be sloppy and miss some relevant letters. In other words the stroke 
drawn is often imperfect.  The shape writing recognizer decodes the message from the code + 
noise and outputs the message (the word). 

 
The reason a shape writing system can decode the noisy “shape code” fundamentally 

lies in the regularities and redundancies in language (and word compositions in particular). In 
fact in his seminal paper that laid the mathematical foundation of modern communication 
systems (the information theory) Shannon (1948) introduced his work by first examining the 
constraints and redundancy in the English language. The statistical regularities in natural 
language form the basis for much of today’s speech recognition and other language processing 
technologies. The most basic way of capturing the lexical level of language regularities is the 
notion of a lexicon that consists of all permissible letter combinations including words, parts 
of words, names and acronyms. The use of a lexicon is a critical aspect of shape writing. 
Using lexical constraints a shape writing system allows many irrelevant letters to be crossed 
and still have the intended word returned. Taking Figure 2 as an example, the letters intended 
to be crossed were “w-r-i-t-i-n-g”, but the actual pen stroke crosses “w-r-t-o-s-i-s-e-t-e-s-i-n-
g.”. ShapeWriter can still return the word “writing” because the lexical constraints eliminate 
all illegitimate letter strings.  Consequently, ShapeWriter takes advantage of the regularities of 
word formation and recognizes the user's pen stroke on the keyboard with flexibility and error 
tolerance. An intended word can still be recognized although irrelevant letters between 
intended letters are crossed or even if some of the letters in a word are missed by the pen 
stroke.  
 

To give a sense of the amount of lexical constraint existing in a natural language, such 
as English, consider only words with the length of 5 letters. The letter permutations of a 5 
letter string would be in the range of tens of millions. This number is even greater if we can 
consider permutations of letter strings with different lengths. In practical writing an 
individual’s active vocabulary is several orders of magnitude smaller. For instance, in the 
Enron email corpus (Klimt & Yang, 2004) the most frequent email sender wrote 8,926 emails 
in two years, totalling around 400,000 words. But the number of unique words in all of his 
emails written is only 10,858. Hence the vast majority of letter combinations can be 
considered as shape writing error tolerance “white space” (illegitimate letter combinations not 
in the lexicon). 

A lexicon is only a special and limited form of language modeling for shape writing. 
Other types of either lower or higher order regularities, such as word level N-grams, can 
potentially also help to further relax the precision requirement of shape writing. Also, the 
smaller or more specific the lexicon is, the more flexibility and error tolerance shape writing 
can provide. This is a factor that can be taken advantage of in certain domains, for example in 
medical applications. 
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Shape Writing Recognition 

Due to space limitations and the introductory nature of this article, we refer the reader to 
(Kristensson & Zhai, 2004) for a detailed presentation of shape writing recognition in 
particular and the vast literature such as (Duda, Hart, & Stork, 2001) and (Theodoridis & 
Koutroumbas, 1999) for pattern recognition technologies in general. Here we only highlight 
some specific characteristics of shape writing recognition derived from the idiosyncrasies of 
the shape writing paradigm. 
 

Template-based recognition 

Unlike the majority of the popular contemporary handwriting recognition methods that rely on 
data-training-based statistical pattern recognition (Tappert, Suen & Wakahara, 1990) we chose 
a template-based approach where the user’s pen-stroke is compared to each word’s sokgraph 
template. The template-based approach allows new words to be added to the lexicon easily.  
For instance, by tapping a new word on the graphical keyboard the system can instantly build 
the template of the added word. In contrast a training based statistical pattern recognition 
method may require the user to provide several sample pen-strokes of the word. A template-
based approach is also more easily implemented for shape writing whose “orthography” – the 
canonical format of a script  (Coulmas, 1989) – is clearly defined by the letter map. For 
natural handwriting, there is often a great deal of variation for writing each letter all within the 
acceptable bound. 
 

Multi-channel recognition 

Shape writing also poses some unique challenges to its recognition. One of them is the large 
number of sokgraphs to be recognized. The two primary features we decided to include in our 
recognition system to address the challenge are total shape similarity between the user’s pen 
trace and the ideal sokgraph, and the user’s pen trace location on the graphical keyboard in 
relation to the location of the letter keys of the intended word. These shape and location 
features are treated as parallel recognition channels that are integrated using a probabilistic 
approach. To improve recognition accuracy several weighting schemes are used within each 
channel and between the channels.  
 

Out of Lexicon Input, Ambiguity and Error Handling 

Handling words outside the lexicon 

What happens if the user wants to shape write a word that is not in the lexicon? No matter 
how large the lexicon is or how closely the lexicon matches the individual user’s writing 
vocabulary, occasionally the user may still need to write a word, such as a rare name, an 
acronym, or a foreign word that is not pre-stored in the lexicon. Fortunately, shape writing is 
used atop of a graphical keyboard. One can use the conventional graphical keyboard input 
method and tap one letter at a time to enter a new word. ShapeWriter will mark the tapped 
unknown word with, for example, a box (Figure 3) to show the user that this is not a word in 



Shape Writing 5 

the lexicon. The user can choose to add the word to the lexicon so it can be shape written the 
next time. 
 
 

 
(a)                 (b)  
 

Figure 3. A tapped word not in the lexicon is marked with a box (a); and the user can add 
the new word to the lexicon by clicking on it (b). Shown in pictures is the ATOMIK layout 
(Zhai, Hunter, & Smith, 2002) available in ShapeWriter 

Ambiguity 

Due to the nature of mapping words onto a graphical keyboard, it is inevitable that the 
sokgraphs of some pairs of words are almost or completely identical. Our study (Kristensson 
& Zhai, 2004) shows that in a lexicon containing 20,000 words, 1117 pairs of words (5.6%) 
are identical in normalized shapes (independent of scale and location) on the ATOMIK 
keyboard layout (See Figure 3). For example “root” vs. “heel”, and “ben” vs. “buy”. Many of 
these conflicts are not natural or complete English words. For example, the word  “as” 
conflicts with “lo”, “oz”, “by”, “ny” and ”ft”. If we consider only confusion pairs with the 
same starting and ending key positions, the number reduces to 493 (2.5%). Examples of 
confusion pairs with identical start and ending positions include “refuge” vs “refugee” “webb” 
vs “web”, and “traveled” vs. “travelled”.  284 of these confusions pairs are Roman numerals, 
such as “lxvi” vs. “lxxxvi”. Excluding Roman numerals there are 209 pairs of confusion in the 
20000 word lexicon (1.0%). The number of complete ambiguous word pairs on a QWERTY 
layout is only slightly higher (Kristensson & Zhai, 2004). Techniques for resolving ambiguity 
are discussed in the next section. 

Error Recovery 

As in all human skills, a text entry method operates on a speed accuracy trade-off curve 
(Figure 4). As one shape writes faster (to the left on Figure 4), she is increasingly more likely 
to draw a shape that is closer to an unintended word than the intended word, resulting in an 
entry error.  
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Figure 4. Hypothetical speed accuracy trade-off curves of text entry 

 
Error recovery is a critical aspect of any text entry system design. It presents a 

problem that is very difficult to solve in speech recognition since it requires mode switching 
between dictation and command (for editing), both of which use voice. Errors occur even in 
the most common text entry method, two-handed touch typing on a keyboard, but there error 
correction is quite easy – hit the backspace key and re-type. One can easily visualize the 
intensity of the use of the backspace key with a keyboard monitoring program (e.g. RSI 
Guard) which displays the hit plots on each individual key. Computer users who are not 
rigorously trained touch typists can see that backspace is one of the most frequently hit keys.  
 

In shape writing, the basic method of dealing with errors, due either to the small 
number of confusion pairs or to the deviation of the user’s stroke from the intended sokgraph 
to an unintended one, is using the alternative list menu. If the user clicks on a displayed word, 
a correction menu is shown, in which alternative candidates are listed according to their 
probability of being the intended target word (Figure 5). From a certain (simplified) motor 
action standpoint, two pen strokes (one for shape writing one occasionally for menu selection) 
are still more efficient than writing a word with longhand, which on average consists of 
writing five letters with more than five strokes. With ShapeWriter one can also erase a word 
in the editor by, for example, a stroke crossing the word (Figure 6) and re-write.  
 

 Accuracy (%) 

0      100

high performance 
method  

low performance 
method  

Speed 
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Figure 5. The user can correct an unintended word with ShapeWriter by means of the 
alternative list 

 

 
Figure 6. The user can delete an unwanted word with a stroke crossing the word. One 
can also cross out multiple words with one stroke. 

  
 

Human Sensitivity to Shape as an Encoding Modality and the 
Progression from Tracing to Direct Shape Writing 

As mentioned earlier in relation to the communication model, shape writing uses geometric 
shapes as an encoding mechanism for words (See Figure 9 for a few examples).  Humans are 
very good at “geometric encoding”. A mundane example is using shape as a mnemonic aid to 
memorize pass codes.  For example, it is much more difficult to remember the number 
sequence 1478963 than to remember the keys forming a U shape on the telephone keypad as a 
password.  
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Quantitatively, one experiment on people’s ability to learn, memorize and reproduce 
sokgraphs showed that people could on average learn 10 to 15 sokgraphs in each hour of 
practice and correctly reproduce them later without seeing the keyboard (Zhai & Kristensson, 
2003).  
 

In practice, learning shape writing is expected to be more gradual and implicit, with 
the graphical keyboard serving as a map that guides pen movement. One does not have to 
memorize any sokgraph to begin shape writing. Instead, one traces the intended word from 
letter to letter by visual guidance from the graphical keyboard. The disadvantage of visual 
guidance based input is that it is relatively slow since entering each letter requires closing the 
perception-action loop. The advantage, on the other hand, is that it makes shape writing easier 
to begin without needing to memorize a system of symbols as in other shorthand writing 
systems. Ease of use, or more appropriately the low requirement of learning, made graphical 
user interfaces (GUI) the standard way of interacting with computers today, although it is in 
fact slower than the earlier command based interaction method at expert skill levels. 
 

The transition from visual tracing to direct shape writing is modeless. After a few 
times of tracing a word, the user begins to remember parts or the entire shape of the sokgraph 
of the word. In the same laboratory experiment mentioned earlier (Zhai & Kristensson, 2003), 
in which the interval of practice of each word was gradually increased, the study participants 
could completely remember the shape of a sokgraph after 7 to 15 trials of practice. Once parts 
or the entire shape is remembered, the user’s performance shifts towards the expert end of 
direct shape writing (Figure 7). As a result, the writing speed of the user increases due to two 
related factors: chunking (Miller, 1956; Buxton, 1986) and open-loop behaviour: chunking in 
the sense the user does not have to plan, search and execute the pen strokes from letter to 
letter on the graphical keyboard as separate units. Instead, the user plans and executes several 
letters or the entire word as one shape. The action is open-loop in the sense that much of the 
behaviour is driven by memory recall rather than visual guidance, as in all skilled and rapid 
performance. In our “stress tests”, if a user practices and repeats a sentence until all the shapes 
of the words in the sentence are remembered, the shape writing speed can reach beyond 100 
words per minute. 
 

 
 

Figure 7. With practice, the user’s behaviour shifts from tracing to direct shape 
writing.  
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Obviously, the longer the word, the more practice it will take to remember the entire 

shape of its sokgraph. Before that, the user is somewhere in between the two ends of shape 
writing expertise: complete visual tracing vs. complete direct shape writing (Figure 7). 
Common segments or syllables of a long word may be chunked and these parts can be directly 
gestured. For less common segments, the user may rely more on visual guidance of the 
graphical keyboard.  Forgetting a sokgraph is also possible, which means the user has to fall 
back to the novice behaviour of visual tracing, which gives the user an opportunity to rehearse 
the shape of the sokgraph again. See (Fuchs, 1962) for an early observation of the progression 
and regression of human motor skills in general.  
   

What bridges the novice end to the expert end of shape writing performance is that 
their actual movement actions are consistent. The same (consistent) movement pattern is used 
both in novice tracing behaviour and in expert recall-based direct shape writing. Psychology 
research has shown that a key to developing automaticity or less attention demanding 
performance in human behaviour (Schneider & Shiffrin, 1977) is consistency. The concept of 
facilitating novice to expert transition can also be related  to Kurtenbach and Buxton’s 
inspiring work and their compelling articulation of marking menus (Kurtenbach, Sellen, & 
Buxton, 1993; Kurtenbach & Buxton, 1994).  They observed that the disconnection between 
the novice GUI menu operations and the expert hot-key-based operation prevents a natural 
transition from novice to expert. As an alternative solution they designed marking menus 
which are pie menus with a delayed pop-up of the menu items. Users make angular pen-marks 
to select the menu items with (in case of a novice) or without (in case of an expert) the 
guidance of the pie menu display.  
 

There is an interesting difference between marking menus and shape writing 
(particularly in its later design) in how the novice to expert transition is designed. Via the 
delayed pop-up display marking menus enforce a binary transition from novice to expert 
behaviour. A novice pauses and waits for the delayed menu display to pop-up whereas an 
expert would not wait for the pop-up but produces the angular pen-marks from memory. 
Shape writing takes a more subtle approach – the transition is more gradual and controlled by 
the user rather than by the interface. With shape writing, the keyboard is always displayed. 
The user can choose to look at the keyboard a lot, a little, or not at all. It is conceivable that 
the marking menu approach “pushes”  the user to jump to the expert mode sooner while the 
shape writing approach is less forceful, less explicit, but less rapid in helping the user to 
progress towards an open-loop mode. We feel the more subtle approach is necessary for shape 
writing due its large vocabulary size. Understanding and devising effective methods to aid the 
novice to expert transition is an important but under-investigated HCI research topic. 

Efficiency and Layout Matters 

Shape writing’s high efficiency comes from several related factors. First and foremost, it is a 
form of speed writing in that it enables writing one word with one stroke. “Natural” 
handwriting is longhand, articulating one letter at a time. The weighted average length of 
English words is 4.7 letters (according our analysis based on the American National Corpus, 
http://americannationalcorpus.org/), with each letter’s articulation complexity on par with a 
sokgraph of a common (often short) word. Figure 8 shows the sokgraphs of the words “shape 
writing is fun” on the ATOMIK and QWERTY layout. 
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              shape                                   writing                                         is                                        fun 

 
Figure 8. Some sokgraph examples on ATOMIK and on QWERTY 

 
The second efficiency factor is due to the “intelligence” built into shape writing 

recognition. Since ShapeWriter takes advantage of the constraints of the total shape of 
sokgraphs it allows the user to deviate from the precise trajectory. The user can be as “sloppy” 
as the white space allows, enabling the user to trade a certain amount of accuracy for speed. 
 

The third efficiency factor comes from layout optimization. Shape writing is in 
principle independent of layout, and indeed can use any number of layouts. The subjectively 
familiar layout is the QWERTY layout invented in the 1860’s for minimizing mechanical 
jamming (Yamada, 1980). However, touch typing uses motor memory instead of visual spatial 
memory so the learning advantage of QWERTY as a map for shape writing is not as great as 
one might think. The disadvantage of using QWERTY for shape writing is the loss of potential 
efficiency and greater difficulty in long term learning. We have experimented with an class of 
optimized layout called ATOMIK (alphabetically tuned and optimized mobile interface 
keyboard (Zhai & Smith, 2001; Zhai, Hunter, & Smith, 2002)). We started with the classic 
ATOMIK optimized for tapping (Figure 9) as a more efficient shape writing map. Sokgraphs 
defined on ATOMIK are both more efficient and easier to remember because the sokgraphs are 
more diverse than those defined on QWERTY which tend to zig-zag in a similar fashion (See 
Figure 8) for many words due to the fact that common consecutive letters tend to be arranged 
on the opposite sides of the QWERTY layout (See Yamada 1980 for an thorough review of 
QWERTY design). Two mechanisms in the ATOMIK layout help a novice user find the letters. 
First, due to the optimization effect the next letter needed is more likely to be in the vicinity of 
the current pen position. Second, letters from A to Z tend to run from the upper left to lower 
right corner of the ATOMIK layout, giving the novice user another clue for finding a particular 
letter (Figure 9 and 10) (Smith & Zhai, 2001) . 
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Figure 9. Classic ATOMIK layout with ABC to Z order tuning illustration 

 

 
 

Figure 10. The ATOMIK layout revised for shape writing with ABC to Z order tuning 
illustration.  

There are a few aspects of ATOMIK that were improved specifically for shape writing, 
resulting in a revised ATOMIK layout (Figure 10). As shown in Figure 9 and 10, D and K keys 
are swapped so that the common suffix ED is more distant from the common suffix ING. 
Hexagon keys are changed to the simpler and cleaner squared keys. In the classic ATOMIK 
layout (Figure 9) keys were hexagonal to maximize tapping efficiency, which is no longer 
needed for shape writing. Similarly, the space key is moved off the center since spaces are 
automatically filled after every sokgraph is recognized. The last row is slightly shifted to the 
left to make the layout more compact and some sokgraphs less stretched. 

 
Keyboard optimization research (Getschow, Rosen, & Goodenough-Trepagnier, 1986; 

Lewis, Kennedy, & LaLomia, 1992; MacKenzie & Zhang, 1999; Zhai, Hunter, & Smith, 
2000; Smith & Zhai, 2001) has focused on the core Roman letter set. Auxiliary keys in fact 
also matter to the overall efficiency and usability of the keyboard. The main rationale for the 
auxiliary keys in the revised ATOMIK in Figure 10 is as follows: $ is close to the number 
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keys, since it is usually followed by digits. % is below the number keys, since it is usually 
placed after digits. Similar pairs such as “{ }” and “[ ]” are aligned and grouped together. 
Similar keys \ | / are aligned and grouped. Arrow keys are set according to convention 
(location and shape). The Caps, SHIFT, Ctrl, Alt, and Fn keys cause a state change as soon as 
a stylus lands on them, even if the user is in the middle of drawing a stroke and lands on one 
accidentally.  To minimize unintentional activation of these keys, they are made slightly 
smaller with a gap between them and the adjacent keys. The smaller Fn and Ctrl keys also 
make the user more careful and deliberate to trigger “command strokes”  ─ sokgraphs starting 
from a command key so they will be interpreted as a command.  For example, Ctrl-C-O-P-Y 
issues a Copy command rather than entering the word “copy”. The Fn key is placed as close 
to the numeric keys as possible, so that function shortcuts such as F1 and F3 are more 
separated. Ctrl is placed more to the center (swapped with Alt) for a similar reason. 

 

The Multiple Dimensions and Guidelines of Efficient Text Entry 

 
Developing effective text entry methods is a challenging task, partly because the goodness of 
the solution is multidimensional. In our view, there are at least the following dimensions that 
can be desirable in a text entry method: High performance (high product of speed and 
accuracy); Ease of entry / ease of learning; Low effort; Mobility; and Fun. In this section we 
discuss shape writing along these dimensions of goodness as design guidelines.  
 

To achieve perfection in all of these dimensions in one method is an impossible task, 
since some of them can be contradictory in design choices. The relative importance of each of 
these dimensions depends on application requirements and individual preference. Our primary 
goal of developing ShapeWriter is to enable mobile devices to take on common personal 
computing tasks efficiently (e.g. email, text messaging, note taking, etc), which dictated the 
trade offs we made, described as follows. 

High performance 

High performance should not be measured by high speed only, but rather by a high speed 
accuracy trade off curve (Figure 4). High performance is one of our primary goals in 
developing shape writing. This was achieved due to the shorthand nature, the built-in 
“intelligence” and error tolerance, and the layout optimization.  The relative ease of error 
correction should also contribute to average performance. 

Ease of entry and ease of learning 

This dimension is typically at odds with the first. For example character-based longhand 
writing is easy to begin for any literate user, but it is not high performance. On the other hand, 
traditional shorthand writing (such as Pitman or Gregg’s system) can give very high speed, 
but they require the user to memorize a large number of symbols to begin, making its learning 
requirement impractical for ordinary computing and communication use. One of the core 
ideas in shape writing is to bridge ease of entry with high performance. One can start with no 
memory at all (tracing) and gradually move to (partially and increasingly) memory recall-
based high performance gesturing. Interestingly, the standard desktop text entry method, two-
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handed touch typing, can afford quite high performance but its learning requirement would be 
hardly acceptable if it were a new computer user interface that had not been widely adopted. 
Learning shape writing is much easier than learning touch typing. 

Effortless 

A good text entry solution should require as little effort as necessary. Effort in fact can be 
further divided along multiple sub-dimensions of human performance: motor, perceptual, and 
cognitive. A method can optimize for one of the sub-dimensions at the cost of another. For 
example, by dynamically positioning letter keys according to context as in Dasher (Ward, 
Blackwell, & MacKay, 2000), the amount of stylus moment for text entry can be minimized. 
The cost of dynamically arranging letters, however, is the greater perceptual effort needed to 
constantly monitoring the changing letters. Such a trade-off of motor effort with perceptual 
effort could well be justified for some applications, for example, interfaces for users with 
certain types of motor impairments. In contrast, methods like Unistrokes (Goldberg & 
Richardson, 1993) and Graffiti can be potentially eyes-free but they require much more motor 
effort since they are fundamentally longhand methods (character level writing).  Shape writing 
balances the motor and perceptual effort with a stationary layout augmented with fluid pen 
strokes. In our early implementation of shape writing, named SHARK at the time (Zhai & 
Kristensson, 2003), an important goal was making shape writing scale and location 
independent so an expert user did not have to look at the keyboard at all if the sokgraph is 
remembered completely. This was achieved by limiting shape writing only to a small set of 
common words. For all other words, the user was expected to tap one letter at a time. The 
Zipf’s law effect was expected to skew the impact of the small number of common words and 
therefore speed up the average writing time. A cost to this hybrid approach, we later realized, 
could be cognitive: the user has to decide between shape writing the whole word or tapping 
individual letters. We hence decided to expand shape writing to all words needed (Kristensson 
& Zhai, 2004),   although it means that a certain degree of visual monitoring of the strokes on 
the keyboard is needed since scale and location independence cannot be guaranteed for such a 
large number of words. This perceptual cost is much lower than that of conventional stylus 
tapping requiring high precision taps within each individual key. Overall, the design of 
ShapeWriter minimizes the user’s motor effort without demanding an unacceptable level of 
perceptual and cognitive effort. 

Mobility 

Today’s research interest in developing new text entry methods is largely driven by the need 
to carry out computing and communication functions on small, handheld mobile devices. A 
small and flexible form factor, with a small footprint and an near zero start up time (including 
the time of setting-up the device in case of an external attachment solution) is desirable. An 
extreme case is one handed (or no hand at all) input while walking or driving (which is 
probably unsafe in any case). Speech offers a unique advantage in this regard and is making 
inroads into these extreme mobile conditions such as command systems in cars, but suffers 
other problems such as error correction difficulty for large vocabularies and cognitive load if 
used as a dictation method (Karat, Halverson, Horn, & Karat, 1999). Shape writing requires 
one hand (if the device is rested on a surface) or both hands (with one holding the device). 
The size of ShapeWriter is scalable. How human performance of shape writing precisely 
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changes with the keyboard size requires future research. Previous research on path steering 
performance shows that the best motor control performance is achieved at a scale in which 
finger joints and hand wrist carry out the motion (Accot & Zhai, 2001). 

Fun and aesthetics 

Ultimately, users’ subjective experience of using a text entry method dictates the market 
demand. Not all the factors that make an interface fun and enjoyable are well understood 
today. All of the previous four dimensions (high performance, ease of learning, low effort, 
and mobile form factor) can contribute to a fun shape writing experience. In addition, simple 
and clean visual design, effective feedback, and fluid stroking actions may also contribute to a 
fun experience. More explicitly, we have also developed a practice game embedded in 
ShapeWriter so the user can master shape writing skills in a playful mode (Figure 11). In this 
game, balloons carrying different words float upward and are popped when the user enters the 
correct sokgraph for each word.  The words that appear in the game are driven by an 
expanding rehearsal interval (Landauer & Bjork, 1978; Zhai & Kristensson, 2003) so the 
practice impact is optimized. There is also an auto-play mode in the game in which 
ShapeWriter draws the sokgraphs automatically so the user can learn by watching. The 
benefit of “observational practice” has been shown in human motor control research (Kohl & 
Shea, 1992) . 

 

 
 

Figure 11. An embedded ShapeWriter game based on memory research 
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Since the many dimensions of an efficient text entry interface sometimes conflict with 

one another there will be probably never exist a single text entry method that addresses all 
needs in all situations for all users. Many of the recently developed methods, such as 
EdgeWrite (Wobbrock, Myers, & Kembel, 2003), offer their unique strengths hence may find 
particular applications. Shape writing is an evolving novel technology and we are conducting 
more empirical and analytical studies which may give us more insights for further 
improvement. Clearly, we have made various design trade-offs in order to address as much 
and as many important dimensions of goodness as possible.  In its current form ShapeWriter 
is already practical enough for writing daily email and parts of this article (when a tablet is 
available), but much more can be done to further improve it. Obviously shape writing also 
needs to be adapted to other languages than English. This is relatively easy for alphabetical 
languages. For non-alphabetical languages such as Chinese, many creative steps are needed 
since Chinese characters1 are not easily parsed into regular elements (See Chapter 6 of 
Coulmas 1989 for an introduction of Chinese writing).  An indirect approach is to use pinyin, 
the Roman-letter-based phonetic equivalent of Chinese characters, which is how Chinese is 
entered into computers today by most users in mainland China. Unfortunately there are 
numerous homophonic characters corresponding to each phonetic spelling. This is solved 
typically by displaying multiple choices for the user to choose, which demands additional 
visual attention and slows down the input speed due to the perceptual and cognitive burden on 
the user (Wang, Zhai, & Su, 2001). 

Finally, some questions as food for thought.  First, what can be the highest possible 
performance in articulating words through shape writing as we have developed it or through 
some variant form of it in the future? There is no straightforward theoretical estimate on this 
due to the lack of an empirical law on stroke gesturing that can be used in the way Fitts’ law is 
used to estimate tapping on graphical keyboard (Lewis, 1992; Soukoreff & MacKenzie, 1995; 
Zhai, Sue, & Accot, 2002). As a  reference point 150 to 160 words per minute is the 
recommended rate for easily understandable speech, such as recording books on tape 
(Williams, 1998). Speech is also a form of muscle articulation although not by hand. Can 
shape writing be improved to the point that it is as fast as this level of speech? Another 
interesting and difficult question is how a text entry technology or some of its components 
may or may not be adopted. In economics there has been a lively debate between David 
(1985; 1998-2000) vs. Liebowitz and Margolis (1990; 1996) regarding “Qwertynomics” – the 
path dependence theory that a suboptimal rather than the optimal technology can be locked 
into the society. The various writing systems of the world, as a very special type of 
technology in different civilizations, in fact also underwent complicated creation (often by 
borrowing from other cultures), evolution or extinction processes that are shaped by 
economical (efficiency), compatibility with previous practice,  and socio-political (such as 
nationalism) factors (Coulmas, 1989). Many interesting and important lessons can be learned 
there in order to influence the future of digital mobile society with creative technology 
solutions. 
 

                                                 
1 Unlike Roman characters, Chinese characters, or zi, are at a higher level than alphabet but lower than words. 

The closest counterpart to a Chinese zi in English is a syllable although most Chinese characters have more 

defined semantics than English syllables. 
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Further Readings 

Zhai and Kristensson (2003) presents the initial motivation, implementation, and 
experimentation of shape writing on graphical keyboards. Kristensson and Zhai (2004) 
describes the rationale and implementation of a large scale shape writing system. Zhai, 
Kristensson and Smith (2005) gives an overview of both shape writing and ATOMIK, the 
preceding project that led to the creation and development of shape writing. 
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