
RJ10393 (A0611-006) November 1, 2006
Computer Science

IBM Research Report

Introduction to Shape Writing

Shumin Zhai
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Per Ola Kristensson
Linköpings Universitet

Linköping, Sweden

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Introduction to Shape Writing

Shumin Zhai IBM Almaden Research Center, San Jose, CA, USA

Per Ola Kristensson Linköpings universitet, Linköping, Sweden

Introduction

This article introduces “shape writing” – a novel form of writing that uses pen strokes on
graphical keyboards to write text. We first describe the basic concept of shape writing,
followed by the human-performance considerations and rationales that guided its iterative
design and development process in the past few years (Zhai & Kristensson, 2003; Kristensson
& Zhai, 2004). We conclude the article by analyzing shape writing in relation to the multiple
dimensions of goodness of text entry.

The Basic Concept of Shape Writing

Shape writing, also known as shorthand aided rapid keyboarding (SHARK), is a
writing method designed to enable users to enter text efficiently at a faster rate than previously
possible on mobile phones, handheld computers and other mobile devices. It can also be used
with external tablets connected to desktop computers for those who need an effective
alternative to two handed touch typing on a physical keyboard. Unlike the hand writing
systems which rely on pre-defined symbols based on either widely practiced scripts (i.e.
natural handwriting) or novel symbols (such as Graffiti), shape writing is defined on and used
with a graphical keyboard.

The basic concept of shape writing is rather simple. A shape writing system (our

current system is named ShapeWriter) displays a graphical keyboard to the user. Instead of
tapping each individual letter key explicitly and precisely, the user slides the pen over all the
letter keys in a word sequentially on the graphical keyboard. Figure 1 shows the ideal trace
(left) and one actual and acceptable input stroke (right) for the word “the”. The user’s pen
trace can deviate and sometimes not even cross some of the intended keys as long as it is
closer to the intended word’s ideal trace than any other word traces in a lexicon.

The ideal trace is called a “sokgraph” (shorthand on keyboard as a graph) (Kristensson

& Zhai, 2004). In other words, a sokgraph is the continuous trace that is formed by serially
connecting the center points of the keys on a graphical keyboard for a string of letters
(normally a word). For shape writing, a graphical keyboard is simply an array of characters
arranged either in the traditional QWERTY layout or in an optimized layout. To shape write a
word, the user draws a pen stroke on the keyboard that approximates the sokgraph of the
word. Once the pen stroke terminates (by lifting the pen for example), the shape writing

Shape Writing 2

system in principle compares the pen stroke on the keyboard with all sokgraphs generated
from a lexicon and returns the closest match. Figure 2 shows ShapeWriter in action ─ a user is
shape writing the word “writing” on an optimized keyboard layout. Shape writing is
inherently error tolerant, allowing noises such as hand tremors or faster and more “sloppy”
writing.

Figure 1. The word “the” as an ideal sokgraph (left) and a user’s actual pen input
(right). The dot indicates the start of the pen-stroke.

Figure 2. ShapeWriter on a Tablet PC

Shape Writing 3

Information and Constraints

Text entry can be viewed as a communication system through which information is
transmitted from the user to the computer. Such a system can be represented by Shannon’s
noisy channel model. With shape writing the writer encodes his message (a word) with
geometric shapes defined on a letter map (the graphical keyboard). Such a process is “noisy”
both because one often has to cross irrelevant letters in order to reach the intended letter and
because the writer can be sloppy and miss some relevant letters. In other words the stroke
drawn is often imperfect. The shape writing recognizer decodes the message from the code +
noise and outputs the message (the word).

The reason a shape writing system can decode the noisy “shape code” fundamentally

lies in the regularities and redundancies in language (and word compositions in particular). In
fact in his seminal paper that laid the mathematical foundation of modern communication
systems (the information theory) Shannon (1948) introduced his work by first examining the
constraints and redundancy in the English language. The statistical regularities in natural
language form the basis for much of today’s speech recognition and other language processing
technologies. The most basic way of capturing the lexical level of language regularities is the
notion of a lexicon that consists of all permissible letter combinations including words, parts
of words, names and acronyms. The use of a lexicon is a critical aspect of shape writing.
Using lexical constraints a shape writing system allows many irrelevant letters to be crossed
and still have the intended word returned. Taking Figure 2 as an example, the letters intended
to be crossed were “w-r-i-t-i-n-g”, but the actual pen stroke crosses “w-r-t-o-s-i-s-e-t-e-s-i-n-
g.”. ShapeWriter can still return the word “writing” because the lexical constraints eliminate
all illegitimate letter strings. Consequently, ShapeWriter takes advantage of the regularities of
word formation and recognizes the user's pen stroke on the keyboard with flexibility and error
tolerance. An intended word can still be recognized although irrelevant letters between
intended letters are crossed or even if some of the letters in a word are missed by the pen
stroke.

To give a sense of the amount of lexical constraint existing in a natural language, such
as English, consider only words with the length of 5 letters. The letter permutations of a 5
letter string would be in the range of tens of millions. This number is even greater if we can
consider permutations of letter strings with different lengths. In practical writing an
individual’s active vocabulary is several orders of magnitude smaller. For instance, in the
Enron email corpus (Klimt & Yang, 2004) the most frequent email sender wrote 8,926 emails
in two years, totalling around 400,000 words. But the number of unique words in all of his
emails written is only 10,858. Hence the vast majority of letter combinations can be
considered as shape writing error tolerance “white space” (illegitimate letter combinations not
in the lexicon).

A lexicon is only a special and limited form of language modeling for shape writing.
Other types of either lower or higher order regularities, such as word level N-grams, can
potentially also help to further relax the precision requirement of shape writing. Also, the
smaller or more specific the lexicon is, the more flexibility and error tolerance shape writing
can provide. This is a factor that can be taken advantage of in certain domains, for example in
medical applications.

Shape Writing 4

Shape Writing Recognition

Due to space limitations and the introductory nature of this article, we refer the reader to
(Kristensson & Zhai, 2004) for a detailed presentation of shape writing recognition in
particular and the vast literature such as (Duda, Hart, & Stork, 2001) and (Theodoridis &
Koutroumbas, 1999) for pattern recognition technologies in general. Here we only highlight
some specific characteristics of shape writing recognition derived from the idiosyncrasies of
the shape writing paradigm.

Template-based recognition

Unlike the majority of the popular contemporary handwriting recognition methods that rely on
data-training-based statistical pattern recognition (Tappert, Suen & Wakahara, 1990) we chose
a template-based approach where the user’s pen-stroke is compared to each word’s sokgraph
template. The template-based approach allows new words to be added to the lexicon easily.
For instance, by tapping a new word on the graphical keyboard the system can instantly build
the template of the added word. In contrast a training based statistical pattern recognition
method may require the user to provide several sample pen-strokes of the word. A template-
based approach is also more easily implemented for shape writing whose “orthography” – the
canonical format of a script (Coulmas, 1989) – is clearly defined by the letter map. For
natural handwriting, there is often a great deal of variation for writing each letter all within the
acceptable bound.

Multi-channel recognition

Shape writing also poses some unique challenges to its recognition. One of them is the large
number of sokgraphs to be recognized. The two primary features we decided to include in our
recognition system to address the challenge are total shape similarity between the user’s pen
trace and the ideal sokgraph, and the user’s pen trace location on the graphical keyboard in
relation to the location of the letter keys of the intended word. These shape and location
features are treated as parallel recognition channels that are integrated using a probabilistic
approach. To improve recognition accuracy several weighting schemes are used within each
channel and between the channels.

Out of Lexicon Input, Ambiguity and Error Handling

Handling words outside the lexicon

What happens if the user wants to shape write a word that is not in the lexicon? No matter
how large the lexicon is or how closely the lexicon matches the individual user’s writing
vocabulary, occasionally the user may still need to write a word, such as a rare name, an
acronym, or a foreign word that is not pre-stored in the lexicon. Fortunately, shape writing is
used atop of a graphical keyboard. One can use the conventional graphical keyboard input
method and tap one letter at a time to enter a new word. ShapeWriter will mark the tapped
unknown word with, for example, a box (Figure 3) to show the user that this is not a word in

Shape Writing 5

the lexicon. The user can choose to add the word to the lexicon so it can be shape written the
next time.

(a) (b)

Figure 3. A tapped word not in the lexicon is marked with a box (a); and the user can add
the new word to the lexicon by clicking on it (b). Shown in pictures is the ATOMIK layout
(Zhai, Hunter, & Smith, 2002) available in ShapeWriter

Ambiguity

Due to the nature of mapping words onto a graphical keyboard, it is inevitable that the
sokgraphs of some pairs of words are almost or completely identical. Our study (Kristensson
& Zhai, 2004) shows that in a lexicon containing 20,000 words, 1117 pairs of words (5.6%)
are identical in normalized shapes (independent of scale and location) on the ATOMIK
keyboard layout (See Figure 3). For example “root” vs. “heel”, and “ben” vs. “buy”. Many of
these conflicts are not natural or complete English words. For example, the word “as”
conflicts with “lo”, “oz”, “by”, “ny” and ”ft”. If we consider only confusion pairs with the
same starting and ending key positions, the number reduces to 493 (2.5%). Examples of
confusion pairs with identical start and ending positions include “refuge” vs “refugee” “webb”
vs “web”, and “traveled” vs. “travelled”. 284 of these confusions pairs are Roman numerals,
such as “lxvi” vs. “lxxxvi”. Excluding Roman numerals there are 209 pairs of confusion in the
20000 word lexicon (1.0%). The number of complete ambiguous word pairs on a QWERTY
layout is only slightly higher (Kristensson & Zhai, 2004). Techniques for resolving ambiguity
are discussed in the next section.

Error Recovery

As in all human skills, a text entry method operates on a speed accuracy trade-off curve
(Figure 4). As one shape writes faster (to the left on Figure 4), she is increasingly more likely
to draw a shape that is closer to an unintended word than the intended word, resulting in an
entry error.

Shape Writing 6

Figure 4. Hypothetical speed accuracy trade-off curves of text entry

Error recovery is a critical aspect of any text entry system design. It presents a

problem that is very difficult to solve in speech recognition since it requires mode switching
between dictation and command (for editing), both of which use voice. Errors occur even in
the most common text entry method, two-handed touch typing on a keyboard, but there error
correction is quite easy – hit the backspace key and re-type. One can easily visualize the
intensity of the use of the backspace key with a keyboard monitoring program (e.g. RSI
Guard) which displays the hit plots on each individual key. Computer users who are not
rigorously trained touch typists can see that backspace is one of the most frequently hit keys.

In shape writing, the basic method of dealing with errors, due either to the small
number of confusion pairs or to the deviation of the user’s stroke from the intended sokgraph
to an unintended one, is using the alternative list menu. If the user clicks on a displayed word,
a correction menu is shown, in which alternative candidates are listed according to their
probability of being the intended target word (Figure 5). From a certain (simplified) motor
action standpoint, two pen strokes (one for shape writing one occasionally for menu selection)
are still more efficient than writing a word with longhand, which on average consists of
writing five letters with more than five strokes. With ShapeWriter one can also erase a word
in the editor by, for example, a stroke crossing the word (Figure 6) and re-write.

 Accuracy (%)

0 100

high performance
method

low performance
method

Speed

Shape Writing 7

Figure 5. The user can correct an unintended word with ShapeWriter by means of the
alternative list

Figure 6. The user can delete an unwanted word with a stroke crossing the word. One
can also cross out multiple words with one stroke.

Human Sensitivity to Shape as an Encoding Modality and the
Progression from Tracing to Direct Shape Writing

As mentioned earlier in relation to the communication model, shape writing uses geometric
shapes as an encoding mechanism for words (See Figure 9 for a few examples). Humans are
very good at “geometric encoding”. A mundane example is using shape as a mnemonic aid to
memorize pass codes. For example, it is much more difficult to remember the number
sequence 1478963 than to remember the keys forming a U shape on the telephone keypad as a
password.

Shape Writing 8

Quantitatively, one experiment on people’s ability to learn, memorize and reproduce
sokgraphs showed that people could on average learn 10 to 15 sokgraphs in each hour of
practice and correctly reproduce them later without seeing the keyboard (Zhai & Kristensson,
2003).

In practice, learning shape writing is expected to be more gradual and implicit, with
the graphical keyboard serving as a map that guides pen movement. One does not have to
memorize any sokgraph to begin shape writing. Instead, one traces the intended word from
letter to letter by visual guidance from the graphical keyboard. The disadvantage of visual
guidance based input is that it is relatively slow since entering each letter requires closing the
perception-action loop. The advantage, on the other hand, is that it makes shape writing easier
to begin without needing to memorize a system of symbols as in other shorthand writing
systems. Ease of use, or more appropriately the low requirement of learning, made graphical
user interfaces (GUI) the standard way of interacting with computers today, although it is in
fact slower than the earlier command based interaction method at expert skill levels.

The transition from visual tracing to direct shape writing is modeless. After a few
times of tracing a word, the user begins to remember parts or the entire shape of the sokgraph
of the word. In the same laboratory experiment mentioned earlier (Zhai & Kristensson, 2003),
in which the interval of practice of each word was gradually increased, the study participants
could completely remember the shape of a sokgraph after 7 to 15 trials of practice. Once parts
or the entire shape is remembered, the user’s performance shifts towards the expert end of
direct shape writing (Figure 7). As a result, the writing speed of the user increases due to two
related factors: chunking (Miller, 1956; Buxton, 1986) and open-loop behaviour: chunking in
the sense the user does not have to plan, search and execute the pen strokes from letter to
letter on the graphical keyboard as separate units. Instead, the user plans and executes several
letters or the entire word as one shape. The action is open-loop in the sense that much of the
behaviour is driven by memory recall rather than visual guidance, as in all skilled and rapid
performance. In our “stress tests”, if a user practices and repeats a sentence until all the shapes
of the words in the sentence are remembered, the shape writing speed can reach beyond 100
words per minute.

Figure 7. With practice, the user’s behaviour shifts from tracing to direct shape
writing.

Shape Writing 9

Obviously, the longer the word, the more practice it will take to remember the entire

shape of its sokgraph. Before that, the user is somewhere in between the two ends of shape
writing expertise: complete visual tracing vs. complete direct shape writing (Figure 7).
Common segments or syllables of a long word may be chunked and these parts can be directly
gestured. For less common segments, the user may rely more on visual guidance of the
graphical keyboard. Forgetting a sokgraph is also possible, which means the user has to fall
back to the novice behaviour of visual tracing, which gives the user an opportunity to rehearse
the shape of the sokgraph again. See (Fuchs, 1962) for an early observation of the progression
and regression of human motor skills in general.

What bridges the novice end to the expert end of shape writing performance is that
their actual movement actions are consistent. The same (consistent) movement pattern is used
both in novice tracing behaviour and in expert recall-based direct shape writing. Psychology
research has shown that a key to developing automaticity or less attention demanding
performance in human behaviour (Schneider & Shiffrin, 1977) is consistency. The concept of
facilitating novice to expert transition can also be related to Kurtenbach and Buxton’s
inspiring work and their compelling articulation of marking menus (Kurtenbach, Sellen, &
Buxton, 1993; Kurtenbach & Buxton, 1994). They observed that the disconnection between
the novice GUI menu operations and the expert hot-key-based operation prevents a natural
transition from novice to expert. As an alternative solution they designed marking menus
which are pie menus with a delayed pop-up of the menu items. Users make angular pen-marks
to select the menu items with (in case of a novice) or without (in case of an expert) the
guidance of the pie menu display.

There is an interesting difference between marking menus and shape writing
(particularly in its later design) in how the novice to expert transition is designed. Via the
delayed pop-up display marking menus enforce a binary transition from novice to expert
behaviour. A novice pauses and waits for the delayed menu display to pop-up whereas an
expert would not wait for the pop-up but produces the angular pen-marks from memory.
Shape writing takes a more subtle approach – the transition is more gradual and controlled by
the user rather than by the interface. With shape writing, the keyboard is always displayed.
The user can choose to look at the keyboard a lot, a little, or not at all. It is conceivable that
the marking menu approach “pushes” the user to jump to the expert mode sooner while the
shape writing approach is less forceful, less explicit, but less rapid in helping the user to
progress towards an open-loop mode. We feel the more subtle approach is necessary for shape
writing due its large vocabulary size. Understanding and devising effective methods to aid the
novice to expert transition is an important but under-investigated HCI research topic.

Efficiency and Layout Matters

Shape writing’s high efficiency comes from several related factors. First and foremost, it is a
form of speed writing in that it enables writing one word with one stroke. “Natural”
handwriting is longhand, articulating one letter at a time. The weighted average length of
English words is 4.7 letters (according our analysis based on the American National Corpus,
http://americannationalcorpus.org/), with each letter’s articulation complexity on par with a
sokgraph of a common (often short) word. Figure 8 shows the sokgraphs of the words “shape
writing is fun” on the ATOMIK and QWERTY layout.

Shape Writing 10

 shape writing is fun

Figure 8. Some sokgraph examples on ATOMIK and on QWERTY

The second efficiency factor is due to the “intelligence” built into shape writing

recognition. Since ShapeWriter takes advantage of the constraints of the total shape of
sokgraphs it allows the user to deviate from the precise trajectory. The user can be as “sloppy”
as the white space allows, enabling the user to trade a certain amount of accuracy for speed.

The third efficiency factor comes from layout optimization. Shape writing is in
principle independent of layout, and indeed can use any number of layouts. The subjectively
familiar layout is the QWERTY layout invented in the 1860’s for minimizing mechanical
jamming (Yamada, 1980). However, touch typing uses motor memory instead of visual spatial
memory so the learning advantage of QWERTY as a map for shape writing is not as great as
one might think. The disadvantage of using QWERTY for shape writing is the loss of potential
efficiency and greater difficulty in long term learning. We have experimented with an class of
optimized layout called ATOMIK (alphabetically tuned and optimized mobile interface
keyboard (Zhai & Smith, 2001; Zhai, Hunter, & Smith, 2002)). We started with the classic
ATOMIK optimized for tapping (Figure 9) as a more efficient shape writing map. Sokgraphs
defined on ATOMIK are both more efficient and easier to remember because the sokgraphs are
more diverse than those defined on QWERTY which tend to zig-zag in a similar fashion (See
Figure 8) for many words due to the fact that common consecutive letters tend to be arranged
on the opposite sides of the QWERTY layout (See Yamada 1980 for an thorough review of
QWERTY design). Two mechanisms in the ATOMIK layout help a novice user find the letters.
First, due to the optimization effect the next letter needed is more likely to be in the vicinity of
the current pen position. Second, letters from A to Z tend to run from the upper left to lower
right corner of the ATOMIK layout, giving the novice user another clue for finding a particular
letter (Figure 9 and 10) (Smith & Zhai, 2001) .

Shape Writing 11

Figure 9. Classic ATOMIK layout with ABC to Z order tuning illustration

Figure 10. The ATOMIK layout revised for shape writing with ABC to Z order tuning
illustration.

There are a few aspects of ATOMIK that were improved specifically for shape writing,
resulting in a revised ATOMIK layout (Figure 10). As shown in Figure 9 and 10, D and K keys
are swapped so that the common suffix ED is more distant from the common suffix ING.
Hexagon keys are changed to the simpler and cleaner squared keys. In the classic ATOMIK
layout (Figure 9) keys were hexagonal to maximize tapping efficiency, which is no longer
needed for shape writing. Similarly, the space key is moved off the center since spaces are
automatically filled after every sokgraph is recognized. The last row is slightly shifted to the
left to make the layout more compact and some sokgraphs less stretched.

Keyboard optimization research (Getschow, Rosen, & Goodenough-Trepagnier, 1986;

Lewis, Kennedy, & LaLomia, 1992; MacKenzie & Zhang, 1999; Zhai, Hunter, & Smith,
2000; Smith & Zhai, 2001) has focused on the core Roman letter set. Auxiliary keys in fact
also matter to the overall efficiency and usability of the keyboard. The main rationale for the
auxiliary keys in the revised ATOMIK in Figure 10 is as follows: $ is close to the number

Shape Writing 12

keys, since it is usually followed by digits. % is below the number keys, since it is usually
placed after digits. Similar pairs such as “{ }” and “[]” are aligned and grouped together.
Similar keys \ | / are aligned and grouped. Arrow keys are set according to convention
(location and shape). The Caps, SHIFT, Ctrl, Alt, and Fn keys cause a state change as soon as
a stylus lands on them, even if the user is in the middle of drawing a stroke and lands on one
accidentally. To minimize unintentional activation of these keys, they are made slightly
smaller with a gap between them and the adjacent keys. The smaller Fn and Ctrl keys also
make the user more careful and deliberate to trigger “command strokes” ─ sokgraphs starting
from a command key so they will be interpreted as a command. For example, Ctrl-C-O-P-Y
issues a Copy command rather than entering the word “copy”. The Fn key is placed as close
to the numeric keys as possible, so that function shortcuts such as F1 and F3 are more
separated. Ctrl is placed more to the center (swapped with Alt) for a similar reason.

The Multiple Dimensions and Guidelines of Efficient Text Entry

Developing effective text entry methods is a challenging task, partly because the goodness of
the solution is multidimensional. In our view, there are at least the following dimensions that
can be desirable in a text entry method: High performance (high product of speed and
accuracy); Ease of entry / ease of learning; Low effort; Mobility; and Fun. In this section we
discuss shape writing along these dimensions of goodness as design guidelines.

To achieve perfection in all of these dimensions in one method is an impossible task,
since some of them can be contradictory in design choices. The relative importance of each of
these dimensions depends on application requirements and individual preference. Our primary
goal of developing ShapeWriter is to enable mobile devices to take on common personal
computing tasks efficiently (e.g. email, text messaging, note taking, etc), which dictated the
trade offs we made, described as follows.

High performance

High performance should not be measured by high speed only, but rather by a high speed
accuracy trade off curve (Figure 4). High performance is one of our primary goals in
developing shape writing. This was achieved due to the shorthand nature, the built-in
“intelligence” and error tolerance, and the layout optimization. The relative ease of error
correction should also contribute to average performance.

Ease of entry and ease of learning

This dimension is typically at odds with the first. For example character-based longhand
writing is easy to begin for any literate user, but it is not high performance. On the other hand,
traditional shorthand writing (such as Pitman or Gregg’s system) can give very high speed,
but they require the user to memorize a large number of symbols to begin, making its learning
requirement impractical for ordinary computing and communication use. One of the core
ideas in shape writing is to bridge ease of entry with high performance. One can start with no
memory at all (tracing) and gradually move to (partially and increasingly) memory recall-
based high performance gesturing. Interestingly, the standard desktop text entry method, two-

Shape Writing 13

handed touch typing, can afford quite high performance but its learning requirement would be
hardly acceptable if it were a new computer user interface that had not been widely adopted.
Learning shape writing is much easier than learning touch typing.

Effortless

A good text entry solution should require as little effort as necessary. Effort in fact can be
further divided along multiple sub-dimensions of human performance: motor, perceptual, and
cognitive. A method can optimize for one of the sub-dimensions at the cost of another. For
example, by dynamically positioning letter keys according to context as in Dasher (Ward,
Blackwell, & MacKay, 2000), the amount of stylus moment for text entry can be minimized.
The cost of dynamically arranging letters, however, is the greater perceptual effort needed to
constantly monitoring the changing letters. Such a trade-off of motor effort with perceptual
effort could well be justified for some applications, for example, interfaces for users with
certain types of motor impairments. In contrast, methods like Unistrokes (Goldberg &
Richardson, 1993) and Graffiti can be potentially eyes-free but they require much more motor
effort since they are fundamentally longhand methods (character level writing). Shape writing
balances the motor and perceptual effort with a stationary layout augmented with fluid pen
strokes. In our early implementation of shape writing, named SHARK at the time (Zhai &
Kristensson, 2003), an important goal was making shape writing scale and location
independent so an expert user did not have to look at the keyboard at all if the sokgraph is
remembered completely. This was achieved by limiting shape writing only to a small set of
common words. For all other words, the user was expected to tap one letter at a time. The
Zipf’s law effect was expected to skew the impact of the small number of common words and
therefore speed up the average writing time. A cost to this hybrid approach, we later realized,
could be cognitive: the user has to decide between shape writing the whole word or tapping
individual letters. We hence decided to expand shape writing to all words needed (Kristensson
& Zhai, 2004), although it means that a certain degree of visual monitoring of the strokes on
the keyboard is needed since scale and location independence cannot be guaranteed for such a
large number of words. This perceptual cost is much lower than that of conventional stylus
tapping requiring high precision taps within each individual key. Overall, the design of
ShapeWriter minimizes the user’s motor effort without demanding an unacceptable level of
perceptual and cognitive effort.

Mobility

Today’s research interest in developing new text entry methods is largely driven by the need
to carry out computing and communication functions on small, handheld mobile devices. A
small and flexible form factor, with a small footprint and an near zero start up time (including
the time of setting-up the device in case of an external attachment solution) is desirable. An
extreme case is one handed (or no hand at all) input while walking or driving (which is
probably unsafe in any case). Speech offers a unique advantage in this regard and is making
inroads into these extreme mobile conditions such as command systems in cars, but suffers
other problems such as error correction difficulty for large vocabularies and cognitive load if
used as a dictation method (Karat, Halverson, Horn, & Karat, 1999). Shape writing requires
one hand (if the device is rested on a surface) or both hands (with one holding the device).
The size of ShapeWriter is scalable. How human performance of shape writing precisely

Shape Writing 14

changes with the keyboard size requires future research. Previous research on path steering
performance shows that the best motor control performance is achieved at a scale in which
finger joints and hand wrist carry out the motion (Accot & Zhai, 2001).

Fun and aesthetics

Ultimately, users’ subjective experience of using a text entry method dictates the market
demand. Not all the factors that make an interface fun and enjoyable are well understood
today. All of the previous four dimensions (high performance, ease of learning, low effort,
and mobile form factor) can contribute to a fun shape writing experience. In addition, simple
and clean visual design, effective feedback, and fluid stroking actions may also contribute to a
fun experience. More explicitly, we have also developed a practice game embedded in
ShapeWriter so the user can master shape writing skills in a playful mode (Figure 11). In this
game, balloons carrying different words float upward and are popped when the user enters the
correct sokgraph for each word. The words that appear in the game are driven by an
expanding rehearsal interval (Landauer & Bjork, 1978; Zhai & Kristensson, 2003) so the
practice impact is optimized. There is also an auto-play mode in the game in which
ShapeWriter draws the sokgraphs automatically so the user can learn by watching. The
benefit of “observational practice” has been shown in human motor control research (Kohl &
Shea, 1992) .

Figure 11. An embedded ShapeWriter game based on memory research

Shape Writing 15

Since the many dimensions of an efficient text entry interface sometimes conflict with

one another there will be probably never exist a single text entry method that addresses all
needs in all situations for all users. Many of the recently developed methods, such as
EdgeWrite (Wobbrock, Myers, & Kembel, 2003), offer their unique strengths hence may find
particular applications. Shape writing is an evolving novel technology and we are conducting
more empirical and analytical studies which may give us more insights for further
improvement. Clearly, we have made various design trade-offs in order to address as much
and as many important dimensions of goodness as possible. In its current form ShapeWriter
is already practical enough for writing daily email and parts of this article (when a tablet is
available), but much more can be done to further improve it. Obviously shape writing also
needs to be adapted to other languages than English. This is relatively easy for alphabetical
languages. For non-alphabetical languages such as Chinese, many creative steps are needed
since Chinese characters1 are not easily parsed into regular elements (See Chapter 6 of
Coulmas 1989 for an introduction of Chinese writing). An indirect approach is to use pinyin,
the Roman-letter-based phonetic equivalent of Chinese characters, which is how Chinese is
entered into computers today by most users in mainland China. Unfortunately there are
numerous homophonic characters corresponding to each phonetic spelling. This is solved
typically by displaying multiple choices for the user to choose, which demands additional
visual attention and slows down the input speed due to the perceptual and cognitive burden on
the user (Wang, Zhai, & Su, 2001).

Finally, some questions as food for thought. First, what can be the highest possible
performance in articulating words through shape writing as we have developed it or through
some variant form of it in the future? There is no straightforward theoretical estimate on this
due to the lack of an empirical law on stroke gesturing that can be used in the way Fitts’ law is
used to estimate tapping on graphical keyboard (Lewis, 1992; Soukoreff & MacKenzie, 1995;
Zhai, Sue, & Accot, 2002). As a reference point 150 to 160 words per minute is the
recommended rate for easily understandable speech, such as recording books on tape
(Williams, 1998). Speech is also a form of muscle articulation although not by hand. Can
shape writing be improved to the point that it is as fast as this level of speech? Another
interesting and difficult question is how a text entry technology or some of its components
may or may not be adopted. In economics there has been a lively debate between David
(1985; 1998-2000) vs. Liebowitz and Margolis (1990; 1996) regarding “Qwertynomics” – the
path dependence theory that a suboptimal rather than the optimal technology can be locked
into the society. The various writing systems of the world, as a very special type of
technology in different civilizations, in fact also underwent complicated creation (often by
borrowing from other cultures), evolution or extinction processes that are shaped by
economical (efficiency), compatibility with previous practice, and socio-political (such as
nationalism) factors (Coulmas, 1989). Many interesting and important lessons can be learned
there in order to influence the future of digital mobile society with creative technology
solutions.

1 Unlike Roman characters, Chinese characters, or zi, are at a higher level than alphabet but lower than words.

The closest counterpart to a Chinese zi in English is a syllable although most Chinese characters have more

defined semantics than English syllables.

Shape Writing 16

Further Readings

Zhai and Kristensson (2003) presents the initial motivation, implementation, and
experimentation of shape writing on graphical keyboards. Kristensson and Zhai (2004)
describes the rationale and implementation of a large scale shape writing system. Zhai,
Kristensson and Smith (2005) gives an overview of both shape writing and ATOMIK, the
preceding project that led to the creation and development of shape writing.

References
Accot, J., & Zhai, S. (2001). Scale effects in steering law tasks. Proc. CHI 2001: ACM Conference on

Human Factors in Computing Systems, CHI Letters 3(1), 1-8.
Buxton, W. (1986). Chunking and phrasing and the design of human-computer dislogues. Proc. IFIP

World Computer Congress, 475-480.
Coulmas, F. (1989). The writing systems of the world. Oxford: Blackwell.
David, P. A. (1985). Clio and the Economics of QWERTY. American Economic Review, 75, 332-337.
David, P. A. (1998-2000). Path Dependence, its critics, and the quest for 'historical economics' (No.

JEL-codes: A1 B0 C4 D9 N0 O3). Stanford: Stanford University.
Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification. New York: John Wiley &

Sons.
Fuchs, A. H. (1962). The progression-regression hypothesis in perceptual-motor skill learning. Journal

of Experimental Psychology, 29, 39-53.
Getschow, C. O., Rosen, M. J., & Goodenough-Trepagnier, C. (1986). A systematic approach to

design a minimum distance alphabetical keyboard. Proc. RESNA (Rehabilitation Engineering
Society of North America) 9th Annual Conference, 396-398.

Goldberg, D., & Richardson, C. (1993). Touching-typing with a stylus. Proc. INTERCHI, ACM
Conference on Human Factors in Computing Systems, 80-87.

Karat, C.-M., Halverson, C., Horn, D., & Karat, J. (1999). Patterns of entry and correction in large
vocabulary continuous speech recognition systems. Proc. CHI'99: ACM Conference on
Human Factors in Computing Systems, 568-574.

Klimt, B., & Yang, Y. (2004). Introducing the enron corpus. Proc. Conference on Email and Anti-
Spam (CEAS).

Kohl, R. M., & Shea, C. H. (1992). Pew(1966) revisited: Acquisition of hierarchical control as a
function of observational practice. Journal of Motor Behavior, 24(3), 247-260.

Kristensson, P.-O., & Zhai, S. (2004). SHARK2: A Large Vocabulary Shorthand Writing System for
Pen-based Computers. Proc. ACM Symposium on User Interface Software and Technology, 43
- 52.

Kurtenbach, G., & Buxton, W. (1994). User Learning and Performance with Marking Menus. Proc.
CHI: ACM Conference on Human Factors in Computing Systems, 258-264.

Kurtenbach, G., Sellen, A., & Buxton, W. (1993). An empirical evaluation of some articulatory and
cognitive aspects of "marking menus". Human Computer Interaction, 8(1), 1-23.

Landauer, T. K., & Bjork, R. A. (1978). Optimum rehearsal patterns and name learning. In M. M.
Gruneberg, P. E. Morris & R. N. Sykes (Eds.), Practical Aspects of Memory (pp. 625-632).
London: Academic Press.

Lewis, J. R. (1992). Typing-key layouts for single-finger or stylus input: initial user preference and
performance (Technical Report No. 54729). Boca Raton, FL: International Business
Machines Corporation.

Lewis, J. R., Kennedy, P. J., & LaLomia, M. J. (1992). Improved typing-key layouts for single-finger
or stylus input (Technical Report No. TR 54.692): IBM Technical Report TR 54.692.

Liebowitz, S., & Margolis, S. E. (1996). Typing Errors. Reason Magazine
http://reason.com/9606/Fe.QWERTY.shtml.

Shape Writing 17

Liebowitz, S. J., & Margolis, S. E. (1990). The Fable of the Keys. Journal of Law and Economics,
XXXIII.

MacKenzie, I. S., & Zhang, S. X. (1999). The design and evaluation of a high-performance soft
keyboard. Proc. CHI'99: ACM Conference on Human Factors in Computing Systems, 25-31.

Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity
for Processing Information. The Psychological Review, 63, 81-97.

Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I.
Detection, search, and attention. Psychological Review, 84(1), 1-66.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal,
27, 379-423, 623-656.

Smith, B. A., & Zhai, S. (2001). Optimised Virtual Keyboards with and without Alphabetical Ordering
- A Novice User Study. Proc. INTERACT'2001 - IFIP International Conference on Human-
Computer Interaction, 92-99.

Soukoreff, W., & MacKenzie, I. S. (1995). Theoretical upper and lower bounds on typing speeds using
a stylus and keyboard,. Behaviour & Information Technology, 14, 379-379.

Tappert, C. C., Suen, C. Y., & Wakahara, T. (1990). The State of the Art in On-Line Handwriting
Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(8).

Theodoridis, K., & Koutroumbas, K. (1999). Pattern Recognition. San Diego: Academic Press.
Wang, J., Zhai, S., & Su, H. (2001). Chinese Input with Keyboard and Eye Tracking - An Anatomical

Study. Proc. of CHI 2001 - ACM Conference on Human Factors in Computing Systems, 349-
356.

Ward, D., Blackwell, A., & MacKay, D. (2000). Dasher - A data entry interface using continuous
gesture and language models. Proc. The 13th ACM Symposium on User Interface Software
and Technology (UIST), 129-136.

Williams, J. R. (1998). Guidelines for the use of multimedia in instruction, 1447-1451.
Wobbrock, J. O., Myers, B. A., & Kembel, J. A. (2003). EdgeWrite: a stylus-based text entry method

designed for high accuracy and stability of motion. Proc. ACM symposium on user interface
software and technology, 61-70.

Zhai, S., Hunter, M., & Smith, B. A. (2000). The Metropolis Keyboard - an exploration of quantitative
techniques for virtual keyboard design. Proc. The 13th Annual ACM Symposium on User
Interface Software and Technology (UIST), 119-218.

Zhai, S., Hunter, M., & Smith, B. A. (2002). Performance optimization of virtual keyboards. Human-
Computer Interaction, 17(2,3), 89-129.

Zhai, S., & Kristensson, P.-O. (2003). Shorthand Writing on Stylus Keyboard. Proc. CHI 2003, ACM
Conference on Human Factors in Computing Systems, CHI Letters 5(1), 97-104.

Zhai, S., & Smith, B. A. (2001). Alphabetically biased virtual keyboards are easier to use - layout does
matter. Proc. CHI 2001: ACM Conference on Human Factors in Computing Systems, 321-
322.

Zhai, S., Sue, A., & Accot, J. (2002). Movement model, hits distribution and learning in virtual
Keyboarding. Proc. CHI 2002: ACM Conference on Human Factors in Computing Systems,
CHI Letters 4(1), 17-24.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

