
RJ10403 (A0701-015) January 25, 2007
Computer Science

IBM Research Report

Holistic Management of Integrated Content in
Enterprise Information Systems

Mehmet Altinel, Kevin Beyer, Hamid Pirahesh, David Simmen
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Holistic Management of Integrated Content in Enterprise
Information Systems

Mehmet Altinel Kevin Beyer Hamid Pirahesh David Simmen

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120

{maltinel,kbeyer,pirahesh,simmen}@us.ibm.com

ABSTRACT
Today’s enterprise systems typically include both data-centric and
document-centric applications. Data-centric applications are built
on top of DBMS products which have excelled on advanced query
processing and ACID transaction support for structured data. On
the other hand, document-centric applications usually rely on
content management system (CMS) products to perform advanced
unstructured data management operations due to inherent
differences in the usage patterns and required feature set (e.g.
versioning, records management, etc.). We observe that a new
class of hybrid applications are emerging that require the
combined set of DBMS and CMS features on structured and
unstructured integrated content due in large part to increasingly
complex business requirements and the widespread adoption of
XML technologies. However, today’s hybrid applications are
forced to fragment their business artifacts in separate DBMS and
CMS repositories, and cope with accessing, augmenting, and
processing the separate pieces. The lack of a unified repository
model for integrated content makes the development of hybrid
enterprise applications painfully difficult, and often leads to short-
lived, inadequate solutions. In this paper, we explore the trends in
hybrid enterprise applications and their requirements for a unified
repository model. We suggest a holistic approach for the design of
the new repository model covering both DBMS and CMS features
under one umbrella. We discuss the integration challenges, and
present our experience with a prototype that we developed in the
MUSIC (Management of Unstructured and Structured Integrated
Content) project.

1. INTRODUCTION
Over the years, the database research community significantly
contributed to the spectacular success of database management
system (DBMS) products. These products have excelled in core
structured data management features such as advanced query
processing, high throughput transactional store, highly optimized
concurrency control, and data recovery. Today, relational DBMS
products enjoy a $15 billion market (according to IDC [40]).
Furthermore, there is a sizable DBMS eco-system built around the
core features with many other new technologies such as ETL tools
for data collection, data warehouses, OLAP tools and data mining
solutions. All these products and technologies gave rise to
widespread deployment of data-centric applications in enterprise
systems.

On the flip side, an overwhelming proportion of information
available on the Internet and corporate intranets still resides in
unstructured form (usually as a document), out of reach of DBMS

products. Document-centric applications have been developed to
render many different forms of unstructured data such as reports,
images, spreadsheets, emails, blogs, forms etc. Commonly used
Web portals, office products, and source control systems (e.g.
CVS, ClearCase) are well-known examples of document-centric
applications. Since the document usage pattern widely differs
from structured data, document-centric applications need a
different set of features such as versioning, check-in/check-out,
long duration locks, advanced search, policy-based retention and
access control, which are not delivered by typical DBMS
products.

Content management systems (CMSs) have been introduced to
provide the required support for the above features (e.g.,
[12][13][15]). Document-centric applications utilize CMS
products for creation, management, distribution, publishing, and
discovery of a variety of content (such as text, graphics, video,
documents, etc.), and providing connections to corporate
workflows.

Enterprise system infrastructures today have become
overwhelmingly complex with unprecedented number of data-
centric and document-centric application silos. Historically, these
applications are characterized by the functional boundaries mostly
defined with the capabilities of underlying DBMS and CMS
products. However, as the information systems are getting more
complex, we see more cases today where the applications are
forced to push the boundaries by managing structured and
unstructured integrated content together. Developers that use only
one of two systems are forced to implement missing management
features of the other system in their application. For example,
some wiki systems built on a DBMS implement versioning
themselves. Such additions usually provide only a limited
functionality, which are “good enough” for simple applications.
However, most hybrid enterprise applications cannot afford to
implement the required features of the “other” system. As a result,
an increasing number of enterprise applications utilize both a
DBMS and a CMS repository to manage their hybrid business
artifacts, and are forced to deal with the integration problems. For
example, in a typical healthcare management system, personal
information of a patient and his/her financial transactions could be
handled with the help of a DBMS. On the other hand, a patient
record must also include other forms of data such as doctor visit
reports, test results such as X-Rays, MRI images, etc., which need
to be stored in a CMS for easy management. Another example is
the insurance industry, which relies on structured data, for
tracking customer payments and performing risk analysis, as well

2

as documents, such as policies, claims forms, photos of damage,
and accident reports for insurance records.

We anticipate that such hybrid applications are fast becoming a
norm in enterprise systems as structured and unstructured
integrated content turns out to be a natural artifact in a wide range
of application domains. This new class of applications need to
process integrated content by combining the technologies shown
in Figure 1. They need advanced querying and optimization, not
only to retrieve but to be able to perform complex composition,
and transformation and most importantly advanced business
analytics tasks over the integrated content. At the same time, they
need higher level management functionalities like mixed
transaction models, policy-based access and retention control,
versioning, etc., which are commonly applied to the integrated
content. Note that information integration technologies, in
particular widely studied DB and information retrieval (IR)
integration, can provide a relief for querying and optimization,
but they fall short for other higher level management
functionalities which regularly interact with the query
mechanisms.

Our prediction on the accelerated adoption of enterprise hybrid
applications is mainly based on the following observations:

Business Factors: Advances in digital technologies and
communications gave rise to ubiquitous use of business artifacts
with greater wealth of “content” than ever, in a multitude of
formats such as images, text documents, Web pages, spreadsheets,
presentations, graphics, drawings, e-mail, video and multimedia.
Organizations are facing the increasingly costly challenge of
managing this abundant volume of content. On top of that, there
are several influential business factors that require coordinated
access and higher level management functionalities for integrated
content. Perhaps the most remarkable one is the Sarbanes-Oxley
Act which The United States Congress enacted in June 2002 in

the wake of several highly-publicized corporate scandals [3]. The
act instituted a series of corporate reforms to improve the
accuracy and reliability of financial reporting. Most notably, the
act requires companies to implement systems of internal control
over financial reporting. A reliable implementation requires new
solutions to apply compliance rules for all kinds of data across
information sources. Enforceable document retention policies
(i.e. policy-based access and retention control), systems for
managing integrated content, and consistent records management
are all key requirements from a legislative standpoint.

XML Effect: The recent introduction of the XML standard gave
rise to an explosive growth of complex XML representations with
integrated content: (1) XML has been extensively used to create
new business artifacts by combining different pieces of structured
and unstructured data with information integration techniques
[9][22]; (2) There are new XML-based standards that naturally
define integrated content representations used in hybrid
applications. Most notable examples include the following:

• In healthcare, the emerging HL7 Clinical Document
Architecture (CDA) [21] standard is used for storage,
distribution, and display of patient records.

• In finance and insurance, XBRL [39] has been proposed as a
standard reporting language that captures the information
rendered into a business report including fact data, basic
calculations, presentation layout, etc.

• For forms processing, the XForms [37] standard provides a
common representation for capturing and processing the
documents in Web-based business workflows. It formats a
document in several decoupled sections for data, logic and
presentation.

CDA is already in use in many healthcare enterprises including
Mayo clinic, Kaiser, Duke, etc [1]. Both XBRL and XForms are
gaining widespread support from ISVs and leading enterprise
application infrastructure vendors [21][39]. What is common in
these standards is that they eliminate inherent separation between
data and document, paving the way to use the same object
representation (business artifacts) throughout all the enterprise
system applications.

Furthermore, major office product vendors have started to offer
new document formats in XML [1][25]. Documents created in
this way contain structured and unstructured integrated content. A
wide range of new applications and collaboration systems, most
notably Adobe Intelligent Document Platform [1], and upcoming
release of Microsoft SharePoint Server 2007 [28], aim to take
advantage of this new representation.

Where are we at today?

It is evident that neither DBMS nor CMS technologies alone can
be an answer to hybrid applications’ demands today. Hybrid
application developers today are dealing with this challenge by
imitating missing functionalities inside their applications. For
small scale solutions, they usually develop custom methods for
missing features in a limited way over either a DBMS or CMS
product. For example, it is very common to see a primitive
versioning system developed inside the data-centric applications.
At the enterprise level, however, they frequently need more
sophisticated and scalable solutions. Thus, the developers often
end up using both DBMS and CMS products through a complex
integration layer implemented either inside or outside of their

Document-
centric

Collect

Retrieve

Store

Drill

Mine

ETL

SQL

DBMS /
Warehouse

OLAP

Cluster,
Classify,…

Crawl

Search

CMS

Navigate

Cluster,
Classify,…

Unstructured Structured

Figure 1: A view on convergence of DBMS and CMS

Combined Functionality
for Integrated Content

Data

Techno-
logy

Current
Apps

Emerging
Hybrid Apps

Data-
centric

Semi-
structured

Hybrid System

3

application. But in this case, they pay the price of dealing with the
burden of fragmenting and storing the business artifacts in
separate DBMS and CMS repositories, and then coping with
accessing, augmenting, and processing the pieces. For instance,
consider the patient record example given before. When the
healthcare applications need to access a patient record, they have
to deal with multiple data models (with different semantics),
multiple APIs, and more importantly, optimizing access to
multiple repositories. It is painfully difficult to generate reports
and/or to perform business analytics over fragmented patient
records. What’s more, in many cases, replicated parts in multiple
repositories could easily lead to consistency problems.

Highly restrictive compliance requirements are also becoming a
considerable cost factor for hybrid applications. The lack of a
single repository model for integrated content imposes a
significant financial burden on the companies as enforcement and
monitoring of internal controls consume numerous employee
hours. Surveys of large public companies indicate that Sarbanes-
Oxley compliance costs exceeded $4 million per company in the
fiscal year 2004 [20].

What is missing?

We observe that DBMS and CMS technologies are fast coming
together as the above factors force them to offer increasingly
overlapping sets of features. They are trying to capture the
emerging market of hybrid applications by attacking the problems
from their perspective. However, the solutions created this way
are often feature rich for one set of problems, but poor for the
other. Hybrid applications need solutions that will work equally
well for the entire feature set. As achieving this goal by looking at
the problem from one technology side is not feasible, we suggest a
new perspective, a holistic approach, for the management of
integrated content, covering both DBMS and CMS features under
one umbrella. We try to find an answer to the growing demand by
exploring a unified repository model. We believe that the
convergence of DBMS and CMS technologies (and IR, as an
integral component) should be analyzed from the applications
perspective rather than the technology perspective. We are
working on the MUSIC project (Management of Unstructured and
Structured Integrated Content) to fulfill this goal.

1.1 Contributions of the Paper
Main goal of this paper is to investigate the convergence of
structured and unstructured data management from an enterprise
application’s point of view. Our investigation approach is
distinguished from the previous work on database and IR
integration, and information integration in general, in two ways:
(1) Our starting point is the natural and widespread existence of
complex integrated content, especially in XML form, as a base
artifact in enterprise systems; (2) Analysis of the problem is not
solely limited to a querying perspective. Instead, we take a
broader view by considering all aspects of information
management covering both DBMS and CMS features. We believe
such a broader view is necessary since all the elements in the
unified feature set interact with each other.

We try to make a case that there is a substantial value to develop a
new repository model unifying data-centric and document-centric
features for integrated content. And, XML technologies can
provide the needed foundation to achieve this goal. Our
contributions can be summarized as follows:

• We examine the existing technologies for DBMSs and
CMSs, and identify how these technologies are related to
each other.

• We provide a detailed discussion on why the convergence of
DBMS and CMS technologies is inevitable, and elaborate on
the challenges and open issues for database researchers.

• We present our experiences with a MUSIC prototype that
loosely integrates relational DBMS and CMS products. The
prototype demonstrates a primitive example of unified
repository model developed by leveraging salient features of
DBMS and CMS technologies in a complementary way. We
use the prototype to give some hints about what such
repository can offer for hybrid applications.

It is not our intention to propose a specific architecture or method
for the new repository model. We rather advocate a holistic
approach for the management of integrated content by identifying
the requirements and research challenges from the perspective of
emerging enterprise applications.

1.2 Organization
The rest of the paper is organized as follows. We first provide
background information on CMS technologies in Section 2, and
examine how DBMS and CMS (and IR) technologies are used
together today. Then, in Section 3 we identify the trends in these
technologies and present our predictions for future information
management systems. We also elaborate on research challenges
and open issues in a unified repository model. Section 4 reports
our experiences with an early repository prototype that we built to
support hybrid applications. Section 5 presents related work
including a short literature and industry survey on DBMS, CMS
and IR integration. Finally, we provide concluding remarks in
Section 6.

2. A SNAPHOT ON CMS TECHNOLOGIES
A typical enterprise CMS contain components for high level
semantic functions like document management, collaboration,
business process management, records management, email
management, workflow and Web content management. From the
data management perspective, enterprise CMSs are designed to
provide high volume storage capacity, and fast key-based access
for document retrieval. In general, they offer a procedural API,
which is coupled into high level programming languages. Unlike
DBMSs, their query support is limited to document retrieval only
and it lacks advanced query features including joins, aggregations
and composition. These operations are usually handled by CMS
applications. Naturally, CMSs utilize IR techniques, and
sometimes external IR systems, to retrieve the documents.

Compared to the DBMS market, the CMS market currently has a
smaller size1, but this market is very dynamic and it is growing at
a faster pace. This market is highly fragmented with many
different types of open-source and proprietary content
management solutions. This fragmentation can be rooted to the
definition of content. Every piece of information that is stored
digitally within an organization can be described as content, and

1 Market size estimates range anywhere between 400M to several

billion US$ depending on how the boundaries and
functionalities of a CMS is defined.

4

every CMS vendor sees the management of content from their
product perspective. For the sake of simplicity, our focus in this
paper will be on common document management features
including policy-based access and retention control, text and
metadata search, content and metadata creation, versioning, multi-
user authoring, publishing, and connecting documents into
workflows. Section 4.1 delves into details for these features,
through describing a recently proposed API standard, called the
Java Content Repository (JCR). More detailed description of
enterprise CMS features can be found in [11][24][28][32] and
numerous Web sites on the Internet.

2.1 Role of Metadata and DBMSs
Documents are fundamental entities in a CMS in the sense that
they are managed as a unit. Actual document content is opaque to
the CMS. For that reason, they expect the users to extract and
attach structured or semi-structured metadata information to the
documents to enable faster and more accurate search. Otherwise,
key based access methods (and/or search mechanisms for text
based-documents) are usually the only options for document
retrieval. The metadata is also useful for categorizing and linking
documents together.

Most CMSs utilize an embedded DBMS underneath to store
application specific metadata as well as system metadata. The
CMS exploits system metadata such as timestamp, item size for its
content management functions. Applications can create their own
metadata for fast document retrieval. Moreover, DBMSs’ strong
transactional storage and recovery features are used to keep the
system state intact. As for the actual storage of documents, CMSs
usually prefer file systems or high-end storage systems. Thus, a
typical CMS orchestrates both database and file system
management tasks. Occasionally, they may inline the storage of
small size documents with the metadata in a DBMS for better
performance.

There are several challenges for utilizing DBMSs. Perhaps the
most important one is the mismatch between data models. In
general, CMS data models support nested type hierarchies to
represent high-level content definitions consisting of metadata and
documents. This mismatch creates major problems in mapping
CMS types into flat database tables. Some DBMSs provide
object-oriented features to help with this mapping. But the real
problem is that specified types in CMS applications are very
dynamic and structures may widely vary. Hence, even a
moderately complex CMS application may end up generating lots
of different content types mapped into overwhelmingly high
number of tables in the underlying DBMS. The queries issued to
the DBMS rapidly become very complex2 and hard to optimize.

Recently available XML support in DBMSs can provide some
relief in metadata management since the XML data model is more
natural fit for CMS due to its flexibility. Some CMS systems (e.g.
[13][21]) already provides XML mapping of the repositories for
easy content import/export. XML support of the DBMS, however,
should not impose strict schema conformance rules on the
metadata representation.

2 Due to the dynamic and hierarchic characteristics of CMS data

models, even a simple CMS query may turn into a large and
complicated recursive SQL statement. Understanding such a
statement is a challenge even for an experienced DBA.

DBMSs can be improved to provide a better support for CMSs.
DBMSs lack scalable large object (LOB) support, which is
fundamental in CMSs. Moreover, a CMS must handle
asynchronous delivery/loading operations to accommodate
content streaming, and to sustain acceptable throughput rate in
document ingestion for a high volume production system.

There is also wide mismatch between a DBMS and CMS security
models. The latter needs to support more sophisticated, policy-
based access control checks. DBMS’s event generation and
workflow support are usually insufficient for CMSs. Finally,
policy-based retention control feature does not exist in a DBMS.

CMSs usually hide the existence of their underlying DBMS from
their applications. In such an embedded setting, autonomic
management features of the DBMS become very critical. This is
important not only for lower total cost of ownership (TCO) but
also for sustaining acceptable performance for highly dynamic
CMS settings.

2.2 Interaction with IR Technologies
IR techniques play an increasingly important role in CMSs. The
sheer volume of unstructured data easily makes metadata
generation and maintenance a very complex and overwhelming
task for the users. As a result, metadata structures usually become
incomplete and unsynchronized with dynamically changing
content. It is much harder to locate the documents with such
poorly specified metadata. IR technologies can provide a relief to
cope with such dysfunctional metadata.

Integrated text search is already a common feature in CMSs
[12][13][15]. Usually an external text index system is utilized to
enable this functionality. Major DBMS products today also utilize
a text index and provide integrated full-text search feature. Some
CMS implementations take advantage of this feature instead of
using an external text index.

Recent advances in semantic search are leading to more effective
document retrieval by automatically generating additional
metadata [34]. Automating the metadata generation creates a new
set of challenges in terms of management and exploitation.
Although this technology is still in its infancy, it has the potential
to become an indispensable component of CMSs.

3. AN ANALYSIS ON DBMS + CMS + IR
CONVERGENCE
Structured data management is now considered a mature field.
Over the years, the database community has proposed several
extensions to structured data models like object-oriented data
models and query languages. Recently, there has been a growing
interest on bringing together DBMS and IR systems mostly from
the perspective of integrating the two different query paradigms.
Parallel to these efforts, CMSs, have been enhanced for better
exploitation of IR technologies. In this paper, we investigate the
convergence at a broader level, including all the three systems
together. Figure 2 illustrates our perspective on the converging
trends from the diverse areas of the information management
system.

5

 (1) DBMS products have been trying to “move up in the food
chain” by subsuming more high-level semantics inside their
engines. Today, all major DBMS vendors (IBM DB2, Microsoft
SQLServer, Oracle DB) have announced engine level support for
XML data management. In particular, Oracle 10g (release 2) took
a more aggressive step by introducing basic content management
features (WebDAV support, foldering operations, etc.) and
querying functionality for XML data [31]. Furthermore, the
database engines offer ranked text search on XML and other text
documents.

 (2) CMSs have long being touted as being managing structured
and unstructured data. Over the last decade, the CMSs have
gradually evolved from vertical, specialized, line-of-business
applications to horizontal system infrastructure that is targeted to
support wide variety of content applications. The latest and most
serious step in this direction is the proposal of a standard API,
called the Java Content Repository (JCR), as described in Section
4.1. The JCR standard provides a semantic data model, and a
query language for capturing management aspects of both
structured and unstructured data. Most importantly, the JCR has
strong support from CMS industry leaders, including SAP AG,
Macromedia, and IBM, establishing its use and importance in the
enterprise landscape. We anticipate that the standard will continue
to grow to provide more elaborate features for structured and
unstructured data.

(3) Explosive growth of unstructured data available on the
Internet and enterprise systems have made text search engines a
critical part of a wide range of applications. To further improve
the precision of the results, research efforts for text search has
started to concentrate on using more semantic information in
ranking algorithms. Semantic information is distilled from
unstructured data and it reveals itself in some form of structure
(e.g. RDF). Semantic search is currently a very active research
area in the IR field [38], and new technologies have recently
started to emerge. For example, IBM’s UIMA (Unstructured
Information Management Architecture) platform attempts to
provide an extensible tool to develop customized semantic
analysis and search components for unstructured data [34].

Besides improving the precision in search results, semantic
information can be used to analyze massive amounts of
unstructured and semi-structured text for the discovery of trends,
patterns and relationships from data. The WebFountain project at
IBM Research [35] aims to realize this vision by attaching
structured information as annotations into the unstructured text
documents.

3.1 Design Space and Research Challenges
The new repository model must be designed by bringing together
DBMS, CMS and IR technologies. The combined feature set
should be explored to understand the interactions between its
elements. IR technologies have been independently employed by
both DBMS and CMS products for a long time. But, when the
three technologies come together, additional requirements must be
taken into account: Does the text index need to be aware of
access control or document versions? Should table records be
versionable? Should all large objects in the database be
versionable? What new query features are required for content?
What is the right API to the combined system?

At this point, it is unclear what the combined architecture should
be. Moreover, different architectures may be appropriate for
different application classes. In Section 4, we describe our first
prototype of a combined system, but we are far from completing
our investigation. Much additional research is required to
properly explore the space. In this section, we describe the design
space and the key tradeoffs that must be made while building a
combined system.

Holistic vs. Federation: A combined system can be built by a
federation of a DBMS, a CMS, and an IR system, as proposed in
[32]. Structured data goes in the DBMS, unstructured data goes
in the CMS, and queries are federated across the two systems.
Federation has the advantages that if the data already resides in
the two systems, then it quickly brings combined query support
without the need to migrate the data or modify the existing
systems. Federation also grants the user the freedom to choose
the CMS and DBMS best suited for their application. However,
federation has its problems: Application developers and
administrators must understand the quirks of two systems. This
increased complexity significantly increases the total cost of
ownership (TCO). Furthermore, the separation between the two
systems greatly degrades the overall performance. We believe a
holistic approach is preferred, which brings the data into a single
repository to reduce the TCO and improve performance. The
holistic approach also offers the chance to unify other aspects of
the system like the data model, query language, transaction model,
etc., as described below. Moreover, federation is inappropriate
when a single business artifact is both data (requiring DBMS
support) and content (requiring CMS support), which is the case
for many hybrid applications.

Data Model: The combined system must bring tabular data,
documents, and metadata together into a single data model. The
system could model document collections as tables, or it could
model tables as collections of small documents. A similar
problem was faced when XML and XQuery were added to SQL
[8]; should XML data be modeled as table, or tabular data be
modeled XML? However, the border between the two worlds is a
source of significant complexity and potential performance
problems when the two models are out of sync. Is there a simple,
unified model?

Concretely, applications should be able to store and query
complex (XML) objects with integrated content, such as HL7
CDA, XBRL, or XForms instances, along with additional system
and user metadata about the instances. The system must also have
strong support for links between the objects.

Versioning: The system must provide support for versioning of
content. To capture the concurrent creation of content, support

Figure 2: Convergence of DBMS + CMS + IR Technologies

DBMS

CMS

IR

Holistic
Management of

Integrated Content
1

2

3

6

for branching and merging of versions is required. However,
many hybrid applications are satisfied with a simple linear version
history.

Transaction model: Both regular ACID transaction models and
long duration transactions for disconnected clients must be
supported. Furthermore, the system should support concurrent,
disconnected modifications by providing and efficient conflict
detection mechanism. The concurrency models and recovery
models should exploit the versioning.

Access control and retention: Content systems require a more
sophisticated access control mechanism than database systems
typically provide. Moreover, the new compliance regulations
place additional demands on access control and document
retention. How can we unify the authorization models of DBMSs
and CMSs? Can the DBMS adopt the CMS authorization model
without adding extra complexity?

We believe that declarative policy-based access control and
retention mechanisms are required to ensure compliance and
improve the auditing of the system. In other words, the access
and retention of document is derived by a query that looks inside
the data and metadata of the content to determine the document’s
status based upon its current state. For example, items cannot be
added to a signed purchase order, and cancelled purchase orders
should be deleted in 90 days, but fulfilled orders must be kept for
3 years.

Workflow Connections: The system must participate in larger
workflows. It must generate events for state changes in the
repository, manage metadata created during the workflow, and
manage the access to the objects as its state changes during the
workflow.

Metadata Management: There must be mechanisms to manage
application specified and system generated metadata.
Furthermore, the repository should support auto metadata
generation on the content by using IR techniques.

Query Language: The system must provide declarative query
processing over the content, which includes support for reporting
(e.g., aggregation) and creation of new documents from the stored
content (e.g., joins and transformations). (This is what DBMSs
are very good at, and CMSs are typically lacking.) The system
should be able to easily combine operational data with content
data. The query language must have support for links between
objects and support the schema flexibility inherent in content.
The query language must include both strict predicates and
relaxed searched conditions with ranking. The language must
understand document versions and support historical queries.

The XML-based query languages, SQL/XML and XQuery, could
be used with suitable extensions. An SQL interface is important
for connecting to the large number of SQL reporting tools already
available. However, the arms-length integration of XQuery into
SQL is source of complexity that might be eliminated by a new
query language. Is there a better way to integrate these
languages? Is an improved XQuery the answer (e.g., XQuery
extended for analytics and search)? Is there a better language?

Search Language: The system should also support access through
a simple search language. The search language should be a part
of the full query language above (what is the best way?), but the
system should support simple search queries without the
complexities of the full search language. It is likely that the

search feature may be conversational (the user helps guide the
search), support faceted search, or exploit semantic search. The
search should include not only the text, but also the structured
data and the links as well.

Modification Language: Like SQL, the system should have a
language for inserting, deleting, and updating the content. In
addition, the system must include support for checking documents
in and out of the system, restoring versions, defining triggers to
connect the content to workflows, etc.

Componentization: Both the DBMS and CMS architectures have
to be thoroughly reevaluated to find reusable components across
the systems. As a starting point, we used the query engine
component of the DBMS for the CMS. Conversely, the CMS
repository functioned as a document store for the DBMS. We
must detail this functional separation to lower levels by more
aggressive, deeper component identification and interaction
strategies in both system architectures.

Performance: As always, all of the above issues have to be
studied by taking into account the performance aspects of the
integrated system.

4. A UNIFIED REPOSITORY PROTOTYPE
In this section, we present an early MUSIC (Management of
Unstructured and Structured Integrated Content) repository
prototype that we developed to investigate the main issues in the
integration of DBMS+CMS+IR systems. By no means do we
claim that this prototype is the best approach. It only presents an
investigation of one alternative in the vast design space.

We paid more attention on the repository APIs than attacking the
architectural problems. Our aim was to get an initial feedback
about what a unified repository model looks like, and to build a
sandbox for our future work.

In the prototype implementation, we used a relational DBMS
(IBM DB2 UDB v9.1 Beta [8][14]), and an embedded CMS
supporting JCR (Java Content Repository) API (DB2 Content
Manager-Internal JCR [13]). JCR is a recently introduced
standard to define a common programming interface for CMSs.
We start the section by giving an overview of the JCR API. Then,
after highlighting the main prototype components, we present the
MUSIC repository APIs, and show how they can be exploited by
hybrid applications. Finally, we touch several architectural issues
in the prototype and provide our initial optimization techniques to
overcome performance penalties for XML documents.

4.1 Java Content Repository (JCR) API
As the number of vendors offering proprietary CMS repositories
has increased, the need for a common programmatic interface to
these repositories has become apparent. Java Content Repository
(JCR, also known as JSR-170) API standard was recently
introduced to provide such an interface. Just as SQL transformed
database programming, the JCR API is expected to change the
way to design and develop CMS applications. In this section, we
highlight main aspects of the API. Details can be found in [16].

Data Model:

A JCR content repository consists of one or more workspaces,
each of which contains a tree of items. An item is either a node or
a property. Each node may have zero or more child nodes and
zero or more child properties. There is a single root node per

7

workspace, which has no parent. All other nodes have one parent.
Properties have one parent (a node) and cannot have children;
they are the leaves of the tree. All of the actual content in the
repository is stored within the values of the properties. Figure 3
shows an UML diagram of JCR data model.

Basically, the JCR API provides a set of Java interface classes and
associated methods to perform content operations. Because nodes
and properties have some common functionality, common
methods are defined in the interface Item, to which the sub-
interfaces Node and Property add further methods.

The JCR API was designed to support both hierarchical and non-
hierarchical repository models. This is done by providing for both
hierarchical, path-based addressing of content items, and direct,
UUID-based addressing. Figure 4 depicts an example JCR
representation of managed content for a real-estate Web portal
application. In this example, the listing node contains two
properties, namely description and mlsnumber, and a child node
named reports, which, in turn, has two properties, inspection
and picture. The description, inspection and picture properties
have binary type to store XML, PDF and JPG documents
respectively. The mlsnumber property is a string that stores the
identifier for the listing.

The JCR specification defines two XML mappings (system view
and the document view) of the content repository data model. The
entire workspace or subtrees within a workspace can be imported
or exported with these XML mappings.

Type System:

JCR supports a very flexible and extensible type system. Every
node must have one and only one primary node type. The primary
node type defines the names, types and other characteristics of the
properties and child nodes are allowed or required to have.

In addition to its primary node type, a node may also have one or
more mixin types. These are node type definitions that can

mandate extra characteristics (i.e., more child nodes, properties
and their respective names and types) for a particular node in
addition to those enforced by its primary node type. Similar to
object-oriented models, node types can be defined in a hierarchy.

Query:

The JCR spec introduces two different query syntaxes: SQL-based
(support is optional) and XPath-based. For the latter, JCR
applications can search and navigate a workspace over the XML
views. For example, for the tree given in Figure 4, the following
query returns inspection reports for listing with mlsnumber
554469 in the document view:

/listing[@mlsnumber=”554469”]/reports/@inspection.

The result set of a query constitutes all the nodes in the workspace
that meet the constraints stated in the query. The constraints fall
into three categories:

• Type constraint: This limits the returned nodes to a particular
primary node type (and possibly, additionally limits the
nodes to those with particular mixin node types).

• Property constraint: This limits the returned nodes to those
with particular properties having particular values.

• Path constraint: This limits the returned nodes to those
within certain subtrees in the workspace.

The API also includes functions to embed a statement in a full-
text search language.

Metadata:

An important aspect of the API is that it does not distinguish
between “real” content and meta-content. The designers of the
API believed that such a separation would only duplicate the
entire API, since one would probably want to provide the same
functionality for handling both meta-content and primary content.
The distinction is in any case only meaningful at the level of the
application, not the repository. Any particular application built on
top of a compliant repository may, of course, choose which
content is to be considered “meta”, and which primary.

Versioning:

In a repository that supports versioning, a workspace may contain
both versionable and nonversionable nodes. If a node is
versionable, its state can be saved for possible future recovery.
Versions exist as part of a version history. Within a version
history, the versions form a version graph that describes the
predecessor/successor relations among versions of a particular
versionable node.

Version histories and their contained versions are stored in
version storage. The JCR API specifies interfaces for versioning
operations including check-in/check-out, restore, update, and
merge.

Locking and Transactions:

In JCR, locking allows a user to temporarily lock nodes in order
to prevent other users from changing them. A lock can be
specified as either shallow or deep. When a lock is placed on a
node, it can be specified to be either a short-term (session-scoped)
lock or a long duration (open-scoped) lock. As for the
transactions, the JCR API relies on the Java Transaction API
(JTA) specification [25].

Observation:

Item

Property Node

child
*

1

parent

parent

* 1 0..1

Figure 3: Elements of the JCR Data Model

mlsnumber

554469

description

inspection

listing

[root]

picture

reports

Node

Property

Figure 4: A JCR example for real-estate data

8

This feature enables applications to register interest in events that
describe changes to a workspace, and then monitor and respond to
those events. The observation mechanism dispatches events when
a persistent change is made to the workspace. By the way of
observation events, a JCR repository can be connected to a
specific workflow.

4.2 Prototype Components
The DB2 UDB version used in the prototype provides support for
storing, managing, and searching XML data. In the prototype, the
JCR system is configured to use a DB2 database as its data
source. Currently, this JCR system is used internally in the IBM
WebSphere Portal product [36] and it is not available as a stand-
alone system.

The MUSIC repository provides both a relational DBMS (SQL)
and JCR view to its applications. Internally, we leverage
complementary features of the two systems: DB2 is used for
advanced querying, and JCR is used for document management
tasks. We configured the JCR system in a way that it uses the
application database instances instead of creating its own
database. Finally, we created a special mixin type for the JCR
repository to store required information for the MUSIC
operations3.

For the API design, we took a functional approach. We defined
two sets of functions (1) to query (retrieve and extract), (2) to
perform document management operations. With the help of these
functions, the MUSIC repository can serve hybrid applications.
Of course, existing data-centric and document-centric applications
can also benefit from the extensions.

We decided to use the declarative languages, SQL and XQuery as
the language bindings for our functions. The functional approach
allowed us the needed flexibility in the language binding. We
chose SQL as the main binding language for enabling full
functionality, while allowing only the querying functions for
XQuery. We could have used a high-level programming language
such as Java for the binding. We did not take this route because
(1) SQL is a highly powerful language, offering elaborate
mechanisms for data manipulation, (2) declarative nature of SQL
allows optimizations for the execution, and (3) there are many
existing tools and applications providing sophisticated reporting
and OLAP tools using ODBC/JDBC and SQL. With a SQL
binding, we take advantage of all these powerful features for the
documents in the MUSIC repository. And, by providing XQuery
binding, we facilitate access to XML documents stored in the
MUSIC repository for emerging XQuery applications.

As our initial focus is on providing the right functionality rather
than performance, our methods are intentionally designed not to
be invasive (i.e. only minor modifications in DB2 and JCR
engines). The MUSIC functions are mostly implemented using
SQL and JCR APIs. We also exploited DB2’s information
integration support to glue the systems. The combined system is
good enough to offer the required set of features for both
structured and unstructured data management. In the prototype,

3 Most importantly, we need unique identification of JCR nodes to

be able associate and process them during the query evaluation.
For this reason, we enforce every node in the JCR repository to
have universal unique identification (UUID) values.

our primary focus is particularly on the management of XML
documents4.

Figure 5 illustrates the high-level design and alternative uses of
the prototype. Hybrid applications can use SQL views with
MUSIC functions for managing integrated content. It is also
possible to perform document management tasks through the JCR
view. In SQL view, documents are conceptually inserted and
stored in table columns. On the other hand, in JCR view, they are
part of a JCR tree. Regardless of which view is selected, hybrid
applications can insert and work on the same document
collections with the MUSIC functions. We will elaborate more on
these views in the next section. Existing applications can leverage
the MUSIC functions as well. For example, document-centric
applications can start using MUSIC functions for advanced
querying.

4.3 Querying the MUSIC Repository
Advanced query support is provided through the SQL view. As
discussed in Section 4.1, the JCR data model supports hierarchical
representation of content and its metadata. So, the main challenge
is to find an easy and flexible way of modeling JCR hierarchies in
the SQL statements. We implemented a table function called
JCRTable which achieves this goal. Figure 6 shows the
JCRTable syntax. Our solution was inspired by XMLTable
function in SQL/XML standard [32].

The JCR-node-query part takes a JCR XPath query and
identifies a sequence of nodes in the JCR repository. In the
optional PASSING section, the user can provide multiple input
parameters to be used in the JCR queries. These parameters
identify JCR workspaces and connection arguments. Finally, for
the each node found, the desired property values are extracted and
bound to column names defined in the COLUMNS section. The
JCR-property-query values for each column can be either a
property name, or another JCR XPath query identifying a property

4 Actually the MUSIC repository can support all kinds of

unstructured data. However, we developed special techniques
for XML data to take the advantage of the native XML store,
indexes, and XQuery language support available in DB2.

Figure 5: Components of the prototype

DBMS CMS
JCR

Store

MUSIC
Prototype

Join Relational,
XML and JCR

content

Retention,
access control,
text search, etc.

Document Mgmt
Operations
(JCR API)

MUSIC Functions for
Query & Document Mgmt

(SQL/XML, XQuery)

Data-centric
Apps

Doc-centric
Apps

Hybrid
Apps

9

relative to the current the node. The located value is cast to the
specified type and then bound to a column name so that it can be
freely used in the body of the SQL statement. The JCRTable
function always outputs a default column called uuid which holds
the UUID values of the JCR nodes identified by the input JCR-
node-query.

Once again consider the real-estate application that uses the JCR
tree shown in Figure 4 to store the documents about available
houses on real-estate market. This application can offer an
elaborate reporting service by using the SQL view of the MUSIC
repository to issue queries. For example, the query in Figure 7
obtains the number of real estate listings mentioning roof
problems in their inspection reports.

Notice that the above query includes a JCR text search predicate.
In our prototype, the JCR system contains an integrated text
search engine. Actually this simple SQL statement is quite
powerful. If this application was a pure document-centric one
without any advanced query support, obtaining the same result
solely using the JCR API would require coding a full Java
program. This can be a cumbersome and challenging task,
especially when a large number of ad-hoc operations (e.g. roll-up
or drill-down) need to be performed over the JCR repository for
business analytics.

Continuing the example, further assume that our hybrid real-estate
application keeps a history of completed real-estate transactions in
a Sales table with MlsNumber, SalePrice and ListDate and
SaleDate columns in the DB2 database. Then, the query shown
in Figure 8 can be issued against the MUSIC repository to obtain
an average number of days that the previously sold houses stayed
on the market for the zipcodes of currently available houses. This
information can be used for real-estate market analysis like
determining whether a specific house is in a high demand
neighborhood, and making an informed offer accordingly. Notice
that the JCRTable function only locates the XML description
property (xmldoc in SQL statement), and main manipulation is
performed by XMLTable SQL/XML function.

In terms of implementation, JCRTable function is actually just a
syntactic sugar on top of low level MUSIC functions. We have
implemented separate functions for obtaining node sequence
(JCR-node-query part in JCRTable syntax), and extracting
column values for each data type. A list of these functions and a

version of the above query rewritten with them are provided in
Appendix A.

Querying the JCR Repository with XQuery:

We built another MUSIC function for XQuery, called JCRQuery.
The JCRQuery function takes a JCR XPath expression as an input
to locate a property in the tree having XML document content.
Returned XML document is processed in the XQuery. The query
in Figure 9 returns the addresses of the houses with hardwood
floors.

Similar to JCRTable, the JCRQuery function is implemented with
low-level MUSIC functions.

4.4 Document Management Operations in
MUSIC Repository
In this section, we present document management support in the
SQL view of MUSIC repository. Although the JCR view provides
this support to the fullest extent, some hybrid application
developers may prefer to use the SQL view as they are already
familiar with it. This support may be particularly attractive choice
for data-centric applications since they already store and query
XML documents, but suffer from the lack of high-level document
management functions like check-in/check-out, versioning,
foldering operations, etc. We anticipate that this type of
applications demand document management operations over their
document collections without making major changes. Although
the operations mentioned in this section mainly focus on XML
documents, they are applicable to other binary and text document
types as well.

In the SQL view, input XML documents are stored in columns of
database tables. The prototype provides a set of tools and
functions for the DBAs and application developers so they can
choose which XML columns to be managed, and what document
management features they want to apply. After the set up is
complete, the desired document management operations can be
used transparently against the existing application queries and
update statements.

SELECT x.zipcode,
 AVG(s.SaleDate - s.ListDate) AS marketdays
FROM JCRTable('/listing'
 COLUMNS
 mlsnumber CHAR(8)
 PATH './mlsnumber',
 xmldoc XML
 PATH './description') AS j,
 XMLTable('$i/detailed_listing'
 PASSING j.xmldoc AS "i"
 COLUMNS
 zipcode CHAR(5)
 PATH './address/zipcode') AS x,
 sales s
WHERE s.mlsnumber = j.mlsnumber
GROUP BY x.zipcode
ORDER BY marketdays

Figure 8: Querying the MUSIC Repository (2)
Figure 6: JCRTable function syntax

JCRTable(JCR-node-query,
 [PASSING argument-list]
 [COLUMNS
 column-name1 data-type
 PATH JCR-property-query1,
 column-name2 data_type
 PATH JCR-property-query2, ...]
)

for $i in fn:JCRQuery('/listing[
 text-contains(.,"Hardwood")]/@description')
return <result> { $i//address } </result>

Figure 9: Querying the MUSIC Repository (3)

SELECT count(*)
FROM JCRTable(‘/listing[reports[
 text-contains(.,”roof problem”)]]')

Figure 7: Querying the MUSIC Repository (1)

10

Internally, XML documents are stored in the JCR repository to be
able to perform the document management tasks. But, the SQL
view provides a table-based conceptual organization so that from
the application perspective, documents are inserted, selected and
deleted from tables. The current implementation of the MUSIC
repository offers functions for basic document management
support such as versioning, locking and foldering operations (see
Appendix B for the full list). We create a special workspace in the
JCR repository whose organization is controlled and managed by
the MUSIC system. We store each XML document in a separate
node that includes a set of properties for storing the document
content, an optional metadata document (in XML, its use is
explained later), database, table and column names, and primary
key value(s). The XML document and metadata properties are set
to be versionable. Additional nodes may be created in the JCR
repository to represent folder structure, and perform folder
operations.

Configuration:

Our main goal is to configure the database and JCR repository in
a way that hybrid application developers can create a SQL view
for their managed content. We also have to consider existing data-
centric applications that want to add document management
features. For this purpose, we developed a configuration tool that
the users can either create a new table with a managed XML
column, or they can point to an existing table and choose the
XML columns for migration. The tool works in three steps:

(1) It creates a new internal table with the specified column
definitions (or exactly the original column definitions if it is
a migration from an existing table). However, there is an
exception for managed XML columns. The type of the
selected XML column is changed to character type so that it
can now store JCR node references (UUID values). If this is
a migration from an existing table, the tool moves the XML
documents into the JCR repository, and the rest of the data
is loaded into a new internal table along with the associated
UUIDs.

(2) The tool creates an SQL view over the internal table. The
view has the specified table name and column definitions.
The body of the view includes a select SQL statement that
returns all the column values from the internal table and
corresponding XML documents from the JCR repository
with the help of the UUID value and the MUSIC function
for document retrieval5. Figure 10 illustrates this setup in the
MUSIC repository. All the required access control
mechanisms provided by JCR can be applied for the XML
documents. Optionally, the view may include extra columns
to return UUID and folder information for the documents to
be able to perform other document management tasks.

(3) To support insert/update/delete operations, the tool creates
corresponding instead-of triggers for the view. The trigger
bodies include all the appropriate MUSIC functions for
inserting, versioning and deleting the documents. For
example, the update operation uses check-out and check-in
functions. In addition, the users may also want to specify

5 This function internally uses the same retrieval function

implemented for JCRTable (See the Appendix for more
details).

extra columns that need to be managed along with the XML
document6. In this case, the trigger bodies include suitable
SQL/XML constructs for creating an XML metadata
document, attaching it to the actual document, and retrieving
it with the document as well.

The tool outputs a set of scripts which can be directly executed
against the database. It is also possible that, the power users could
customize the scripts. Instead of utilizing this tool, they can
always perform customized configuration and setup operations
with the MUSIC functions.

Figure 11 shows a table view for real estate listings over an
internal base table as described in Step 2. Then, we can perform
document management operations such as inserting a new
document with folder information, check-out the document,
changing the folder, etc. as shown.

4.5 Improving the System Performance
The DBMS used in the MUSIC prototype (and other major
products available on the market) provides native XML storage
support for fast retrieval and indexing. Unfortunately, the queries
issued to the MUSIC prototype cannot leverage this support since
all the documents are owned by the JCR system. We overcome
this problem by developing effective caching mechanisms for
XML documents inside the DBMS.

Figure 12 shows the main organization of the XML cache. We
created an internal table with a native XML column. This table
also includes columns for UUID, version, timestamp and property
name values to be able locate documents in the JCR repository.
MUSIC system administrators can create tailored XML indexing
and clustering strategies for this table to tune it according to the
application characteristics.

Populating the Cache:

Cache table population occurs in different ways depending on
which view interface is used. For every document operation

6 There might be cases where the values of these columns could

be related to the XML document. For example, they could be
extracted from the document for fast retrieval. So, versioning
only the XML document may run into consistency problems.

col1 … coln XMLCol

col1 … coln uuid

Internal Table

xml xml xml

SQL/XML & XQuery

SQL View:
Select c1,..,cn, xmlDoc(uuid)

From Internal Table

JCR Folder
Info

MUSIC
Function

Figure 10: Database and JCR setup for document management
operations

11

(insert, modify or delete), the JCR repository asynchronously
updates its text index with the modified content. We modified this
mechanism to move input XML documents from JCR repository
to the native XML store in the DBMS. When the JCR view is
used to insert/update/delete XML documents, we capture the
updates this way and apply them onto the cache table in the
DBMS. The cache table will eventually contain all the XML
documents in the JCR repository. Alternatively, it may also be
populated on demand, as the users’ requests are fulfilled.

When the SQL view is used, the cache table is populated and
managed as the applications issue their SQL commands. Inside
the MUSIC functions, required JCR operations are performed
upfront to obtain the column values for the cache table. The
documents manipulated this way are marked at the JCR repository
to skip cache maintenance mechanism for JCR views.

Cache Utilization:

The core MUSIC function for XML document retrieval (jcrXML
in Appendix A7) is implemented to take the advantage of the
cache. This function first checks the cache table for a given node
UUID, version timestamp and property name values. There might
be cases where new XML documents may not appear in the cache
yet (the JCR repository text maintenance mechanism is
asynchronous). For such cases, the JCR repository is accessed to
return the document.

5. RELATED WORK
Integration of diverse information systems has a long history. In
particular, integration of structured and unstructured data models
and query languages has been independently studied in the DB
and IR literature. The database community proposed many text

7 Remember that this function is internally used by the JCRTable

function and it can be directly used by hybrid applications.

extension schemes that merge ranked result retrieval with regular
execution methods. All the major RDBMS products today provide
full text query support [17]. The IR literature, on the other hand,
includes numerous proposals implementing IR methods over
DBMSs (e.g. [26][27]). A common theme in this research is to
exploit underlying database mechanisms to enable better
unstructured search. The recently introduced XML standard has
further fueled DB+IR integration efforts in both communities by
shrinking the gap between structured and unstructured data
[5][6][16][18][25]. Thorough discussions on DB+IR integration
work and a good coverage of literature can be found in
[4][5][9][16][17].

As we described before, all these efforts analyzed and attacked the
integration problem mainly from the querying perspective. In this
paper, we are suggesting a broader view to integration approach
by considering all aspects of DBMS, CMS and IR together. The
ever increasing market share for enterprise CMS products is clear
evidence that enterprise applications are demanding a new set of
information management features in addition to vital querying
support. As these features interact with querying mechanisms,
structured and unstructured data integration needs to be
investigated by taking the entire feature set into account.

[32] also compares and contrasts data-centric and document-
centric paradigms. It also identifies the technical challenges and
opportunities for bringing these different paradigms closer
together. However, contrary to our proposal, the authors claim
that there cannot be a single system that can manage both
structured data and content equally well and in a scalable manner.
Hence, they suggest an integration layer on top of loosely coupled
DBMS and CMS repositories. Although this is similar to our
prototype model, our grand vision is to build a unified repository
model that owns and manages the integrated content.

Our prototype approach for the mapping JCR data model into
relational is similar to other hierarchical modeling efforts in
information integration systems. In fact, our solution was inspired
by the XMLTable function in the SQL/XML standard [33].
Similar approach was also proposed in [19] where XML
collections are queried by SQL queries.

The recently introduced Oracle 10g product stepped towards our
proposed integration model by blending XML management
features with its content management functionalities [31]. It
allows inserting an XML document into a folder through a
WebDAV interface, and issuing XQuery statements to document

CREATE VIEW Listing(mlsnum, price,
 doc, docid, folder) AS
 SELECT l.mlsnumber, l.price,
 music.xmlDoc(l.docid), l.docid,
 music.getfolder(l.docid)
 FROM Listing$music l;

SELECT music.co(docid)
FROM listing
WHERE mlsnumber='1';

xquery
 for $i in db2-fn:xmlcolumn('LISTING.DOC')//b
 return <res>{$i}</res>;

SELECT music.movedoc(l.docid, '/mlssales/sold')
FROM listing l
WHERE mlsnumber='1';

SELECT doc,folder
FROM listing
WHERE mlsnum = '1';

Figure 11: Example Document Operations and Queries

INSERT INTO listing(mlsnum, price, doc, folder)
VALUES('1', 200000,
xmlparse(document '<a>some text'),
 '/mlssales/onsale');

DBMS CMS
JCR

Store

Keyword1

Keyword2
…

KeywordN

Text Index

xml

uuid version property XML

Native store for XML Docs

XML
Text

Figure 12: XML is text indexed, and stored natively in DBMS

<xml>
<xml>
<xml>

propa
propb
propc

time1
time2
time3

1
2
3

Document Mgmt Ops
(JCR API)

Adv. Query
(SQL, XQuery)

Use native
XML &

JCR API

12

collections with a database view. Although available document
management features are very limited, we anticipate that this
move will change the expectations among hybrid enterprise
application developers.

6. CONCLUDING REMARKS
In this paper, we argued that a new class of enterprise applications
are emerging due in large part to increasingly complex business
requirements such as Sarbanes-Oxley Act and the widespread
adoption of XML for the representation of all types of complex
business data. They have the analytic requirements of data-centric
applications and the document lifecycle and metadata
management requirements of document-centric applications to
process structured and unstructured integrated content. Today,
neither DBMS nor CMS technologies can answer the growing
demand of management operations for the integrated content.

We explored the trends giving rise to these hybrid applications
and examined their requirements. We argued for a holistic
approach to design a unified repository solution. We discussed
research challenges that must be met in order to achieve an
enterprise scale solution. Finally, we detailed our early experience
in this space by presenting a repository prototype developed as
part of a project we call MUSIC (Management of Unstructured
and Structured Integrated Content).

ACKNOWLEDGMENTS
We would like to thank Andrey Balmin, Volker Markl, Kevin
Roundy and Malte Randt for their help and insights on the
MUSIC project.

REFERENCES
[1] 2nd Int. Conf. on the Clinical Document Architecture, Oct., 2004,

Acapulco, Mexico, http://www.hl7.de/iamcda2004/.

[2] Adobe Intelligent Document Platform,
http://www.adobe.com/enterprise/idp.html.

[3] R. Agrawal, C. Johnson, J. Kiernan, F. Leymann, “Taming
Compliance with Sarbanes-Oxley Internal Controls Using Database
Technology”, ICDE 2006.

[4] S. Amer-Yahia, Moderator, “Databases and Information Retrieval:
Rethinking the Great Divide”, Panel, SIGMOD 2005.

[5] S. Amer-Yahia, L. V. S. Lakshmanan, S. Pandit, “FleXPath: Flexible
Structure and Full-Text Querying for XML”, SIGMOD Conference
2004: 83-94.

[6] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, D. Toman,
“Structure and Content Scoring for XML”, VLDB 2005: 361-372.

[7] R.A. Baeza-Yates, M. P. Conses, “The Continued Saga of DB-IR
Integration”, Tutorial, VLDB 2004.

[8] K. S. Beyer, et al., “System RX: One Part Relational, One Part
XML”, SIGMOD Conference 2005: 347-358.

[9] M. J. Carey, “BEA Liquid Data for WebLogic: XML-Based
Enterprise Information Integration”, ICDE 2004

[10] S. Chaudhuri, R. Ramakrishnan, G. Weikum, “Integrating DB and
IR Technologies: What is the Sound of One Hand Clapping?”, CIDR
2005: 1-12.

[11] D. M. Choy, “Integration of Structured and Unstructured Data in
IBM Content Manager”, SIGMOD 2005

[12] Day Software, www.day.com/.

[13] DB2 Content Manager,
www.ibm.com/software/info/contentmanagement/.

[14] DB2 UDB v9.1 Beta, www.ibm.com/software/data/db2/xml/.

[15] EMC Documentum, www.documentum.com/.

[16] N. Fuhr, K. Grossjohann, “XIRQL: An XML query language based
on information retrieval concepts”, ACM TOIS 22(2), 2004.

[17] L. Gravano, Editor, Special Issue on Text and Databases, Data Eng.
Bulletin, December 2001 Vol. 24 No 4.

[18] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram, “XRANK:
Ranked Keyword Search over XML Documents”, SIGMOD 2003.

[19] A. Halverson, V. Josifovski, G. Lohman, H. Pirahesh, M. Mörschel,
“ROX: Relational Over XML”, VLDB 2004: 264-275

[20] T. Hartman, “The Cost of Being Public in the Era of Sarbanes-
Oxley”, Foley & Lardner LLP NDI Study, June 2005.

[21] HL7 Clinical Document Architecture (CDA) Specification,
www.hl7.org/v3ballot/html/infrastructure/cda/cda.htm.

[22] IBM WebSphere Business Integration Server Foundation,
www.ibm.com/software/integration/wbisf/

[23] IBM Workplace Forms, http://www.ibm.com/software/
workplace/products/product5.nsf/wdocs/formshome.

[24] Java Content Repository (JCR) Standard,
www.jcp.org/en/jsr/detail?id=170.

[25] R. Kaushik, R. Krishnamurthy, J.F. Naughton, R. Ramakrishnan,
“On the Integration of Structure Indexes and Inverted Lists”,
SIGMOD 2004.

[26] I. A. Macleod, R. G. Crawford, “Document Retrieval as a Database
Application”, Information Technology: Research and Development,
2, 43-60, 1983.

[27] S. Melnik, S. Raghavan, B. Yang, H. Garcia-Molina, “Building a
distributed full-text index for the web”, 10th Intl. World Wide Web
Conf. (WWW10), pp. 396–406, May 2001

[28] Microsoft Enterprise Content Management White Paper,
www.microsoft.com/office/preview/ecmwhitepaper.mspx.

[29] Microsoft Office 2003 XML Reference Schemas,
www.microsoft.com/office/xml/default.mspx.

[30] The Java Transaction API (JTA),
java.sun.com/products/jta/index.html.

[31] Oracle Database, www.oracle.com/database/.

[32] A. Somani, D. Choy, J. C. Kleewein, “Bringing together content and
data management systems: Challenges and opportunities”, IBM
System Journal, Vol. 41, No. 4, 2002

[33] SQL/XML Standard, www.sqlx.org/.

[34] Unstructured Information Management Architecture (UIMA), IBM
Research, www.research.ibm.com/UIMA/.

[35] WebFountain Project, IBM Research,
www.almaden.ibm.com/webfountain/.

[36] WebSphere Portal for Multiplatforms,
www.ibm.com/software/genservers/portal/.

[37] The World Wide Web Consortium, “XForms – The Next Generation
of Web Forms”, www.w3.org/MarkUp/Forms/.

[38] The World Wide Web Consortium, “Semantic Web”,
www.w3.org/2001/sw/.

[39] XBRL—Extensible Business Reporting Language, www.xbrl.org/.

[40] ZDNet News, news.zdnet.com/2100-9592_22-5227856.html.

13

APPENDIX
All the SQL examples provided in this section are developed
using IBM DB2 DBMS syntax.

A. MUSIC Functions for querying JCR
Repository

• Get the root of a workspace:
jcrRoot (connect args) returns node

• Get a table of node references (UUIDs) from a context and a
JCR query:
jcrNodes (uuid, ‘JCR-node-query’)
 RETURNS TABLE(uuid)
Get a table of node references using the default workspace
settings:
jcrNodes (‘JCR-node-query’)
 RETURNS TABLE(uuid)

• Get a scalar SQL value from property of a node identified by
its UUID:
jcrInt (uuid, ‘JCR-property-query’)
 RETURNS INTEGER
jcrDouble (uuid, ‘JCR-property-query’)
 RETURNS DOUBLE
jcrString (uuid, ‘JCR-property-query’)
 RETURNS VARCHAR
jcrDate (uuid, ‘JCR-property-query’)
 RETURNS DATE
jcrXML (uuid, ‘JCR-property-query’)
 RETURNS XML
jcrBLOB (uuid, ‘JCR-property-query’)
 RETURNS BLOB
jcrCLOB (uuid, ‘JCR-property-query’)
 RETURNS CLOB

The following is a verbose form of the query provided in Section
4.3, rewritten with above MUSIC functions:
SELECT x.zipcode,
 AVG(s.SaleDate - s.ListDate) AS marketdays
FROM TABLE(music.jcrNodes('/listing')) AS node,
 XMLTable('$i/detailed_listing'
 PASSING
 music.jcrXML(node.uuid, ‘description’)
 AS "i"
 COLUMNS
 zipcode CHAR(5)
 PATH './address/zipcode') AS x,
 sales s
WHERE s.mlsnumber =
 music.jcrString(node.uuid, ‘mlsnumber’)
GROUP BY x.zipcode
ORDER BY marketdays

B. MUSIC Functions for Document
Management

Main CRUD operations:

• Document retrieval functions for a given UUID. As the
organization of JCR repository is controlled by the MUSIC
system, property names are known by the system. Hence,
these functions internally exploit corresponding above JCR
MUSIC functions to return XML, CLOB and BLOB values.
xmlDoc (uuid) returns XML
textDoc (uuid) returns CLOB

binDoc (uuid) returns BLOB
metadata(uuid) returns XML

• Inserting a new document into MUSIC repository
insertXML (doc XML [, ‘folder string’,
 metadata-doc]) RETURNS uuid
insertText (doc CLOB [, ‘folder string’,
 metadata-doc]) RETURNS uuid
insertBin (doc BLOB [, ‘folder string’,
 metadata-doc]) RETURNS uuid

• Versioning operations:
Check-in, check-out, and uncheck-out:
ci(uuid, document, metadata) RETURNS TIMESTAMP
co(uuid) RETURNS INTEGER
unco(uuid) RETURNS INTEGER

Restore a version identified with a timestamp
restore(uuid, version-timestamp) RETURNS uuid

Get the current version of the document
baseversion(uuid) RETURNS TIMESTAMP

Get all the versions of a document
versions(uuid) RETURNS TABLE(TIMESTAMP)

• Putting and removing long duration locks on the document.
lock(uuid) RETURNS INTEGER
unlock(uuid) RETURNS INTEGER

• Delete the document from JCR tree.
delete(uuid) RETURNS INTEGER

Folder operations:

• Create a new folder in the JCR tree.
newfolder(‘folder-path’) RETURNS INTEGER

• Delete a folder.
delfolder(‘folder-path’) RETURNS INTEGER

• Assign or change the folder of a document.
movedoc(uuid, ‘folder-path’) RETURNS INTEGER

• Get folder information of the document.
getfolder(uuid) RETURNS VARCHAR

• Find all the documents in a folder.
folderdocs(‘folder-path’) RETURNS TABLE(uuid)

• Lock/unlock a folder. All the sub-folders and documents are
affected with this operation.
lockfolder(‘folder-path’) RETURNS INTEGER
unlockfolder(‘folder-path’) RETURNS INTEGER

• Move a folder to another folder.
movefolder(‘folder-path’, ‘new-path’)
 RETURNS INTEGER

