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Together, the two hemispheres of the mouse cortex contain, roughly, 16× 106 neurons, and 8, 000 synapses
per neuron [1]. Modeling and simulation at this scale (and beyond) is an emerging area of scientific explo-
ration that will likely lead to a host of new computational and neuro-scientific insights. To facilitate near
real-time study of network dynamics, we have recently developed a massively parallel cortical simulator
simulator [2] that incorporates relatively simpler phenomenological models of spiking neurons [3], spike-
timing dependent plasticity [4], and axonal conductance delays. In this paper, we explore the challenges
involved in scaling, stabilizing, and synchronizing such large-scale models.

Scaling

We created a basic connection template with 32, 768 “groups” each of which have 500 neurons. Each group
sends axons to 100 randomly selected groups and each neuron from the projecting group makes a total of
c = 80 synapses with the neurons of the receptive group. The resultant network consisted of a total of
16, 384, 000 neurons and 8, 000 synapses per neuron comparable to a mouse. Roughly, 80% of the groups
were excitatory and the remaining were inhibitory. For excitatory groups we used axonal delays uniformly
ranging from 1−20 ms, and for inhibitory groups we used a fixed 1ms axonal delay. This network structure
is not intended to capture detailed anatomy of the mouse brain, but is a step towards understanding dynamics
of large scale models.

Using a BlueGene/L supercomputer with 8, 192 processors (2 times the size in [2]), with 4 TB of main
memory (4 times the size in [2]), we were able to load the entire network and all the associated auxiliary
data structures. In a stable, sustained firing mode (see below), using a stimulus pattern that delivered super-
threshold excitation to every neuron at 4Hz, using 1ms simulation time steps, we were able to simulate 5s
of model time in 168s of real-time at a mean firing rate of 4.95Hz. Effectively, when normalized to a 1Hz
mean firing rate, we were able to run a 1s of model time in approximately 7s of real-time. Interestingly, with
everything else kept the same, but without using spike-timing dependent plasticity, we were able to run 5s
of model time in 75s of real-time. When normalized to a 1Hz mean firing rate, this amounts to 1s of model
time in approximately 3s of real-time.

To further push the boundaries of scaling, by using c = 160 above, we created a network with 16, 384, 000
neurons and 16, 000 synapses per neuron (alternatively, we could have created a network with 32, 768, 000
neurons and 8, 000 synapses per neuron). We were able to run this model on a larger BlueGene/L supercom-
puter with 16, 384 processors and 8 TB of main memory. Specifically, in a stable, sustained firing mode,
when using a 5Hz stimulation, we were able to achieve 5s of model time in 265s of real-time at a mean firing
rate of 5Hz. When normalized to a 1Hz mean firing rate, this amounts to 1s of model time in approximately
11s of real-time.

Stability and Synchronization

Stabilizing cortical simulations is enormously difficult: “For a large network of excitatory and inhibitory
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Figure 1: Dynamics of a network with 16, 384, 000 neurons and 16, 000 synapses per neuron. Panels (a), (b), and
(c) display percetage of neurons that fired at each simulation time step. Panels (a), (b), and (c) exhibit, respectively,
damped, sustained, and avalanche behaviors. Panel (d) shows the raster of 1, 000 neurons (out of 16, 384, 000 neurons)
corresponding to stable mode in panel (b).



neurons with small EPSPs it is very difficult, if not impossible, to attain steady ongoing activity at low firing
rates.” [5] It is very easy to drive a network into avalanche mode or into an uninteresting quiescent state, but
is difficult to maintain it in a stable periodic, quasi-periodic, or chaotic states [6].

A neuron decides to fire on the basis of co-incident activity at its synapses and the synaptic efficacies. We
found that the allowed maximum synaptic efficacy (which upper bounds the growth of excitatory synaptic
efficacies under spike-timing dependent plasticity) and the probability of the super-threshold stimulus to-
gether greatly affected the behavior of our networks described above. During the course of this study, we
used several models with varying number of synapses from 1 synapse per neuron to 16, 000 synapses per
neuron. We observed that finding a range of maximum synaptic efficacies corresponding to stable models is
harder to achieve for higher number of synapses per neuron if the stimulus probability is kept low. Further,
there appears to be a threshold stimulus probability below which – when maximum synaptic efficacy is var-
ied – models make a sharp transition from damped mode to avalanche mode. For the network with 16, 000
synapses per neuron, the three modes, namely, damped, sustained, and avalanche, are captured in Figure 1.
We found similar behavior also for the smaller, mouse-scale network with 8, 000 synapses per neuron.
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