
RJ10407 (A0704-025) April 18, 2007
Computer Science

IBM Research Report

SPARK:  Integrated Resource Allocation in
Virtualization-Enabled SAN Data Centers

Aameek Singh*, Madhukar Korupolu, Bhuvan Bamba*
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA  95120-6099

*Georgia Institute of Technology
(work done at IBM Research)

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich



SPARK: Integrated Resource Allocation in Virtualization-enabled SAN Data Centers

Aameek Singh† Madhukar Korupolu ∗ Bhuvan Bamba†

†Georgia Institute of Technology ∗IBM Almaden Research Center

Work done at IBM Research Contact Author

{aameek, bhuvan}@cc.gatech.edu madhukar@us.ibm.com

Abstract

In this paper, we present a novel framework called SPARK (Stable-Proposals-And-Resource-Knapsacks) for addressing

the combined placement of application data and CPU in virtualized SAN data centers. Unlike previous approaches, which

address only CPU placement or only storage placement, SPARKenables both in an integrated manner taking into account

the differing degrees of proximity and affinity among the different node pairs in the data center.

SPARK is based on two well-studied problems – Stable Marriage and Knapsacks – and is simple, fast, intuitive,

iterative, and versatile. It yields good quality placements – in our synthetic experiments, it is consistently within 4% of

the optimal values computed using Linear Programming basedmethods for a wide range of workloads and experiments.

At the same time, it is one to two orders of magnitude faster than LP and scales to much larger problem sizes that

arise in practice. In comparison with other natural candidate algorithms, SPARK outperforms them by at least 30-40%,

demonstrating faster speed and improved versatility at thesame time.

The fast running time of SPARK makes it highly suitable for dealing with dynamic data center complexities: work-

load surges, growth, node failures and downtimes that need quick response. Its built-in versatility positions it well to

accommodate policies and constraints that may arise in practical deployments.

1 Introduction

Server virtualization is becoming a quintessential data center technology. The once ever-expanding and unmanageable

data centers are now being tamed by advances in virtual machine (VM) technologies such as VMware [17] and Xen [29].

These allow applications to run in isolated containers without interfering with each other. Applications which run on

single machines can now be moved to virtual machines; and these virtual machines in turn can be moved to fewer physical

machines thus consolidating hardware, reducing space and management costs, and increasing utilization.

A notable recent development in this domain is the emergenceof live migrationtechnologies such as VMotion [47]

and [34] for Virtual Machines. These enable applications tobe moved from one machine to another in real-time without

much downtime. This is an extremely useful tool for data center administrators as it facilitates load-balancing, failure-

management and system maintenance. Combining these advancements with similar data migration technologies [43, 25,

38, 41] can help create a highly adaptive and dynamic data center environment.

With these advances the prospect of realizing on-demand utility computing in data centers is gaining momentum, both

in the industry and in academia [46, 45].
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1.1 Recent Trends and Challenges

In spite of the above benefits of server virtualization, managing such virtualized data centers is still a difficult task.Studies

estimate that management costs will soon outweigh the hardware costs [7] because of the manual steps and administrator

involvement required.

Deciding where to run applications and where to place their data requires planning, especially in response to dynamic

data center complexities such as workload surges, growth, node failures and downtimes. Manual planning is slow, error-

prone and becomes complex with increasing scale and heterogeneity of data centers and increasing number of workloads

and applications. Data centers often go with the safer option of over-provisioning and incur the resulting under-utilization

and wastage penalty. Many consider this lack of automated management to be a primary impediment to more wide-spread

adoption of virtualization technology in data centers [45].

Fast, autonomic resource planning in modern data centers isa challenging problem. It requireshandling storage and

computational resources in a coupled manner. For example, moving an application VM to another physical node in

response to a workload surge needs to take into account the “affinity” of the new node to application’s storage. Similar

affinities need to be taken into account when moving application storage.

Complexity is introduced into this problem due to theheterogeneity in data centers. The hardware and Storage Area

Network (SAN) fabric in data centers are incrementally built over time and disparate resources co-exist in the same

environment. For example, in the sample data center model shown in figure 1, different switches can be of different

capabilities. This results in differing affinities betweendifferent node pairs.

Further contributing to this non-uniformity are therecent trends in SAN hardware. Vendors are introducing innovative

SAN devices to present available specialized processing power at non-traditional locations in the SAN so as to make better

use of emerging virtualization technologies. For example:

• The IBM DS8000 storage controllers support POWER5 logical partitioning which makes them suitable for hosting

applications [16, 23]. IBM recently demonstrated running aDB2 application in an LPAR to offload OLAP ad-hoc

query computation to the storage controller. [39] describes a system that speeds up search of unindexed data by

running “searchlets” at the storage system.

• Cisco MDS 9000 switches [20] have multiple Intel x86 processor blades and can be fitted with multiple application

modules enabling functionality offload to switches. Cisco has already displayed the feasibility of this idea by

implementingIBM TotalStorage SAN Volume ControllerandVeritas Storage Foundation for Networks Solutionon

the switches.

Such hardware innovations increase the heterogeneity in modern SAN data centers and make available computing

resources at varying proximities from storage. The proximity of these nodes to storage if utilized properly can have

significant impact on application performance. For example, if a processor on a storage controller is used to run an I/O

intensive application and the application’s data is on the same controller then the application can access its storage faster,

perform better and relieve network resources for other applications.
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1.2 State of the Art and Limitations

Much of the prior work in data center resource allocation addresses single resource placement, that is the placement of

CPU only or storage only but not both at the same time.

Ergastulum [27], Hippodrome [26] and Minerva [24] attempt to place storage for applications assuming the application

CPU locations are fixed. Oceano [28] and Muse [31] provide methods for provisioning CPU resources in a data center but

they do not have a mechanism to take into account the underlying storage system and its affinities to CPU nodes. Similarly

recent products like VMware Infrastructure-3 [21] and its Dynamic Resource Scheduler (DRS) [22] address monitoring

and allocation of CPU resources in a data center. While theseare good starting points, they only concentrate on allocation

of one resource while ignoring the other.

Similarly, File Allocation problems [35, 30] look at where to allocate files/storage assuming CPU is fixed. General-

ized Assignment problems [52, 53] look at assigning tasks toprocessors (CPUs) but these again are for single resource

allocation and not coupled storage and CPU allocation.

Such single-resource allocation approaches cannot take advantage of the virtualization-enabled heterogeneous re-

sources and proximities in modern SAN data centers.

One way to address simultaneous placement of CPU and storageis to model it as a multi-commodity flow problem [10]

using one commodity per application and setting up appropriate source and sink nodes for each commodity and connecting

them to the underlying resource nodes (more details in§3). However multi-commodity flow problems are known to be

very hard to solve in practice even for medium sized instances [42]. Furthermore, they would end up splitting each

applications CPU and storage requirements among multiple resource nodes which may not be desirable. And if such

splitting is not allowed for some applications, then we would need an unsplittable flow [33] version of multi-commodity

flows, which becomes even harder in practice.

Another area of related work is that of co-scheduling data and computation in grid computing [49, 50, 51]. The aim of

grid computing is to pool together resources from possibly geographically distributed disparate IT environments overwide

area networks [37, 36]. Such environments typically have distributed ownership of resources, so [49, 50] provide protocols

for jobs to advertise their needs and resources to advertisetheir policies and capabilities and provide a mechanism forjobs

to approach resources for a potential match. The focus is on schemes to decide policy match when there is decentralized

ownership and not on optimization. Such decentralized ownership is not an issue in SAN data centers. [51] builds on [49]

to execute data movement and computations efficiently. Theyattempt to get data and computation on the same grid node

but do not attempt to perform any nearness optimization in selection when placement on the same node is not possible.

The grid approaches instead employ replication strategiesto create replica of the data closer to the compute node which

is justifiable in wide-area grid environments. Such replication, however, is not feasible in SAN data center environments.

1.3 Our Contributions

In this paper, we present a novel framework called SPARK (Stable-Proposals-And-Resource-Knapsacks) for addressing

some of the above limitations and challenges in virtualizedSAN data centers. SPARK provides, to the best of our

knowledge, a first known solution for placing application CPU and data simultaneously among resource nodes in a data

center.
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The SPARK framework automatically favors high I/O intensive applications to go on nearby storage and compute

node pairs. It considers heterogeneous resource nodes – host computers, switches, fabrics, storage controllers etc in

the SAN data center and treats each one as having a certain capacity of CPU resource and a certain capacity of storage

resource, with one being non-zero or both being non-zero or both being zero. For example, a storage controller with

spare processing power would have both nonzero, a switch node such as the Cisco MDS 9000 would have nonzero CPU

capacity and so on.

It accounts for the differing degrees of proximity and affinity between different node pairs through user-controllable

cost or distance functions. Applications are considered asrequiring a certain amount of CPU resource and a certain amount

of storage resource. Each application may incur a certain cost, for example its throughput multiplied bydistance(u, v)

or more generallyCost(Ai, u, v), if applicationAi’s required CPU is placed on nodeu and storage on nodev.

The mechanism for placing CPU and storage simultaneously involves several interesting aspects. For example, if

multiple applications compete for the same CPU node or storage node, then the node can pick certain subset of them

based on their sizes and values. This is akin to the Knapsack problems [8]. Further, applications need to decide which

nodes to compete for – nodes that are easier to get or ones thatare most preferred. Here we borrow ideas from the

Stable Marriage problem [15]. The latter addresses the question of given a collection ofn boys and girls (or students and

universities) each with their own ordered list of preferences, can they be paired up so that the marriages are stable in some

sense. For details, please see§3.

The SPARK algorithm proceeds in rounds, iteratively improving the CPU and storage placements in each round. A

basic paradigm in SPARK involves having applicationsproposeto certain candidate nodes for CPU and storage based on

their current locations and affinities, and allowing the receiving resource nodes to select a subset of the proposals based

on their proposed values and sizes. This is repeated in stages along with a few swap steps to overcome local optima.

A notable feature of SPARK is that it provides high quality placement decisions quickly. In our experiments, we

compare SPARK with a Linear Programming based optimal. Due to limits imposed on LP solvers [11], LP solutions

could be obtained, and compared against, for small problem sizes only. For a wide range of synthetic workloads and

experiments capturing various distributions and topologies, SPARK is consistentlywithin 4% of the optimal values.

At the same time it is one to two orders of magnitude faster than LP, solving even large instances in few minutes. This

enables SPARK to handle the much larger problem instances that come up in modern data centers which regularly have

hundreds to thousands of hosts, controllers and switches and hundreds of applications.

In comparison with other natural candidate algorithms, SPARK consistently outperforms by at least 30-40%, and at

the same time is much faster and more versatile. Comparisonsin §4 show that SPARK is about an order of magnitude

faster than the next best candidate algorithm for large instances.

The other salient feature of SPARK is itsversatility . As we discuss in§5 this enables it to accommodate various

system policies and application preferences that often arise in practical deployments. It can account for an already existing

placement configuration and VM and data migration costs and iterativelyimprove the current configuration (ref. §5.1).

Given the constantly changing nature of real life data centers and policies, such flexibility is often a necessity in practice.
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1.4 Organization

The rest of the paper is organized as follows. In§2, we describe the model SAN environment considered in this work and

the architecture of our solution framework. We describe thedesign of the SPARK algorithm in§3. Detailed experimental

evaluation of our algorithm and its comparison with other techniques is presented in§4. Salient features of the SPARK

approach and directions for future work are discussed in§5. We finally conclude in§6.

2 System Architecture

In this section, we describe the architecture of our framework and its various components. We start with a description of

a model SAN data center environment.

Edge Switch Edge Switch Edge Switch Edge Switch

Host

Core Switch Core Switch

Controller Controller JBOD

CPU

Storage

Host Host Host Host Host

Edge Switch

High
Bandwidth

Connectivity
Extra Hop

Multiple CPUs

Figure 1: Modern SANs with heterogeneous resources

A storage area network in a data center consists of multiple devices – application servers, edge and core switches,

different types of storage devices from high end controllers to Just-a-Bunch-Of-Disks (JBOD). These devices are con-

nected through a high speed network, usually referred to as the fabric. Figure-1 shows an example core-edge design

SAN topology. As mentioned earlier, modern SANs are heterogeneous in nature with resources differing in bandwidth

connectivity, resources capacities and capabilities. Additionally, many non-traditional devices now include significant

processing power (Figure-1 shows core switches and storagecontrollers with CPU nodes). Note that these CPUs are as

powerful as ones available in traditional application servers, if not more.

An important characteristic of this modern SAN environmentis its support for virtualization platform deployment.

Most CPU architectures today have been virtualized including the ones available on storage controllers and switches.

For example, Cisco MDS 9000 switches ship with Intel x86 processors, virtualized by VMware, Xen and IBM DS 8000

controllers have PowerPC processors, virtualized throughthe Logical Partitioning (LPAR) technology [23]. With increas-

ing push towards standardization of VM formats [13], these processors are equal candidates for addition to virtualized

resource pools that would normally contain only application servers. In fact, these nodes can be even more effectively uti-

lized when hooks exist for specialized applications that can communicate with fast-path APIs available at these nodes.For

example, an application running at the controller storing its database, can significantly improve table scan performance

by directly communicating with the controller storage [5].
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Such a virtualized environment can be used to realizeutility computing, where all resources are aggregated into pools

and workloads are dynamically mapped to use resources from these common pools. We discuss this goal in the next

section.

2.1 Towards Utility Computing

Consider the SAN environment in Figure-1 where a virtualization platform (say, VMware Server [18]) has been installed

at all CPU nodes and all applications have been encapsulatedinto VMware virtual machines. Administrators can choose

to run multiple application VMs at each CPU node for efficientresource utilization. Now, suppose an application gets

hit with a sudden workload surge and its VM begins using extraCPU resources. This might impact performance of all

applications running on that node.

To correct this, the administrator simply moves one of the application VMs on this physical node (source) to another

VMware server on atargetnode using the VMware migration technology – VMotion [47]. The VM state is encapsulated

into regular files and stored in the SAN. The target server accesses these files concurrently and the active memory and

execution state of the VM is transmitted over a high speed network. Since the network is also virtualized, the virtual

machine retains its network identity and connections, ensuring a seamless migration process. Note that use of VMware

technologies is for illustrative purposes only and similarmigration technology also exist for Xen [34], which can migrate

VMs runninginteractiveapplications in only tens of milliseconds.

While this technology seemingly brings the utility computing dream within reach, the human involvement in planning

for selecting an appropriate VM to move and the appropriate target node for migration can lead to errors, sub-optimal

decision making and is also a bottleneck in situations that require immediate response. As mentioned earlier, autonomi-

cally performing such coupled placement decisions accounting for storage-CPU affinities, is complex and SPARK aims

at addressing this challenge.

2.2 Planner Architecture

In this section, we describe the architecture of our framework detailing its internal components and its interaction with

external entities. Figure-2 shows the framework.

SAN Mgt S/W

VM Mgt S/W

Orchestrator

Execute 

VM Moves

Execute 

Data Moves

SAN State

App VMs

State

SPARK

Visualization &

What-if Analysis

Placement

Constraints

Offline SAN & App 
Workload Input

Figure 2: Planner Architecture

External Components: Planning requires detailed information of the underlyingstorage SAN, which is obtained from

SAN management toolslike EMC Control Center [4] and IBM Total Storage Productivity Center [6]. These tools keep

real-time information for all devices and events in the SAN.Additionally, information about the state of application VMs

6



is required to obtain utilizations and availabilities at processing nodes. This is obtained fromVM management suiteslike

VMware Infrastructure-3 [21] and similar products [1, 2, 14, 19]. Relevant SAN and VM state information can also be

input in an offline mode, especially when doing what-if analysis (see below).Constraints and preferencesfor placing

application VMs and storage on certain nodes are also provided as input to the planning framework. Furthermore, the

planning engine is connected to anOrchestratorthat can execute VM and data migration workflows using storage man-

agement and VM management tools.

Internal Components: Internally, the framework consists of aSAN Statecomponent that maintains relevant SAN state

required during planning, e.g. SAN topology information. Similarly relevantVM Stateinformation is maintained. The

SPARK algorithm takes this information along with placement constraints to generate a placement plan of application

storage and CPU on resource nodes. This plan can be viewed through avisualization engineand can also be used as a

what-if analyzer, through which an administrator can proactively assess thebehavior of the system in response to certain

dynamic scenarios (e.g. what-if App-A’s workload surges by20%?). Finally, the placement plan is executed through

the orchestrator (if desired, the plan can be verified by an administrator). Note that the current focus is primarily on

the SPARK algorithm and its performance evaluation while the other pieces such as the visualization engine and what-if

analyzer would be part of future work.

Modes of Operation: This framework can be deployed both in anoffline and anonline setup. In an offline mode, an

administrator can input relevant information (maybe imported from a snapshot of a live system state) and visualize the

plans generated by the framework and perform what-if analysis for his/her current setup. In an online mode, the framework

can continuously monitor the SAN and VM state to identify workload surges or failures, automatically initiate planning

in response and actually execute the plan through the orchestrator.

3 Integrated CPU-Storage Solution

The previous sections have discussed how innovations in virtualization technologies and SAN node specialization have

laid the foundation for autility computingplatform. An important missing piece in the current systemsis the planning

scheme that produces placement of workloads to resources maximizing overall performance. Such a scheme has to be

fast, scalable and robust to handle a wide variety of workloads and SAN environments. In this section, we describe a first

step in this direction through SPARK and start with the mathematical problem formulation.

3.1 Problem Formulation

A SAN in the data center has multiple types of nodes – application servers, switches, storage controllers – with available

CPU and storage resources. Let the set of CPU resource nodes in the data center be denoted byP = {Pk : 1 ≤ k ≤ |P|}.

This includes all CPU resources in the SAN where an application can be run – e.g., an application server, a switch with

a virtualizable CPU or a high-end storage controller. Each such CPU resourcePk has an associated limit on how much

processing capacity it has, say in processor cycles per second, which we denote bycap(Pk).
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Similarly let the set of storage resource nodes in the data center be denoted byS = {Sj : 1 ≤ j ≤ |S|}. Each such

storage resourceSj has an associated limit on how much storage capacity it has, say in GBs, denoted bycap(Sj). These

resources are connected to each other directly or indirectly based on the SAN topology (e.g. Figure-1).

Along with these, there is a set of applications, sayA = {Ai : 1 ≤ i ≤ |A|} that need to run in the data center. These

applications are packaged into virtual containers and can be executed on compatible virtualization platforms deployed at

CPU nodes in the SAN. Each such application VM has a CPU resource requirement and a storage resource requirement.

We useAi.StgReq, Ai.CPUReq, andAi.Thpt to denote the amount of storage required (GB), the amount of CPU

required (processor cycles per second), and the I/O throughput between the storage and CPU (post-cache IOs per second)

for the applicationAi. Also,Ai.Stg andAi.CPU denote the storage and CPU nodes that host application data and VM

respectively.

Cost Function: Given these, the question is where to allocate CPU and storage for each application, that is where should

each application be run among the available CPU resources and where should its data be placed among available storage

resources. For each application, we useCost(Ai, Sj, Pk) to denote the cost of running applicationAi on storage

resource nodeSj and CPU resource nodePk. We also refer to it as the “distance” betweenSj andPk for Ai.

This cost function is used to capture the affinities, or lack thereof, between various application, storage and CPU

groups. For example, if an application has preference for storage nodes of a certain type (e.g., RAID5) then the costs

of assigning it to that storage node could be set lower. Also,if an application has a hard latency requirements then

all storage-CPU pairs that cannot satisfy the latency boundhave their cost set to infinity. In general, the cost function

gives us a flexible way to account for multiple environmentalcharacteristics like SAN fabric design, application QoS

requirements, application preferences for specialized nodes or even the dollar cost of storage and processors (for example,

biasing cheaper storage).

In our current design, the cost function is designed by the SAN administrator to achieve their specific objectives (we

describe one example cost function below). It is to be noted however that many of the SAN characteristics that influence

the cost function can be obtained automatically from the underlying SAN management tools and policy databases (e.g.

fabric design, end-to-end latencies). The SPARK algorithmand the framework presented below are flexible enough to

work with any cost function provided as input. This makes SPARK extremely versatile in dealing with many peculiarities

of a real SAN data center environment (see§5.1).

Given this cost function for all applications and resources, the goal of the placement is to select locations for the CPU

and storage of each application so as to keep the overall costfor all applications small, that is,

min
∑

i

Cost(Ai, Ai.Stg, Ai.CPU) (I)

while ensuring feasibility by not exceeding storage and CPUresource node capacities:

∀j
∑

i:Ai.Stg=Sj

Ai.StgReq ≤ cap(Sj)

∀k
∑

i:Ai.CPU=Pk

Ai.CPUReq ≤ cap(Pk)
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As mentioned above, SPARK can work with any cost function, but for concreteness in this paper we use a cost func-

tion that captures desired features and complexity and yet is easy to describe. It tends to keep applications with high

throughput requirement on storage-CPU pairs with small distances thus lowering the traffic on the SAN and increasing

room for surges and other traffic. It is based on the throughput of the application and the distance between its CPU and

storage nodes. It is given byAi.Thpt ∗ dist(Ai.Stg, Ai.CPU), where latter is the physical inter-hop distance between

Ai.Stg andAi.CPU and is independent of applications. This function notably captures some of the desired features

discussed earlier. For example, if a CPU at a storage controller is available, it would have low distance between its

storage and CPU node, and thus an application with high I/O throughput would be favored to go there, which improves

performance and reduces the load on the SAN network.

Problem Complexity: This problem (I) captures the basic questions inherent in placing CPU and storage in a coupled

manner. The NP-Hard nature of the problem can be establishedby reducing to the 0/1 Knapsack problem. Even if a

simpler case of our problem – involving two CPU nodes (one of which is a catch-all node of infinite capacity and large

cost) and fixed application storage – can be solved, it can be used to solve the Knapsack problem by making the second

CPU node correspond to the knapsack and setting the costs andCPU requirements accordingly. Having to decide coupled

placements for both storage and CPU with general cost/distance functions makes the problem more complex.

Special case of one resource fixed:If either CPU or storage locations are fixed and only the otherneeds to be determined

then there is related work as mentioned in§1 along the lines of (a) File Allocation Problem [30, 35] placing files/storage

assuming CPU is fixed; (b) Minerva, Hippodrome [24, 26] assume CPU locations are fixed while planning storage place-

ment; (c) Generalized Assignment problems [52, 53]: Assigning tasks to processors (CPUs).

Modeling as flow problems: If the storage and CPU requirement for applications can always be split across multiple

resource nodes, then one could also model it as a multi-commodity flow problem [10] – one commodity per application,

introduce a source node for the CPU requirement of each application and a sink node for the storage requirement, with

the source node connected to CPU resource nodes, storage resource nodes connected to the sink node and appropriate

costs on the storage-CPU resource node pairs. However multi-commodity flow problems are known to be very hard to

solve [42] in practice even for medium sized instances. And if the splitting is not justifiable for applications (e.g. it re-

quires sequential processing at a single server), then we would need an unsplittable flow [33] version for multi-commodity

flows, which becomes even harder in practice.

Special case of uniform costs.Another important aspect of the problem is non-uniform costs. In a modern virtualized

data center these costs vary depending on various factors like application preferences, storage costs, node heterogeneity

and distances. If these variations were not present, i.e. costs for each applicationAi were the same for all (Sj ,Pk) pairs

then the problem could be simplified to placing storage and CPU independently without coupling. In the next section,

we discuss an algorithm INDV-GR that follows this approach.The evaluation and discussion of its performance in the

general data center environment is given in the experimental section.
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3.2 Algorithm

In this section, we begin by outlining two simpler algorithms – a greedy individual placement algorithm INDV-GR that

places CPU and storage of applications independently in a natural greedy fashion and a greedy pairs placement algorithm

PAIR-GR that considers applications in a greedy fashion andplaces each ones CPU, storage pair simultaneously. The

pseudocode for these is given as Algorithm-1 and Algorithm-2.

The INDV-GR algorithm (Algorithm-1) first places application storage by sorting applications by Thpt
App.StgReq

and

greedily assigning them to storage nodes sorted byBestDist, which is the distance from theclosestCPU node. In-

tuitively, INDV-GR tries to place highest throughput applications (normalized by their storage requirement) on storage

nodes that have the closest CPU nodes. In the next phase, it will similarly place application VMs on CPU nodes.

Algorithm 1 INDV-GR: Greedy Individual Placement

1: RankedAppsStgQ← Apps sorted by Thpt

StgReq
// decr.

2: RankedStgQ← Storage sorted byBestDist // incr.

3: while RankedAppsStgQ 6= Ø do

4: App← RankedAppsStgQ.pop()

5: for (i=0; i<RankedStgQ.size; i++)do

6: Stg← RankedStgQ[i]

7: if (App.StgReq ≤ Stg.AvlSpace) then

8: Place App storage on Stg

9: break

10: end if

11: end for

12: if (App not placed)then

13: Error: No placement found

14: end if

15: end while

16: Similar for CPUplacement

However, due to its greedy nature, a poor placement of application can result. For example, it can place an application

with 600 units storage requirement,1200 units throughput at a preferred storage node with capacity800 units instead

of choosing two applications with500 and300 units storage requirement and900, 500 units throughput (cumulative

throughput of1400). Also, INDV-GR does not account for storage-CPU affinitiesbeyond using a roughBestDist

metric. For example, ifAi storage is placed onSj , INDV-GR does not especially try to placeAi CPU on the node closest

to Sj .

This can potentially be improved by a greedy simultaneous placement. The PAIR-GR algorithm (Algorithm-2) at-

tempts such a placement.

It tries to place applications sorted by Thpt
CPUReq∗StgReq

on storage, CPUpairs sorted by the distance between the

nodes of the pair. With this, applications are placed simultaneously into storage and CPU buckets based on their affinity

measured by the distance metric.

Notice that PAIR-GR also suffers from the shortcomings of the greedy placement where an early sub-optimum deci-

sion results in poor placement. Ideally, each storage (and CPU) node should be able to select applicationcombinations
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Algorithm 2 PAIR-GR: Greedy Pairs Placement

1: RankedAppsQ← Apps sorted by Thpt

CPUReq∗StgReq

2: RankedPairsQ← {Storage x CPU} sorted by distance

3: while RankedAppsQ 6= Ø do

4: App← RankedAppsQ.pop()

5: for (i=0; i<RankedPairsQ.size; i++)do

6: Stg← RankedPairsQ[i].storage()

7: CPU ← RankedPairsQ[i].CPU()

8: if (App.StgReq ≤ Stg.AvlSpace AND App.CPUReq ≤ CPU.AvlCPU ) then

9: Place App storage on Stg, App CPU on CPU

10: break

11: end if

12: end for

13: if (App not placed)then

14: Error: No placement found

15: end if

16: end while

that best minimize the overall cost value of the system. Thishints at usage ofKnapsack-like algorithms [8]. Secondly,

an important missing component of these greedy algorithms is the fact that while applications have a certain preference

order of resource nodes they would like to be placed on (basedon the cost function), the resource nodes would have a

different preference determined by their capacity and which application combinations fit the best. Matching these two

distinct preference order indicates a connection to theStable-Marriage problem [15] described below.

3.3 TheSPARK algorithm

The above discussion about the greedy algorithms suggestedan intuitive connection to the Knapsack and Stable Marriage

problems. These form the basis for the design of SPARK. So we begin by a brief introduction of these problems.

Knapsack Problem[8, 48]: Givenn items,a1 throughan, each itemai has sizesj and a profit valuevj . The total size of

the knapsack isS. The 0-1 knapsack problem asks for the collection of items toplace in the knapsack so as to maximize

the profit. Mathematically:

max

n∑

j=1

vjxj subject to

n∑

j=1

sjxj ≤ S

wherexj = 0 or 1 indicating whether itemaj is selected or not. This problem is known to be NP-Hard and hasbeen

well-studied for heuristics of near optimal practical solutions [40].

Stable Marriage Problem [15, 44]: Given n men and n women, where each person has a ranked preference list of the

members of the opposite group, pair the men and women such that there are no two people of opposite group who would

both rather have each other than their current partners. If there are no such people, then the marriages are said to be

“stable”. This is similar to the residency-matching problem for medical graduate applicants where each applicant submits

his ranked list of preferred medical universities and each university submits its ranked list of preferred applicants.

The Gale-ShapelyProposal algorithm[44] is the one that is commonly used in such problems. It involves a number
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Figure 3: Placement in rounds.STG placement bringsA2-storage closer toA2-CPU and CPU placement further improves by

bringingA2-CPU closer toA2-storage. Knapsacks help chooseA1+A2 combination overA3 during placement.

of “rounds” (or iterations) where each man who is not yet engaged “proposes” to the next most-preferred woman in his

ordered list. She then compares the proposal with the best one she has so far and accepts it if it is higher than her current

one and rejects otherwise. The man who is rejected becomes unengaged and moves to the next in his preference list. This

iterative process is proved to yield stable results [44].

Notice that placing an application together on storage, CPUresource pair(Sj , Pk) (as done by PAIR-GR) would

impact resource availability in all overlapping pairs(Sj , Pl) and(Sm, Pk). Thisoverlapcan have cascading consequences.

This indicates that perhaps placing storage and CPU separately, yet coupled through affinities would hold the key to

solving this problem. Combining this observation with knapsacks and the stable proposal algorithm leads us to SPARK.

SPARK: Consider a general scenario where say the CPU part of applications has been placed and we have to find

appropriate locations for storage. Each applicationAi first constructs an ordered preference list of storage resource nodes

as follows: LetPk be the processor node where the CPU ofAi is currently placed. Then allSj , 1 ≤ j ≤ S are ranked in

increasing order ofCost(Ai, Sj , Pk), or with our example cost funcation,Ai.Thpt ∗ dist(Sj , Pk)1. Once the preference

lists are computed, each application begins by proposing tothe first storage node on its list (like in the stable-marriage

scenario). On the receiving end, each storage node looks at all the proposals it received. It computes a profit value for

each such proposal that measures the utility of that proposal. How to compute these profit values is discussed in§3.4. We

pick the storage node that received the highest cumulative profit value in proposals and do a knapsack computation for that

node2. This computation decides the set of applications to chooseso as to maximize the total value without violating the

capacity constraints at the storage resource. These chosenapplications are considered accepted at the storage node. The

other ones are rejected. The rejected ones move down their list and propose to the next candidate. This process repeats

until all applications are accepted. The pseudocode for this part is given in Algorithm-3.

We assume a dummy storage nodeSdummy (and similarly a dummy CPU nodePdummy) of unlimited capacity and

large distance from other nodes. These would appear at the end of each preference list ensuring that the application

would be accepted somewhere in the algorithm. This catch-all node provides a graceful termination mechanism for the

algorithm.

Given these storage placements, the algorithm then decidesthe CPU placements for applications based on the affinities

from the chosen storage locations. The pseudocode for the CPU part is similar to the one in Algorithm-3.

1In case CPUs have not been placed (for example, when doing a fresh placement) we use theBestDist metric.
2Though knapsack problem is NP-Hard, there are known polynomial time approximation schemes (PTAS) for it [32] which workreasonably well in

practice to give not exactly optimal but close to optimal solutions. We use one such package [9] here.
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Figure 4: Swap exchanges STG/CPU pairs betweenA4,A5. Individual rounds cannot make this move - during STG placement,

M and O are equally preferable forA1 as they have the same distance fromA4-CPU (X). Similarly during CPU placement.

An illustration for the working of the SPARK-Stg and SPARK-CPU rounds is given in Figure 3. SPARK-Stg brings

A2.Stg closer toA2.CPU and SPARK-CPU further improves by bringingA2.CPU closer toA2.Stg. Knapsacks help

choose theA1 +A2 combination overA3 during placement.

Though the combination of SPARK-Stg and SPARK-CPU address many possibilities well, they are not equipped to

deal with scenarios like the one shown in Figure- 4. Here a move of one end during a round of placement (either storage

or CPU) doesnt improve the placement but moving of both simultaneously does. This is where the SPARK-Swap step

comes in. It takes two applicationsAi andAi′ and exchanges their CPU and storage locations if that improves the cost

while still being within the capacity limits.

Combining these insights, the SPARK algorithm is summarized in Algorithm-4. It proceeds iteratively in rounds. In

each round it does a proposal-and-knapsack scheme for storage, a similar one for CPU, followed by a Swap step. It thus

improves the solution iteratively, until a chosen termination criterion is met or until a local optimum is reached.

3.4 Computing Profit Values

One of the key steps in the SPARK algorithm is how to compute the profit values for the proposals. Recall that when a

storage nodeSj receives a proposal from an applicationAi it first determines a profit value for that proposal which it then

uses in the knapsack step to determine which ones to accept.

We distinguish two cases here based on whetherAi currently has a storage location or not (for example, if it got kicked

out of its location, or it has not found a location yet). If it does, say at nodeSj′ (Sj′ must be belowSj in Ai’s preference

list, otherwiseAi wouldnt have proposed toSj .) Then the receiving nodeSj would look at how much the system would

save in cost if it were to acceptAi. This is essentiallyCost(Ai, Sj′ , Pk) − Cost(Ai, Sj , Pk) wherePk is the current

(fixed for this storage placement round) location ofAi’s CPU. This is taken as the profit value forAi’s proposal toSj .

On the other hand, ifAi does not have any storage location or ifAi has storage atSj itself, then the receiving node

Sj would like to see how much more the system would lose if it did not selectAi. If it knew which storage nodeSj′ , Ai

would end up not selected it then the computation is obvious.Just taking a difference as above fromSj′ would give the

necessary profit value. However where in its preference listAi would end up ifSj rejects it, is not known at this time.

In the absence of this knowledge, a conservative approach isto assume that ifSj rejectsAi, thenAi would go

all the way to the dummy node for its storage. So with this, theprofit value can be set toCost(Ai, Sdummy, Pk) −

13



Algorithm 3 SPARK-Stg: Storage placement in SPARK
1: for all App in AppsQ do

2: Create storage preference list sorted by distance from current App CPU

3: Propose to best storage

4: end for

5: while (All apps not placed)do

6: MaxStg← StgQ[0]

7: for all Stg in StgQ do

8: Compute proposals profit

9: MaxStg←max(MaxStg.profit , Stg.profit)

10: end for

11: KnapsackMaxStg

12: for all Accepted appsdo

13: Place App stg onMaxStg

14: end for

15: for all Rejected appsdo

16: Propose to next storage in preference list

17: end for

18: end while

Algorithm 4 SPARK: Proposals-and-Knapsacks
1: MinCost←∞, SolutionCfg← Ø

2: loop

3: SPARK-Stg()

4: SPARK-CPU()

5: SPARK-Swap()

6: Cost← 0

7: for all App in AppsQ do

8: Cost← Cost + App.Thpt * dist(App.Stg, App.CPU)

9: end for

10: if (Cost< MinCost) then

11: MinCost← Cost

12: SolutionCfg← current placement solution

13: else

14: break // termination by local optimum

15: end if

16: end loop

17: return SolutionCfg

Cost(Ai, Sj, Pk).

An aggressive approach is to assume thatAi would get selected at the very next storage node in its preference list after

Sj . In this approach, the profit value would then becomeCost(Ai, Sj′ , Pk) − Cost(Ai, Sj, Pk) whereSj′ is the node

immediately afterSj in the preference list forAi. The reason this is aggressive is thatSj′ may not takeAi either because
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it has low capacity or it has much better candidates to pick.

In this paper we work with the conservative approach described above. Experiments show that the solutions computed

by the SPARK algorithm are very close (within 4%) to the optimal with this approach for a range of scenarios. In future,

we plan to examine sophisticated approaches including estimating probabilities that a given item would be accepted at a

particular node based on history from past selections.

4 Experimental Evaluation

In this section, through a series of simulation based experiments, we evaluate the performance of SPARK for various

workload and SAN environments. We also compare it with othercandidate algorithms and Linear Programming based

optimal solutions. Simulation based experiments allow us to evaluate SPARK for a wide range of environments, some-

thing which is tough to do in real data center systems. However, as part for our future work we are also collecting datasets

from real operational systems for a similar evaluation.§4.1 describes the experimental setup followed by the results. We

summarize our findings in§4.6.

4.1 Setup

To evaluate SPARK, we simulated storage area networks of varying sizes and application workloads with different CPU,

storage requirements and I/O throughput rates.

As in any realistic SAN environment, the size of the SAN is based on the size of the application workload. We used

simple ratios for obtaining the number of application servers, controllers and switches. For example, for a workload with

1000 applications (one CPU, storage node per application),we used 333 (Ratio=3) application servers, 50 (Ratio=20)

high end storage controllers (with CPUs) and 40 (Ratio=25) regular storage devices (without CPUs). We used the

established industry best-practices based core-edge design of the SAN with storage controllers connected to application

servers through three levels of core and edge switches. For the above example, we had 111 edge switches, 16 mid level

core switches and 5 core switches (with CPUs). We used uniform CPU and storage capacities for nodes.

All these parameters are encapsulated into a single metric calledProblem Sizewhich is equal to the product of number

of applications, number of CPU nodes and number of storage nodes. It roughly represents the complexity of the problem.

The CPU and storage requirements for applications are generated through a normal distribution with varying mean

and standard deviation. To avoid using a large number of parameters, we used the same mean and std-dev for these

distributions (independently). The I/O throughput rates were also varied using a normal distribution. We describe the

exact mechanism used to obtain these values in§4.1.2 and evaluate our algorithm with different values in§4.3 and§4.4.

Another important input is the application CPU-storage distance matrix. In our experiments, we used same distance

values independent of applications derived using an exponential function based on the physical inter-hop distance; the

closest CPU-storage pairs (both nodes inside a high end storage controller) are set at distance1 and for every subsequent

level (core switch CPU and storage and then hosts and storage) the distance value is multiplied by adistance-factor. We

present experiments with varying distance factor in§4.5.
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4.1.1 Algorithms and Implementations

We compared the following algorithms in our evaluation. Allalgorithms were implemented in C++ and run on a Windows

XP Pro machine with Pentium (M) 1.8 GHz processor and 512 MB RAM. For experiments involving time, results were

averaged over multiple runs.

• Individual Greedy Placement (INDV-GR): The greedy algorithm that independently places application storage

and CPUs as shown in Algorithm-1 (ref.§3).

• Pairwise Greedy Placement (PAIR-GR): The greedy algorithm that places applications into best available storage-

CPU pairs – Algorithm-2 (ref.§3).

• OPT-LP: The optimal solution obtained by the LP formulation. We used CPLEX Student [3] for obtaining integer

solutions (it worked only for the smallest problem size) andpopular MINOS [12] solver (through NEOS [11] web

service) for fractional solutions in the [0,1] range for other sizes. We could only test upto 300 application nodes

(problem size = 1.1 M) as the number of variables grew past thelimits of the solvers after that.

• SPARK: Our SPARK algorithm as described in§3. It used the 0/1 knapsack algorithm contained in [48] with

source code available from [9].

• SPARK-R1: The solution obtained after only a single round of SPARK. This helps illustrate the iteratively im-

proving nature of SPARK.

4.1.2 Design of Experiments

We conducted the following set of experiments to evaluate the above algorithms on a wide range of workload distributions,

problem sizes, and SAN topologies:

– Scalability Tests: An important requirement for SPARK is to be able to handle large data center environments. For

validating this, we measure its performance with increasing size of the storage area network. As mentioned earlier, size of

the SAN is computed based on the total number of applicationsin the workload. We varied this number from 10 (problem

size 140) upto 2500 (problem size of 575 M). Please note that the OPT-LP implementation could only solve till 300 nodes

(problem size 1.07 M). We report these experiments in§4.2.

– Varying Mean: Any fitting algorithm would be influenced by the required “tightness” of the fit. We varied the mean of

the normal distributions used to generate workload CPU and storage requirements. For CPU requirements, the mean (µ)

is varied through a parameterα ∈ (0, 1] using the formulaµ =
α∗CPUcap

N
, whereCPU cap is the capacity of the CPUs

andN is the ratio of number of applications to available CPU nodes(similarly for storage requirements). It is easy to

see thatα = 1 implies the strictest packing arrangement where the average CPU requirement is equal to theCPU cap

divided by the number of applications per CPU. Please note that highα values might not have any feasible solution for

any solver.

– Varying Std-dev: Along with fitting tightness, uniformity of the workloads will also play an important role in the

performance of various fitting algorithms. To evaluate this, we varied the standard deviation of the normal distribution as
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a function ofβ ∈ [0, 1] using the formulaσ =
β∗CPUcap

N
where parameters are defined as above.

– Varying Distance Factor (DF): DF determines the distances between storage nodes and CPU nodes at various lev-

els. A higher distance factor implies a greater relative distance between two levels of CPU nodes from the underlying

storage nodes. For example, if a CPU is accessing storage through a wide area network, its distance from the storage is

much higher than any CPU accessing through the SAN fabric. This set of experiments provides interesting insights into

placement characteristics of various algorithms (ref.§4.5).

4.2 Scalability Test: Varying SAN Size

In this experiment, we increased the size of the SAN with increasing number of applications in the workload. The

problem size varied from 140 to 575M representing a small 10 applications workload increasing upto 2500. The other

parameters wereα=0.55,β=0.55, DF=2. We measured the quality of the optimization andsolution processing time for

all implementations. Recall that quality is measured usingthe cost metric given by cumulative sum of the application

throughput times its storage-CPU pair distance.
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for 1M size, OPT-LP took 30+ minutes.

Figure-5 shows the quality of optimization for INDV-GR, PAIR-GR, SPARK, SPARK-R1. Since OPT-LP only works

upto a problem size of 1.1 M (as the number of variables in the LP formulation go past the limits of the solvers [11]), we

show a zoomed graph for small sizes in Figure-6 and give exactcost measures in Table-1.

First notice the separation between the greedy algorithms and SPARK in Figure-5. Of the two greedy algorithms,

PAIR-GR does better as it places applications based on storage-CPU pair distances, whereas INDV-GR’s independent
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decisions do not capture that. It is interesting to see that SPARK-R1 performs better than both greedy algorithms. This

is because of using knapsacks (thus picking the right application combinations to place on resources) and placing CPU

based on the corresponding storage placement. With every subsequent round, SPARK iteratively improves to the best

value shown.

Figure-6 shows the quality of all algorithms including OPT-LP for small problem sizes. While rest of the trends are

similar, it is most interesting to see the closeness in curves of OPT-LP and SPARK. Table-1 shows the exact values of

OPT-LP and SPARK optimization quality and SPARK is within 2%for all but one case where its within 4% of OPT-LP.

This validates excellent optimization quality of SPARK.

Size SPARK-R1 SPARK OPT-LP Difference

0.00 M 986 986 986 0%

0.01 M 10395 9079 8752 3.7%

0.14 M 27842 24474 24200 1.1%

0.34 M 37694 32648 32152 1.5%

0.62 M 52796 45316 45242 0.1%

1.08 M 67805 59141 58860 0.4%

2.51 M 91717 79933 – –

4.84 M 114991 100256 – –

8.27 M 136328 117118 – –

Table 1: Comparison with OPT-LP (OPT-LP works only upto 1.08 M due to solver [12] being unable to handle large number of

variables and constraints)

Figure-7 shows the time taken by implementations in giving asolution. As expected, INDV-GR is extremely fast

since it independently places application CPUs and storage, thus complexity of|Apps| ∗ (|STG| + |CPU |). On the

other hand PAIR-GR first generates all storage-CPU pairs andplaces applications on pairs giving it a complexity of

|Apps| ∗ |STG| ∗ |CPU |. Each SPARK round would place storage and CPU independently. SPARK-R1 curve shows

the time for the first round which is very small. The total processing time in SPARK would be based on the total number

of rounds and complexity of the knapsacks in each round. As shown in the graph, it is extremely competitive taking only

333 seconds even for the largest size of the problem (575 M). Because of its iterative nature and reasonable quality of

SPARK-R1, SPARK can actually be prematurely terminated if aquicker decision is required and thus still provide a

better solution than comparable algorithms.

4.3 Varying Mean

Our next experiments evaluate the algorithms with varying mean of the normal distribution used to generate CPU and

storage requirements for the applications. As mentioned earlier, this mean is varied using theα parameter; higherα

increasestightnessof the fit by increasing the mean.

Figure-8 shows the results withα from 0.1 to 0.7 for a problem size of 37 M (1000 applications),β = 0.55 and

DF = 2. The costs of all algorithms increase with increasingα. This is expected since tighter fittings will have fewer

combinations that fit, resulting in overall increased cost.

Of the greedy algorithms, PAIR-GR worsens at a faster rate which is due to increasing impact of theoverlapeffect
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SPARKused 3, 3, 5, 5, 7, 6 rounds.

as mentioned in§3. Comparatively, SPARK continues to outperform other algorithms for allα values. Also, as earlier,

we plotted a similar graph for a smaller problem size of 0.14M(150 applications) to compare with OPT-LP in Figure-9.

SPARK remains close to OPT-LP throughout, validating its power to find solutions with varying tightness of the fitting.

For processing time (Figure-10), the greedy algorithms remain constant with increasingα values as they only traverse

storage and CPU lists per application. On the other hand, SPARK might need additional rounds of placements in order

to converge to a local optimum value. As seen in the graph, while SPARK-R1 remains small, the total time increases

overall due to increased number of rounds (varies between 3 and 7 in these experiments). Note that due to convergence

to a local optimum, there would not be a consistent pattern with increasingα. The objective of the time experiments is to

ensure that varying fitting-tightness does not significantly deteriorate SPARK in quality or processing time.

4.4 Varying Std-Dev

Similar to tightness of the fit, a relevant parameter is the uniformity of the workloads. For example, if all workloads have

same CPU and storage requirements and same throughout rates, all solutions tend to have the same cost metric (as not

much can be done with different combinations of applications during placements). As workloads become less uniform,

there are different fittings that might be possible and different implementations will react differently.
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SPARKused 3, 10, 6, 8, 5, 7 rounds.

Figure-11 shows the performance of the algorithms whenβ is varied from 0 to 0.55 for a problem size of 37 M (1000

applications workload),α=0.55 and DF=2. Notice that asβ and thus non-uniformity of workloads increases, costs drop

for all algorithms. This is because with availability of many applications with low resource requirements, it is possible

to fit more applications at smaller distances. However, SPARK reacts the best to this and significantly drops in cost for

higherβ values. This is explained through the knapsacks component of SPARK as in case of greedy algorithms, an early
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INDV-GR fits better at higher DFs.
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SPARK is still within 8% of OPT-LP at

DF=15.
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sub-optimum decision can cause poor fitting (e.g. choosing 6before 5 & 3 were available for an 8 capacity resource).

Figure-12 shows the graph with OPT-LP for smaller problem size of 0.14M (150 applications). Once again, SPARK

is able to maintain its effectiveness in comparison to OPT-LP. This means that SPARK adjusts superbly with various

workload characteristics. The times of different algorithms for the larger 37M problem with varyingβ are shown in

Figure-13. As mentioned earlier, greedy algorithms tend tomaintain constant time based on application and storage-CPU

lists. In contrast, total time in SPARK is impacted by the number of rounds required to converge to the local optimal and

does not have a consistent pattern. In this case, it used 3, 10, 6, 8, 5 and 7 rounds. However, it is important to note that

the total time is still small and does not compromise on SPARK’s application to addressing dynamic SAN events like

workload surges.

4.5 Varying Distance Factor

The last set of experiments vary the distance factor (DF) that is used to obtain distance values between CPU and storage

nodes. As mentioned earlier, we used uniform distance values across applications (that is, distance between a CPU and

storage node is same for all applications) and the distance value was obtained using the formulaDF p wherep is the

physical inter-hop distance between nodes. A higher DF value implies that distance values increase much more rapidly

with every hop, for example, due to increased latencies at switches, or going over a LAN or WAN for farther nodes.

The objective of this experiment is to better understand thecharacteristics of the algorithms as differences in fitting

arrangements would be amplified at higher DF values (fitting an application at distancei vs. fitting it at distancej has the

cost difference ofThpt ∗ (DF j −DF i)).

Figure-14 plots the graph as DF is varied from 2 to 15 for a problem size of 37 M (1000 applications) andα=β=0.55

(due to small difference between SPARK and SPARK-R1 relative to the scale of the graph, they appear as if a single line).

The most interesting, and in fact surprising observation isthe performance of INDV-GR. Not only does it outperform

PAIR-GR at higher DFs but it comes reasonably close to SPARK.On close inspection, we found that INDV-GR was

performing remarkably at placing applications at higher distances, that is, even though it fit fewer applications (and

throughput) at lower distances (p=0 andp=1), it outperformed other algorithms by fitting more atp=3 and less atp=4. It

requires further analysis to fully explain this characteristic3, but we believe it can hint at improving SPARK performance

for higher DFs as well. For a smaller problem size of 0.14 M, shown in Figure-15, the OPT-LP is able to separate itself

3It is impacted by how applications are fit at lower distances,as only the ones that do not fit there are candidates for fittingat higher distances
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from SPARK at higher DF values, though SPARK still remains within 8%. This is due to the amplification as well.

Finally, Figure-16 shows that the processing time does not vary much with changing DF indicating it does not impact the

fitting.

4.6 Summary of Results

Below, we summarize our key findings:

• SPARK isscalablein optimization quality and processing time. With increasing size of the SAN and workloads,

SPARK continues to perform (30-40%) better than other candidate algorithms and iswithin 4% of LP based

solutions(tested for smaller problem sizes). It is also very fast to compute results taking 5.5 minutes for the largest

instance with 2500 applications.

• Theiterative nature of SPARK and its good performance even after a single round (SPARK-R1 in graphs) allows

improving any initial configuration, with an attractive property of trading off time with quality.

• SPARK is robust with changing workload characteristics like tightness of the fit and uniformity of workloads.

For changingα, β and distance factor parameters, it maintains superior performance over other algorithms and

closeness to the optimal.

5 Discussion

SPARK promises to be a good framework for planning resource allocation in modern data center environments. It has

many attractive properties that make it a building block forfuture work in this area. Below we discuss some of its

important characteristics and possible directions of research that it can spawn.

5.1 Salient Features

1. Being iterative: The SPARK algorithm proceeds in rounds iteratively improving the solution, thus offering a natural

time-quality tradeoff if one is desired for time-constrained domains. The experimental section shows that even after one

round SPARK yields better results than other greedy algorithms and multiple rounds further improve the value. For

example, for the largest problem size, SPARK-R1 is nearly 20% better than the greedy algorithms with almost the same

speed as the fastest INDV-GR.

2. Flexible cost measure for (Application, Storage,CPU) triple: The algorithm and the framework allow the cost for

each triple to be set independently. At any internal step, say if we have fixed a storage locationSj for Ai and trying to

look for better candidate locations for its CPU, then the algorithm looks at theCost(Ai, Sj , Pk) for all k, sorts the CPUs

by increasing order of that cost and proceeds with the proposals. The profits for the proposals are computed from these

costs and the knapsacks are based on those profits. Thus, the algorithm is not tied to a particular cost function. This

allows the user or administrator to capture special affinities between application, storage, CPU triples by controlling the

cost function.

3. Application prioritization and policy constrained placement: In a real data center, all applications are not treated

equally. Some high-priority applications require the beststorage, the fastest I/O paths and the most powerful servers.
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Administrators also have other policies that dictate if certain applications can or cannot be placed on certain types of

nodes. These constraints can be automatically encapsulated in the cost function by giving highly preferred triples a low

cost value and conversely incompatible application, storage, CPU triples a high cost value. Incorporating such constraints

in other algorithms like INDV-GR, PAIR-GR is complex as their greedy approaches are not flexible enough to account for

such cost metrics.

4. Ability to improve existing configurations, accounting for migration costs: Another important characteristic of

SPARK is its ability to start from any existing configurationand account for migration costs in making placement deci-

sions. This helps design placement plans that do not requireextensive data and VM migration. This is a very desirable

feature and is in contrast to other planning approaches4 that make decisions oblivious to the current configurations. One

way to accommodate these in SPARK is by augmenting theCost function as follows. For each applicationAi with

storage atSj and CPU atPk, one can add a factor (ψ ∗ Ai.StgReq ∗ CSj→Sj′
) to everyCost(Ai, Sj′ , P∗) value where

0 ≤ ψ ≤ 1 is a customizable parameter that modulates the bias in deciding to migrate or not (ψ=0 implies no bias and

each application is free to move) andCSj→Sj′
is the cost of migrating storage fromSj to Sj′ . Similarly for job migration

costs fromPk. We envisionψ to be decided based on the desired speed of orchestrating thefinal SPARK plan. For

example, to handle a workload surge in a rapid manner, a highψ value would prevent extensive VM and data migration.

5. Handling dynamic scenarios:SPARK is quick in generating placement decisions (see§4). This makes it highly

suitable for use in response to dynamic SAN data center scenarios. Below we briefly outline how one might use it in

response to workload surges, planned downtimes, growth andnode failures.

• Surges: Once a workload surge is identified using the VM and SAN management tools (§2), SPARK can be

initiated to quickly plan application storage and CPU placement with the new amplified workload. Theψ can

be set to a high value to limit the amount of VM/data migrationsuggested by SPARK. Once SPARK outputs a

placement plan, the orchestrator can automatically execute necessary migrations stabilizing the system.

• Planned Downtimes: If planning sufficiently in advance for scheduled downtimesof hardware (for maintenance

or upgrades), it might be preferable to have a more optimizedsolution than to limit migration. For such planning,ψ

is set low and the SPARK can be set to plan only with those SAN resources that will be up during that time. This

output plan can then be executed and the system adequately prepared for the node downtimes.

• Planned Growth: Similar to downtimes, growth in application storage capacities or CPU requirements can be

planned adequately in advance.

• Node Failures: SPARK can also similarly handle node failures as long as information about node state (e.g. for a

CPU resource node, the state of the VM) can be recreated. For stateless applications and when technologies exist

to recreate state, SPARK can output a plan fast and minimize migration by setting a highψ value.

6. Based on well-studied problems:The fact that SPARK is fundamentally grounded in well-studied problems gives us

hope that it will work well in a variety of situations and offer an opportunity for a more concrete theoretical analysis in

future. The experimental section validates the belief of superior performance of SPARK in optimization quality as well

as running time.

4For example, for an LP formulation of this problem, the increased number of constraints would make the tractable problemsize even smaller.
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5.2 Directions for Future Work

We believe SPARK to be a promising step towards addressing many data center management problems. With its versatil-

ity and quick, high-quality allocation plans, SPARK can assist administrators in developing a dynamic SAN infrastructure

that meets performance goals with minimal manual supervision. However, there remain some interesting avenues of re-

search towards achieving this utility-computing goal:

• Resource Allocation Dimensionality: In our current design, resources are allocated to a node based on a single

resource dimension – either CPU for processing nodes or storage for storage nodes. However, there are situations

when a higher dimensionality of allocation is desired. For example, a 2-D allocation to storage nodes based on

its storage capacity and also the I/O throughput capacity. Such an allocation would require a two dimensional

knapsack algorithm at each storage node, allocating applications ensuring that neither of the node capacities are

violated. Higher dimensionality knapsacks are known to be inefficient, and SPARK might need new approximation

techniques to maintain its high efficiency.

• Network Modeling: SPARK currently does not account for the underlying fabricdesign in the storage area net-

work. Appropriately incorporating network models and flowsinto the framework would be a key improvement and

is an interesting direction of future research.

• Designing Cost Models: One of the salient feature of SPARK is its flexibility to workwith various cost models.

In this paper, we described an example cost model that aims atimproving application performance by allocating

applications with higher I/O requirements closer to storage. Developing other relevant cost models for real data

center environments is a promising direction with immediate impact.

• Improved Profit Functions: In §3.4 we described a technique for evaluating theprofit for each proposal. That func-

tion can be designed specifically to meet certain objectivesof allocation. For example, to aggressively seek better

performance of the algorithm or to enhance chances of findingsome feasible solution. A deeper understanding of

the design of such functions and their impact on SPARK is alsoan interesting area for future work.

6 Conclusions

In this paper we presented a novel algorithm, called SPARK that optimizes coupled placement of application computa-

tional and storage resources on nodes in a modern virtualized SAN environment. By effectively handling proximity and

affinity relationships of CPU and storage nodes, SPARK produces placements that are within 4% of the optimal lower

bounds obtained by LP formulations. Its fast running time even for very large instances of the problem make it especially

suitable for frameworks that autonomically deal with dynamic scenarios like workloads surges, scheduled downtime,

growth and node failures. Among its other features, SPARK can iteratively improve any existing resource placement,

accounting for migration costs and has inherent built-in flexibility to handle various placement constraints that impact the

choice of resources where an application can be placed.

SPARK’s good optimization quality and grounding in two well-studied theoretical problems seems to indicate a

potential deeper theoretical connection and is an interesting area for analysis. Other interesting area is to considerload

balancing and scheduling of computational resources alongwith placement.
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