
RJ10411 (A0708-013) August 24, 2007
Mathematics

IBM Research Report

Continuity Properties of Equilibrium Prices and Allocations 
in Linear Fisher Markets

Nimrod Megiddo
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA  95120-6099

Vijay V. Vazirani
College of Computing

Georgia Institute of Technology
Atlanta, GA  30332-0280

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Continuity Properties of Equilibrium Prices

and Allocations in Linear Fisher Markets

Nimrod Megiddo∗ and Vijay V. Vazirani†

Abstract

Continuity of the mapping from initial endowments and utilities to equi-
libria is an essential property for a desirable model of an economy – without
continuity, small errors in the observation of parameters of the economy may
lead to entirely different predicted equilibria. For the linear case of Fisher’s
market model, the (unique) vector of equilibrium prices, p = p(m,U) is a
continuous function of the initial amounts of money held by the agents, m,
and their utility functions, U. The correspondence X(m,U), giving the set of
equilibrium allocations for any specified m and U, is upper hemicontinuous,
but not lower hemicontinuous. However, for a fixed U, this correspondence is
lower hemicontinuous in m.
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1 Introduction

Mathematical economists have studied extensively three basic properties that a desirable model
of an economy should possess: existence, uniqueness, and continuity of equilibria. An equilib-
rium operating point ensures parity between demand and supply, uniqueness of the equilibrium
ensures stability, and continuity is essential for this theory to have predictive value – without
continuity, small errors in the observation of parameters of an economy may lead to entirely
different predicted equilibria.

The questions of existence and uniqueness (or its relaxation to local uniqueness) were studied
for several concrete and realistic models. However, to the best of our knowledge, the question
of continuity was studied only in an abstract setting; for example, demand functions of agents
were assumed to be continuously differentiable and, using differential topology, the set of “bad”
economies was shown to be “negligible” (of Lebesgue measure zero if the set of economies is
finite-dimensional).1

In this paper, we study continuity of equilibrium prices and allocations for perhaps the
simplest market model – the linear case of Fisher’s model. It is well known that equilibrium
prices are unique for this case [5]. An instance of this market is specified by m and U, the
initial amounts of money held by the agents and their utility functions, respectively. We denote
by p = p(m,U) be the corresponding (unique) vector of equilibrium prices. In Section 3 we
prove that the equilibrium utility values are continuous functions of the unit utility values and
the initial amounts of money. In Section 4 we prove that p(m,U) is a continuous mapping.

Such linear markets can, however, have more than one equilibrium allocation of goods; let
X(m,U) denote the correspondence giving the set of equilibrium allocations. In Section 5 we
prove that this correspondence is upper hemicontinuous, but not lower hemicontinuous. For a
fixed U, however, this correspondence turns out to be lower hemicontinuous in m as well.

2 Fisher’s linear case and some basic polyhedra

Fisher’s linear market model (see [2]) consists of N buyers and n divisible goods; without loss
of generality, the amount of each good may be assumed to be unity. Let uij denote the utility
derived by i on obtaining a unit amount of good j. Thus, the utility of buyer i from receiving
xij units of good j, j = 1, . . . , n, is equal to

∑n
j=1 uijxij . Let mi, i = 1, . . . , N , denote the initial

amount of money of buyer i. Unit prices, p1, . . . , pn, of the goods are said to be equilibrium
prices if there exists an allocation x = (xij) of all the goods to the buyers so that each buyer
receives a bundle of maximum utility value among all bundles that the buyer can afford, given
these prices; in this case x is called an equilibrium allocation.

Denote by PX the polytope of feasible allocations, i.e.,

PX ≡ {x = (xij) ∈ RNn :
N∑

i=1

xij ≤ 1 (j = 1, . . . , n), x ≥ 0} .

Obviously, x is a vertex of PX if and only if for all i and j, xij ∈ {0, 1}, and for each j, there is
at most one i such that xij = 1. In other words, an allocation x is a vertex of PX if and only if
in x each good is given in its entirety to one agent. Denote by U the (N × (Nn))-matrix that
maps a vector x to the associated vector y = (y1, . . . , yN ) of utilities, where yi =

∑n
j=1 uij xij ,

i.e., y = Ux. Uniqueness of equilibrium prices implies uniqueness of y at equilibrium.
1See [3], Chapter 15, “Smooth Preferences” and Chapter 19, “The application to economies of differential

topology and global analysis: regular differentiable economies”.
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Denote by PY = PY (U) the polytope of feasible N -tuples of utility values, i.e., PY = UPX .
Obviously, y ≥ 0 for every y ∈ PY . It follows that for every vertex y of PY , there exists a vertex
x of PX such that y = Ux. Denote by Si the set of goods that i receives under vertex allocation
x. Then, yi =

∑
j∈Si

uij , i = 1, . . . , N .2

3 Continuity of equilibrium utility values

Denote
G(y,U,x) ≡ ‖y −Ux‖2 .

Obviously,

(i) G is continuous,

(ii) G(y,U,x) ≥ 0 for all y, U, and x,

(iii) G(y,U,x) = 0 if and only if y = Ux, and

(iv) for every y and U, the function g(x) ≡ G(y,U,x) has a minimum over PX .

Denote by F (y,U) the minimum of G(y,U,x) over x ∈ PX . It is easy to verify the following:

(i) F is continuous, because G is continuous and PX is compact,

(ii) F (y,U) ≥ 0 for all y and U, and

(iii) F (y,U) = 0 if and only if y ∈ PY (U).

For y ≥ 0, m > 0 and U ≥ 0, denote

f(y;m,U) ≡
n∑

i=1

mi · log yi −M · F (y,U) , (1)

where M is a sufficiently large scalar. By definition, PY (U) 6= ∅ for every U ≥ 0. For m > 0,
f is strictly concave in y over PY (U), and hence has a unique maximizer over PY (U). For M
sufficiently large, this is also a maximizer over all y ≥ 0. Thus, for m > 0 and U ≥ 0, denote
by y∗ = y∗(m,U) that unique maximizer.

Theorem 3.1. The mapping y∗(m,U) is continuous.

Proof. Suppose {(mk,Uk)}∞k=1 is a sequence that converges to (m0,U0), where for every
k ≥ 0, mk > 0 and Uk ≥ 0. Denote yk = y∗(mk,Uk), k = 0, 1, . . . By continuity of f as
a function of (y;m,U), {f(y0;mk,Uk)} converges to f(y0;m0,U0). Since yk ∈ PY (Uk) and
{Uk} converges, there exists a bound u such that ‖yk‖ ≤ u for every k. Thus, we may assume
without loss of generality that y is restricted to a compact set. Let {ykj}∞j=1 be any convergent
subsequence, and denote its limit by y. By continuity of f , {f(ykj ;mkj ,Ukj )} converges to
f(y;m0,U0). Since

f(ykj ;mkj ,Ukj ) ≥ f(y0;mkj ,Ukj ) ,

it follows that
f(y;m0,U0) ≥ f(y0;m0,U0) .

Since y0 maximizes f(y;m0,U0) and the maximum is unique, it follows that y = y0. This
implies that {yk} converges to y0.

2The converse is not true in general. In fact, in the case of N = n = 2, if uij = 1 for all i and j, then the
allocation (1, 0, 0, 1), where good 1 is allocated to agent 1 and good 2 is allocated to agent 2, is a vertex of PX but
the associated vector of utilities (1, 1) is not a vertex because it is a convex combination of the feasible vectors of
utilities (2, 0) and (0, 2).
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4 Continuity of equilibirum prices

Denote by p = p(m,U) = (p1(m,U), . . . , pn(m,U)) the prices that are generated as dual vari-
ables in the Eisenberg-Gale convex program, whose optimal solutions give equilibrium allocations
and dual variables give equilibrium prices [4]:3

Maximize
n∑

i=1

mi · log
(∑n

j=1 uij xij

)

subject to x = (xij) ∈ PX ,

(2)

i.e., given an optimal solution x = (xij) of (2),

pj(m,U) = max
{

mi · uij∑n
k=1 uik xik

: i = 1, . . . , n

}
. (3)

The vector y = Ux of utilities is the same for all optimal solutions x, and hence p is unique.
The problem can alternately be formulated in terms of the vector of utilities:

Maximize
n∑

i=1

mi · log yi

subject to y = (y1, . . . , yn) ∈ PY

(4)

and the prices can be represented as

pj(m,U) = max
{

mi · uij

yi
: i = 1, . . . , n

}
. (5)

The latter, together with Theorem 3.1 gives:

Theorem 4.1. The mapping p(m,U) is continuous.

5 Hemicontinuity of equilibrium allocations

5.1 Upper hemicontinuity

For every m > 0 and U ≥ 0, denote

g(x) = g(x;m,U) ≡
n∑

i=1

mi · log
(∑n

j=1 uij xij

)
.

Denote by X(m,U) the set of optimal solutions of (2). Obviously, X(m,U) is compact and
nonempty for every m and U. Denote by v(m,U) the maximum of g(x) over PX .

Theorem 5.1. The correspondence X(m,U) is upper hemicontinuous.

Proof. To prove that X is upper hemicontinuous at (m0,U0), one has to show the following:
for every sequence {mk,Uk}∞k=1 that converges to (m0,U0), and every sequence {xk}∞k=1 such
that xk ∈ X(mk,Uk), there exists a convergent subsequence {xkj}∞j=1, whose limit x0 belongs to
X(m0,U0).

3We use the convention that log 0 = −∞.
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Suppose {mk,Uk}∞k=1 converges to (m0,U0), and {xk}∞k=1 is a sequence such that xk ∈
X(mk,Uk). Since xk ∈ PX for every k, there exists a subsequence {xkj}∞j=1 that converges
to a point x0. Since g is a continuous function of (x;m,U), it follows that the sequence
{g(xkj ;mkj ,Ukj )} converges to g(x0;m0,U0). On the other hand,

g(xk;mk,Uk) = v(mk,Uk) .

By Theorem3.1, {yk ≡ Ukxk} converges to an optimal y with respect to (m0,U0), so that
{v(mk,Uk)} converges to v(m0,U0). Thus,

g(x0;m0,U0) = v(m0,U0) ,

which means x0 ∈ X(m0,U0).

5.2 Lower hemicontinuity

Proposition 5.1. There exist m and U0 such that the correspondence Ξ(U) ≡ X(m,U) is not
lower hemicontinuous at U0.

Proof. To prove that Ξ(U) is lower hemicontinuous at U0, one has to show the following:
for every sequence {Uk}∞k=1 that converges to U0, and every x0 ∈ X(U0), there exists a sequence
{xk ∈ X(Uk)} that converges to x0.

Consider a linear Fisher market with two goods and two buyers, each having one unit of
money (m = (1, 1)), and the utilities per unit U are: u11 = u12 = u21 = 1 and u22 = u,
where 0 < u ≤ 1. Under these circumstances, the equilibrium prices are (1, 1) for every u. If
u < 1, there is only one equilibrium allocation: Buyer 1 gets Good 2 and Buyer 2 gets Good
1. However, if u = 1, there are infinitely many equilibrium allocations: Buyer 1 gets x units of
Good 1 and 1− x units of Good 2, and Buyer 2 gets 1− x units of Good 1 and x units of Good
2, for 0 ≤ x ≤ 1. This implies that the correspondence Ξ(U) is not lower hemicontinuous at the
point U0 where u = 1.

To prove that X is lower hemicontinuous in m we need the following lemmas:

Lemma 5.1. Let A ∈ Rm×n and let x0 ∈ Rn. For every y in the column space of A, denote by
x∗(y) the closest4 point to x0 among all points x such that Ax = y. Under these conditions,
the mapping x∗(y) is affine.

Proof. Since we consider only vectors y in the column space of A, we may assume, without
loss of generality, that the rows of A are linearly independent; otherwise, we may drop dependent
rows. Thus, AAT is nonsingular. Let y0 = Ax0. Obviously, x0 = x∗(y0). Let y in the column
space of A be fixed, and consider the problem of minimizing 1

2‖x− x0‖2 subject to Ax = y. It
follows that there exists a vector of Lagrange multipliers z ∈ Rm such that x∗(y)− x0 = ATz.
Thus, Ax∗(y) − Ax0 = AATz, and hence z = (AAT )−1(y − y0). It follows that x∗(y) =
x0 + ATz = x0 + AT (AAT )−1(y − y0).

Lemma 5.2. Let A ∈ Rm×n be a matrix whose columns are linearly independent. Let x0 ∈ Rn

and y0 ∈ Rm be such that Ax0 ≤ y0. For every y ∈ Rm such that {x |Ax ≤ y} 6= ∅, denote by
x∗(y) the closest point to x0 among all points x such that Ax ≤ y. Under these conditions, the
mapping x∗(y) is continuous at y0.

4We use the Euclidean norm throughout; thus the, closest point is unique.
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Proof. For every S ⊆ M ≡ {1, . . . , m}, denote S ≡ M \ S. Denote by AS the matrix
consisting of the rows of A whose indices i belong to S. Similarly, let yS denote the projection
of y on the coordinates in S. Denote FS(y) = FS(yS) ≡ {x : AS x = yS}. Let x∗S(y) be the
point in FS(y) that is closest to x0. By Lemma 5.1, x∗S(y) is an affine transformation of yS . It
follows that there exists an α > 0 such that for every y, ‖x∗S(y)− x∗S(y0)‖ ≤ α · ‖y − y0‖. Let
ε > 0 be any number. Fix S ≡ {i : (Ax0)i = y0

i }. Obviously, x0 = x∗S(y0) and AS x0 < y0
S

.
Let 0 < δ < ε/α be sufficiently small so that ‖y − y0‖ < δ implies AS x∗S(y) < yS . It follows
that ‖y − y0‖ < δ implies ‖x∗(y)− x0‖ ≤ ‖x∗S(y)− x0‖ < αδ < ε.

Theorem 5.2. For every fixed U, the correspondence Ξ(m) = X(m,U) is lower hemicontinuous
at every m0 > 0.

Proof. To prove that Ξ(m) is lower hemicontinuous at m0 > 0, one has to show the
following: for every sequence {mk}∞k=1 that converges to m0, and every x0 ∈ Ξ(m0), there exists
a sequence {xk ∈ Ξ(mk)} that converges to x0.

Suppose {mk}∞k=1 converges to m0, and let x0 ∈ Ξ(m0) be any point. Let yk = y∗(mk),
k = 0, 1, . . ., i.e., yk is the unique maximizer of f(y;mk,U) (see (1)) or, equivalently, the optimal
solution of (4). By Theorem 3.1, {yk} converges to y0. Thus, Ξ(mk) is the set of all vectors
x ∈ PX such that Ux = yk. In particular, x0 ∈ PX and Ux0 = y0. Let xk denote the minimizer
of ‖x− x0‖ subject to x ∈ PX and Ux = yk. Denote by x∗ = x∗(y) the optimal solution of the
following optimization problem:

Minimizex ‖x− x0‖
subject to Ux = y∑

i

xij ≤ 1 (∀j)

xij ≥ 0 (∀i)(∀j) .

Thus, xk = x∗(yk). By Lemma 5.2, the mapping x∗(y) is continuous. Since {yk} converges to
y0, {xk} converges to x0.
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