
RJ10412 (A0708-014) August 24, 2007
Mathematics

IBM Research Report

Online Learning with Prior Knowledge

Elad Hazan, Nimrod Megiddo
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Online Learning with Prior Knowledge

Elad Hazan and Nimrod Megiddo

IBM Almaden Research Center
{hazan,megiddo}@us.ibm.com

Abstract. The standard so-called experts algorithms are methods for
utilizing a given set of “experts” to make good choices in a sequential
decision-making problem. In the standard setting of experts algorithms,
the decision maker chooses repeatedly in the same “state” based on infor-
mation about how the different experts would have performed if chosen
to be followed. In this paper we seek to extend this framework by intro-
ducing state information. More precisely, we extend the framework by
allowing an experts algorithm to rely on state information, namely, par-
tial information about the cost function, which is revealed to the decision
maker before the latter chooses an action. This extension is very natural
in prediction problems. For illustration, an experts algorithm, which is
supposed to predict whether the next day will be rainy, can be extended
to predicting the same given the current temperature.
We introduce new algorithms, which attain optimal performance in the
new framework, and apply to more general settings than variants of
regression that have been considered in the statistics literature.

1 Introduction

Consider the following standard “experts problem”: an online player attempts
to predict whether it will rain or not the next day, given advices of various
experts. Numerous “experts algorithms” are known, which make predictions
based on previous observations and expert advice. These algorithms guarantee
that after many iterations the number of mistakes that the algorithm makes is
approximately at least as good as that of the best expert in retrospect.

In this paper we address the question of how to utilize prior “state infor-
mation” in online learning. In the prediction example, suppose that the online
predictor has access to various measurements, e.g., temperature and cloud lo-
cation. Intuitively, this information can potentially improve the performance of
the online predictor.

It is not clear a priori how to model prior information in the online learning
framework. The information (e.g., temperature) may or may not be correlated
with the actual observations (e.g., whether or not it later rains). Even more so,
it is conceivable that the state information may be strongly correlated with the
observations, but this correlation is very hard to extract. For example, the prior
knowledge could be encoded as a solution to a computationally hard problem or
even an uncomputable one.

Various previous approaches attempted to learn the correlation between the
given information and the observable data. By the above argument, we think
such an approach is not robust.

Another approach could be to associate different experts with different deci-
sion states and then use standard expert algorithms. The problem here is that
the number of states grows exponentially with the dimension of the state space.
Therefore, this approach quickly becomes infeasible even for a modest amount
of prior information. Other difficulties with this approach arise when the domain
of the attributes is infinite.

Perhaps the previous work that is most similar to our approach is the model
for portfolio management with side information by Cover and Ordentlich [CO96].
Their approach handles discrete side information, and amounts to handling dif-
ferent side information values as separate problem instances. The measure of
performance in their model is standard regret, which must increase in propor-
tion to the available side information.

We propose a framework which does not assume anything about the dis-
tribution of the data, prior information, or correlation between the two. The
measure of performance is comparative, i.e., based on an extension of the con-
cept of regret. However, unlike [CO96], our model allows the learner to correlate
between different states. Our model takes into account the geometric structure
of the available information space. As such, it is more similar to the statistical
framework of nonparametric regression.

We propose and analyze algorithms which achieve near optimal performance
in this framework. Our performance guarantees are valid in both adversarial and
stochastic scenarios, and apply to the most general prediction setting, as opposed
to previous methods such as nonparametric regression, which apply only to the
stochastic scenario and to a more restrictive prediction setting.

We begin with an example of an instance of online learning with state in-
formation, in which the information need not be correlated with the observed
outcomes. We prove, however, a surprising gain in performance (measured by
the standard measure of regret) of algorithms that exploit the state information,
compared to those that ignore it.

Following this proof of concept, in section 4 we precisely define our model and
the measure of performance. We give algorithms and analyze them according to
the new performance measure. In section 5 we prove nearly tight lower bounds
on the performance of the algorithms, and compare our framework to the well-
studied statistical problem of nonparametric regression.

2 Preliminaries

The online convex optimization (OCO) problem is defined as follows. The feasible
domain of the problem is a given convex compact set P ⊂ Rn. An adversary picks
a sequence of T convex functions ft : P → R, t = 1, 2, . . . , T . The adversary is
not restricted otherwise. At time t, (t = 1, 2, . . .), the decision maker knows only
the functions f1, . . . , ft−1 and has to pick a point xt ∈ P. The decision maker

also recalls his previous choices x1 . . . ,xt−1. The decision maker is subsequently
informed in full about the function ft, and incurs a cost of ft(xt).

We denote the gradient (resp., Hessian) of a mapping f : P 7→ R at x ∈
P by ∇f(x) (resp., ∇2f(x)). For a family of loss functions {ft(·) : t ∈ [T]}
(henceforth we denote [n] , {1, ..., n}) and an underlying convex set P, we
denote by G = max{‖∇ft(x)‖2 : t ∈ [T], x ∈ P} an upper bound on the
`2-norm of the gradients, and by G∞ an upper bound on the `∞-norm.

Minimizing Regret. The regret of the decision maker after T steps is defined
as the difference between the total cost that the decision maker has actually
incurred and the minimum cost that the decision maker could have incurred
by choosing a certain point repeatedly throughout. More precisely, the regret is
equal to

R = R(x1, . . . ,xT ; f1, . . . , fT) ,
T∑

t=1

ft(xt)−min
x∈P

T∑
t=1

ft(x) .

Denote by A the algorithm that is used by the decision maker to make the
sequential choices. Thus, A is sequence of mappings (At : t = 1, 2, . . .) so that
xt = At(f1, . . . , ft−1). For brevity, denote xT = (x1, . . . ,xT), fT = (f1, . . . , fT)
and xT = A(fT−1). The worst-case regret from an algorithm A at time T can
be defined as

RegretT (A) , sup
fT

R(A(fT−1), fT) .

In other words,

RegretT (A) = sup
f1,...,fT

{
T∑

t=1

ft(xt)−min
x∈P

T∑
t=1

ft(x)

}

The traditional approach to the OCO problem seeks algorithms that minimize
the worst-case regret.

Online convex optimization with state information. In this paper we extend
the common OCO problem to situations where the decision maker has some
information about the “state” prior to his choosing of xt. We consider specific
situations where some state information is revealed to the decision maker. A
precise definition is given in section 4.

3 A “proof of concept”

In this section we consider the basic online convex optimization setting over the
Euclidean ball Bn = {x ∈ Rn : ‖x‖2 ≤ 1}. We assume that each payoff function
ft is linear, i.e., ft(x) = c>t x for some c ∈ Rn (see see [Zin03] for a reduction from
the general OCO problem to the case of linear cost functions). Furthermore, we
consider here the case where ct ∈ [−1, 1]n, and assume that only ct1, the first

coordinate of ct, is revealed to the decision maker as state information prior to
the choosing of xt ∈ Bn.

The following lower bound is well known for the case where ct1 is not re-
vealed to the decision maker prior to choosing xt (a similar bound was given in
[CBFH+93]; see Appendix for proof):

Lemma 1 (Folk) For the Online Convex Optimization problem over the Eu-
clidean ball with ct ∈ [−1, 1]n (or even ct ∈ {−1, 1}n) with no state information,
every algorithm has a worst-case regret of at least Ω(

√
nT).

We first prove a surprising result that the decision maker can do much better
when ct1 is known, even if there is no dependency between ct1 and the rest of
the coordinates of ct.

Theorem 2 For the OCO problem over the Euclidean ball with ct ∈ [−1, 1]n,
in which ct1 is bounded away from zero and is revealed to the decision maker as
state information prior to the choosing of xt, there exists an algorithm with a
worst-case regret of O(n2 log T).

The condition that ct1 is bounded away from zero is intuitively necessary in
order to have non-vanishing state information. It is also easy to show that for
state information that is identically zero, the lower bound of Lemma 1 holds.

We now analyze the case with prior information, specifically where the deci-
sion maker is informed of ct1 prior to choosing xt. The basic idea is to reformulate
the OCO problem with state information as an equivalent OCO problem with-
out state information. In our particular case, this can be done by modifying the
convex cost function as follows. Suppose the coordinates of yt ≡ (xt2, . . . , xt,n)>

have been fixed so that ‖yt‖2 ≤ 1. Then, the optimal choice of xt1, subject to
the constraint ‖xt‖2 ≤ 1, is

xt1 =

{ √
1− ‖yt‖2 if ct1 < 0

−
√

1− ‖yt‖2 if ct1 ≥ 0 .

In other words,
xt1 = − sgn(ct1) ·

√
1− ‖yt‖2 .

It turns out that the cost of choosing yt and completing it with an optimal choice
of xt1 is

gt(yt) = ct2xt2 + · · ·+ ctnxtn − |ct1|
√

1− ‖yt‖2 = u>t yt − |ct1|
√

1− ‖yt‖2 ,

where
ut ≡ (ct2, . . . , ctn)> .

Thus, our problem is equivalent to an OCO problem where the decision maker
has to choose vector yt, and the adversary picks cost functions of the form of gt

where ct1 is known to the decision maker.

The following algorithm chooses vectors based on weights, which are updated
in a multiplicative fashion. Let

wt(y) = exp
{
−α

∑t−1
τ=1gτ (y)

}
.

Thus,
wt(y) = wt−1(y) · exp {−α gt−1(y)} .

The weight function wt(·) determines the choice of yt as follows, where P =
Bn−1.

yt =

∫
P y · wt(y) dy∫
P wt(y) dy

∈ P .

Note that yt is a convex combination of points in P and hence yt ∈ P. The
corresponding vector xt in the OCO problem with state information is the fol-
lowing:

(xt2, . . . , xtn)> = yt

xt1 =

{ √
1− ‖yt‖2 if ct1 < 0

−
√

1− ‖yt‖2 if ct1 ≥ 0

We refer to the above-stated algorithm as Alg1. Denote ρ = min{|ct1| : t =
1, . . . , T}.

Lemma 3 The worst-case regret of Alg1 is at most (4n2/ρ) · log T .

The proof of this Lemma is given in the appendix. Briefly, Alg1 belongs to a
family of well studied “exponential weighting” algorithms, which can exploit the
curvature of the functions g(y), and hence obtain a logarithmic regret. Theorem
2 follows.

Algorithm Alg1 can be implemented in time polynomial in n and T , in a
way similar to the implementation of Cover’s algorithm [Cov91] by Blum and
Kalai [BK97].

4 The general case

To capture state information, we revise the online convex optimization frame-
work as defined in section 2 as follows. We model state information by a vector
in a metric space I, which we also call the information space. In iteration t, an
online algorithm A accepts besides f t−1 and xt−1 also a state vector kt ∈ I as
well as all previous state vector k1, . . . ,kt−1.

Henceforth we consider the information space I as a subset of d-dimensional
Euclidean space, even though it makes sense to consider general metric spaces
so as to allow the representation of both scalar quantities (e.g., temperature)
and problem-specific quanta (e.g., board configurations in the game of chess).
The space should at least be metric since the main point of our algorithms
is to take advantage of similarity between consecutive state vectors, which is

measured according to some distance function. Note that ignoring the similarity
between states is equivalent to employing disjoint sets of experts in different
states. We also refer to the intrinsic dimensionality of the space, denoted d. For
Euclidean space this is the standard dimension, but more generally the notion
of box dimension [Cla06] is suitable for our applications.

The new performance measure we propose is a strict generalization of the
game-theoretic concept of regret as follows.

Definition 1 For L > 0,

(i) Denote by XL the family of mappings x : I 7→ P, from the information
space to the underlying convex set P, with Lipschitz-constant L, i.e., for all
k1,k2 ∈ I,

‖x(k1)− x(k2)‖ ≤ L · ‖k1 − k2‖ .

(ii) The L-regret from a sequence of choices x1, ...,xT is defined as

T∑
t=1

ft(xt)− min
x∈XL

T∑
t=1

ft(x(kt))

When L and k1, . . . ,kT have been fixed, we denote by x∗(·) a minimizer of∑T
t=1 ft(x(kt)) over XL.

Thus, the actual costs are compared with the costs that could be incurred by
the best experts in a family of experts with Lipschitz-constant L. Note that this
definition reduces to the standard regret when L = 0. If L = ∞, then L-regret
is the “competitive ratio” studied in competitive analysis of online algorithms.
Our model for prior information allows for algorithms which attain sublinear
L-regret for 0 < L <∞.

4.1 An algorithm for minimizing L-regret

To describe the first algorithm which attains a non-trivial worst-case L-regret,
we recall the geometric notion of an ε-net.

Definition 2 A subset N ⊆ I of points in a metric space I with distance func-
tion ∆ is called an ε-net for the set S ⊆ I if for every x ∈ S, ∆(x,N) ≡
inf{∆(x, y)|y ∈ N} ≤ ε, and in addition ∀x, y ∈ N . ∆(x, y) ≥ ε.

The first algorithm, Alg2, which attains a non-trivial worst-case L-regret,
constructs an ε-net of the observed data points, denoted N , according to the on-
line greedy algorithm (see [Cla06,KL04]). We also maintain a mapping, denoted
M, from all points in N to the decision space P. Let D denote the diameter of
P and W denote the diameter of the information space I. The algorithm relies
on the Lipschitz-constant L and the number of time periods T .
Algorithm Alg2 (L,T).

Set ε = W (D/L)2/(d+2) T−1/(d+2) and N = ∅.

– Given kt ∈ [0, 1]d, let k̃t be the state that is closest to kt among all state
vectors in N , i.e., k̃t = arg min{‖k− kt‖ : k ∈ N}.

– Set xt ←M(k̃t) or, if t = 0, then set x0 arbitrarily.
– Denote by

∏
P the projection operator into the convex set P. Set

y←
∏
P

(
M(k̃t)− 1√

T
∇ft(M(k̃t))

)
– If ‖k̃t − kt‖ ≤ ε, then updateM(k̃t)← y (the size of N does not increase);

else, add kt to N and set M(kt)← y.

Theorem 4 Given L, P, and T ,

L-regret(Alg2) = O
(
W G L1− 2

d+2 D
2

d+2 · T 1− 1
d+2

)
The theorem is proved by independently summing up the L-regret over the “rep-
resentative” points in the set N . For each such representative point, the optimal
strategy in hindsight is almost fixed by diameter considerations. In addition, the
total number of such representatives is not too large because the set N is an
ε-net of the observed set of state vectors.

Proof. Summing up the L-regret over the “representative” points in the set N :

L-regret(Alg2) =
T∑

t=1

[ft(xt)− ft(x∗(kt))] =
∑
k∈N

∑
t:k̃t=k

[ft(xt)− ft(x∗(kt))] .

Let Tk = |{t ∈ [T] | k̃t = k}| be the number of iterations during which the prior
knowledge kt is equal to the representative vector k ∈ N . By the properties
of the gradient-descent algorithm (Theorem 1 in [Zin03]), for each set of time
periods Tk, the 0-regret can be bounded as follows.∑

t∈Tk

ft(xt)−min
x∈P

∑
t∈Tk

ft(x) =
∑
t∈Tk

[ft(xt)− ft(x∗k)] ≤ 2GD
√

Tk , (1)

where x∗k = arg min
∑

t∈Tk
ft(x). Also, since for each time period during which

k̃t = k the distance between state vectors is bounded by (using the triangle
inequality for the norm),

‖x∗(k1)− x∗(k2)‖ ≤ L · ‖k1 − k2‖ ≤ L · (‖k1 − k‖+ ‖k2 − k‖) ≤ 2Lε , (2)

combining (1) and (2) we get for every k,∑
t∈Tk

[ft(xt)− ft(x∗(kt))]

=
∑
t∈Tk

[ft(xt)− ft(x∗k)] +
∑
t∈Tk

[ft(x∗k)− ft(x∗(kt))]

≤ 2GD
√

Tk +
∑
t∈Tk

∇ft(x∗(kt))(x∗k − x∗(kt))

≤ 2GD
√

Tk +
∑
t∈Tk

‖∇ft(x∗(kt))‖ · ‖x∗(k1)− x∗(kt)‖

≤ 2GD
√

Tk + GTk · εL .

Thus, the total regret is bounded by (using concavity of the square root function)
T∑

t=1

[ft(xt)−ft(x∗(kt))] ≤
∑
k∈N

[2GD
√

Tk+GεLTk] ≤ |N |·2GD
√

T/|N |+GεLT .

It remains to bound the size ofN , which is standard for a greedy construction
of an ε-net. Since the distance between every two distinct vectors k1,k2 ∈ N is
at least ε, by volume arguments and the fact that the information space I has
(box) dimension d, we have |N | ≤ (W/ε)d. Thus,

L-regret(Alg2) = O
(
(W/ε)d/2

GD
√

T + GεLT
)

By choosing ε = W (D/L)2/(d+2)T−1/(d+2), we obtain the result.

Remark 1. Algorithm Alg2 receives as input the number of iterations T . This
dependence can be removed by the standard “doubling trick” as follows. Apply
the algorithm with t1 = 100. Recursively, if the number of iterations exceeds
tj−1, then apply Alg2 with tj = 2tj−1 from iteration tj onwards. The overall
regret is

log T∑
j=1

WGL1− 2
d+2 D

2
d+2 · t1−

1
d+2

j ≤ log T ·WGL1− 2
d+2 D

2
d+2 · T 1− 1

d+2 .

The same remark shall apply to all consequent variants. For simplicity, we assume
henceforth that T is known in advance.

Implementation and running time. It is straightforward to implement Alg2 in
time linear in T , n, and d, apart from the projection operator onto the convex
set P. This projection is a convex program and can be computed in polynomial
time (for various special cases faster algorithms are known).

The performance guarantee of Alg2 decreases exponentially with the dimen-
sion of the information space, denoted d. As we show in the next section, this
“curse of dimensionality” is inherent in the model, and the bounds are asymp-
totically tight. Next, we describe an approach to deal with this difficulty.

4.2 Extensions to the basic algorithm

Exploiting low dimensionality of data If the state vectors originate from
a lower-dimensional subspace of the information space, the algorithm of the
preceding section can be adapted to attain bounds that are proportional to the
dimension of the subspace rather than the dimension of the entire information
space.

Corollary 5 Suppose that the prior knowledge vectors kt originate from an r-
dimensional subspace of I. Then setting ε = W (D

L)2/(r+2) T−1/(r+2) in Alg2
we obtain

L-regret(Alg2) = O(WGL1− 2
r+2 D

2
r+2 · T 1− 1

r+2)

This corollary follows from the fact that the constructed ε-net in an r-
dimensional subspace has size (W/ε)r rather than (W/ε)d.

Specialization to other online convex optimization variants It is possible
to modify Alg2 by replacing the online gradient descent step inside the main
loop by any other online convex optimization algorithm update. In certain cases
this may lead to more efficient algorithms. For example, if the underlying convex
set P is the n-dimensional simplex, then using the ubiquitous Multiplicative-
Weights online algorithm (introduced to the learning community by Littlestone
and Warmuth [LW94]; see survey [AHK05]) we can obtain the following regret
bound

L-regret(MW-Alg2) = O(WG∞L1− 2
d+2 D

2
d+2 · T 1− 1

d+2
√

log n) .

Another possible variant applies a Newton-type update rather than a gradient
update. Such second-order algorithms are known to achieve substantial lower
regret when the cost functions are exp-convex [HKKA06]. It is also possible to
plug in “bandit” algorithms such as [FKM05].

Better ε-nets. The metric embedding literature is rich with sophisticated data
structures for constructing ε-nets and computing nearest neighbors over these
nets - exactly the geometrical tasks performed by algorithm Alg2. Specifically,
it is possible to use the techniques in [KL04] and related papers to obtain algo-
rithms with much better running times.

5 Limitations of learning with prior knowledge

In this section we discuss the limitations of our model for learning with prior
knowledge. As a first step, we give lower bounds on the achievable L-regret,
which are asymptotically tight up to constant factors.

Following that, we discuss a well-studied statistical methodology, called non-
parametric regression, and show that our model generalizes that methodology.
As a consequence, the lower bounds proved in the statistics literature apply to
our framework and imply lower bounds on the achievable L-regret. These lower
bounds are tight in the sense that the algorithms we described in the previous
sections attain these bounds up to constant factors.

5.1 Simple lower bounds for L-regret

We begin with a simple lower bound, which shows that the L-regret of any online
algorithm with prior information deteriorates exponentially as the dimension
grows. Compared to Theorem 4 the bounds are tight up to constant factors.

Lemma 6 For P = [−1, 1], d > 1, and every L ≥ 0, the L-regret of any online
algorithm is at least Ω(GLT 1− 1

d).

Proof. Partition the hypercube [0, 1]d into T = δ−d small cubes of edge-length
δ. Consider loss functions ft(x) and prior knowledge vectors kt as follows. The

sequence of prior knowledge vectors (k1, . . . ,kT) consists of all centers of the
small cubes. Note that for every i 6= j, ‖ki − kj‖ ≥ δ. For each t, indepen-
dently, pick ft = ft(x) to be either Gx or −Gx with equal probability. Note that
‖∇f(x)‖ = |f ′(x)| = G. Obviously, the expected loss of any algorithm that picks
xt without knowing ft(x) is zero; thus,

Ef1,...,ft

[∑T
t=1 ft(xt)

]
= 0.

Now, define the following function:

x∗(kt) ,

{
− 1

2Lδ if ft(x) ≡ Gx

+ 1
2Lδ if ft(x) ≡ −Gx .

The function x∗(·) is in XL because for every k1 and k2,

|x∗(k1)− x∗(k2)| ≤ Lδ ≤ L · ‖k1 − k2‖ .

Also, the minimum possible total cost using an optimal strategy x∗ is∑T
t=1−

1
2 Lδ ·G = −T · 1

2 LδG = − 1
2 GLT 1− 1

d

where the last equality follows since T = δ−d and hence δ = T−
1
d . Therefore,

the expected regret of any online algorithm is as claimed.

The previous Lemma does not cover the case of d = 1, so for completeness
we prove the following lemma.

Lemma 7 For d = 1, prior knowledge space K = [0, 1], P = [−1, 1], and any
L ≥ 0, the L-regret of any online algorithm is at least Ω(G

√
T (bLc+ 1))

Proof (sketch). Without loss of generality, assume L is an integer. If L ≤ 1, then
this lemma follows from Lemma 1; otherwise, divide the real line [0, 1] into L
segments, each of length 1

L .
The online sequence is as follows. The prior knowledge vectors will be all L+1

points {k1, . . . , kL+1} which divide the segment [0, 1] into L smaller segments.
For each such point we have a sequence of T/(L + 1) loss functions ft(x), each
chosen at random, independently, to be either Gx or −Gx.

Obviously, the expected payoff of any online algorithm is zero. Now, to define
the optimal strategy in hindsight, for each sequence of random functions corre-
sponding to one of the points {k1, . . . , kL+1}, with very high probability, the
standard deviation is O(

√
T/(L + 1)). Let x∗(ki) be either 1

4 or − 1
4 according

to the direction of the deviation. We claim x∗ ∈ XL since |k1 − k2| ≥ 1/L and
for all k1 and k2,

|x∗(k1)− x∗(k2)| ≤
1
2
≤ L · |k1 − k2| .

The loss obtained by x∗ is

(L + 1) · 1
4

√
T

L + 1
=

1
4

√
T (L + 1) .

This completes the proof.

5.2 The relation to nonparametric regression

Nonparametric regression is the following well-studied problem which can be de-
scribed as follows. There exists a distribution Ψ on K ×X, where that K ⊆ Rd

and X ⊆ R. We are given t samples, {(k1, x1), . . . , (kt, xt)}, from this distribu-
tion, which we denote by zt = {z1, . . . , zt} (zi = (ki, xi)). The problem is to
come up with an estimator for x, given k ∈ Rd. An estimator for X which has
seen t samples zt from the distribution Ψ is denoted by θt : K 7→ X. The goal
is to come up with an estimator which is as close as possible to the “optimal”
Bayes estimator θ(k) = E[x |k].

Various distance metrics are considered in the literature for measuring the
distance of an estimator from the Bayes estimator. For our purposes it is most
convenient to use the L2-error given by

Perf(θt) , E(k,x)

[
(θt(k)− θ(k))2

]
.

The online framework we consider is more general than nonparametric re-
gression in the following sense: an algorithm for online convex optimization with
prior information is also an estimator for non-parametric regression, as we show
below.

Recall that an algorithm for online optimization A takes as input the his-
tory of cost functions f1, . . . , ft−1 as well as historical and current state in-
formation k1, . . . ,kt−1,kt, and produces a point in the underlying convex set
xt = A(f1, . . . , ft−1 ; k1, . . . ,kt). Given an instance of nonparametric regression
(K, X), and t samples {(ki, xi)}, define t cost functions as

fi(x) , (x− θ(ki))2 .

Note that these cost functions are continuous and convex (although not differ-
entiable). Motivated by results on online-to-batch algorithm conversion, let the
hypothesis of online algorithm A at iteration t be

hAt (k) , A(f1, . . . , ft−1 ; k1, . . . ,kt−1,k) .

Now, define the estimator corresponding to A by

θAt (k) , 1
t

∑t
τ=1 hAτ .

Standard techniques imply a bound on the performance of this estimator as a
function of the L-regret achievable by A:

Lemma 8 Let L be the Lipschitz constant of the function θ : K 7→ X. Then,

lim
T 7→∞

Pr
zT∼ΨT

[
Perf(θAT) ≤ 1

T
L-regretT (A) + O

(
log T√

T

)]
= 1 .

Proof. Standard results of converting online algorithms to batch algorithms, in
particular Theorem 2 from [CBCG04], rephrased in our notation, reduces to:

Pr
zt∼Ψ

[
E(k,x)∼Ψ [f(θAt (k))] ≤ 1

t

t−1∑
τ=1

fτ (hAτ (kτ)) + O

(
1√
t
log

1
δ

)]
≥ 1− δ .

Since for every τ , fτ (θ(kτ)) = 0, we obtain

1− δ ≤ Pr
zt∼Ψ

[
E(k,x)∼Ψ [f(θAt (k))] ≤ 1

t

t−1∑
τ=1

fτ (hAτ (kτ)) + O

(
1√
t
log

1
δ

)]

= Pr
zt∼Ψ

[
Perf(θAt) ≤ 1

t

[
t−1∑
τ=1

fτ (hAτ (kτ))− fτ (θ(kτ))

]
+ O

(
1√
t
log

1
δ

)]

≤ Pr
zt∼Ψ

[
Perf(θAt) ≤ 1

t
[L-regretT (A)] + O

(
1√
t
log

1
δ

)]

where the equality follows from the definition of Perf(θt), and in the last in-
equality we use the fact that θ ∈ XL by our assumption on the Lipschitz constant
of θ.

By choosing δ = 1
t , with probability approaching 1 we have

Perf(θAt) ≤ 1
t

[L-regretT (A)] + O

(
log t√

t

)
.

Hence, online algorithm with non-trivial L-regret guarantee automatically
give a method for producing estimators for nonparameteric regression. In addi-
tion, the numerous lower bounds for nonparametric regression that appear in
the literature apply to online learning with prior information. In particular, the
lower bounds of [Sto82] and [AGK00] show that the exponential dependence of
the L-regret is inherent and necessary even for the easier problem of nonpara-
metric regression. It appears that Stone’s lower bound [Sto82] has exactly the
same asymptotic behavior as achieved in Theorem 4. Closing the gap between
the convergence rate 1 − 1

d+2 and our lower bound of 1 − 1
d is left as an open

question.

6 Acknowledgements

We thank Ken Clarkson and Robi Krauthgamer for useful comments and refer-
ences on ε-nets and nearest neighbor algorithms.

References

[AGK00] A. Antos, L. Györfi, and M. Kohler. Lower bounds on the rate of conver-
gence of nonparametric regression estimates. Journal of Statistical Plan-
ning and Inference, 83(1):91–100, January 2000.

[AHK05] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update
method: a meta algorithm and applications. Manuscript, 2005.

[BK97] Avrim Blum and Adam Kalai. Universal portfolios with and without trans-
action costs. In COLT ’97: Proceedings of the tenth annual conference on
Computational learning theory, pages 309–313, New York, NY, USA, 1997.
ACM Press.

[CBCG04] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the gen-
eralization ability of on-line learning algorithms. IEEE Transactions on
Information Theory, 2004.

[CBFH+93] Nicolo Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler,
Robert E. Schapire, and Manfred K. Warmuth. How to use expert advice.
In STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, pages 382–391, New York, NY, USA, 1993. ACM
Press.

[CBL06] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games.
Cambridge University Press, New York, NY, USA, 2006.

[Cla06] Kenneth L. Clarkson. Nearest-neighbor searching and metric space dimen-
sions. In Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk, editors,
Nearest-Neighbor Methods for Learning and Vision: Theory and Practice,
pages 15–59. MIT Press, 2006.

[CO96] T.M. Cover and E. Ordentlich. Universal portfolios with side information.
42:348–363, 1996.

[Cov91] T. Cover. Universal portfolios. Math. Finance, 1:1–19, 1991.
[FKM05] Abraham Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. On-

line convex optimization in the bandit setting: gradient descent without a
gradient. In Proceedings of 16th SODA, pages 385–394, 2005.

[HKKA06] Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. Logarithmic
regret algorithms for online convex optimization. In COLT ’06: Proceedings
of the 19’th annual conference on Computational learning theory, 2006.

[KL04] R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms for
proximity search. In 15th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 791–801, January 2004.

[KW99] Jyrki Kivinen and Manfred K. Warmuth. Averaging expert predictions.
In EuroCOLT ’99: Proceedings of the 4th European Conference on Com-
putational Learning Theory, pages 153–167, London, UK, 1999. Springer-
Verlag.

[LW94] N. Littlestone and M. K. Warmuth. The weighted majority algorithm.
Information and Computation, 108(2):212–261, 1994.

[Sto82] C.J. Stone. Optimal global rates of convergence for nonparametric regres-
sion. Annals of Statistics, 10:1040–1053, 1982.

[Zin03] Martin Zinkevich. Online convex programming and generalized infinites-
imal gradient ascent. In Proceedings of the Twentieth International Con-
ference (ICML), pages 928–936, 2003.

A Proof of Lemma 1

Proof. Suppose the adversary picks each of the coordinates of c1, . . . , cT indepen-
dently at random from {−1, 1}. Then, for every algorithm, the expected cost to
the decision maker is zero. Given (c1, . . . , cT), consider the vector v ≡

∑T
t=1 ct.

The best vector x∗ ∈ Bn with respect to v is obtained by minimizing v>x over
all x ∈ Bn. Obviously, x∗ = −v/‖v‖ and v>x∗ = −v>v/‖v‖ = −‖v‖. Thus,
the expected regret is E[‖v‖]. By the central limit theorem, each coordinate vj is
distributed approximately as normal with expectation 0 and variance T . It fol-
lows that the expected regret is E[‖v‖] = Ω(

√
nT) and hence also the worst-case

regret is Ω(
√

nT).

B Proof of Lemma 3

Proof. Recall that by definition of gt(·) and the construction of xt,

c>t xt = gt(yt) . (3)

Let x∗ be the minimizer of
∑T

t=1 c>t x over x ∈ Bn. Recall that

v = c1 + · · ·+ cT

and x∗ = −v/‖v‖. Denote

y∗ = (x∗2, . . . , x
∗
n)> .

It follows that

x∗1 =

{ √
1− ‖y∗‖2 if v1 < 0

−
√

1− ‖y∗‖2 if v1 ≥ 0

i.e.,
x∗1 = − sgn(v1)

√
1− ‖y∗‖2 .

Recall that for every y,

gt(y) =
n∑

j=1

ctjyj − |ct1|
√

1− ‖y‖2 = uT y − |ct1|
√

1− ‖y‖2 .

Therefore, for every t,

c>t x∗ = ct1x
∗
1 + u>y∗ = −ct1 · sgn(v1)

√
1− ‖y∗‖2 + u>y∗ ≥ gt(y∗) . (4)

From (3) and (4) we have

RegretT (Alg1) =
T∑

t=1

c>t xt−
T∑

t=1

c>t x∗ =
T∑

t=1

c>t xt−v>x∗ ≤
T∑

t=1

gt(yt)−
T∑

t=1

gt(y∗)

Therefore, we proceed to bound the latter difference. The following notion of
convexity called “α-exp-concavity” was introduced by Kivinen and Warmuth
[KW99] (see also [CBL06])

Definition 3 (i) For square matrices of the same order P and Q, the notation
P � Q means that P−Q is positive semidefinite. In other words, for every
vector x, x>Px ≥ x>Qx.

(ii) For α > 0, a twice-differentiable mapping f : P → R is said to be α-exp-
concave if the mapping h(x) , e−α·f(x) is concave.

Proposition 1 For f : Rn 7→ R, e : R 7→ R, and h = e ◦ f , it holds that
∇h(x) = e′(f(x))∇f(x) and hence

∇2h(x) = e′′(f(x))∇f(x)(∇f(x))> + e′(f(x))∇2f(x) .

The following proposition is proved in [HKKA06].
Proposition 2 A mapping f : P → R is α-exp-concave if and only if for all
x ∈ P,

∇2f(x) � α · ∇f(x)(∇f(x))> .

Proposition 3 The mapping gt(y) = u>t y−|ct1|
√

1− ‖y‖2 is ρ
2n -exp-concave.

Proof. Assume ρ > 0 (else the statement is trivially correct). The gradient of gt

is

∇gt(y) = ut +
|ct1|√

1− ‖y‖2)
y ,

hence the Hessian is

∇2gt(y) =
|ct1|

(1− ‖y‖2)3/2
yy> +

|ct1|√
1− ‖y‖2

In−1 .

For the proof we rely on the following relation:

(a + b)(a + b)> � 2(aa> + bb>) , (5)

which is true because for every vector w,

w>(a + b)(a + b)>w = (w>a + w>b)2

≤ 2[(w>a)2 + (w>b)2] = w>[2aa> + 2bb>]w

since (x + y)2 ≤ 2 (x2 + y2) for all real x and y. Denoting ∇t = ∇gt(y), and
ut = (ct2, . . . , ctn)>, it follows from (5) that

∇t∇>t � 2utu>t +
2c2

t1

1− ‖y‖2
yy> .

Since ‖ut‖2 ≤ n− 1, it follows that

utu>t � (n− 1) In−1 � n− 1
|ct1|

∇2gt(y) .

Also, since
√

1− ‖y‖2 ≤ 1 and |ct1| ≤ 1,

c2
t1 · yy>

1− ‖y‖2
� |ct1| · yy>

(1− ‖y‖2)3/2
� ∇2gt(y) .

Combining the above relations,

∇t∇>t � 2
(

1 +
n− 1
|c1|

)
∇2gt(y) � 2n

ρ
∇2gt(y) .

The remainder of the proof follows from the analysis of regret bounds of the
EWOO algorithm of [HKKA06], following Blum and Kalai [BK97].

