
RJ10416 (A0710-003) October 3, 2007
Computer Science

IBM Research Report

Towards an Agile Service System for a Global Call Center

Isaac Cheng, Vikas Krishna, Neil Boyette, Joel Bethea
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Towards an Agile Service System

for a Global Call Center

Isaac Cheng, Vikas Krishna, Neil Boyette, and Joel Bethea

IBM Almaden Research Center,

650 Harry Road, San Jose, CA 95120, U.S.A.

isaacc@us.ibm.com

vikas@us.ibm.com

nboyette@us.ibm.com

bethea@us.ibm.com

Abstract: In this paper, we share our experience with applying service-oriented

techniques to improve the agility of a real-world global service system. We

improved the process independence of the service system by decoupling

application development from process management using a framework that is

based on models and rules. We analyzed various aspects of the system and the

impact of technologies being deployed. Our experience is documented as a case

study as we anticipate that similar techniques can be applied to improve the agility

of other significant service systems in the future.

1 Introduction

In the new Business Process Management paradigm, business agility can be achieved by

decoupling application development from process management, very much like the

power and flexibility realized from the decoupling of application development from data

management in relational database technology. Towards a goal of improving process

independence, the authors leveraged techniques of Service Oriented Architecture (SOA)

and incorporated technologies such as web services and the Eclipse Modelling

Framework (EMF), to develop the Custom Call Flow (CCF) framework [CBK06],

[Ec06].

To test CCF in the real world, the authors worked closely with the Call Management

(CM) team of a global enterprise to develop a tool and a system to make use of the

framework. The resulting solution provided a means for management of call flow

processes independent of the call flow application, and thus improved the overall agility

of the system. In particular, the business processes and workflows can be easily changed

by business analysts with a CCF-based authoring tool without incurring application code

change. Independent from the processes, application development has been off-shored to

another country, where software developers use a CCF-based software development kit.

This strategic off-shoring resulted in better utilization of both technical and business

resources. Specifically, code change in the application performed by the development

team does not affect the business processes and workflows. One way of understanding

the work in CCF is to look at is as a service system case study using the methodologies

from Services Sciences, Management and Engineering (SSME) [Ma06], [Sp06], [Te06].

2 Call Center and Call Flows

A call center is a centralized location where companies manage inbound customer

requests. To ensure consistent high quality of service to customers, companies often

define formal processes, such as the entitlement process. Call flows can be designed to

help customer service representatives comply with these processes. A call flow, a special

type of workflow, describes the steps that systematically guide a customer to resolution

of his or her request in multiple scenarios. Managing call flows is challenging for many

reasons:

• Different call centers throughout the world have different needs, and require

different applications to consume call flows. It is economical for different

applications to share a common set of call flows.

• Products often need to be updated frequently. So do services and call flows.

Services need to be available during call flow updates.

• Customers often provide their service representatives with unsolicited information.

A call flow execution engine should take customers’ input in any order and quickly

compute the optimal path to a resolution.

 Call flows are designed to provide consistent management of post sales product support

and as a services delivery system. Call flows guide the interaction from first customer

contact until the time that the customer concurs that our solution solved their problem.

3 The Problem

Before we introduced CCF, the original call flow management system was a closed

monolithic system where most major components were tightly coupled. The authoring

tool, the runtime front-end, and the runtime back-end communicated with one another

using a proprietary protocol, and the call flows themselves were written using a

traditional programming language. As a result, the inherent lack of agility in the system

has become a major problem.

Call flows are often designed to support specific products, and as the products evolve,

call flows must change accordingly. The call flow authoring tool used by the original

call flow management system was tightly coupled with the rest of the system, and

updating the call flows had been difficult (see Figure 1). It had also been very difficult to

evolve the authoring tool to keep up with the current user-interface (UI) technologies. In

particular, it was hard for a business architect to get a holistic view of a call flow to

understand the logic of the call flow process in relation to the design of the UI. This was

further complicated by the fact that the call flows were defined in code which was

difficult for business analysts to understand. Finally, because of limitations of the

proprietary protocol between the authoring tool and its call flow repository, supporting

foreign languages and cultural information was impossible. All of these factors led to an

authoring tool that was cumbersome and difficult to use, making the process of updating

call flows extremely error prone.

The runtime components suffer from similar problems. The UI could hardly keep up

with modern technologies (see Figure 2) and because of the tight coupling of the system,

it was difficult to replace any algorithm, such as the one for business-rule inference, with

a better one.

Figure 1: The Authoring Tool of the Existing Call Management System

Figure 2. The Runtime UI of the Existing Call Management System

The lack of agility of the existing call management system imposed unnecessary

development, maintenance, and operational costs and degraded the quality of service. A

new solution should leverage the existing substantial investment and work with the

existing infrastructure on a low-risk migration path.

4 The Solution

Learning from the experience of the existing call management system, we designed CCF

to provide business and technical agility. Our goal was to provide flexibility in both the

framework architecture and the call flow update process. As an example, popular

Web 2.0 technologies such as AJAX and wiki are cutting edge right now, but may

become an obsolete legacy in just a few years. In a similar way, CCF has been designed

with loose coupling between components, allowing individual components like the UI

from the example, to be updated or replaced as technologies or business needs change

without redesigning the whole framework. The same idea was used for the authoring tool

and content repository. To facilitate these goals, we adopted a SOA approach in the CCF

design.

Prior to implementation of the SOA components, we designed a model based on the

requirements using EMF. The model was then used by both the authoring tool and the

runtime engine and allowed each to leverage the benefits of a Model Driven Architecture

(MDA). The authoring tool is an Eclipse based application for business architects to

visually create, edit and manage call flows. This gives the business analysts a direct view

into the process by displaying the elements and flow of the process in terms of a visual

workflow rather than in code. The runtime engine is provided as a separate component.

It provides a Java application development interface (API) which developers can use to

write client applications on any platform using the UI toolkit of their choice. Both the

authoring tool and the engine communicate with a call flow repository through Web

services. In addition the runtime engine can interact with external services using SOA,

enabling arbitrary business functionality to be incorporated into the call flow execution.

The use of SOA in this manner allows business analysts to change business processes

used in a call flow independently of the application UI and code. Neither the business

analysts nor the UI application developers need to understand the underlying EMF

model.

SOA allows us to leverage both the existing and new investments through data

mediation. As a proof of concept, we have shown that CCF works with both legacy and

newly introduced third-party back-ends. The legacy backend is CEDS, which is the same

back-end used by the existing call management system. With CCF, sophisticated

decision analysis has been implemented, enabling business analysts to design the call

flow to choose which back-end to invoke at runtime. Whereas in the old system such

decisions had to be hard coded into the system at design time, this method allows the

decision to be deferred until runtime when more information pertinent to the decision is

available. The runtime engine uses an efficient pattern-matching algorithm implemented

by the Agent Building and Learning Environment [Ab06] to make intelligent decisions

based on the rules of the business as defined by the analysts and the available

information at runtime. Neither the business analysts nor the application developers need

to understand the sophisticated pattern-matching algorithm. CCF appropriately hides

both the model and the rule inference algorithm within the framework allowing both

business analysts and UI application developers to work productively and independently.

Agility is achieved by process independence.

5 Analysis

The CM comprises a service provider, service client, and a service target that is being

transformed as a result of the service (see Figure 3). These elements and relationships

are a useful way to describe a service system [Ga02]. The service provider is the call

center of a global enterprise, and the target being transformed is the customer and case

information.

Figure 3. The CM Service System

The call center consists of a Customer Service Organization (CSO) and a Call

Management team. When a customer encounters a problem, she calls the CSO for help.

A Customer Service Representative (CSR) answers the call and asks for both customer-

specific and case-specific information. An example of customer information is a

customer ID, which is linked to the terms of a service contract. This information is

useful for the CSO for making decisions on service entitlement, up-selling, and cross-

A.Service Provider

CM team, CSO with
CCF and third-party
vendors’ technologies

C. Service Target: The reality to be
 transformed or operated on by A,

 for the sake of B

Customer and case information
transformed into a solution
to the customer’s problem

Forms of

Ownership Relationship
(B owns information

captured in C.)

(A provides systems and
people, and B provides

customer and case
information.)

Forms of

Responsibility Relationship
(A maintains and transforms

customer and case information
from B.)

Forms of

Service Interventions
(A standardizes and automates

 the capture of information; B provides customer
and case information.)

Forms of

Service Relationship

B. Service Customer

Customers world-wide
requesting help
from the CSO

selling service contracts based on its business rules. The case information is pertinent to

the problem that the customer encountered. For instance, a customer may encounter the

infamous “blue screen of death” syndrome. The system supporting the CSO may infer

that it is probable that the problem was caused by an operating system made by a

particular vendor. The CCF framework accepts modern inference engines as plug-in

modules to support various kinds of rule-based transformations. The customer and case

information is transformed into a solution to the original problem that the customer

encountered.

The goal of this case study is to understand the tangible and immediate effects of

deploying the new technologies under the innovative CCF framework. The analysis

boundaries that the authors chose have provided actionable insights although we do not

exclude other less obvious and potentially better approaches. The attributes of this

service system through the three stages of its lifecycle are shown in Table 1 below.

Table 1. Stages of the CCF service system engagement

Solution

Lifecycle

Description People

(Who?,

How many?)

Technology

(What?)

Shared

Information

(How?)

Value

Proposition

(Why?)

Initial Phase Contact CM

Gather

requirements

Propose

Solution

Research

Managers (1)

CM process

owners

Open minded

approach

Formal &

Informal

Presentations

Demo’s of

relevant

applications

SWOT

Analysis

Identify

needs and

match,

proven ROI

Development

&

Deployment

Phase

Prototype

solution

Demo

prototype

Implement

and deliver

solution

Stress test

solution

Deploy

solution

CCF/

Research

Development

Team (4)

Call Flow

Administrato

rs (tens)

Call Flow

Authors

(hundreds)

CSRs

(thousands)

located in

various

countries

throughout

the world

Customers in

all countries

IBM does

business in.

CCF

Eclipse

AJAX

XML

ABLE

WebSphere

Call flows

Requirement

documents

Business

process

documents

High

operational

efficiency

User-friendly

and reliable

call flow and

rule updates

on a daily

basis

Training &

Support

Phase

Train and

support

IGS – L-1, L-

2

Research –

L-3 (4)

Phone,

pagers, email,

and remote

desktop

Training

material

Extensive

documenta-

tion

Research

became a

trusted

advisor and

partner to

CM

Service systems should satisfy all stakeholders. In the simplest interpretation of a

service system, there are two stakeholders – a single service provider and a service

consumer. It is one party doing something of value for another party. In a complex

service system there are many different stakeholders, each with different expectations,

arising from their relative needs and goals. Since many complex service systems are

nested and recursive, with each instance of sub-service systems serving both internal and

external stakeholders, it can become nearly unmanageable. Thus, a challenge in

analyzing complex service systems is to evaluate them from the perspective of all

service stakeholders. In this case study, we chose to simplify the assumptions by not

overly emphasizing the service sub-system of IBM research providing a service to CM,

even though in reality there are significant implications to this arrangement. The

stakeholders interests in this case study are summarized in Table 2.

Table 2. Stakeholders

System

Stakeholders

Challenges (before) Benefits (after)

CM • Difficult to off-

shore development

due to the

inflexibility of the

monolithic US-

based existing

system.

• Decide to engage

with research.

• Pick third-party

back-end vendors.

• Make buy vs. build

decisions on various

components in the

SOA.

• Limited in business

opportunities to

pursue due to

monolithic existing

system.

• Able to off-shore

development to China

resulting in a 50%

saving.

• Additional revenue from

selling similar

WebSphere solutions.

• Improved customer

satisfaction

• Increased customer

loyalty, and potentially

increased demand

• Increased opportunities

due to being able to

offer same service

through multiple

channels (CSR, self

help, chat, email, voice,

autonomic etc.) and in

multiple localizations.

CCF/Research • Understand business

and technical

requirements

• Provide the

technical solution

and expertise

• Tremendous credibility

in its value proposition

to prospective clients

• Great platform for

further CCF-based

innovation and

transformation of call

centers

Call Flow Authors

(a.k.a. Process

Owners)

• Very difficult to

update call flows

• Very difficult to

update business

rules

• Improved productivity as

they benefit from easier

call flow updates

• Improved productivity as

they benefit from easier

business rule updates

• Reduced errors in any

update due to syntax

checking and easy-to-use

testing facility of the new

Eclipse-based authoring

tool.

CSO Managers • No way to make

service keep up with

the fast evolution of

products

• CSR turn-over

problems. Very

expensive to train

new CSRs to use the

existing tools.

• Able to make service keep

up with the fast evolution

of products because call

flow authors have access

to a state-of-the-art

authoring tool.

• Less expensive to train

new CSRs because the

new runtime UI is easy to

use.

CSRs • Poor productivity

due to poor toolset

• Lack of job

satisfaction

• Far more productive

• Lower turnover rate: likely

to stay longer due to a far

more user/worker-friendly

toolset

Customers • Poor service • Problems are solved in

shorter time

• No need to deal with

disgruntled CSRs

Service systems should adapt. Service systems should be adaptive in the short term,

exhibiting resiliency and agility by adapting to fluctuations in demand or usage patterns.

Service systems should also be adaptive over the long term, becoming more efficient and

effective, utilizing feedback from within and outside the system to guide adaptations

[Sp06]. The ability to update the call flows and rules that help the CSRs help the

customers can be considered a kind of adaptability. In the original system, updating call

flows and rules was difficult and potentially risky. After CCF was deployed, updating

call flows and rules using a tool with built-in semantic and syntactic checking was a

major advance in the ease with which the system could adapt to changing business and

demand characteristics. These changes allowed the business process owners to more

easily make error free changes to rules, and activation of rule updates did not affect

service. In addition the new system allows for the addition of self-learning components

which can automatically optimize the call flows, and possible automatically generate

new call flows.

Service systems should account for people and technology related costs from a

provider and client perspective. In this case study, we’ve considered the cost of the CCF

solution not only in terms of the hardware and labor required to deploy and maintain the

system, but also in terms of training service providers and clients. On the service

provider side, CSRs had to learn a new web-based runtime client for getting the

guidance for helping their customers, and call flow authors had to learn to how to change

call flows and rules using the new Eclipse-based authoring tool. On the client side, there

were no changes imposed by CCF. The customers who call the call center for help did

not have to change anything or learn anything new.

In service systems, the value is co-produced by the service provider and service client

during production of the service. The work to improve the service took place on the

service provider side of the equation, with the client not being required to learn anything

new or change the way they were asking for help. Thus, the nature of the co-production

relationship in terms of inputs into the system was not changed from the clients’

perspective. Because there is a cost to the service client in changing, and any changes

that become cumbersome or increase work might result in the client defecting to another

provider, the ability to improve service by changing the provider side of the service

system is extremely valuable. In this case, the client sees only that the customer service

system is more responsive and reliable; likely improving their satisfaction and

potentially buying more services and products from the provider (effectively growing

demand).

Service systems should become more efficient by standardizing client inputs. The

unified services theory states that a service involves a provider and client working

together to transform the clients inputs during performance of the service [Sa01]. Service

efficiencies can be realized by standardizing client inputs. In this case study, the front

stage of the call center is a way of standardizing how clients provide their support

information. The introduction of CCF did not change anything in terms of what was

required of the client. Rather, it added an extra layer of standardization (through the use

of SOA components that allowed the UIs, algorithms, processes, and workflows to be

easily interchangeable) which is transparent to the clients complete their part of the co-

production relationship.

Service providers should use self-service and automation technologies to lower cost

and improve service. Although the traditional telephone-based front stage of the call

center is not a self-service system because it requires a CSR to answer the customer’s

call, the CCF framework makes automation possible because one can develop any

customer-friendly runtime applications without deep knowledge of other components in

the solution, such as legacy and third-party back-end and the authoring tool. The

automation would lower the costs that are associated with managing CSRs. In addition

there is the possibility now of automating parts of the call flow optimization and

generation process which would allow for further improvements in service and at the

same time lower costs further.

Service systems should scale to greater service capacity at declining costs to the service

provider. Service systems that require equal increases in labor to achieve equivalent

growth in service capacity do not yield increasing profits. CCF contributes to lowering

costs while enabling capacity to increase by decoupling application development from

process management and thus enhancing process independence. As the provider

becomes responsible for servicing more products, only the call flows (and not the

applications) need to be changed, and due to the visual nature of call flow definitions in

the authoring tool it is simple (and thus cheap) to update the call flows since the task

requires no programming skills.

CCF also contributes towards lowering costs by allowing reuse of the call flow

information in other (lower cost) channels such as web self help, instant message/chat,

and self-diagnostic features built in products. This is possible due to the flexible nature

of call flows in this architecture. By keeping call flows loosely coupled from the client

UI used to display them, a wide variety of client types may be used with the same set of

call flows, enabling a high degree of reuse.

Ideally, service systems should combine technology, business, and social innovation to

create new business models. A common example of a business model that could not

exist without technology and social innovation is eBay. The buyer and seller reputation

systems rely on internet technology to exist, and the social innovation that results is

people buying goods from people they’ve never met in person. In this case study, CCF

has not resulted in a new business model; rather it has made an existing model more

efficient, i.e. resulted in a business process transformation.

A service system should appear to be customized to the customer to the degree that it is

equivalent to cost. A service customer will reasonably expect to pay more for a

customized service. At first glance, CCF apparently did not change the customer’s

perception of the degree their support service was customized. However, since this is a

globally deployed call center, customers from different locales have different

preferences, such as language. The old call management system is tied to an English-

only encoding scheme. The CCF framework allows developers to use any character

encoding scheme, and allows process owners to use any language to describe the

processes.

What is even more interesting is that even within the same locale, such as the United

States, different customers of the same product have different vocabularies that refer to

equivalent concepts with respect to a call flow. For example, both Bank of A and B-Mart

have bought DB2 products from the provider. What Bank of A calls a “branch” is

equivalent to what B-Mart calls a “store” as far as the call flow (for a DB2 product) is

concerned. The CCF framework allows the process owner to design a single base call

flow for the product, and allows a runtime engine to intelligently decide the proper

customization based on information acquired on the fly. The CCF framework lowers the

costs of customization by facilitating asset reuse, such as sharing the base call flow, and

runtime polymorphism.

A service system should provide evidence to the client that a service has or is being

performed. While the service itself is often evidence enough, service satisfaction usually

benefits from multiple forms of evidence. The evidence informs and reinforces to the

client that a service has been or is being performed. Evidence can also convey a sense of

value. When a customer calls the call center, a service ticket is open. When the

customer’s problem has been solved, the ticket is closed.

A service system should support transparency to the degree that is enhances value for

the service client and preserves value for the service provider. Transparency is a way

for service providers to share production information with the service client. It might

also be considered a kind of evidence that the service is being performed. When a

customer asks for help, they receive a ticket number to track the case. This allows her to

see the progress of the service until she is satisfied. The transparency is also

bidirectional. The original call management system already had adequate transparency,

and there was no business need to change that. By preserving the same experience for

the customer in the CCF solution, we have maintained the same level of transparency in

the customer/provider relationship.

6 Conclusions

We have described a call management service system, the problems, and strategies used

to address the problems. We then analyzed the system in terms of a service system

framework.

As a result of this service engagement, the CCF research team that provided technology

and expertise to CM has produced a system that exceeded expectations. With the CCF

framework, business and technical agility is achieved by process independence. This has

also lowered the costs and improved the productivity of the service system.

In summary, the research and CM teams that developed and deployed the CCF solution

achieved the above results by:

1) Encapsulating certain complexity in the CCF framework allowing both business

analysts and application developers to work productively and independently.

Therefore:

a. The call management system becomes agile enough to take advantage

of advanced technologies and response to new business requirement

efficiently in the long run.

b. CM can strategically off-shore resources without introducing much of

the unnecessary communication overheads.

2) Providing state-of-the-art tooling for updating call flows and business rules,

including syntactic and semantic checking.

3) Providing superior asset reuse and customization of call flows.

Additional benefits, although less tangible but arguably just as important, include

potentially improving client satisfaction, increasing demand, and lowering client

defection rates. While additional interventions as described in the analysis might result

in even better overall system performance, cost benefit analysis should precede any such

steps.

This call center service system was dramatically improved by CCF. However, this is just

one example of where CCF has provided value. Other domains that could potentially

benefit from CCF include sales and distribution, finance, software self-healing and self-

configuring capabilities, and healthcare response and information systems.

7 Bibliography

[Ab06] ABLE Rule Language, User's Guide and Reference, Version 2.3.0. ABLE Project Team,

IBM T. J. Watson Research Center (2006).

[CBK06] Cheng, I., Boyette, N., Krishna, V. Towards a Low-Cost High-Quality Service Call

Architecture. IEEE International Conference on Services Computing – SCC (2006) 261-

264. http://doi.ieeecomputersociety.org/10.1109/SCC.2006.106

[Ec06] EMF: Eclipse Modeling Framework (2006). http://www.eclipse.org/emf/

[Ga02] Gadrey, J. & Gallouj, F. Productivity, Innovation and Knowledge in Services, New

Economic and Socio-Economic Approaches. Cheltenham, UK: Edward Elgar (2002).

[Ma06] Maglio, P. P., Srinivasan, S., Kreulen, J. T., and Spohrer, J. 2006. Service Systems,

Service Scientists, SSME, and Innovation. Communications of the ACM 49, 7 (Jul.

2006), 81-85. http://doi.acm.org/10.1145/1139922.1139955

[Sa01] Sampson, S.E. Understanding service businesses: Applying principles of Unified

Services Theory (2nd ed.). New York: Wiley (2001).

[Sp06] Spohrer, J., Maglio, P., P., Bailey, J., Gruhl, D. Steps Toward a Science of Service

Systems. Computer, Vol.40, Iss.1, (Jan. 2007). 71-77.

[Te06] Teboul, J. Service Is Front Stage: Positioning Services for Value Advantage. Insead

Business Press. Palgrave Macmillan (2006).

