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Abstract

In an online convex optimization problem a decision-maker makes
a sequence of decisions, i.e., chooses a sequence of points in Euclidean
space, from a fixed feasible set. After each point is chosen, it encoun-
ters a sequence of (possibly unrelated) convex cost functions. Zinke-
vich [Zin03] introduced this framework, which models many natural re-
peated decision-making problems and generalizes many existing prob-
lems such as Prediction from Expert Advice and Cover’s Universal
Portfolios. Zinkevich showed that a simple online gradient descent al-
gorithm achieves additive regret O(

√
T ), for an arbitrary sequence of

T convex cost functions (of bounded gradients), with respect to the
best single decision in hindsight.

In this paper, we give algorithms that achieve regret O(log(T )) for
an arbitrary sequence of strictly convex functions (with bounded first
and second derivatives). This mirrors what has been done for the spe-
cial cases of prediction from expert advice by Kivinen and Warmuth
[KW99], and Universal Portfolios by Cover [Cov91]. We propose sev-
eral algorithms achieving logarithmic regret, which besides being more
general are also much more efficient to implement.

The main new ideas give rise to an efficient algorithm based on
the Newton method for optimization, a new tool in the field. Our
analysis shows a surprising connection between the natural follow-
the-leader approach and the Newton method. We also analyze other
algorithms, which tie together several different previous approaches
including follow-the-leader, exponential weighting, Cover’s algorithm
and gradient descent.

∗Supported by Sanjeev Arora’s NSF grants MSPA-MCS 0528414, CCF 0514993, ITR
0205594
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1 Introduction

In online convex optimization, an online player chooses a point in a convex
set. After the point is chosen, a concave payoff function is revealed, and the
online player receives payoff which is the concave function applied to the
point she chose. This scenario is repeated for many iterations.

The online convex optimization framework generalizes many previous
online optimization problems. For example, in the problem of online port-
folio management an online investor wants to distribute her wealth on a set
of n available financial instruments without knowing the market outcome in
advance. The wealth distribution of the online investor can be thought of
as a point in the set of all distributions over n items (the financial instru-
ments), which is a convex set. The payoff to the online player is the change
in wealth, which is a concave function of her distribution. Other examples
which fit into this online framework include the problems of prediction from
expert advice and online zero-sum game playing.

To measure the performance of the online player we consider two stan-
dard metrics. The first is called regret. Regret measures the difference in
payoff between the online player and the best fixed point in hindsight. The
second metric by which we measure performance is computational complex-
ity, i.e. the amount of computer resources required to compute the online
player’s point for the upcoming iteration given the history of payoff functions
encountered thus far.

Previous approaches for online convex optimization are based on first-
order optimization, i.e. optimization using the first derivatives of the payoff
functions. The regret achieved by these algorithms is proportional to a
polynomial (square root) in the number of iterations. Besides the general
framework, there are specialized algorithms, e.g. for portfolio management,
which attain regret proportional to the logarithm of the number of itera-
tions. However, these algorithms do not apply to the general online convex
optimization framework and are less efficient in terms of computational com-
plexity.

We introduce a new algorithm, Online Newton Step, which uses
second-order information of the payoff functions and is based on the well
known Newton-Raphson method for offline optimization. The Online New-
ton Step algorithm attains regret which is proportional to the logarithm
of the number of iterations when the payoff functions are concave, and is
computationally efficient.

In addition to the Online Newton Step algorithm, we also show two
other approaches which can be used to achieve logarithmic regret in the case
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of some higher-order derivative assumptions on the functions.

1.1 Follow the leader

Perhaps the most intuitive algorithm for online convex optimization can be
described as follows: at iteration t, choose the best point so far, i.e. the point
in the underlying convex set that minimizes the sum of all cost functions
encountered thus far.

Given the natural appeal of this algorithm, it was considered in the game
theory literature for over 50 years. It is not difficult to show that for linear
cost functions, the Follow The Leader (FTL) algorithm does not attain
any non-trivial regret guarantee (in the worst case it can be Ω(T ) if the
cost functions are chosen adversarially). However, in 1957 Hannan [Han57]
proposed a randomized variant of FTL, called perturbed-follow-the-leader,
which attained O(

√
T ) regret in the online game playing setting for linear

functions over the simplex. 1

As we show later, this regret bound is optimal. Merhav and Feder [MF92]
extend the FTL approach to strictly convex cost functions over the simplex,
and prove that for such functions FTL attains regret which is logarithmic
in the number of iterations. Similar results were obtained by Cesa-Bianchi
and Lugosi [CBL06], and Gaivoronski and Stella [GS00].

A natural question, asked explicitly by Cover and Ordentlich, Kalai and
Vempala, and others, is whether Follow The Leader provides any non-
trivial guarantee for curved (but not necessarily strictly convex) cost func-
tions. One application which is not covered by previous results is the prob-
lem of portfolio management.

In this paper (section 3.3) we answer this question in the affirmative, and
prove that in fact Follow The Leader attains optimal regret for curved
functions.

2 Preliminaries

2.1 Online Convex Optimization

In online convex optimization, an online player iteratively chooses a point
from a set in Euclidean space denoted P ⊆ Rn. Following Zinkevich [Zin03],
we assume that the set P is non-empty, bounded and closed. For reasons

1This algorithm was rediscovered in [KV05], who provide a much simpler analysis and
many applications.
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that will be apparent in sections 4 and 3.3.2, we also assume the set P to
be convex.

We denote the number of iterations by T (which is unknown to the online
player). At iteration t, the online player chooses xt ∈ P . After committing
to this choice, a convex cost function ft : P 7→ R is revealed. The cost
incurred to the online player is the value of the cost function at the point
she committed to, i.e. ft(xt).

Consider an online player using a (possibly randomized) algorithm for
online game playingA. At iteration t, the algorithmA takes as input the his-
tory of cost functions f1, ..., ft−1 and produces a feasible pointA({f1, ..., ft−1})
in the domain P. When there is no ambiguity concerning the algorithm
used, we simply denote xt = A({f1, ..., ft−1}). The regret of the online
player using algorithm A at time T , is defined to be the total cost minus the
cost of the best single decision, where the best is chosen with the benefit of
hindsight. Formally

Regret(A, {f1, ..., fT }) = E[
∑T

t=1ft(xt)]−minx∈P
∑T

t=1ft(x).

Regret measures the difference in performance between the online player
and a “static” player with the benefit of hindsight - i.e a player that is
constrained to choose a fixed point over all iterations. It is tempting to
compare the online player to an adversary which has the benefit of hindsight
but is otherwise unconstrained (i.e. can dynamically change her point every
iteration). However, this allows the adversary to choose the optimum point
x∗t , minx∈P ft(x) each iteration, and the comparison becomes trivial in
many interesting applications.

We are usually interested in an upper bound on the worst case guaranteed
regret, denoted

RegretT (A) = sup
{f1,...,ft}

{Regret(A, {f1, ..., ft})}

Intuitively, an algorithm attains non-trivial performance if its regret is
sublinear as a function of T , i.e. RegretT (A) = o(T ), since this implies that
“on the average” the algorithm performs as good as the best fixed strategy
in hindsight.

Remark: For some problems it is more natural to talk of “payoff” given
to the online player rather than cost she incurs. In such cases, the online
player receives payoff ft(xt), where ft is a concave utility function. Regret
is then defined to be

Regret(A, {f1, ..., fT }) = max
x∈P

∑T
t=1ft(x)−E[

∑T
t=1ft(xt)].
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The running time of an algorithm for online game playing is defined to
be the worst-case expected time to produce xt, for an iteration t ∈ [T ] 2 in a
T iteration repeated game. Typically, the running time will depend on n, T
and parameters of the cost functions and underlying convex set.

2.2 Notation and Definitions

Recall that in online convex optimization, the online player iteratively chooses
points from a closed, bounded and non-empty convex set P ⊆ Rn and en-
counters convex cost functions {ft : P 7→ R}.

Denote by D the diameter of the underlying convex set P, i.e.

D = max
x,y∈P

‖x− y‖2

Unless stated otherwise, we assume that the cost functions {ft} are twice
differentiable and convex. These assumptions are satisfied by all applications
described previously.

Recall that the gradient for a f : Rn 7→ R at point x ∈ Rn is the vector
∇f(x) whose components are the partial derivatives of the function at x. Its
direction is the one in which the function has the largest rate of increase, and
its magnitude is the actual rate of increase. We say that the cost functions
have gradients upper bounded by a number G if the following holds:

sup
x∈P,t∈[T ]

‖∇ft(x)‖2 ≤ G.

In some cases we are concerned with the `∞ norm of the gradient rather
than the Euclidean norm, in which case we denote the upper bound by G∞.

We also consider the analogue of second derivatives for multivariate func-
tions. The Hessian of a function f at point x is a matrix ∇2f(x), such that
∇2f(x)[i, j] = ∂2

∂xi,xj
f(x). Analogous to the one-dimensional case, a func-

tion f is convex at point x if and only if its Hessian is positive semidefinite,
denoted by ∇2f(x) � 0. We say that the Hessian of all cost functions is
lower bounded by a number H > 0 if the following holds:

∀x ∈ P, t ∈ [T ] : ∇2ft(x) � HIn.

Here, In is the n-dimensional identity matrix and we denote A � B if the
matrix A−B is positive semidefinite, i.e. all its eigenvalues are nonnegative.
Thus, H is a lower bound on the eigenvalues of all the Hessians of the

2Here and henceforth we denote by [n] the set of integers {1, ..., n}.
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constraints at all points in the domain. Such functions will be called H-
strong convex.

In the following chapters we will consider two different classes of cost
functions. One class of cost functions are those which have bounded gradient
and are H-strong convex for some H > 0. The second class of cost functions
are those that satisfy the α-exp-concavity property: there is an α > 0 such
that exp(−αft(x)) is a concave function of x ∈ P, for all t, i.e.

∀x ∈ P, t ∈ [T ] : ∇2[exp(−αft(x))] � 0.

The second class is more general than the first, since the α-exp-concavity
condition is weaker than a bounded gradient and strict convexity. It is easy
to show that functions that have gradients upper bounded by G and Hessian
lower bounded by H > 0, are α-exp-concave for any α ≤ H/G2. One can
easily verify this for one-dimensional functions ft : R → R by taking two
derivatives,

h′′t (x) = ((αf ′t(x))2 − αf ′′t (x)) exp(−αft(x)) ≤ 0 ⇐⇒ α ≤ f ′′t (x)
(f ′t(x))2

.

We note that there are many interesting loss functions which are exp-
concave but not strictly convex. A prominent example is the log-loss func-
tion, i.e. f(x) = − log(x>a) for a vector of constants a. This loss function
arises in the problem of universal portfolio management [Cov91]. Henceforth
we denote the natural logarithm by log.

When it is more natural to talk of maximization of payoff rather than
minimization of cost (e.g. for portfolio management), we require the payoff
functions to be concave instead of convex. The parameter H is then defined
to be

∀x ∈ P, t ∈ [T ] ∇2ft(x) � −HIn,

and the payoff functions will be assumed to be (−α)-exp-concave:

∀x ∈ P, t ∈ [T ] : ∇2[exp(αft(x))] � 0.

2.3 Summary of our results

A standard goal in machine learning and game theory is to achieve algo-
rithms with guaranteed low regret. Zinkevich [Zin03] showed that one can
guarantee O(

√
T ) regret for an arbitrary sequence of differentiable convex

functions of bounded gradient, which is tight up to constant factors. In
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fact, Ω(
√
T ) regret is unavoidable even when the functions come from a

fixed distribution rather than being chosen adversarially. 3

Algorithm Regret bound Running time

OGD O(G
2

H log T ) Õ(n) + Tproj
ONS O(( 1

α +GD)n log T ) Õ(n2) + T gproj
FTAL O(( 1

α +GD)n log T ) Õ(n2) + T gproj
EWOO O(nα log T ) poly(T, n)

Figure 1: Results from this paper. Zinkevich achieves O(GD
√
T ) regret,

even for H = α = 0.

In this paper we describe three algorithms with regret which is bounded
by a logarithm in the number of iterations T , as summarized in Figure 1.
In the running time column, Tproj stands for the time it takes to compute
a projection onto the underlying convex set (see section 4). Similarly, T gproj
stands for the time to compute a generalized projection. All algorithms
assume an oracle that given a point in the convex set returns the value of
the cost function on that point and/or the gradient of the function. The
O notation for the regret bounds hides constant factors. For the running
time bounds the Õ notation hides constant factors as well as polylogarithmic
factors in n, T,G,H,D, α.

Since the exp-concavity assumption on the convex cost functions is a
weaker assumption than the bounds on the gradients and Hessians (see pre-
vious subsection), we can compare the three regret bounds of Figure 1.
In these terms, Online Gradient Descent (OGD) requires the strongest
assumptions, whereas Exponentially Weighted Online Optimization
(EWOO) requires only exp-concavity (and not even a bound on the gradi-
ent). Perhaps most interesting are Online Newton Step (ONS) and its
close cousin, Follow The Approximate Leader (FTAL) which require
relatively weak assumptions and yet, as we shall see, are very efficient to
implement (and whose analysis is the most technical).

Perhaps the most interesting applications of these logarithmic regret
algorithms is the problem of portfolio management [Cov91]. The portfolio
management is a special case of online convex optimization, in which the

3This can be seen by a simple randomized example. Consider K = [−1, 1] and linear
functions ft(x) = rtx, where rt = ±1 are chosen in advance, independently with equal
probability. Ert [ft(xt)] = 0 for any t and xt chosen online, by independence of xt and rt.
However, Er1,...,rT [minx∈K

∑T
1 ft(x)] = E[−|

∑T
1 rt|] = −Ω(

√
T ).
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payoff functions are logarithmic. These payoff functions are exp-concave
(indeed, the exponent of the logarithm function is a linear function, which
is of course concave), but not strongly concave!

Another application in which the payoff/loss functions are exp-concave
but not strictly convex is linear regression (see [KW98] and referenced pa-
pers). In the basic setting of this application, the predictor is given a vector
at ∈ Rn and needs to predict xt ∈ Rn, the loss is ft(x) = (a>t x − bt)2 for
some bt ∈ R. The Hessian of such loss function has rank of one, and thus
not strictly convex. Nevertheless, under some reasonable assumptions over
the domains of x, at, bt, the functions are exp-concave.

3 The algorithms

3.1 Online Gradient Descent

The first algorithm that achieves regret logarithmic in the number of itera-
tions is a twist on Zinkevich’s Online Gradient Descent algorithm, as
defined in figure 2.

Online Gradient Descent.
Inputs: convex set P ⊂ Rn, step sizes η1, η2, . . . ≥ 0, initial x1 ∈ P.

• In iteration 1, use point x1 ∈ P.

• In iteration t > 1: use point

xt = ΠP(xt−1 − ηt∇ft−1(xt−1))

Here, ΠP denotes the projection onto nearest point in P, ΠP(y) =
arg minx∈P ‖x− y‖2.

Figure 2: The Online Gradient Descent Algorithm (Zinkevich’s online
version of Stochastic Gradient Descent).

The Online Gradient Descent algorithm is straightforward to im-
plement, and the running time is O(n) per iteration given the gradient.
However, there is a projection step which may take longer. We discuss the
computational complexity of computing projections in section 4.

The following theorem establishes logarithmic bounds on the regret if
the cost functions are strictly convex.
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Theorem 1. Online Gradient Descent with step sizes ηt = 1
Ht achieves

the following guarantee, for all T ≥ 1.

RegretT (OGD) ≤ G2

2H
(1 + log T )

Proof. Let x∗ ∈ arg minx∈P
∑T

t=1 ft(x). Recall the definition of regret (see
section 2)

RegretT (OGD) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x∗)

Define ∇t , ∇ft(xt). By using the Taylor series approximation, we
have, for some point ζt on the line segment joining xt to x∗,

ft(x∗) = ft(xt) +∇>t (x∗ − xt) +
1
2

(x∗ − xt)>∇2ft(ζt)(x∗ − xt)

≥ ft(xt) +∇>t (x∗ − xt) +
H

2
‖x∗ − xt‖2.

The inequality follows from H-strong convexity. Thus, we have

2(ft(xt)− ft(x∗)) ≤ 2∇>t (xt − x∗)−H‖x∗ − xt‖2. (1)

Following Zinkevich’s analysis, we upper-bound ∇>t (xt − x∗). Using the
update rule for xt+1 and the properties of projections (see Lemma 8), we
get

‖xt+1 − x∗‖2 = ‖Π(xt − ηt+1∇t)− x∗‖2 ≤ ‖xt − ηt+1∇t − x∗‖2.

Hence,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + η2
t+1‖∇t‖2 − 2ηt+1∇>t (xt − x∗)

2∇>t (xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt+1
+ ηt+1G

2. (2)

Sum up (2) from t = 1 to T . Set ηt+1 = 1/(Ht), and using (1), we have:

2
T∑
t=1

ft(xt)− ft(x∗) ≤
T∑
t=1

‖xt − x∗‖2
(

1
ηt+1

− 1
ηt
−H

)
+G2

T∑
t=1

ηt+1

= 0 +G2
T∑
t=1

1
Ht

≤ G2

H
(1 + log T ).
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3.2 Online Newton Step

If the Online Gradient Descent algorithm is the analogue of the Gradi-
ent Descent optimization method for the online setting, then Online New-
ton Step is the online analogue of the Newton-Raphson method. The
Online Newton Step algorithm detailed in figure 3. The point chosen
by the algorithm for a given iteration is a simple modification of the point
chosen in the previous iteration: a vector is added to it. Whereas for the
Online Gradient Descent algorithm this added vector is the gradient of
the previous cost function, for Online Newton Step this vector is differ-
ent: it is reminiscent to the direction in which the Newton-Raphson method
would proceed if it were an offline optimization problem for the previous
cost function. The Newton-Raphson algorithm would move in the direction
of the vector which is the inverse Hessian multiplied by the gradient. In our
case this direction is A−1

t ∇t, and the matrix At is related to the Hessian as
will be shown in the analysis.

Since just adding a multiple of the Newton vector to the current point
may result in a point outside the convex set, we project back into the set to
obtain xt. This projection is somewhat different than the standard projec-
tion used by Online Gradient Descent in the previous section. It is the
projection according to the norm defined by the matrix At, rather than the
Euclidean norm. The reason for using this projection is technical, and will
be pointed out in the analysis.

ONS

• In iteration 1, use an arbitrary point x1 ∈ P.

• Let β = 1
2 min{ 1

4GD , α}. In iteration t > 1, use point:

xt = ΠAt−1

P

(
xt−1 −

1
β
A−1
t−1∇t−1

)
where ∇τ = ∇fτ (xτ ), At =

∑t
i=1∇i∇>i + εIn, ε = 1

β2D2 , and ΠAt−1

P
is the projection in the norm induced by At−1, viz.,

ΠAt−1

P (y) = arg min
x∈P

(y − x)>At−1(y − x)

Figure 3: The Online Newton Step algorithm.
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The following theorem bounds the regret of Online Newton Step.
The intuition which led to this theorem appears in the next section on
follow-the-leader and its surprising connection to the Newton method.

Theorem 2. Assume that for all t, the loss function ft : P → Rn is α-
exp-concave and has the property that ∀x ∈ P, ‖∇f(x)‖ ≤ G. Then the
algorithm Online Newton Step has the following regret bound:

RegretT (ONS) ≤ 5
(

1
α

+GD

)
n log T.

We begin with a lemma which shows how to approximate the cost func-
tions up to the second order. Using the Taylor series we have f(x) =
f(y) + ∇f(y)(x − y) + 1

2(x − y)>∇2f(ζ)(x − y) for some ζ on the line
between x and y. Instead of using this approximation, we use a somewhat
stronger approximation in which the Hessian of the cost function is not used,
but rather only the gradient. Such an approximation is possible because we
assume that the cost functions are α-exp-concave.

Lemma 3. For a function f : P → R, where P has diameter D, such that
∀x ∈ P, ‖∇f(x)‖ ≤ G and exp(−αf(x)) is concave, the following holds for
β ≤ 1

2 min{ 1
4GD , α}:

∀x, y ∈ P : f(x) ≥ f(y)+∇f(y)>(x−y)+
β

2
(x−y)>∇f(y)∇f(y)>(x−y)

Proof. Since exp(−αf(x)) is concave and 2β ≤ α, the function h(x) ,
exp(−2βf(x)) is also concave. Then by the concavity of h(x),

h(x) ≤ h(y) +∇h(y)>(x− y).

Plugging in ∇h(y) = −2β exp(−2βf(y))∇f(y) gives,

exp(−2βf(x)) ≤ exp(−2βf(y))[1− 2β∇f(y)>(x− y)].

Simplifying

f(x) ≥ f(y)− 1
2β

log[1− 2β∇f(y)>(x− y)].

Next, note that |2β∇f(y)>(x − y)| ≤ 2βGD ≤ 1
4 and that for |z| ≤ 1

4 ,
− log(1 − z) ≥ z + 1

4z
2. Applying the inequality for z = 2β∇f(y)>(x − y)

implies the lemma.
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We can now prove Theorem 2. The proof technique is reminiscent of
Theorem 1, however the direction of curvature of the second derivative is
taken into account. This gives rise to a potential function in terms of the
metric At (which represents the sum of all Hessians up to iteration t), instead
of the corresponding term in the analysis of Theorem 1 which included only
the norms of the gradients.

Proof of Theorem 2. Let x∗ ∈ arg minx∈P
∑T

t=1 ft(x) be the best decision
in hindsight. By Lemma 3, we have

ft(xt)− ft(x∗) ≤ Rt , ∇>t (xt − x∗)− β

2
(x∗ − xt)>∇t∇>t (x∗ − xt) (3)

for β = 1
2 min{ 1

4GD , α}. For convenience, define yt+1 = xt − 1
βA
−1
t ∇t so

that according to the update rule of the algorithm xt+1 = ΠAt
Sn

(yt+1). Now,
by the definition of yt+1:

yt+1 − x∗ = xt − x∗ − 1
β
A−1
t ∇t, and (4)

At(yt+1 − x∗) = At(xt − x∗)− 1
β
∇t. (5)

Multiplying the transpose of (4) by (5) we get

(yt+1 − x∗)>At(yt+1 − x∗) =

(xt − x∗)>At(xt − x∗)− 2
β
∇>t (xt − x∗) +

1
β2
∇>t A−1

t ∇t. (6)

Since xt+1 is the projection of yt+1 in the norm induced by At, it is a well
known fact that (see section 4 lemma 8)

(yt+1 − x∗)>At(yt+1 − x∗) ≥ (xt+1 − x∗)>At(xt+1 − x∗)

This inequality is the reason for using generalized projections as opposed to
standard projections, which were used in the analysis of Online Gradient
Descent (see previous subsection). This fact together with (6) gives

∇>t (xt − x∗) ≤ 1
2β
∇>t A−1

t ∇t +
β

2
(xt − x∗)>At(xt − x∗)

− β

2
(xt+1 − x∗)>At(xt+1 − x∗).

12



Now, summing up over t = 1 to T we get that

T∑
t=1

∇>t (xt − x∗) ≤ 1
2β

T∑
t=1

∇>t A−1
t ∇t +

β

2
(x1 − x∗)>A1(x1 − x∗)

+
β

2

T∑
t=2

(xt − x∗)>(At −At−1)(xt − x∗)

− β

2
(xT+1 − x∗)>AT (xT+1 − x∗)

≤ 1
2β

T∑
t=1

∇>t A−1
t ∇t +

β

2

T∑
t=1

(xt − x∗)>∇t∇>t (xt − x∗)

+
β

2
(x1 − x∗)>(A1 −∇1∇>1 )(x1 − x∗).

In the last inequality we use the fact that At −At−1 = ∇t∇>t . By trans-
ferring the β

2

∑T
t=1(xt − x∗)>(At −At−1)(xt − x∗) term to the LHS, we get

the expression for
∑T

t=1Rt. Thus, we have

T∑
t=1

Rt ≤
1

2β

T∑
t=1

∇>t A−1
t ∇t +

β

2
(x1 − x∗)>(A1 −∇1∇>1 )(x1 − x∗).

Using the facts that A1 − ∇1∇>1 = εIn and ‖x1 − x∗‖2 ≤ D2, and the
choice of ε = 1

β2D2 we get

RegretT (ONS) ≤
T∑
t=1

Rt ≤
1

2β

T∑
t=1

∇>t A−1
t ∇t +

ε

2
D2β

≤ 1
2β

T∑
t=1

∇>t A−1
t ∇t +

1
2β
.

At this point we bound the first term above, which is our potential
function. The linear algebraic facts required to bound this potential appear
in Lemma 11 (see Appendix B), which we apply with Vt = At, ut = ∇t,
and r = G to get the bound n

2β log(G2T/ε + 1). Now since ε = 1
β2D2 and
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β = 1
2 min{ 1

4GD , α}, we get

1
2β

T∑
t=1

∇>t A−1
t ∇t ≤

n

2β
log(G2T/ε+ 1)

≤ n

2β
log(TG2β2D2 + 1)

≤ n

2β
log(T )

Since β = 1
2 min{ 1

4GD , α}, we have 1
β ≤ 8(GD+ 1

α). This gives the stated
regret bound.

3.2.1 Implementation and running time

The Online Newton Step algorithm requires O(n2) space to store the
matrix At. Every iteration requires the computation of the matrix A−1

t , the
current gradient, a matrix-vector product and possibly a projection onto the
undelying convex set P.

A näıve implementation would require computing the inverse of the ma-
trix At every iteration. However, in case At is invertible, the matrix inver-
sion lemma [Bro05] states that for invertible matrix A and vector x

(A + xx>)−1 = A−1 − A−1xx>A−1

1 + x>A−1x

Thus, given A−1
t−1 and ∇t one can compute A−1

t in time O(n2) using only
matrix-vector and vector-vector products.

The Online Newton Step algorithm also needs to make projections
onto P, but of a slightly different nature than Online Gradient De-
scent and other online convex optimization algorithms. The required pro-
jection, denoted by ΠAt

P , is in the vector norm induced by the matrix At,
viz. ‖x‖At =

√
x>Atx. It is equivalent to finding the point x ∈ P which

minimizes (x− y)>At(x− y) where y is the point we are projecting. This
is a convex program which can be solved up to any degree of accuracy in
polynomial time, see section 4.

Modulo the computation of generalized projections, the Online New-
ton Step algorithm can be implemented in time and space O(n2). In
addition, the only information required is the gradient at each step (and the
exp-concavity constant of the payoff functions).

14



3.3 Follow The Approximate Leader

The intuition behind most of our algorithms stem from new observations re-
garding the well studied Follow The Leader (FTL) method (see [Han57,
KV05]).

The basic FTL method, which by itself fails to provide sub-linear regret
let alone logarithmic regret, simply chooses on period t the single fixed
decision that would have been the best to use on the previous t− 1 periods.
This corresponds to choosing xt = arg minx∈P

∑t−1
τ=1 fτ (x).

Below we prove that a simple modification of FTL, called Follow The
Approximate Leader (FTAL), guarantees logarithmic regret. The Fol-
low The Approximate Leader algorithm is given in two equivalent forms
in Figure 4. The first version is the FTL variant, whereas the second version
resembles the Newton method and the Online Newton Step algorithm.
Lemma 4 below proves both versions to be equivalent, hence demonstrates
the connection between the Newton method and FTL.

Lemma 4. Both versions of the Follow The Approximate Leader
algorithm are eqivalent.

Proof. In the first version of the Follow The Approximate Leader
algorithm, one needs to perform the following optimization at period t:

xt , arg min
x∈P

t−1∑
τ=1

f̃τ (x).

By expanding out the expressions for f̃τ (x),

t−1∑
τ=1

f̃τ (x) =
t−1∑
τ=1

fτ (xτ ) +∇>τ (x− xτ ) +
β

2
(x− xτ )>∇τ∇>τ (x− xτ )

=
t−1∑
τ=1

fτ (xτ )− (βx>τ ∇τ∇>τ −∇>τ )x +
β

2
x>∇τ∇>τ x

=
t−1∑
τ=1

fτ (xτ )− βb>t−1x +
β

2
x>At−1x

15



Follow The Approximate Leader (version 1)
Inputs: convex set P ⊂ Rn, and the parameter β.

• On period 1, play an arbitrary x1 ∈ P.

• On period t, play the leader xt defined as

xt , arg min
x∈P

t−1∑
τ=1

f̃τ (x)

Where for τ = 1, . . . , t− 1, define ∇τ = ∇fτ (xτ ) and

f̃τ (x) , fτ (xτ ) +∇>τ (x− xτ ) +
β

2
(x− xτ )>∇τ∇>τ (x− xτ )

Follow The Approximate Leader (version 2)
Inputs: convex set P ⊂ Rn, and the parameter β.

• On period 1, play an arbitrary x1 ∈ P.

• On period t > 1: play the point xt given by the following equations:

∇t−1 = ∇ft−1(xt−1)

At−1 =
t−1∑
τ=1

∇τ∇>τ

bt−1 =
t−1∑
τ=1

∇τ∇>τ xτ −
1
β
∇τ

xt = ΠAt−1

P
(
A−1
t−1bt−1

)
Here, ΠAt−1

P is the projection in the norm induced by At−1:

ΠAt−1

P (y) = arg min
x∈P

(x− y)>At−1(x− y)

A−1
t−1 denotes the Moore-Penrose pseudoinverse of At−1.

Figure 4: Two versions of the Follow The Approximate Leader algo-
rithm
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Therefore,

arg min
x∈P

t−1∑
τ=1

f̃τ (x) = arg min
x∈P

{
β

2
x>At−1x− βb>t−1x

}
= arg min

x∈P

{
x>At−1x− 2b>t−1x

}
= arg min

x∈P

{
(x−A−1

t−1bt−1)>At−1(x−A−1
t−1bt−1)− b>t−1A

−1
t−1bt−1

}
The solution of this minimization is exactly the projection

ΠAt−1

P (A−1
t−1bt−1) as specified by the second version.

3.3.1 Analysis of Follow The Approximate Leader

In this subsection we prove a performance guarantee for Follow The Ap-
proximate Leader which is very similar to that for the Online Newton
Step algorithm, albeit using a very different analysis. The analysis in this
section is based on previous analyses of Follow The Leader algorithms
[Han57, KV05]. The standard approach to analyze such algorithms proceeds
by inductively showing (see Lemma 10 in Appendix A)

RegretT (FTL) =
T∑
t=1

ft(xt)−min
x∈P

T∑
t=1

ft(x) ≤
T∑
t=1

[ft(xt)− ft(xt+1)]. (7)

The standard analysis proceeds by showing that the leader doesn’t change
too much, i.e. xt ≈ xt+1, which in turn implies low regret. Our analysis
does not follow this paradigm directly, but rather shows average stability
(i.e. that xt ≈ xt+1 on the “average”, rather than always).

Another building block, due to Zinkevich [Zin03], is that if we have
another set of functions f̃t for which f̃t(xt) = ft(xt) and f̃t is a lower-bound
on ft, so f̃t(x) ≤ ft(x) for all x ∈ P, then it suffices to bound the regret
with respect to f̃t, because,

RegretT =
T∑
t=1

ft(xt)−min
x∈P

T∑
t=1

ft(x) ≤
T∑
t=1

f̃t(xt)−min
x∈P

T∑
t=1

f̃t(x). (8)

We prove this fact in Lemma 9 in Appendix A. Zinkevich uses this observa-
tion in conjunction with the fact that a convex function is lower-bounded by
its tangent hyperplanes, to argue that it suffices to analyze online gradient
descent for the case of linear functions.
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We observe4 that online gradient descent can be viewed as running Fol-
low The Leader on the sequence of functions f̃0(x) = ‖(x− x1)‖2/η and
f̃t(x) = ft(xt) +∇ft(xt)>(x − xt). To do this, one need only calculate the
minimum of

∑t−1
τ=0 f̃τ (x).

As explained before, any algorithm for the online convex optimization
problem with linear functions has Ω(

√
T ) regret, and thus to achieve loga-

rithmic regret one necessarily needs to use the curvature of functions. When
we consider H-strong convex functions for some H > 0, we can lower bound
the function ft by a paraboloid,

ft(x) ≥ ft(xt) +∇ft(xt)>(x− xt) +
H

2
‖x− xt‖2,

rather than a linear function. The Follow The Leader calculation, how-
ever, remains similar. The only difference is that the step-size ηt = 1/(Ht)
decreases linearly rather than as O(1/

√
t).

For α-exp-concave functions, Lemma 3 shows that they can be lower-
bounded by a paraboloid f̃t(x) = a+ (v>x− b)2 where v ∈ Rn is a multiple
of ∇ft(xt) and a, b ∈ R.

The main technical step now is to show that Follow The Leader,
when run on a specific class of cost functions, which includes the paraboloid
functions given above, has regret O(log T ). This is the content of the follow-
ing theorem, which is interesting in its own right because it also applies to
the portfolio management problem, and shows that the simple Follow The
Leader strategy for the portfolio management problem achieves O(log T )
regret.

Theorem 5. Assume that for all t, the function ft : P → Rn can be written
as ft(x) = gt(v>t x) for a univariate convex function gt : R → R and some
vector vt ∈ Rn. Assume that for some R, a, b > 0, we have ‖vt‖2 ≤ R,
and for all x ∈ P, we have |g′t(v>t x)| ≤ b and g′′t (v>t x) ≥ a. Then the
Follow The Leader algorithm on the functions ft satisfies the following
regret bound:

RegretT (FTL) ≤ 2nb2

a

[
log
(
DRaT

b

)
+ 1
]
.

Before proving this Theorem, we show how it implies our main result
concerning the Follow The Approximate Leader algorithm.

4Kakade has made a similar observation [Kak05].
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Theorem 6. Assume that for all t, the function ft : P → Rn has the
property that ∀x ∈ P, ‖∇f(x)‖ ≤ G and exp(−αf(x)) is concave. Then the
algorithm Follow The Approximate Leader with β = 1

2 min{ 1
4GD , α}

has the following regret bound:

RegretT (FTAL) ≤ 64
(

1
α

+GD

)
n(log(T ) + 1).

Proof. We note that Follow The Approximate Leader is just doing
Follow The Leader on the paraboloid functions f̃t. By Lemma 3, we
have ft(xt) = f̃t(xt) and for all x ∈ P, ft(x) ≥ f̃t(x). Thus, Lemma 9
(Appendix A) implies that the regret assuming the cost functions are f̃t
rather than ft is only greater, so it suffices to bound the regret with cost
functions f̃t. The function f̃t can be written as

f̃t(x) = ft(xt) +∇>τ (x− xτ ) +
β

2
[∇>τ (x− xτ )]2

and thus satisfies the conditions of Theorem 5 with gt : R→ R defined as

gt(y) , ft(xt) + (y −∇>t xt) +
β

2
(y −∇>t xt)2 and vt = ∇t.

We only need to evaluate the constants R, a, b. Note that ‖vt‖ = ‖∇t‖ ≤ G,
so we can take R = G. Next, |g′t(v>t x)| = |1+β(∇>t (x−xt))| ≤ 1+βGD ≤ 2
since β ≤ 1

8GD , so we can take b = 2. Finally, g′′t (y) = β, so we can take
a = β. Plugging in the values, and using the fact that DRa

b = βGD
2 ≤ 1, we

get that

RegretT (FTAL) ≤ 8n
β

(log(T ) + 1).

Finally, the stated regret bound follows because by definition 1
β ≤ max{8GD, 2

α} ≤
8(GD + 1

α).

Finally, we prove Theorem 5:

Proof of Theorem 5. Lemma 10 (Appendix A) implies that the regret can
be bounded as

T∑
t=1

ft(xt)−min
x∈P

T∑
t=1

ft(x) ≤
T∑
t=1

[ft(xt)− ft(xt+1)] .

We bound the RHS now.
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For the sake of readability, we introduce some notation. Define the func-
tion Ft ,

∑t−1
τ=1 fτ . Let ∆ be the forward difference operator, for example,

∆xt = (xt+1 − xt) and ∆∇Ft(xt) = (∇Ft+1(xt+1)−∇Ft(xt)).
Firstly, observe that for all τ , the gradient ∇fτ (x) = g′τ (v>τ x)vτ . Define

∇t = ∇ft(xt) = g′t(v
>
t xt)vt. We use the gradient bound, which follows from

the convexity of ft:

ft(xt)− ft(xt+1) ≤ −∇ft(xt)>(xt+1 − xt) = −∇>t ∆xt (9)

Now, we have

∇Ft+1(xt+1)−∇Ft+1(xt) =
t∑

τ=1

∇fτ (xt+1)−∇fτ (xt) (10)

=
t∑

τ=1

[g′τ (v>τ xt+1)− g′τ (v>τ xt)]vτ

=
t∑

τ=1

[∇g′τ (v>τ ζ
t
τ )>(xt+1 − xt)]vτ (11)

=
t∑

τ=1

g′′τ (v>τ ζ
t
τ )vτv>τ (xt+1 − xt) (12)

Equation (11) follows by applying the Taylor expansion of the (multi-variate)
function g′τ (v>τ x) at point xt, for some point ζtτ on the line segment joining xt
and xt+1. The equation (12) follows from the observation that ∇g′τ (v>τ x) =
g′′τ (v>τ x)vτ . Define At =

∑t
τ=1 g

′′
τ (v>τ ζ

t
τ )vτv>τ . Since g′′τ (v>τ xτ ) ≥ a for all

t, At is positive semidefinite. The RHS of (12) becomes At∆xt. The LHS
of (10) is

∇Ft+1(xt+1)−∇Ft+1(xt) = ∆∇Ft(xt)−∇t (13)

Putting (12) and (13) together, and by adding ε∆xt we get

(At + εIn)∆xt = ∆∇Ft(xt)−∇t + ε∆xt (14)

Pre-multiplying by −∇>t (At + εIn)−1, we get an expression for the gradient
bound (9):

−∇>t ∆xt = −∇>t (At + εIn)−1[∆∇Ft(xt)−∇t + ε∆xt]

= −∇>t (At + εIn)−1[∆∇Ft(xt) + ε∆xt] +∇>t (At + εIn)−1∇t
(15)
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Thus, from (15) and (9) we have

T∑
t=1

[ft(xt)− ft(xt+1)]

≤
T∑
t=1

−∇>t (At + εIn)−1[∆∇Ft(xt) + ε∆xt] +
T∑
t=1

∇>t (At + εIn)−1∇t.

(16)

Claim 1. The first term of (16) can be bounded as

T∑
t=1

−∇>t (At + εIn)−1[∆∇Ft(xt) + ε∆xt] ≤ εD2T.

Proof. We bound each term in the sum by εD2. Since xτ minimizes Fτ over
P, we have (see [BV04])

∇Fτ (xτ )>(x− xτ ) ≥ 0 (17)

for any point x ∈ P. Using (17) for τ = t and τ = t+ 1, we get

0 ≤ ∇Ft+1(xt+1)>(xt−xt+1)+∇Ft(xt)>(xt+1−xt) = −[∆∇Ft(xt)]>∆xt

Reversing the inequality and adding ε‖∆xt‖2 = ε∆x>t ∆xt, we get

ε‖∆xt‖2 ≥ [∆∇Ft(xt) + ε∆xt]>∆xt

= [∆∇Ft(xt) + ε∆xt]>(At + εIn)−1[∆∇Ft(xt) + ε∆xt −∇t]
(by solving for ∆xt in (14))

= [∆∇Ft(xt) + ε∆xt]>(At + εIn)−1(∆∇Ft(xt) + ε∆xt)

− [∆∇Ft(xt) + ε∆xt]>(At + εIn)−1∇t
≥ −[∆∇Ft(xt) + ε∆xt]>(At + εIn)−1∇t

(since (At + εIn)−1 is positive semidefinite)

Finally, since the diameter of P is D, we have ε‖∆xt‖2 ≤ εD2.

Claim 2. The second term of (16) can be bounded as

T∑
t=1

∇>t (At + εIn)−1∇t ≤
nb2

a
log(aR2T/ε+ 1).
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Proof. Now we bound the second term of (16). Define Bt =
∑t

τ=1 avtv
>
t .

Since for all τ , g′′τ (v>τ xτ ) ≥ a, we have that At + εIn � Bt + εIn, which
implies that (At + εIn)−1 � (Bt + εIn)−1 and hence

∇>t (At + εIn)−1∇t ≤ ∇>t (Bt + εIn)−1∇t
= [g′t(v

>
t xt)vt]>(Bt + εIn)−1[g′t(v

>
t xt)vt]

≤ b2

a
[
√
avt]>(Bt + εIn)−1[

√
avt].

Sum up from t = 1 to T , and apply Lemma 11 (as used in the previous
subsection, see Appendix B for statement and proof) with Vt = Bt + εIn,
ut =

√
avt, and r =

√
aR, to get the stated bound.

Combining the two bounds from the claims above, and setting ε = b2

aD2T
we get

T∑
t=1

[ft(xt)− ft(xt+1)] ≤ nb2

a
log(aR2T/ε+ 1) + εD2T

≤ 2nb2

a

[
log
(
DRaT

b

)
+ 1
]

as required.

3.3.2 Implementation and running time

The implementation of Follow The Approximate Leader is straight-
forward: the point xt chosen at iteration t is the optimum of the following
mathematical program:

xt = arg min
x∈P

t−1∑
τ=1

f̃τ (x)

Since the approximate cost functions f̃t as well as the underlying set P
are convex, this is a convex program which any general convex optimization
algorithm applied to (here is another justification for our assumption that
the set P is convex, see section 2). An efficient implementation of the
algorithm is Follow The Approximate Leader (version 2). This uses
the fact that all f̃t are quadratic polynomials, and maintains the sum of
the coefficients of these polynomials. The algorithm requires Õ(n2) space
to store the sum of all gradients and matrices of the form ∇t∇>t . The
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time needed to compute the point xt is O(n2) plus the time to perform a
single generalized projection. This is because a generalized matrix inversion
lemma [Rie91] allows for iterative update of the pseudoinverse in O(n2) time.

The time and space complexity is thus independent from the number of
iterations, in contrast to other previous variants of Follow The Leader.

We note that in practice, we have an excellent starting point to compute
xt - the optimum of the convex program of the previous iteration xt−1. As
shown in the analysis, on the average these two consecutive points are very
close.

3.4 Exponentially Weighted Online Optimization

In this subsection we describe our Exponentially Weighted Online
Optimization (EWOO) algorithm which gives logarithmic regret for a very
general setting of online convex optimization. All that the algorithm requires
is that the cost functions be α-exp-concave (Online Newton Step and
Follow The Approximate Leader need additionally a bound on the
magnitude of the gradients). The algorithm does not seem to be directly
related to Follow The Leader. Rather, it is related to Cover’s algorithm
for universal portfolio management.

The downside of this algorithm is its running time. A trivial implemen-
tation of Exponentially Weighted Online Optimization would give
exponential running time. Kalai and Vempala [KV03] give a randomized
polynomial time (polynomial both in n and in T ) implementation of Cover’s
algorithm, based on random sampling techniques. The same techniques can
be applied to the Exponentially Weighted Online Optimization al-
gorithm as well. However, the polynomial in the running time is quite large
and the overall implementation involved.

Remark: In the implementation of Exponentially Weighted On-
line Optimization, choosing xt at random with density proportional to
wt(x), instead of computing the integral, also guarantees our regret bounds
on the expectation. This is the basis for the [KV03] polynomial time imple-
mentation.

Theorem 7. Assume that for all t, the function ft : P → Rn has the
property that ∀x ∈ P, exp(−αf(x)) is concave. Then the algorithm Ex-
ponentially Weighted Online Optimization has the following regret
bound:

RegretT (EWOO) ≤ 1
α
n(1 + log(T + 1)).

23



Exponentially Weighted Online Optimization.
Inputs: convex set P ⊂ Rn, and the parameter α.

• Define weights wt(x) = exp(−α
∑t−1

τ=1fτ (x)).

• On period t play xt =
∫
P xwt(x)dx∫
P wt(x)dx

.

(Remark: choosing xt at random with density proportional to wt(x)
also gives our bounds.)

Figure 5: The Exponentially Weighted Online Optimization algo-
rithm.

Proof. Let x∗ ∈ arg minx∈P
∑T

t=1 ft(x). Recall the definition of regret (see
section 2)

RegretT (EWOO) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x∗)

Let ht(x) = e−αft(x). The algorithm can be viewed as taking a weighted
average over points x ∈ P. Hence, by concavity of ht,

ht(xt) ≥
∫
P ht(x)

∏t−1
τ=1 hτ (x) dx∫

P
∏t−1
τ=1 hτ (x) dx

.

Hence, we have by telescoping product,

t∏
τ=1

hτ (xτ ) ≥
∫
P
∏t
τ=1 hτ (x) dx∫
P 1 dx

=

∫
P
∏t
τ=1 hτ (x) dx
vol(P)

(18)

By definition of x∗ we have x∗ ∈ arg maxx∈P
∏T
t=1 ht(x). Following

[BK97], define nearby points S ⊂ P by,

S =
{
x ∈ S | x =

T

T + 1
x∗ +

1
T + 1

y , y ∈ P
}
.

By concavity of ht and the fact that ht is non-negative, we have that,

∀x ∈ S ht(x) ≥ T

T + 1
ht(x∗).

Hence,

∀x ∈ S :
T∏
τ=1

hτ (x) ≥
(

T

T + 1

)T T∏
τ=1

hτ (x∗) ≥ 1
e

T∏
τ=1

hτ (x∗)
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Finally, since S = x∗ + 1
T+1P is simply a rescaling of P by a factor of

1/(T + 1) (followed by a translation), and we are in n dimensions, vol(S) =
vol(P)/(T + 1)n. Putting this together with equation (18), we have

T∏
τ=1

hτ (xτ ) ≥ vol(S)
vol(P)

1
e

T∏
τ=1

hτ (x∗) ≥ 1
e(T + 1)n

T∏
τ=1

hτ (x∗).

The theorem is obtained by taking logarithms.

3.4.1 Implementation and running time

The Exponentially Weighted Online Optimization algorithm can be
approximated by sampling points according to the distribution with density
proportional to wt and then taking their mean. In fact, as far as an expected
guarantee is concerned, our analysis actually shows that the algorithm which
chooses a single random point xt with density proportional to wt(x) achieves
the stated regret bound, in expectation. Using recent random walk analyses
of Lovász and Vempala [LV03a, LV03b], m samples from such a distribution
can be computed in time Õ((n4 + mn3) log R

r ). A similar application of
random walks was used previously for an efficient implementation of Cover’s
Universal Portfolio algorithm [KV03].

4 Computing Projections

Some of the algorithms for online convex optimization described in this
paper require computing projections onto convex sets. This corresponds to
the following computational problem: given a convex set P ⊆ Rn, and a
point y ∈ Rn, find the point in the convex set which is closest in Euclidean
distance to the given vector, denoted

ΠP [y] , min
x∈P
‖x− y‖2

The Online Newton Step algorithm computes generalized projections,
which are projections with respect to a norm other than the Euclidean norm,
given by a positive semidefinite matrix. For a given positive semidefinite
matrix A, a generalized projection of y ∈ Rn onto the convex set P is
defined as

ΠA
P [y] , min

x∈P
(x− y)>A(x− y)

Thus, the Euclidean projection can be seen to be a generalized projection
with A = In. These projections satisfy the following well known fact:
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Lemma 8 (folklore). Let P ⊆ Rn be a convex set, y ∈ Rn and z =
∏A
P [y]

be the generalized projection of y onto P according to positive semidefinite
matrix A � 0. Then for any point a ∈ P it holds that

(y − a)>A(y − a) ≥ (z− a)>A(z− a).

If A is the identity matrix, this lemma is standard and follows from the
fact that for any a ∈ P the angle ](y,

∏
P [y],a) is obtuse. The latter is

implied by the fact that for any point outside a convex body there exists a
hyperplane which separates it from all points on the convex set.

For a general positive semidefinite matrix A, the lemma can be proved
by reduction to the simple case, as A generates a natural norm5: ∀x ∈
Rn, ‖x‖A = x>Ax. We include a proof for completeness.

Proof. By the definition of generalized projections, the point z minimizes
the function f(x) = (x−y)>A(x−y) over the convex set. It is a well known
fact in optimization (see [BV04]) that for the optimum z the following holds

∀a ∈ P : ∇f(z)>(a− z) ≥ 0

Which implies

2(z− y)>A(a− z) ≥ 0 ⇒ 2a>A(z− y) ≥ 2z>A(z− y).

Now by simple calculation:

(y − a)>A(y − a)− (z− a)>A(z− a) = y>Ay − z>Az + 2a>A(z− y)

≥ y>Ay − z>Az + 2z>A(z− y)

= y>Ay − 2z>Ay + z>Az

= (y − z)>A(y − z) ≥ 0

The final inequality follows because A � 0.

These projections are essentially convex programs. For convex polytopes,
a projection reduces to a convex quadratic program with linear constraints.
These type of convex programs can be solved more efficiently than general
convex programs using interior point methods [LVBL98]. Another option
is to efficiently approximate these convex programs using Lagrangian relax-
ation techniques [Haz06].

5Note that because A can be singular, the norm may not be definite.

26



Even more generally, P can be specified by a membership oracle χP , such
that χP(x) = 1 if x ∈ P and 0 if x /∈ P, along with a point x0 ∈ P as well
as radii R ≥ r > 0 such that the balls of radii R and r around x0 contain
and are contained in P, respectively. In this case ΠA

P can be computed (to
ε accuracy) in time Õ(n4 log(Rr )) using Vaidya’s algorithm [Vai96].

However, for many simple convex bodies which arise in practical applica-
tions (e.g. portfolio management), projections can be computed much more
efficiently. For the n-dimensional unit sphere, cube and the simplex these
projections can be computed combinatorially in Õ(n) time, rendering the
online algorithms much more efficient when applied to these convex bodies
(see [Haz06]).

5 Conclusions

In this work, we presented efficient algorithms which guarantee logarithmic
regret when the loss functions satisfy a mildly restrictive convexity condition.
Perhaps the most interesting algorithm we describe is based on the Newton
method from offline optimization. The intuition leading to this algorithm
stems from new observations regarding the very natural follow-the-leader
methodology, and answers open problems regarding this method.
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A Reductions for Follow The Leader

Lemma 9. Let ft, for t = 1, . . . , T , be a sequence of cost functions and
let xt ∈ P be the point used in the tth round. Let f̃t for t = 1, . . . , T be
a sequence of cost functions such that ft(xt) = f̃t(xt), and for all x ∈ P,
ft(x) ≥ f̃t(x). Then

T∑
t=1

ft(xt)−min
x∈P

T∑
t=1

ft(x) ≤
T∑
t=1

f̃t(xt)−min
x∈P

T∑
t=1

f̃t(x).

Proof. Let x∗ ∈ arg minx∈P
∑T

t=1 ft(x). We have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x∗) ≤
T∑
t=1

f̃t(xt)−
T∑
t=1

f̃t(x∗) (19)

≤
T∑
t=1

f̃t(xt)−min
x∈P

T∑
t=1

f̃t(x).
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Lemma 10. Let ft, for t = 1, . . . , T , be a sequence of cost functions and let
xt = arg minx∈P

∑t
τ=1 fτ (x). Then

T∑
t=1

ft(xt)−min
x∈P

T∑
t=1

ft(x) ≤
T∑
t=1

ft(xt)−
T∑
t=1

ft(xt+1).

Proof. We prove inductively that

T∑
t=1

ft(xt+1) ≤ min
x∈P

T∑
t=1

ft(x).

For T = 1 the two are equal by definition. Assume correctness for T − 1,
and

T∑
t=1

ft(xt+1) ≤ min
x∈P

T−1∑
t=1

ft(x) + fT (xT+1) by induction hypothesis

≤
T−1∑
t=1

ft(xT+1) + fT (xT+1)

= min
x∈P

T∑
t=1

ft(x) by definition

Thus, the induction is complete.

B Bounds on the potential function

The following two technical lemmas, which concern general facts from linear
algebra, were used to bound the potential function used in the analysis of
the Online Newton Step algorithm (as well as in the analysis of Follow
The Leader).

Lemma 11. Let ut ∈ Rn, for t = 1, . . . , T , be a sequence of vectors such
that for some r > 0, ‖ut‖ ≤ r. Define Vt =

∑t
τ=1 utu>t + εIn. Then

T∑
t=1

u>t V−1
t ut ≤ n log(r2T/ε+ 1).

Proof. For real numbers a > b > 0, the inequality 1 + x ≤ ex implies that
1
a · (a− b) ≤ log a

b (taking x = b
a − 1). An analogous fact holds for positive

definite matrices. Define, for matrices A,B ∈ Rn×n the product A • B =
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∑n
i,j=1 AijBij (this is just the standard inner product when thinking of the

matrices as vectors in Rn2
). Then, for matrices A � B � 0, A−1•(A−B) ≤

log |A||B| , where |A| is the determinant of A 6. This is proved in Lemma 12.
Using this fact we have (for convenience, let V0 = εIn)

T∑
t=1

u>t V−1
t ut =

T∑
t=1

V−1
t • utu>t

=
T∑
t=1

V−1
t • (Vt −Vt−1)

≤
T∑
t=1

log
|Vt|
|Vt−1|

= log
|VT |
|V0|

Since VT =
∑T

t=1 utu>t + εI and ‖ut‖ ≤ r, the largest eigenvalue of
VT is at most r2T + ε. Hence the determinant of VT can be bounded by
|VT | ≤ (r2T + ε)n. The stated bound in the lemma follows.

Lemma 12. Let A � B � 0 be positive definite matrices. Then

A−1 • (A−B) ≤ log
|A|
|B|

where |A| denotes the determinant of matrix A.

Proof. For any positive definite matrix C, denote by λ1(C), λ2(C), . . . , λn(C)
its (positive) eigenvalues. Denote by Tr(C) the trace of the matrix, which
is equal to the sum of the diagonal entries of C, and also to the sum of its
eigenvalues.

Note that for the matrix product A •B =
∑n

i,j=1 AijBij defined earlier,
we have A•B = Tr(AB) (where AB is the standard matrix multiplication),

6recall our notation that A � B if the matrix A−B � 0 is positive semi-definite
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since the trace is equal to the sum of the diagonal entries. Therefore,

A−1 • (A−B) = Tr(A−1(A−B))

= Tr(A−1/2(A−B)A−1/2)

= Tr(I −A−1/2BA−1/2)

=
n∑
i=1

[
1− λi(A−1/2BA−1/2)

]
∵ Tr(C) =

n∑
i=1

λi(C)

≤ −
n∑
i=1

log
[
λi(A−1/2BA−1/2)

]
∵ 1− x ≤ − log(x)

= − log

[
n∏
i=1

λi(A−1/2BA−1/2)

]

= − log |A−1/2BA−1/2| = log
|A|
|B|

. ∵ |C| =
n∏
i=1

λi(C)

In the last equality we use the following facts about the determinant of
matrices: |AB| = |A||B| and |A−1| = 1

|A| .
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