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Abstract 

 

In recent years, several different types of retail point-of-sale (POS) devices have been 

developed, in addition to the traditional, fixed registers.  They include self-checkout 

devices and mobile devices which can be installed quickly for temporary use during peak 

retail seasons.  A retail store has to determine the number and type of POS devices it 

needs in order to serve its customers satisfactorily.  We develop an optimization model to 

find the mix of devices that results in the lowest total cost of owning and operating the 

devices over their life span.  The model was applied to help an IBM client plan a POS 

device renewal in its chain of 400 stores. 

 

 

1.  Introduction 
 

Customer checkout registers, known generally as point-of-sale (POS) devices, represent 

an important area for a retailer.  In many retailers, such as discount stores or grocery 

supermarkets, the POS area is the only customer touch point inside the store.  The 

experience of a customer there may have a significant influence on the overall impression 

on the store and even the entire store chain.  At the same time, the POS area is a costly 

investment in the store, in terms of capital (hardware and software) and variable expenses 

(labor and maintenance costs).   

 



POS devices have become quite sophisticated over the years, growing from independent 

mechanical cash registers to networked, PC-based devices with all sorts of attachments.  

In the recent decade, innovations have led to different types of POS devices beyond the 

common, fixed registers, most notably self-checkout devices, mobiles devices, and 

portable devices known as “line busters”.  Self-checkout devices save store labor since 

customers scan items themselves and therefore one store associate can monitor multiple 

checkout devices.  Mobile devices are designed for easy setup so that they can be added 

to a store for busy time periods such as holiday seasons and put away otherwise to 

maximize selling floor space.  Line busters are portable, wireless devices that are used to 

pre-scan items while customers are waiting in line to increase throughput of a POS lane.  

As can be seen, the motivation for all these innovations is to reduce cost and/or to 

maintain or improve customer service. 

 

One of the most critical aspects of customer service at a POS device is the customer 

waiting time in the queue (see, e.g., Houston et al. 1998 and banking customer survey 

results in Brickstream Corp. 2004).  Increasing the number of active POS devices at any 

time obviously reduces the waiting time, but increases the labor cost and possibly the 

capital cost of equipment and the opportunity cost of selling space.  Because customers 

arrive randomly at a rate varying over time and their basket sizes are also uncertain, 

planning for the number of each type of POS devices is not a trivial task.  The key 

decisions are the number of each type of POS devices to install in a store and the number 

of devices in each type that are open (i.e., manned and serving customers) at any time.  

The two decisions are clearly related but are usually considered separately because they 

are encountered in different contexts in practice.  The number and type of POS devices to 

install are infrequent, capital equipment decisions that need to be made once every few 

years or when a new store is opened.  These are what we will call design decisions in this 

paper.  Historically the time interval of this decision was even longer (e.g., 10 years or 

more), but recent technological innovations (as discussed above) have shortened the time 

interval.  Decisions on what devices to open over the course of a day, given a fixed set of 

devices installed at the store, are largely made as staff scheduling is done, usually daily.  

To a more limited extent, real time decisions can be made to adjust the number of open 

devices scheduled as store traffic varies from that expected.  We will denote such daily or 

real-time decisions by operation decisions. 

 

The queueing system at a typical bank of POS devices is, strictly speaking, rather 

complicated.  It is generally known that the customer inter-arrival time distribution is 

time inhomogeneous.  The service time distribution may also be time inhomogeneous due 

to the average basket sizes varying over a day.  Price checks and other issues may add 

significant time to some customers, almost acting like a server breakdown.  Customers 

may abandon their basket and leave the queue or choose not to join the queue at all (and 

leave the store or continue shopping).  In the case of individual queues in front of each 

POS device, customers may jockey between queues depending on which queue is 

perceived to be moving quickly.  An exact queueing analysis is therefore quite difficult.  

To our knowledge such an analysis does not exist in the research literature.  In addition, 

most retailers do not have data to fully characterize the shopping basket arrival times at 

the POS queue.  Unless one uses very sophisticated video imaging technology, the arrival 



times at the POS queue have to be collected manually over a significant period of time (to 

account for time inhomogeneity) at the stores.  Such studies are relatively expensive and 

are at best done very infrequently. 

 

Even though the POS queue appears to be a technically interesting and practically useful 

subject to study, few papers have been published on it.  Metz and Savir (1975) developed 

a simulation model and an M/G/c queueing model to analyze the performance of POS 

devices in supermarkets.  The M/G/c model was used to estimate number of devices 

needed to achieve a given throughput that is below the point of overload, and the 

simulation model is used to estimate the performance at and above the point of overload.  

These models are useful for POS design decisions.  Williams et al. (2002) developed a 

simulation model to help determine the critical queue length beyond which a new POS 

device should be open.  This analysis helps set a policy for the real-time operation 

decision. 

 

 

2.  A General Device Mix Optimization Problem 
 

In this study, we are interested in minimizing the total cost of owning and operating the 

POS devices in a selected retail store, given a performance target for the POS queue and 

possibly other business constraints.  We consider the possibility of installing and using 

three types of POS devices: fixed checkout registers, self checkout registers, and mobile 

checkout devices.  Line busters are not explicitly considered but they can be added to the 

formulation of the general problem easily, just like a mobile checkout device.  In fact, 

line busters and mobile checkout devices are similar in the sense that they can be added 

to the permanently installed devices (fixed and self-checkout devices) in a store 

temporarily.  In the next section, we will treat mobile and line busters similarly in solving 

a practical version of the optimization problem. 

 

The following notation will be used. 

 

Decision variables: 

N1 = number of self checkout (SCO) registers to be purchased 

N2 = number of fixed checkout registers to be purchased 

N3 = number of mobile checkout devices to be purchased 

N1t = number of self checkout registers available in time period t (i.e., number of self 

checkout registers that are open in period t) 

N2t = number of fixed checkout registers available in time period t (i.e., number of fixed 

checkout registers that are open in period t) 

N3t = number of mobile checkout devices available in time period t (i.e., number of 

mobile checkout devices that are open in period t) 

 

Parameters: 



F1 = Per time period cost of owning one self checkout register, including amortized 

purchase cost over its useful life, maintenance costs, real estate cost to accommodate the 

register (fixed costs) 

F2 = Per time period cost of owning one fixed checkout register 

F3 = Per time period cost of owning one mobile checkout device 

V1 = Per time period cost of operating one self checkout register, including energy costs, 

labor cost to operate the register (variable costs) 

V2 = Per time period cost of operating one fixed checkout register 

V3 = Per time period cost of owning and operating one mobile checkout device 

λt = total arrival rate of shopping baskets to all the checkout registers in time period t 

µ1 = service rate of one self checkout register = 1/(mean service time per transaction at a 

self checkout register) 

µ2 = service rate of one fixed checkout register = 1/(mean service time per transaction at 

a fixed checkout register) 

µ3 = service rate of one mobile checkout device = 1/(mean service time per transaction at 

a mobile checkout device) 

πt = service level requirement in time period t in terms of fraction of customers having a 

waiting time of W0t or smaller 

W0t = waiting time threshold in time period t 

Q0t = queue length threshold in time period t 

m1 = lower bound of number of self checkout registers open at any time 

m2 = lower bound of number of fixed checkout registers open at any time 

M1 = upper bound of number of self checkout registers open at any time 

M2 = upper bound of number of fixed checkout registers open at any time 

 

Queueing sub-model: 

g(λt, N1t, N2t, N3t) = expected number of customers arriving in time period t with waiting 

times ≤  W0t 

h(λt, N1t, N2t, N3t) = expected number of customers waiting in queue in time period t  

 

Internal variables: 

t = time period in which the arrival rate of shopping baskets is constant =1, 2, …, T 

Without loss of generality, assume the length of each time period = 1 (We define the time 

scale such that each time period is 1 time unit) 

nt = 0, 1, 2, … 

 

To minimize the total cost of owning the set of POS devices for a time horizon of T 

periods, we have the following general formulation. 

 

(M1) Optimization model: 
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(1.2)  N1t ≤  N1 , t=1, 2, ..., T 

(1.3)  N2t ≤  N2 , t=1, 2, ..., T 



(1.4)  N3t ≤  N3 , t=1, 2, ..., T 
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(1.6)  h(λt, N1t, N2t, N3t) ≤ Q0t , t=1, 2, …, T 

(1.7)  m1 ≤  N1t ≤ M1 , t=1, 2, ..., T 

(1.8)  m2 ≤  N2t ≤ M2 , t=1, 2, ..., T 

(1.9)  0 ≤  N3t ,  t=1, 2, ..., T 

(1.10)  N1t = 4nt, t=1, 2, ..., T 

(1.11)  nt, N2t, N3t = 0, 1, 2, … 

 

Objective function (1.1) represents the total cost of ownership of all the checkout devices 

over a planning horizon T.  T, for example, can be one year and (1) will be the annual 

cost of ownership. 

Constraints (1.2)-(1.4) set Ni = maxt Nit, so that the fixed cost is accounted for the number 

of registers installed.   

 

Constraints (1.5)-(1.6) represent the required service level, expressed in the expected 

fraction of customers with waiting times ≤  W0 and the expected number of customers 

waiting in line, respectively.  Note that in constraint (1.5), in general the expected 

fraction of customers may not be equivalent to the probability of waiting time ≤  W0.  (For 

ergodic systems they are equivalent.)  Most likely only one of the two constraints will be 

active in the final solution. 

 

Constraints (1.7)-(1.8) represent business rules, such as at least one fixed register is 

always open, and a limit of the number of registers that can be installed in a store, 

imposed by physical and business constraints (e.g., maximum space allocated to 

checkout).  

 

Constraint (1.9) assumes that there is no upper limit on the number of mobile devices 

since they do not occupy any physical space permanently. 

 

Constraint (1.10) represents the fact that self checkouts typically come in pods of four at 

the time of this study. 

 

g(λt, N1t, N2t, N3t) and h(λt, N1t, N2t, N3t) depend on the specific queueing model of the 

POS devices.  Note that even for the simplest queueing models, g and h will be nonlinear 

functions.  Other customer service criteria, based on common performance measures of a 

queue, are also possible.  Typically we assume that in each time period the parameters of 

the queueing sub-model (e.g., the arrival rate) are stationary.  This has been studied as the 

pointwise stationary approximation of a time-varying queueing system (Green and 

Kolesar 1991). 

 

 



3.  A Practical Version of the General Problem and Its 
Solution 
 

Based on our knowledge of how retailers typically use POS devices and the specific 

requirements of one retailer, we develop the following version of the optimization 

problem. 

 

Continuing to use the same notations as those in the prior section, we further let 

 

λ12t = arrival rate of shopping baskets to the SCO and fixed POS registers in time period t 

λ3t = arrival rate of shopping baskets to the mobile POS registers in time period t 

 

ψ = maximum allowable ratio of SCO registers to the sum of SCO and regular POS 

registers 

 

3.1.  The Queueing Model 

 

We model the bank of POS devices (including SCO, regular, and mobile POS devices) as 

a multi-server queue with Poisson arrivals and exponential service times (M/M/k queue).  

Based on observations in a retail store, Williams et al. (2002) found that inter-arrival 

times at the POS queue can adequately be characterized by a Poisson distribution with 

rates dependent on the time of day and day of week.  Metz and Savir (1975) also used a 

Poisson distribution for the arrival process.  The service process consists of three 

different parts:  an initiation (greeting the customer, scanning a customer loyalty card, 

etc.), scanning the items, and payment tendering.  The initiation time is usually rather 

small, since the POS device will automatically initiate a new transaction by scanning the 

first item.  The time for item scanning obviously depend on the number of items in the 

shopping basket and payment tendering time depends on the type of payment used (cash, 

credit card, check, etc.)  Williams et al. (2002) found from their empirical data that the 

exponential distribution is a fairly good approximation for modeling the overall service 

time. 

 

For the entire bank of POS devices, we use a multi-server queue model where a single 

queue is formed in front of multiple POS devices.  This could be an accurate description 

for some cases, e.g., most banks and airline check-in counters.  In other cases, such as a 

grocery store, customers form individual lines in front of every open POS device.  A 

customer will jockey to another line if that line becomes shorter than his current position.  

In particular, when a device becomes available (i.e., no one is waiting), customers from 

other lines will move into that device, such that whenever there are some customers 

waiting across all devices, no device will be empty.  The multi-server model satisfies this 

boundary condition.  When all servers are busy, the multi-server model is an 

approximation to the actual individual queues with jockeying.  Metz and Savir (1975) 

made the same observations but also used the multi-server queue in their analytic model.  



Williams et al. (2002) captured individual queues with jockeying in their simulation 

model. 

 

We take the weighted average service rate, i.e., (N1µ1 + N2µ2 + N3µ3) / (N1 + N2 + N3), as 

the service rate of any server in the identical bank of servers in our standard multi-server 

queue model.  This is an approximation to reality where the service rates of the different 

types of POS devices are not the same.  In practice, the service rates of fixed and mobile 

POS devices are very close.  Self-checkout devices may be quite different, representing a 

source of potential accuracy improvement. 

 

3.2.  Calculation of Mobile POS Devices 

 

Because mobile POS devices cannot handle all tender types (e.g., they cannot handle 

cash), they are only used to supplement SCO and regular POS devices during periods of 

peak traffic.  Hence, the number of mobile POS devices is calculated by assigning to 

them a user-defined peak portion of the POS traffic and using the waiting time criterion.    

 

Let  

α = percentile traffic parameter such that the least congested (1 – α) fraction of the time 

periods are to be handled without mobile devices 

λ(1−α) = the (1 – α)-th percentile arrival rate in {λt, t = 1, 2, …, T} 

θt = fraction of arrivals with tender types that a mobile device can take, in time period t 

 

Λ+
 = {t: λt ≥ λ(1−α)}  

Λ−
 = {t: λt < λ(1−α)} 

 

Then 
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Dropping the subscript t, let λ denote the arrival rate to the bank of POS devices 

(modeled as an M/M/k queue) and µ denote the service rate of one server in this queue.  It 

is known (e.g., Gross and Harris (1998), Section 2.3) that  
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For t=1, 2, …, T, we solve for the smallest N3t by setting k = N1
*
 + N2t

*
 + N3t and µ = 

(N1
*µ1 + N2t

*µ2 + N3tµ3) / (N1
*
 + N2t

*
 + N3t) in the probability calculation (2.2), i.e., we 

solve for the smallest N3t such that 

(2.3)  Wk

t epp
)(

0021 λµπ −−−≤ , 

and taking N1
*
 and N2t

*
 to be the solution obtained in solving the problem described in 

Section 3.3.  Because (2.2) is monotonic in k and in practice the number of mobile 

devices is usually small (e.g., <10), a simple linear search, starting from 1, is used to 

solve for the smallest N3t for each t. 

 

Finally,  

(2.4)  N3
*
 = maxt N3t, is the solution for the number of mobile devices. 

 

3.3.  Calculation of Self Checkout and Fixed POS Devices 

 

An optimization model is developed to find the number of SCO and fixed POS devices 

such that the total cost per year is minimized and the service level requirements are 

satisfied.  This model is a variation of the general problem stated in Section 2. 

 

The following assumptions are used in formulating the optimization model. 

1. Service level requirement is applied per time period, i.e., the service level 

requirement is met in each individual time period. 

2. In each time period, the smallest number of devices within the bound of available 

devices satisfying the service level requirement are open.  This means that the 

operation decisions of when to open a POS device are optimal. 

3. Self checkout registers are always open. 

 

The optimization model is then as follows. 

 

(M2) Optimization Model 
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(3.2)  N2t ≤  N2 , t = 1, 2, ..., T 

(3.3)  πt ≤ P{waiting time of a random customer in period t ≤ W0t}, t = 1, 2, …, T 

(3.4)  m1 ≤  N1 ≤ M1  

(3.5)  m2 ≤  N2t ≤ M2 , t = 1, 2, ..., T 

(3.6)  N1/(N1 + N2) ≤ ψ 

(3.7)  N1 = 4n 

(3.8)  n, N2t = 0, 1, 2, …, t = 1, 2, ..., T 

(3.9)  λ12t = λt – λ3t,  t = 1, 2, ..., T 

 

Objective function (3.1) represents the total cost of ownership of all the checkout devices 

over a planning horizon T.  As mentioned, we assume that SCO devices (if any) are open 

in every time period. 

 

Constraint (3.2) set N2 = maxt N2t, so that the fixed cost is accounted for the number of 

devices installed.   

 

Constraints (3.3) represents the required service level, expressed in probability of a 

random customer with waiting time ≤  W0t.  This probability is dependent on the specific 

queueing model used to represent the POS devices.  The constraint enforces the service 

level requirement on an epoch-by-epoch basis, i.e., the service level requirement is 

enforced independently for every time period.   

 

To calculate the RHS of (3.3), all devices together (SCO and fixed) are modeled as a 

single M/M/k queue (as discussed above) with kt identical servers, where kt = N1 + N2t .  

The service rate of each server, µt, is calculated by µt = (N1 µ1 + N2t µ2) / (N1 + N2t).  Then,  

P{waiting time of a random customer in period t ≤ W0t} 
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Hence, (3.3) becomes 
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Constraints (3.4)-(3.5) represent business rules, such as at least one fixed device is always 

open, and a limit on the number of devices that can be installed in a store, imposed by 

physical and business constraints (e.g., maximum space allocated to checkout).  

 

Constraint (3.6) represents another business rule, stating that the number of SCO devices 

may be limited to a certain fraction, to account for the fact that some consumers are not 

willing to use SCO devices. 

 

Constraint (3.7) represents the fact that SCO devices come in pods of four. 



 

Constraint (3.9) calculates the arrival rate to the SCO and regular POS devices without 

the mobile POS devices, where λ3t is calculated in (2.1) above. 

 

Noting that the arrival rate to the POS devices is finite, (N1 + N2t) is typically small in 

practice (say ≤ 30), and the expected waiting time is monotonic in the total number of 

servers k, we solve (M2) using a simple linear search algorithm over possible values of 

N1, as follows. 

 

Algorithm to solve M2: 

 

N1 = m1 (Assume m1 is a multiple of 4) 

While (N1 ≤ M1) { 

 For t = 1 to T { 

  If N1 = 0 then N2t = max(1, m2) else N2t = max(0, m2) 

p = 0 

  While (N2t ≤ M2) and p < πt { 

   kt = N1 + N2t 

   rt = λt(N1 + N2) / (N1µ1 + N2tµ2) 

ρt = λt / (N1µ1 + N2tµ2) 
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   N2t = N2t + 1 

  } 

  N2t = N2t – 1  

 } 

 K = maxt {kt} 

N2 = maxt{ N2t} 

Apply any other user specified constraints to N2 (e.g. ratio of N1:N2) 

If (N1 + N2) ≥ K { 
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 } else { 

  ∞=
1NC  

 } 

N1 = N1 + 4 

} 

C
*
 = mini{Ci} and the corresponding N1

*
, N2

*
, N2t

*
 (t=1, 2, …, T) are the optimal solution 

 

[End of Algorithm] 

 



3.4.  Overall Solution 

 

The overall solution is N3 = N3
*
 obtained from Section 3.2, and N1 = N1

*
, N2 = N2

*
, N2t = 

N2t
*
 obtained from Section 3.3.  The total cost is 
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4.  Some Further Consideration of Self-Checkout 
Devices 
 

One of the simplifying assumptions we made in Section 3 is that self-checkout POS 

devices are always open.  This was made primarily for the purpose of easy computation 

since we now do not have to search over all possible combinations of open fixed and self-

checkout devices.  It did not pose a problem in practice because many stores would turn 

out to use one pod of self-checkout and it is indeed least costly to open the self-checkout 

first, given that it is already installed and that there is no other over-riding business 

constraints. 

 

In cases when the solution calls for more than one self-checkout pods, it may not be 

necessary to open all self-checkout pods in every time period and the algorithm will not 

provide the exact least cost solution.  Using again the observation that it is least costly to 

open self-checkout devices than regular devices (at one quarter the labor rate and 

assuming that the maintenance costs are comparable), given a certain number of self-

checkout and fixed devices, it is optimal to open the least number of self-checkout 

devices and open the least number of additional fixed devices after all self-checkouts are 

opened.  This logic can be added to a two dimensional version of the linear search 

algorithm given in Section 3.3 and can save significant amount of effort when compared 

to an exhaustive search of all combinations of open fixed and self-checkout devices. 

 

 

5.  A POS Device Optimization Tool 
 

A POS Device Optimization Tool was developed to solve the optimization problem 

discussed in Section 3.  The tool was written as a standalone Microsoft Excel application 

using a combination of spreadsheet formulae and Visual Basic in Excel.  Figure 5.1 

shows the main user screen in the tool.  Details of the tool are described in Leung et al. 

(2007). 

 

 



 
 

Figure 5.1.  Main User Screen of POS Device Optimization Tool 

 

 

The tool was designed for interactive use such that what-if analysis can be made in real 

time to facilitate POS design decisions.  For example, by varying the waiting time 

threshold, one can gain insight into how the total cost per year will increase as the 

waiting time threshold is reduced.  With knowledge on how customers perceive waiting 

times at checkout, a good, if not optimal, operating point in the waiting time – cost space 

can be chosen.   

 

Since each store has its own traffic pattern, the POS device optimization problem has to 

be solved for each store independently.  The tool provides Visual Basic functions that can 

be called by a higher level VB routine to perform batch processing.  It has been used in 

such a way by an IBM client to solve the device optimization problem for 400 stores. 

 

 

6.  A Numerical Example 
 

We present a real-life example where we used the POS Device Optimization Tool to find 

the number of devices for a retail chain of general merchandise discount stores.  The 

example is on a selected store which has two separate banks of checkout registers in two 



different places (i.e., two different entrance/exit areas).  The business problem is to 

determine how many checkout devices of each type (self-checkout, fixed, and mobile) 

should be installed in each bank in order to minimize the total cost of owning and 

operating the POS devices per year over the expected life span (taken to be 7 years). 

 

The total cost includes the cost of purchase and install, yearly maintenance cost (under a 

fixed cost maintenance contract), staff training cost, and hourly labor cost of operating 

the POS devices.  The last item depends on when the device is open, while the rest 

depend on how many devices are installed.  In this particular example, the mobile devices 

are assumed to be able to take only one form of payment which is credit cards. 

 

Historical checkout data were collected and analyzed to provide the input parameters to 

the queueing sub-model.  Based on the data pattern, we chose to assume that arrival rates 

to the queue are constant within an hour.  The arrival rate to each bank of POS devices is 

approximated by half of the historical checkout completion rate of the entire store.  The 

mean service time is taken to be  

(6.1)  Mean service time = (Average number of items in basket)(Mean time to checkout 

an item) + (Mean time to tender payment). 

 

The average number of items in a basket was estimated from historical data and the mean 

time to checkout an item and was taken from time standards established by the retailer.  

The mean time to tender payment depends on the type of payment the customer uses (e.g., 

cash, credit card, debit card, check, etc.)  The retailer has established standard times to 

handle each payment type and the overall mean is calculated using the fraction of each 

payment type collected from historical data.  Note that all three quantities on the right 

hand side of equation (6.1) can vary by the hour, similar to the arrival rate.   

 

Figures 6.1 – 6.3 show the results of the optimization model discussed in Section 3, with 

three different peak portions of POS traffic assigned to mobile devices.  For example, 

Figure 6.1 shows the optimization results as the customer service criteria (threshold for 

customer waiting time and probability of a customer’s waiting time below the threshold) 

vary.  The red line shows the lowest cost solution and the green line shows the highest 

cost solution.  These results clearly show the incremental cost of improvements in the 

customer service criteria.  They enable a retail executive to find an optimal tradeoff 

between cost and customer service for their particular business. 

 

 



Store Number

Number of 

Banks

Percentile to 

start using 

Mobile

Number of 

SCOs

Number of 

Regular 

POS

Number of 

Mobile POS

Wait Time 

(W0) in 

minutes

Probability 

Customer 

Waits less 

than W0

Annual Cost 

($K)

Annual Sales 

($K)

453 2 1 4 7 0 1 0.85 $361.78 $26,477

453 2 1 4 7 0 3 0.85 $313.04 $26,477

453 2 1 4 6 0 5 0.85 $289.92 $26,477

453 2 1 8 7 0 1 0.99 $459.36 $26,477

453 2 1 4 8 0 3 0.99 $396.92 $26,477
453 2 1 4 7 0 5 0.99 $346.70 $26,477

 
 

Figure 6.1.  Optimization Results for the Case of No Mobile Devices 

 

 

Store Number

Number of 

Banks

Percentile to 

start using 

Mobile

Number of 

SCOs

Number of 

Regular 

POS

Number of 

Mobile POS

Wait Time 

(W0) in 

minutes

Probability 

Customer 

Waits less 

than W0

Annual Cost 

($K)

Annual Sales 

($K)

453 2 0.9 4 6 2 1 0.85 $363.32 $26,477

453 2 0.9 4 5 2 3 0.85 $303.80 $26,477

453 2 0.9 4 5 2 5 0.85 $291.66 $26,477

453 2 0.9 8 5 2 1 0.99 $448.32 $26,477

453 2 0.9 4 6 2 3 0.99 $387.52 $26,477
453 2 0.9 4 6 2 5 0.99 $347.06 $26,477

 
 

Figure 6.2.  Optimization Results for the Case of 10% Checkout Traffic Allocated to 

Mobile Devices 

 

 

Store Number

Number of 

Banks

Percentile to 

start using 

Mobile

Number of 

SCOs

Number of 

Regular 

POS

Number of 

Mobile POS

Wait Time 

(W0) in 

minutes

Probability 

Customer 

Waits less 

than W0

Annual Cost 

($K)

Annual Sales 

($K)

453 2 0.8 4 6 2 1 0.85 $367.28 $26,477

453 2 0.8 4 5 2 3 0.85 $307.60 $26,477

453 2 0.8 4 5 2 5 0.85 $295.36 $26,477

453 2 0.8 8 5 2 1 0.99 $451.24 $26,477

453 2 0.8 4 6 2 3 0.99 $391.54 $26,477
453 2 0.8 4 6 2 5 0.99 $352.98 $26,477

 
 



Figure 6.3.  Optimization Results for the Case of 20% Checkout Traffic Allocated to 

Mobile Devices 

 

 

7.  Future Research  
 

As mentioned earlier, research literature on the retail POS queue is rather scarce, leaving 

a number of opportunities for future research.  Two of these are as follows. 

 

1. A more accurate analytical model of the POS queue.  Intuitively, the POS queue 

is somewhere between a standard multi-server queue and a set of single server 

queues.  The multi-server queue satisfies the boundary condition of never having 

a server idle when there is at least one customer in the queue.  A more accurate 

model going beyond this boundary condition will be useful.  This may involve 

better understanding the behavior of customers, e.g., when they jockey between 

lines or when they abandon the queue altogether. 

 

2. More comprehensive empirical studies of the arrival and service distributions.  

Data on service distributions can be obtained from POS transaction logs.  Detailed 

time stamps are often available, even though analyzing the data is not entirely 

trivial due to the number of possible events in the transaction logs.  Data on 

arrivals at the POS queue are more difficult to obtain.  Image-processing based 

instruments are available but they are not widely used at the present time.  The 

only other alternative is to manually collect data by observing the queues over 

time.  Watching a video of the queue is preferable since one can check the 

accuracy of the manual data records if the need arises, and the data will be less 

biased if the video camera can be hidden from view. 
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