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The Structure of Inverses in Schema Mappings

Ronald Fagin and Alan Nash∗

ABSTRACT
A schema mapping is a specification that describes how data struc-
tured under one schema (the source schema) is to be transformed
into data structured under a different schema (the target schema).
The notion of an inverse of a schema mapping is subtle, because
a schema mapping may associate many target instances with each
source instance, and many source instances with each target in-
stance. In PODS 2006, Fagin defined a notion of the inverse of a
schema mapping. This notion is tailored to the types of schema
mappings that commonly arise in practice (such as those specified
by “source-to-target tuple-generating dependencies”). We resolve
the key open problem of the complexity of deciding whether there
is an inverse. We also explore a number of interesting questions,
including: What is the structure of an inverse? When is the inverse
unique? How many non-equivalent inverses can there be? When
does an inverse have an inverse? How big must an inverse be?
Surprisingly, these questions are all interrelated. Finally, we give
greatly simplified proofs of some known results about inverses.
What emerges is a much deeper understanding about this funda-
mental operation.

1. INTRODUCTION
Schema mappings are high-level specifications that describe the

relationship between two database schemas. A schema mapping
is defined to be a tripleM = (S,T, Σ), whereS (the source
schema) andT (the target schema) are sequences of distinct rela-
tion symbols with no relation symbols in common andΣ is a set of
database dependencies that specify the association between source
instances and target instances. The most important case, in both
theory and practice, arises whenΣ is a finite set of source-to-target
tuple-generating dependencies (s-t tgds) We refer to a schema map-
ping specified by s-t tgds as ans-t tgd mapping. These mappings
have also been used in data integration scenarios under the name of
GLAV (global-and-local-as-view) assertions [Lenzerini 2002]. Our
main focus in this paper is on inverses for s-t tgd mappings.

Since schema mappings form the essential building blocks of
such crucial data inter-operability tasks as data exchange and data
integration (see the surveys [Kolaitis 2005, Lenzerini 2002]), sev-
eral different operators on schema mappings have been singled out
as deserving study in their own right [Bernstein 2003]. The compo-
sition operator and the inverse operator have emerged as two of the
most fundamental operators on schema mappings. The composi-
tion operator has been investigated in depth [Fagin, Kolaitis, Popa
and Tan 2005, Madhavan and Halevy 2003, Melnik 2004, Nash,
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Bernstein and Melnik 2007]; however, progress on the study of the
inverse operator was not made until recently. Even finding the ex-
act semantics of this operator is a delicate task, since in spite of the
traditional use of the name “mapping”, a schema mapping is not
simply a function that maps an instance of the source schema to
an instance of the target schema. Instead, for each source instance,
the schema mapping may associate many target instances. Further-
more, for each target instance, there may be many corresponding
source instances.

How should the inverse be defined in our context? Let us asso-
ciate with the schema mappingM12 = (S1,S2, Σ12) the setS12

of ordered pairs(I, J) such thatI is a source instance,J is a target
instance, and(I, J) satisfiesΣ12 (written (I, J) |= Σ12). Perhaps
the most natural definition of the inverse of the schema mapping
M12 would be a schema mappingM21 that is associated with the
setS21 = {(J, I) : (I, J) ∈ S12}. This reflects the standard al-
gebraic definition of an inverse, and is the definition that [Melnik
2004] and [Melnik, Bernstein, Halevy and Rahm 2005] give for the
inverse. In those papers, this definition was intended for a generic
model management context, where mappings can be defined in a
variety of ways, including as view definitions, relational algebra
expressions, etc. However, as discussed in [Fagin 2006], this defi-
nition does not work well in our context, since the setS21 above is
not associated with schema mappings defined by s-t tgds or natural
source-to-target modifications of s-t tgds.

[Fagin 2006] showed that the identity mapping cannot be ob-
tained by composing an s-t tgd mapping with any other schema
mapping. The closest we can come with such a composition is the
copy mapping, which is specified by s-t tgds that “copy” the source
instance to the target instance. The inverse defined in [Fagin 2006],
which we study in this paper, is defined essentially as follows: the
composition of a mapping and its inverse is the copy mapping. This
is the natural adaptation to the setting of s-t tgds of the principle that
the composition of a mapping and its inverse should be the identity.

Fagin showed how to construct an inverse of an s-t tgd mapping
that is itself an s-t tgd mapping when such an inverse exists. He
also developed a number of tools for the study of inverses of s-t
tgd mappings. He showed that deciding invertibility of an s-t tgd
mapping is coNP-hard, and left open the question as to whether it
is even decidable. We give a matching coNP upper bound, which
shows that deciding invertibility is coNP-complete.

[Fagin, Kolaitis, Popa and Tan 2007] introduced and studied the
notion of a quasi-inverse of a schema mapping. This notion is a
principled relaxation of the notion of an inverse of a schema map-
ping; intuitively, it is obtained from the notion of an inverse by
not differentiating between instances that are equivalent for data-
exchange purposes. During their development, they obtained a
number of results not just for quasi-inverses, but also for inverses.

1



In particular, they showed that a certain simple combinatorial con-
dition (thesubset property) is a necessary and sufficient condition
for an s-t tgd mapping to be invertible. They also gave an algo-
rithm for constructing acanonical candidate inversefor an s-t tgd
mapping. It is specified by using what they calleds-t tgds with con-
stants and inequalities. These are like s-t tgds, but there may also
be constant formulas and inequalities in the premise. They showed
that if an s-t tgd mapping is invertible, then its canonical candidate
inverse is indeed an inverse.

We definenormal inverses, that are specified by special cases of
s-t tgds with constants and inequalities. The canonical candidate
inverse is a normal inverse. Hence, if an s-t tgd mapping has an in-
verse, then it has a normal inverse. Normal inverses are especially
nice, in that ifI is a source instance,M is an s-t tgd mapping spec-
ified by Σ, andM′ is a normal inverse ofM that is specified by
Σ′, then the result of chasingI with Σ and then chasing the result
by Σ′ gives back exactlyI (this is not true of arbitrary inverses).
We focus our study mainly on normal inverses.

In addition to our result mentioned earlier where we resolve the
complexity of the deciding if an s-t tgd mapping is invertible, we
obtain a number of other new results about inverses, that we now
discuss.
Unique inverses. As we show, no schema mapping has a unique
inverse. What about a unique normal inverse? This is possible, and
we give a characterization of those s-t tgd mappings with a unique
normal inverse.

In the full case (where the s-t tgds have no existential quanti-
fiers) there is an especially interesting story (which we show does
not hold in the nonfull case). Let us say that a full s-t tgd map-
pingM = (S,T, Σ) is onto if every target instance is the result of
chasing some source instance withΣ. We show that if a full s-t tgd
mapping is invertible and onto, then it has a unique normal inverse.
What about the converse? We show that the converse fails. What
if we enrich the language of possible inverses? Following [Fagin,
Kolaitis, Popa and Tan 2007], we definedisjunctive tgds with in-
equalitiesby allowing inequalities in the premise and disjunctions
in the conclusion (such mappings were shown to be necessary to
express quasi-inverses of full s-t tgd mappings in [Fagin, Kolaitis,
Popa and Tan 2007]). We show that a full s-t tgd mappingM has a
unique inverse specified by disjunctive tgds with inequalities if and
only if M is invertible and onto. Furthermore, we show thatM
satifies these conditions if and only ifM is a slight generalization
of the copy mapping.
Inverse of an inverse. Surprisingly, it turns out to be rare that a
normal inverse of an s-t tgd mapping is itself invertible. We show
that ifM is a full s-t tgd mapping with an invertible normal inverse,
then, once again,M is a slight generalization of the copy mapping.
By combining this result with our results about unique inverses, we
obtain the unexpected result that a full s-t tgd mappingM has an
invertible normal inverse if and only ifM has a unique inverse
specified by disjunctive tgds with inequalities. We also show that
this latter theorem does not hold if we remove the restriction that
M be full.
The size of an inverse.How big does a normal inverse need to be?
We show that there is a family of full, invertible s-t tgd mappings
M such that the size of the smallest normal inverse ofM is expo-
nential in the size ofM. Therefore, we broaden the class of normal
mappings by allowing not just inequalities but also Boolean com-
binations of equalities in the premises, and we call these mappings
Boolean normal. Allowing Boolean normal mappings does not in-
crease the expressive power of normal mappings, but allows a more
compact representation. Indeed, we show that every invertible full
s-t tgd mapping has a Boolean normal inverse of polynomial size

(and in fact, we give a polynomial-time algorithm for generating
this Boolean normal inverse).

Is there a relationship between the number of normal inverses
and the size of the minimal Boolean normal inverse? We cannot
bound the number of normal inverses in terms of the size of the
minimal Boolean normal inverse, since there are examples with
an infinite number of inequivalent normal inverses. However, we
show that if there are only a small number of inequivalent normal
inverses, then the minimal number of constraints in a Boolean nor-
mal inverse is small. Specifically, we show that ifM is a full s-t tgd
mapping, withk source relation symbols and with exactlym ≥ 1
inequivalent normal inverses, thenM has a Boolean normal inverse
with at mostk + log2(m) constraints.
Simpler proofs of known results.We give greatly simplified proofs
of two results whose previous proofs were quite complex. [Fagin
2006] introduced theunique-solutions property, which says that no
two distinct source instances have the same set of solutions. (A
solutionfor a source instanceI with respect to a schema mapping
M is a target instanceJ such that(I, J) satisfies the constraints of
M.) He showed that the unique-solutions property is a necessary
condition for a schema mapping to have an inverse. He gave a com-
plicated proof that for LAV mappings (those specified by s-t tgds
with a singleton premise), the unique-solutions property is not only
a necessary condition but also a sufficient condition for invertibil-
ity. We give a simple proof of this result. Second, we give a simple
proof of the result in [Fagin, Kolaitis, Popa and Tan 2007] that for
invertible s-t tgd mappingsM, the canonical candidate inverse of
M is indeed an inverse ofM.

2. PRELIMINARIES
Schemas and Schema Mappings.A schemaS is a finite sequence
(R1, . . . , Rk) of relation symbols, each of a fixed arity. Anin-
stanceI over S (which we may call anS-instance) is a sequence
(RI

1, . . . , R
I
k), where eachRI

i is a finite relation of the same arity
asRi. We shall often useRi to denote both the relation symbol
and the relationRI

i that interprets it.
A schema mappingis a tripleM = (S,T, Σ) consisting of a

source schemaS, a target schemaT, and a setΣ of constraints.
We say thatM is specified byΣ. If Σ is a finite set of s-t tgds,
then we may refer toM as ans-t tgd mapping. WhenS andT are
clear from context, we will sometimes sayΣ when we should say
(S,T, Σ), and talk about a set of constraints, when we should talk
about a schema mapping.
Instances and Formulas.We consider instances over a two-sorted
universe ofvalues, which can beconstantsor (labelled) nulls. We
assume that there is a countably infinite setC of constants and
a countably infinite setN of nulls, whereC andN are disjoint.
We write dom(I) for the (active) domain of an instanceI. We
assume that every instanceI is finite, and has values inC ∪ N
(that is,dom(I) ⊂ C ∪ N ). We say thatI is an instance over
S, or anS-instance, if the relation symbols ofI and S are the
same, with the same arities. In the context of a schema mapping
M = (S,T, Σ), we may refer to anS-instance as asource in-
stance, and aT-instance as atarget instance. We say that a source
instanceI is groundif dom(I) ⊂ C.

If P is anm-ary relation symbol inS, andx1, . . . , xm are vari-
ables, not necessarily distinct. thenP (x1, . . . , xm) is a relational
atom, or simplyatom(overS). We may refer to it as aP -atom. In
the context of a schema mappingM = (S,T, Σ), we may refer to
aP -atom whereP is in S as asource atom, and aP -atom where
P is in T as atarget atom. If P is anm-ary relation symbol in
S, andc1, . . . , cm are values (constants or nulls), not necessarily
distinct. thenP (c1, . . . , cm) is a fact (overS). We may refer to it
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as aP -fact. We sometimes identify an instance with its set of facts.
We will refer to formulas that use theconst predicate; the in-

tended interpretation ofconst is that const(x) should hold pre-
cisely if x is assigned to a constant.

If δ is a conjunction of relational atoms (but noconst formulas),
then we defineIδ to be an instance obtained fromδ as follows.
For each variablev, assign a fixed constantcv, and let the facts
of Iδ consist of the factsP (cv1 , . . . , cvk ) whereP (v1, . . . , vk) is
an atom inδ. For example, ifδ is P (x, y) ∧ Q(y), then Iδ is
the instance{P (cx, cy), Q(cy)}. If δ is a conjunction of relational
atoms andconst formulas, then we defineIδ as follows. For each
variablev such thatconst(v) is in δ, assign a fixed constantcv, and
for each remaining variablev assign a fixed nullnv. DefineIδ be
the facts that result by taking each relational atom inδ and doing
the replacement we just described. For example, ifδ is P (x, y) ∧
Q(y) ∧ const(x), thenIδ is the instance{P (cx, ny), Q(ny)}. It
is sometimes convenient to allowδ to contain also inequalities of
the formx 6= y. In that case, we simply ignore the inequalities in
definingIδ.

A renamingof variables is a one-to-one function that maps vari-
ables to variables. Aweak renamingof variables is a function (not
necessarily one-to-one) that maps variables to variables.

Define aprime atomto be one that contains precisely the vari-
ablesx1, x2, . . . , xk for somek, and where the initial appearance
of xi precedes the initial appearance ofxj if i < j. For ex-
ample,P (x1, x2, x1, x3, x2) is a prime atom, butQ(x2, x1) and
R(x2, x3) are not. Note that for every relational atom, there is a
unique renaming of variables to obtain a prime atom.
Constraints. All sets of constraints we consider are finite, un-
less otherwise specified. We consider constraints of several forms.
A source-to-target tuple-generating dependency (s-t tgd)is a con-
straint of the form∀x̄∀ȳ(α(x̄, ȳ) → ∃z̄β(x̄, z̄)), whereα is a con-
junction of source atoms andβ is a conjunction of target atoms
(we assume that the source schemaS and the target instanceT are
given). Furthermore, there is a safety condition that every variable
in x̄ appears in bothα andβ. We will generally omit writing the
∀x̄∀ȳ part. If z̄ is empty, we say thatϕ is full.
Homomorphisms. Let J , J ′ be two instances. A functionh
that maps values to values is ahomomorphismfrom J to J ′ if
for every constantc, we have thath(c) = c, and for every rela-
tion symbolR and each tuple(a1, . . . , an) ∈ RJ , we have that
(h(a1), . . . , h(an)) ∈ RJ′

. We then writeJ → J ′. The instances
J andJ ′ are said to behomomorphically equivalentif there are
homomorphisms fromJ to J ′ and fromJ ′ to J . We then write
J ↔ J ′.
Solutions and Universal Solutions. Let M = (S,T, Σ) be a
schema mapping. We say thatJ is a solution for I (underM)
if (I, J) |= Σ. We write Sol(M, I) to denote the solutions for
I underM. We say that a solutionU for the ground instanceI
is a universal solution[Fagin, Kolaitis, Miller and Popa 2005] if
U → J for every solutionJ for I.
Composition and Inverse.We recall the concept of thecomposi-
tion of two schema mappings, introduced in [Fagin, Kolaitis, Popa
and Tan 2005, Melnik 2004], and the concept of aninverseof a
schema mapping, introduced in [Fagin 2006].

LetM12 = (S1,S2,Σ12) andM23 = (S2,S3,Σ23) be schema
mappings. ThecompositionM12◦M23 is a schema mapping(S1,
S3, Σ13) such that for everyS1-instanceI and everyS3-instance
J , we have that(I, J) |= Σ13 if and only if there is anS2-instance
K such that(I,K) |= Σ12 and(K,J) |= Σ23. When the schemas
are understood from the context, we will often writeΣ12 ◦Σ23 for
the compositionM12 ◦M23.

Let bS be a replica of the source schemaS, that is, for every rela-

tion symbolR of S, the schemabS contains a relation symbolbR that
is not inS and has the same arity asR. We also assume thatbR andbS are distinct whenR andS are distinct. IfA is a relational atom
R(x1, . . . , xk), then bA is the relational atombR(x1, . . . , xk). Simi-
larly, if F is a factR(c1, . . . , ck), then bA is the factbR(c1, . . . , ck).
If I is an instance ofS1, definebI to be the corresponding instance
of cS1. Thus,bI consists precisely of the factsbF such thatF is a
fact ofI. If I is a ground instance, then we may also refer tobI as a
ground instance.

The copy mappingis the schema mappingId = (S, bS,ΣId),
whereΣId consists of the s-t tgdsR(x̄) → bR(x̄) asR ranges over
the relation symbols inS. Thus, (I1, I2) |= ΣId if and only ifbI1 ⊆ I2.

Let M12 = (S1,S2, Σ12) be a schema mapping. We say that
a schema mappingM21 = (S2,cS1, Σ21) is aninverseof M12 if
for all ground instancesI andJ , we have that(I, J) |= Σ12 ◦ Σ21

if and only if bI ⊆ J .
Chasing. If M12 = (S1,S2, Σ12) is an s-t tgd mapping, then
chasingI with Σ produces a target instanceU such thatU is a
universal solution forI underM [Fagin, Kolaitis, Miller and Popa
2005]. We may writeU = chase12(I). and say thatU is theresult
of the chase. For definiteness, we use the version of the chase as de-
fined in [Fagin, Kolaitis, Popa and Tan 2005], although it does not
really matter, since whatever version of the chase we use, the re-
sults are all homomorphically equivalent. Similarly, we may write
chase21(I) for the result of chasingI with Σ21. We shall also ex-
tend this notation to cases whereΣ12 or Σ21 are not simply sets of
s-t tgds, but where we also allowconst formulas and inequalities
in the premises.

3. DECIDING INVERTIBILITY
In [Fagin 2006] it is shown that deciding invertibility is coNP-

hard, and it was left open as to whether it is even decidable. In this
section, we prove a matching coNP upper bound, which shows that
deciding invertibility is coNP-complete.

An s-t tgd mappingM12 = (S1,S2, Σ12) has thesubset prop-
erty if I ⊆ I ′ whenever Sol(M12, I

′) ⊆ Sol(M12, I). It was
shown in [Fagin, Kolaitis, Popa and Tan 2007] that the subset prop-
erty (which they called the(=,=)-subset property) is a necessary
and sufficient condition for invertibility of an s-t tgd mapping. [Fa-
gin, Kolaitis, Miller and Popa 2005] showed that ifM12 is an s-t
tgd mapping, then the solutions of a source instanceI are exactly
the homomorphic images ofchase12(I). It follows easily that there
is a “homomorphic version” of the subset property, namely, that
I ⊆ I ′ wheneverchase12(I) → chase12(I

′). This homomorphic
version of the subset property is very convenient for our purposes.

We shall make use of the following proposition, whose proof
(like almost all proofs in this paper) appears in the Appendix. Note
that the second condition in this proposition is a special case of the
homomorphic version of the subset property.

PROPOSITION 3.1. For an s-t tgd mappingM12 = (S1,S2,
Σ12), the following are equivalent:

1. M12 is invertible.

2. For every relational atomA and instanceI,

chase12(IA) → chase12(I) impliesIA ⊆ I.

3. For every relational atomA and instanceI with at most
n1n2 facts,

chase12(IA) → chase12(I) impliesIA ⊆ I
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wheren1 is the number of facts inchase12(IA) andn2 is the
maximal number of relational atoms in a premise ofΣ12.

Proposition 3.1 gives us a very simple proof of the desired coNP
upper bound on the problem of deciding invertibility of s-t tgd map-
pings.

THEOREM 3.2. The problem of deciding if an s-t tgd mapping
is invertible is coNP-complete

PROOF. The proof of coNP-hardness is in [Fagin 2006]. We
now show the coNP upper bound. We make use of the equiva-
lence of (1) and (3) in Proposition 3.1. To check thatM12 =
(S1,S2, Σ12) is not invertible, guess a relational atomA, an in-
stanceI such thatIA 6⊆ I whereI has at mostn1n2 facts, and a
homomorphismh : chase12(IA) → chase12(I) wheren1 is the
number of facts inchase12(IA) andn2 is the maximal number of
facts in a premise ofΣ12.

4. STRUCTURE OF INVERSES
In this section, we study a class of mappings (that we callnor-

mal), which are an especially attractive choice for inverses of s-t tgd
mappings. If an s-t tgd mapping has an inverse, then it has a normal
inverse, because the canonical candidate inverse (defined later) is
normal. Since we are interested in inversesM21 = (S2,cS1, Σ21)
of s-t tgd mappingsM12 = (S1,S2, Σ12), the normal mappings
of interest to us have source schemaS2 and target schemacS1.

DEFINITION 4.1. A constraint isnormal if it is of the form
α ∧ χA ∧ η → A, whereα is a conjunction of source atoms,
A is a target atom,χA is the conjunction of the formulasconst(x)
for every variablex of A, andη is a conjunction (possibly empty)
of inequalities of the formx 6= y for distinct variablesx, y of A.
Further, there is the safety condition that every variable inA must
appear inα. As usual, we suppress the leading universal quanti-
fiers. A schema mapping is said to be normal if all of its constraints
are normal.

Notice that werequire theconst predicate on all variables inA,
but justallow inequalities on variables inA. Note also that every
normal constraint isfull (has no existential quantifiers).

LetM12 = (S1,S2, Σ12) andM21 = (S2,cS1, Σ21) be schema
mappings. Let us say thatΣ21 is too strong (forM12) if there are
ground instancesI andJ such thatbI ⊆ J but (I, J) 6|= Σ12 ◦Σ21.
So Σ21 is not too strong precisely if whenever there are ground
instancesI andJ such thatbI ⊆ J , then (I, J) |= Σ12 ◦ Σ21.
If Σ12 is a set of s-t tgds, andΣ21 is arbitrary, then it follows
from a result in [Fagin 2006] thatΣ21 is not too strong precisely
if (I, bI) |= Σ12 ◦ Σ21 for every ground instanceI. Let us say that
Σ21 is too weak (forM12) if there are ground instancesI andJ
such that(I, J) |= Σ12 ◦ Σ21 but bI 6⊆ J . SoΣ21 is not too weak
precisely if whenever there are ground instancesI andJ such that
(I, J) |= Σ12 ◦ Σ21, thenbI ⊆ J . It follows immediately from the
definition of inverse thatM21 is an inverse ofM12 if and only if
Σ21 is not too strong and not too weak.

If Σ21 is not too strong, then for all ground instanceI andJ
where bI ⊆ J , there is an instanceK “in the middle” such that
(I,K) |= Σ12 and(K,J) |= Σ21. We may say thatK witnesses
that (I, J) |= Σ12 ◦ Σ21. The next proposition says that ifM21

is a normal inverse ofM12, then an arbitrary universal solution
can play the role of this witness. This is a quite useful as a tool in
proving properties of normal inverses.

PROPOSITION 4.2. Assume thatM21 = (S2,cS1, Σ21) is a
normal inverse of the s-t tgd mappingM12 = (S1,S2, Σ12). LetI
be a ground instance, and letU be an arbitrary universal solution
for I with respect toM12. Then(U, bI) |= Σ21, andU witnesses
(I, J) |= Σ12 ◦ Σ21 whenbI ⊆ J .

We now give an example that shows that ifM21 is not nor-
mal, then there may be no universal solution forI that witnesses
(I, bI) |= Σ12 ◦ Σ21.

EXAMPLE 4.3. LetS1 consist of a unary relation symbolS,
and letS2 consist of a binary relation symbolT . Let Σ12 consist
of the single s-t tgdS(x) → ∃y(T (x, y) ∧ T (y, x)), and letΣ21

consist of the single s-t tgdT (x, y) ∧ T (y, x) → bS(x). Note that
this latter s-t tgd is not a normal constraint, since it does not have
the formulaconst(x) in its premise. LetM12 = (S1,S2, Σ12)

andM21 = (S2,cS1, Σ21).
Let I be an arbitrary nonempty ground instance, and letU be an

arbitrary universal solution forI with respect toΣ12. Assume that
S(c) is a fact ofI. ThenU must contain factsT (c, n) andT (n, c)
for some nulln. If (U, J) |= Σ21, then necessarilyJ contains
the fact bS(n), which is not a fact ofbI. SoU does not witness
(I, bI) |= Σ12 ◦ Σ21. However, if we takeK to be an instance
whose facts are

�
T (c, c) : SI(c)

	
, then it is easy to see thatK

witnesses(I, bI) |= Σ12 ◦Σ21. It is then straightforward to see that
M21 is an inverse ofM12. Thus,M21 is a (nonnormal) inverse of
M12 where no universal solution witnesses(I, bI) |= Σ12 ◦ Σ21.

Now let us “normalize”M21 to obtain the normal inverseM′
21 =

(S2,cS1, Σ′
21), whereΣ′

21 consists of the single constraintT (x, y)∧
T (y, x)∧ const(x) → bS(x). Then, as Proposition 4.2 tells us, ev-
ery universal solution forI witnesses(I, J) |= Σ12 ◦ Σ21.

We now discuss another nice property of normal inverses. It
was proven in [Fagin 2006] that ifM12 = (S1,S2, Σ12) and
M21 = (S2,cS1, Σ21) are both full s-t tgd mappings, thenM21

is an inverse ofM12 if and only if chase21(chase12(I)) = bI for
every ground instanceI. The next theorem says that this strong
property (thatchase21(chase12(I)) = bI for every ground instance
I) holds for normal inversesM21, even whenM12 is not full.

THEOREM 4.4. LetM12 = (S1,S2, Σ12) be an s-t tgd map-
ping andM21 = (S2,cS1, Σ21) a normal mapping. ThenM21

is an inverse ofM12 if and only ifchase21(chase12(I)) = bI for
every ground instanceI.

It is straightforward to verify that ifM12 andM21 are as in
Example 4.3, thenchase21(chase12(I)) 6⊆ bI. It is more chal-
lenging to find an example whereM21 is an inverse ofM12 butbI 6⊆ chase21(chase12(I)). An example (from [Fagin, Kolaitis,
Popa and Tan 2007]) is in the Appendix.

We now introduce some useful new tools for the study of normal
inverses.

4.1 Essential Conjunctions and Essential Atoms
Let Σ12 be a finite set of s-t tgds. Assume thatA is a relational

atom, andδ is a conjunctionα ∧ χ ∧ η, whereα is a conjunction
of relational atoms,χ is a conjunction (possibly empty) ofconst
formulasconst(x) for variablesx in A, andη is a conjunction
(possibly empty) of inequalities of the formx 6= y for distinct
variablesx, y in A. Let us say thatδ is relevant forA (with respect
to Σ12) if Iδ → chase12(IA). Note that the inequalities play no
role, but are allowed for notational convenience. Let us say thatδ is
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demanding forA (with respect toΣ12) if for every ground instance
I such thatIδ → chase12(I), necessarilyIA ⊆ I. We say that
δ is essential forA (with respect toΣ12) if δ is both relevant and
demanding forA with respect toΣ12. It is a consequence of this
definition that ifδ is essential forA, then either (1)δ contains no
const formulas and has exactly the same variables asA, or (2) δ
contains precisely the formulasconst(x) for every variablex of
A. (The fact that in both cases, every variable inA appears inδ
is Proposition 4.6 below.) Both cases are possible, because there
are two meanings ofIδ: one whenδ has noconst formulas (which
behaves as ifδ has the formulasconst(x) for every variablex of
A), and one when it does haveconst formulas.

WhenΣ12 is full, then we are interested in the case whereδ is
simply a relational atom. In that case, ifδ is demanding, then we
call δ a demanding atom, and similarly we define arelevant atom
and anessential atom. The reason we are interested in demand-
ing atoms (and essential atoms) in the full case is because of the
following proposition.

PROPOSITION 4.5. LetM12 = (S1,S2, Σ12) be a full s-t tgd
mapping. Assume thatA is a source atom. Then every demanding
conjunction forA contains a demanding atom forA, and every
essential conjunction forA contains an essential atom forA.

Let us say that the s-t tgd mappingM12 = (S1,S2, Σ12) has
the constant-propagation propertyif for every ground instanceI,
every member of the active domain ofI is a member of the active
domain ofchase12(I) (that is,dom(I) ⊆ dom(chase12(I))). It
is shown in [Fagin 2006] that ifM12 is invertible, then it has the
constant-propagation property. Similarly, we have the following
proposition.

PROPOSITION 4.6. Assume thatA is a source atom, andδ is an
essential conjunction forA with respect to the setΣ12 of s-t tgds.
Then every variable inA appears inδ.

It is easy to see that Proposition 4.6 has the following immediate
corollary.

COROLLARY 4.7. Assume thatA is a source atom, andB is
an essential atom forA with respect to the setΣ12 of full s-t tgds.
Then the variables inB are exactly the variables inA.

Recall that aweak renamingis a function that maps variables
to variables (the word “weak” refers to the fact that the function
is not necessarily one-to-one). Ifϕ is a formula, andf is a weak
renaming, letϕf be the result of replacing every variablex in ϕ by
f(x). We may refer toϕf as aweak renaming ofϕ. If ϕ is a normal
constraint, then we say thatf is consistent with the inequalities of
ϕ if f(x) andf(y) are distinct for each inequalityx 6= y in the
premise ofϕ. The next theorem characterizes normal inverses of
s-t tgd mappings in terms of the notions ofdemanding, relevant,
andessential.

THEOREM 4.8. LetM12 = (S1,S2, Σ12) be an s-t tgd map-
ping andM21 = (S2, bS1, Σ21) be a normal mapping. ThenM21

is an inverse ofM12 if and only if

1. Every constraintϕ in Σ21 is of the formδ → bA, whereδf

is demanding forAf for every weak renamingf consistent
with the inequalities ofϕ.

2. For each source atomA, there is a relevant conjunctionδ for
A such thatδ → bA is a weak renaming of a constraint in
Σ21. (By Part (1), this relevant conjunction is essential.)

The proof of Theorem 4.8 proceeds by showing that part (1) of
Theorem 4.8 holds precisely ifΣ21 is not too strong, and part (2)
of Theorem 4.8 holds precisely ifΣ21 is not too weak.

DEFINITION 4.9. LetM12 = (S1,S2, Σ12) be a schema map-
ping, whereΣ12 is a finite set of s-t tgds. Lete be a partial function
whose domain is all prime source atoms that have an essential con-
junction. If the prime source atomA has an essential conjunction,
thene(A) is an essential conjunction forA that is a conjunction of
relational atoms and the formulasconst(x) for each variablex of
A. If A has no essential conjunction, thene(A) is undefined. Let
Σe

21 consist of all formulase(A) ∧ ηA → bA, whereA is a prime
source atom and wheree(A) is defined, andηA consists of all in-
equalities of the formx 6= y wherex andy are distinct variables
of A.

The next theorem shows how we can construct an inverse out of
essential conjunctions.

THEOREM 4.10. LetM12 be an s-t tgd mapping. The follow-
ing are equivalent.

1. M12 is invertible.

2. For every source atomA, there is an essential conjunction
for A.

3. Me
21 is an inverse ofM12, for every partial functione as in

Definition 4.9.

4. Me
21 is an inverse ofM12, for some partial functione as in

Definition 4.9.

In the full case, we can replace “essential conjunction” by “es-
sential atom” in part (2) of Theorem 4.10.

4.2 The Canonical Candidate Inverse

DEFINITION 4.11. LetM12 = (S1,S2, Σ12) be an s-t tgd
mapping. For each source atomA, let IA be, as before, the in-
stance containing the fact obtained by replacing each variablev in
A by a distinct constantcv. LetVA be the result of chasingIA with
Σ12. Let νA be the conjunction of relational atoms obtained by
replacing every constantcv of VA by the variablev, and replacing
every nulln of VA by a new variablevn (that does not appear inA).
Let χA be the conjunction of the formulasconst(x) for each vari-
ablex inA, and letωA be the conjunction ofνA andχA. LetηA be
the conjunction of all inequalities of the formx 6= y wherex and
y are distinct variables inA, Thecanonical candidate inverse[Fa-
gin, Kolaitis, Popa and Tan 2007] of an invertible s-t tgd mapping
M12 = (S1,S2, Σ12) is the normal mappingMc

21 = (S2,cS1,
Σc

21) whereΣc
21 contains, for every prime source atomA, the con-

straintνA ∧ χA ∧ ηA → bA. Note that because of the constant-
propagation property for invertible s-t tgd mappings, every variable
in A appears inνA, so these constraints are well-defined.

It is shown in [Fagin, Kolaitis, Popa and Tan 2007] that ifM12 is
an invertible s-t tgd mapping, then the canonical candidate inverse
ofM12 is indeed an inverse ofM12. The proof in [Fagin, Kolaitis,
Popa and Tan 2007] is quite complicated. We will now give a proof,
based on the following proposition, that is much simpler (given our
machinery).

PROPOSITION 4.12. LetM12 = (S1,S2, Σ12) be an invert-
ible s-t tgd mapping. LetA be a source atom. ThenωA, as defined
in Definition 4.11, is an essential conjunction forA.
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Thus, the role of the essential conjunction forA that is required
in part (2) of Theorem 4.10 can be played byωA.

THEOREM 4.13. [Fagin, Kolaitis, Popa and Tan 2007] Assume
thatM12 = (S1,S2, Σ12) is an invertible s-t tgd mapping. Then
the canonical candidate inverse ofM12 is indeed an inverse of
M12.

PROOF. Let e be the function that assigns to each prime source
atomA the formulaωA. By Proposition 4.12, we know thate(A)
is an essential conjunction forA. So by Theorem 4.10, we know
thatMe

21 is an inverse ofM. ButMe
21 is the canonical candidate

inverse ofM12, and so the canonical candidate inverse ofM12 is
an inverse ofM12, as desired.

5. UNIQUE INVERSES
Say that two schema mappings(S1,S2, Σ12) and(S1,S2, Σ′

12)
areequivalentif Σ12 andΣ′

12 are logically equivalent. In the fol-
lowing theorem (and later), when we speak of “uniqueness”, we
mean uniqueness up to equivalence.

THEOREM 5.1. No schema mapping has a unique inverse.

Therefore, if we wish to study uniqueness of inverses, we must
restrict our attention to particular classes (such as normal inverses).
We have seen that normal inverses are an important class (in par-
ticular, every invertible s-t tgd mapping has a normal inverse) We
now give an example of an s-t tgd mapping with a unique normal
inverse, and another with multiple normal inverses.

EXAMPLE 5.2. LetM12 = (S1, S2, Σ12), whereS1 consists
of the unary relation symbolR, whereS2 consists of the unary
relation symbolS, and whereΣ12 consists of the tgdR(x) →
S(x). LetΣ21 consist of the normal constraintS(x)∧const(x) →bR(x), and letM21 = (S2,cS1, Σ21). It is easy to see thatM21 is
a normal inverse ofM12. As we shall discuss shortly,M21 is the
unique normal inverse ofM12.

EXAMPLE 5.3. LetS1 consist of the unary relation symbolR,
and letS2 consist of the binary relation symbolS. Let Σ12 consist
of the tgdR(x) → S(x, x). Let Σ21 consist of the normal con-
straintS(x, x)∧ const(x) → bR(x), and letΣ′

21 consist of the nor-
mal constraintS(x, y) ∧ const(x) → bR(x). LetM12 = (S1, S2,
Σ12), letM21 = (S2,cS1, Σ21), and letM′

21 = (S2,cS1, Σ′
21).

It is straightforward to verify thatM21 andM′
21 are inequivalent

normal inverses ofM12.

Because of these two examples (but where the focus was on
unique inverses specified by tgds), [Fagin 2006] says, “It might
be interesting to examine the question of when there is a unique
inverse mapping specified in a given language.”

The next theorem gives a necessary and sufficient condition, based
on our notions of “essential” and “demanding”, for an invertible s-t
tgd mapping to have a unique normal inverse.

THEOREM 5.4. An invertible s-t tgd mapping has a unique nor-
mal inverse if and only if for every source atomA, if δ is an essen-
tial conjunction forA, andδ′ is a demanding conjunction forA,
both with formulasconst(x) for exactly the variablesx that ap-
pear inA, thenIδ → Iδ′ .

Assume thatδ and δ′ are both essential forA. By Proposi-
tion 4.6, it follows thatδ andδ′ each have all the variables inA. It
is then not hard to show from Theorem 5.4 that if an invertible s-t

tgd mapping has a unique normal inverse, and ifδ andδ′ are both
essential forA, thenIδ andIδ′ are homomorphically equivalent.

Let us say that a full s-t tgd mapping isonto if every target in-
stance is the result of chasing some source instance. That is, the full
s-t tgd mappingM12 = (S1,S2, Σ12) is onto if for every target
instanceJ there is a source instanceI such thatchase12(I) = J .
Note that the mappingM12 of of Example 5.2 is onto, whereas the
mappingM12 of Example 5.3 is not onto.

THEOREM 5.5. A full s-t tgd mapping that is invertible and
onto has a unique normal inverse.

For example, the mappingM12 of Example 5.2, which is invert-
ible and onto, has a unique normal inverse by Theorem 5.5.

Does the converse hold? That is, is every full s-t tgd mapping
with a unique normal inverse necessarily onto? The next example
shows that this is false.

EXAMPLE 5.6. LetS1 consist of four unary relation symbols
Pi, for 1 ≤ i ≤ 4, and letS2 consist of the four unary relation sym-
bolsQi, for 1 ≤ i ≤ 4 and the unary relation symbolR. Let Σ12

consist of the full s-t tgdsPi(x) → Qi(x), for 1 ≤ i ≤ 4, along
with the full s-t tgdsP1(x)∧P2(x) → R(x) andP3(x)∧P4(x) →
R(x). LetM12 = (S1,S2, Σ12). The mappingM12 is not onto,
since the target instance whose set of facts is{Q1(0), Q2(0)} is
not a universal solution for any source instanceI (such an instance
I must contain the factsP1(0), P2(0), and so every solution for
I must also contain the factR(0)). Let M21 = (S2,cS1, Σ21),

whereΣ21 =
n
Qi(x) ∧ const(x) → bPi(x) : 1 ≤ i ≤ 4

o
. Al-

thoughM12 is not onto, it is shown in the Appendix thatM12

has a unique normal inverse, namelyM21.

Although being invertible and onto is not a necessary and suffi-
cient condition for a full s-t tgd mapping to have a unique inverse,
is there a language with a richer set of constructs where this is true?
We now give such a language.

DEFINITION 5.7. A disjunctive tgd with inequalitiesis a con-
straint of the formα∧η → ∃ȳβ, whereα is a conjunction of source
atoms,β is a disjunction of conjunctions of target atoms, andη is a
conjunction (possibly empty) of inequalities of the formx 6= y for
distinct free variablesx, y of β. Note that this is the same restriction
on inequalities that we have for normal mappings: the inequalities
must involve only free variables in the conclusion. Further, there is
the safety condition that every free variable inβ must appear inα.
Again, we suppress the leading universal quantifiers.

Disjunctive tgds with inequalities were defined in [Fagin, Ko-
laitis, Popa and Tan 2007], where they were shown to be rich enough
to specify quasi-inverses of quasi-invertible full s-t tgd mappings. It
was also shown there that inequalities in the premise and both dis-
junctions and existential quantifiers in the conclusion are needed
in general to specify quasi-inverses of quasi-invertible full s-t tgd
mappings. Note thatconst formulas are not allowed. Every invert-
ible full s-t tgd mapping has an inverse specified in this language,
even without the disjunctions, namely the canonical candidate in-
verse with theconst formulas dropped. (The reason it is all right
to drop theconst formulas is because of a simple result in [Fagin,
Kolaitis, Popa and Tan 2007] thatconst formulas play no role in
the inverse of full s-t tgd mappings; this is Proposition A.7 in the
Appendix.)

Recall that thecopy mapping, that is used to define the inverse,
is the schema mappingId = (S, bS,ΣId), whereΣId consists of the
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s-t tgdsR(x̄) → bR(x̄) asR ranges over the relation symbols inS.
We now define ap-copy mapping(where thep stands for “partial”
or “permutation”) that is a generalization of the copy mapping.

DEFINITION 5.8. The schema mapping(S,T, Σ) is a p-copy
mappingif:

1. Every member ofΣ is of the form

P (x1, . . . , xk) → Q(xf(1), . . . , xf(k)),

whereP is a source relation symbol,Q is a target relation
symbol,x1, . . . , xk are distinct variables, andf is a permu-
tation of{1, . . . k}.

2. Every source relation symbol appears in exactly one premise
of Σ.

3. Every target relation symbol appears in exactly one conclu-
sion ofΣ.

For example, assume thatS1 consists of the binary relation sym-
bol P1 and the ternary relation symbolP2, andS2 consists of the
binary relation symbolQ1 and the ternary relation symbolQ2. As-
sume thatΣ12 consists of the s-t tgdsP1(x, y) → Q1(y, x) and
P2(x, y, z) → Q2(y, x, z). Then(S1,S2, Σ12) is a p-copy map-
ping.

The next theorem says that disjunctive tgds with inequalities
form a rich enough language that a full s-t tgd mapping has a unique
inverse in this language if and only if it is invertible and onto.

THEOREM 5.9. Let M12 = (S1,S2, Σ12) be a full s-t tgd
mapping. The following are equivalent.

1. M12 has a unique inverse specified by disjunctive tgds with
inequalities.

2. M12 is invertible and onto.

3. M12 is equivalent to a p-copy mapping.

Note that we cannot replace (2) in the statement of the theorem
by simply “M12 is onto”, because of the schema mapping with
source relation symbolsP andR and the single target relation sym-
bolQ, that is specified by the tgdsP (x) → Q(x),R(x) → Q(x).
This schema mapping is clearly onto but not invertible.

Let us reconsiderM12 from Example 5.6. It has a unique nor-
mal inverse, but sinceM12 is not equivalent to a p-copy mapping,
it follows from Theorem 5.9 thatM12 does not have a unique in-
verse specified by disjunctive tgds with inequalities. In addition
to M21 = (S2,cS1, Σ21) from Example 5.6, another inverse is
specified byΣ21 along with the disjunctive tgdR(x) → (cP1(x) ∨cP3(x)).

Define anear p-copy mappingto be a full s-t tgd mappingM =
(S,T, Σ) where (i) for each memberσ of Σ, the premise and con-
clusion ofσ are each singletons, with the same variables in the
premise as in the conclusion, and with the variables in the con-
clusion all distinct, and where (ii) every member ofT appears in
the conclusion of exactly one member ofΣ, and every member
of S appears in the premise of at most one member ofΣ. Thus,
a near p-copy mapping may differ from being a p-copy for two
reasons. First, the variables in premise are not necessarily dis-
tinct. Second, some member ofS may fail to appear inΣ. By
the normalized versionof an s-t tgd mapping, we mean the map-
ping that results by adding to the premise of every tgd the formulas
const(x) for every variablex that appears in the conclusion. Re-
turning again to Example 5.6, we see that the unique normal inverse

M21 = (S2,cS1, Σ21) is the normalized version of a near p-copy
mapping (it is only “near”, because the relation symbolR does not
appear inΣ21). This is not a coincidence. As a consequence of
a later result (Theorem 8.2) that relates the number of normal in-
verses to the number of constraints in an inverse, we obtain the
following result.

THEOREM 5.10. If a full s-t tgd mapping has a unique normal
inverseM21, thenM21 is equivalent to the normalized version of
a near p-copy mapping.

We close this section with a explanation of whyconst formulas
are not allowed in the language for inverses used in Theorem 5.9.
Would the theorem still be true if we were to enrich the language
for inverses still further to be disjunctive tgds with inequalities and
constants? It turns out that allowing bothconst formulas and ex-
istential quantifiers makes uniqueness hopeless. For example, con-
sider the schema mappingM12 of Example 5.2. Letσ1 be the
constraintS(x) ∧ const(x) → bR(x), and letσ2 be the constraint
S(x) → ∃y bR(y). In addition to the inverseM21 given in Exam-
ple 5.2, which is specified byσ1, another inverse is specified by
{σ1, σ2}. The constraintσ2 is not logically implied by the con-
straintσ1, because of theconst formula in the premise ofσ1 but
notσ2. More generally, if there were an s-t tgd mappingM′

12 with
a unique inverse specified by disjunctive tgds with inequalities and
constants, then from the implication (1)⇒ (3) of Theorem 5.9, it
would follows thatM′

12 is equivalent to a p-copy mapping. But
then the obvious generalization of the construction we just gave for
a second inverse ofM12 of Example 5.2 would show thatM′

12 has
inequivalent inverses specified by disjunctive tgds with inequalities
and constants.

6. INVERSE OF THE INVERSE
In this section, we consider the question as to when a normal

inverse of a schema mapping is itself invertible. Surprisingly, it
turns out to be rare that a normal inverse of an s-t tgd mapping is
invertible. We begin with the full case.

THEOREM 6.1. LetM12 be a full s-t tgd mapping. ThenM12

has an invertible normal inverse if and only ifM12 is equivalent to
a p-copy mapping.

The following theorem, which gives an unexpected connection
between unique inverses and invertible inverses, follows immedi-
ately from Theorems 5.9 and 6.1.

THEOREM 6.2. LetM12 be a full s-t tgd mapping. The follow-
ing are equivalent.

1. M12 has a unique inverse specified by disjunctive tgds with
inequalities.

2. M12 has an invertible normal inverse.

3. M12 is equivalent to a p-copy mapping.

We now show by example that Theorem 6.2 fails when we drop
the assumption thatM12 be full.

EXAMPLE 6.3. LetS1 consist of the unary relation symbols
P1 andP2, and letS2 consist of the unary relation symbolsQ1 and
Q2. Let Σ12 consist of the s-t tgdsP1(x) → Q1(x) andP2(x) →
∃y(Q2(x) ∧ Q1(y)). Let Σ′

12 consist of the normal constraints
P1(x) ∧ const(x) → Q1(x) andP2(x) ∧ const(x) → Q2(x).
Let Σ21 consist of the normal constraintsQ1(x) ∧ const(x) →
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cP1(x) andQ2(x) ∧ const(x) → cP2(x). Let Σ′
21 consist of the

normal constraintsQ1(x) ∧ const(x) → cP1(x) andQ2(x) ∧
Q1(y) ∧ const(x) → cP2(x). Let M12 = (S1,S2, Σ12), let
M′

12 = (S1,S2, Σ′
12), letM21 = (S2,cS1, Σ21), and letM′

21 =

(S2,cS1, Σ′
21). It is straightforward to verify thatM21 andM′

21

are inequivalent normal inverses ofM12, andM′
12 is a normal in-

verse ofM21. So condition (2) of Theorem 6.2 holds, sinceM21

is a normal inverse ofM12, andM′
12 is an inverse ofM21. How-

ever, condition (1) of Theorem 6.2 fails, sinceM12 has two in-
equivalent normal inverses, namelyM21 andM′

21. Furthermore,
it is not hard to see that condition (3) of Theorem 6.2 fails also.

7. THE SIZE OF AN INVERSE
In this section, we consider the question of whether there is a

polynomial-size inverse in some language. We show that for s-t
tgd mappings, the size of the smallest normal inverse may be expo-
nential. We also show, however, that if we expand the language to
allow Boolean combinations of equalities rather than simply con-
junctions of inequalities in the premise, then in the full case, there
is always a polynomial-size inverse (that can be computed in poly-
nomial time).

THEOREM 7.1. There is a family of full s-t tgd mappings, each
of which is invertible, but where the size of the smallest normal
inverse is exponential in the size of the schema mapping.

DEFINITION 7.2. A constraint isBoolean normalif it is of the
form α ∧ χA ∧ θ → A, whereα is a conjunction of source atoms,
A is a target atom,χA is the conjunction of the formulasconst(x)
for every variablex ofA, andθ is a Boolean combination (possibly
empty) of equalitiesx = y for variablesx, y of A. Further, there
is the safety condition that every variable inA must appear inα.
Again, we suppress the leading universal quantifiers. A schema
mapping is said to be Boolean normal if all of its constraints are
Boolean normal.

Thus, we obtain the definition of “Boolean normal” from the defi-
nition of “normal” by allowing Boolean combinations of equalities
in the premise, rather than simply conjunctions of inequalities. It is
easy to see that every Boolean normal schema mapping is equiva-
lent to a normal schema mapping. That is, allowing Boolean com-
binations of equalities in the premise, rather than simply conjunc-
tions of inequalities. does not increase the expressive power. How-
ever, allowing Boolean combinations of equalities in the premise
does potentially allow a more compact representation. In fact, the
next theorem, in combination with the previous theorem, shows
that this does indeed happen.

THEOREM 7.3. There is a polynomial-time algorithm such that
if the input is a schema mappingM12 specified by a finite set of
full s-t tgds, then the output is a polynomial-size Boolean normal
schema mapping that is an inverse ofM12 if M12 has an inverse.

It is open as to whether such a polynomial-time algorithm exists
in the nonfull case. It is even open in the nonfull case as to whether
or not there always exists a Boolean normal inverse of polynomial
size if an inverse exists.

8. RELATING THE LENGTH OF AN IN-
VERSE TO THE NUMBER OF INVERSES

If M12 = (S1,S2, Σ12) is a schema mapping, whereΣ12 is
a set of constraints, define thelengthof M12 to be the number of

constraints inΣ12. In this section, we show that for each full s-t tgd
mappingM12, there is a relationship between the minimal length
of a Boolean inverse forM12 and the number of normal inverses of
M12. We first show that we cannot bound the number of inverses
in terms of the minimal length of a Boolean normal inverse, since
there is a full s-t tgd mapping with infinitely many distinct normal
inverses. We then show that we can bound the minimal length of a
Boolean normal inverse in terms of the number of inverses (and the
number of relation symbols).

We begin by giving an example of a full s-t tgd mapping with
infinitely many distinct normal inverses.

EXAMPLE 8.1. LetS1 consist of the unary relation symbolP ,
and letS2 consist of the binary relation symbolQ. LetΣ12 consist
of the s-t tgdP (x) → Q(x, x). Let Σk

21 consist of the normal
constraint

Q(x, y1) ∧Q(y1, y2) ∧ . . . ∧Q(yk−1, yk) ∧Q(yk, x)

∧const(x) → P (x).

Let M12 = (S1,S2, Σ12), and letMk
21 = (S2,cS1, Σk

21). It is
straightforward to verify that for every ground instanceI and for
eachk ≥ 1 we havechasek

21(chase12(I)) = bI (wherechasek
21(J)

is the result of chasingJ with Σk
21). It therefore follows from The-

orem 4.4 thatMk
21 is an inverse ofM12 for everyk. It is also

straightforward to verify thatΣk
21 andΣk′

21 are not logically equiv-
alent if k 6= k′. SoM12 has infinitely many inequivalent normal
inverses.

The next theorem says that we can bound the minimal length of
a Boolean normal inverse in terms of the number of inverses (and
the number of relation symbols).

THEOREM 8.2. LetM12 be a full s-t tgd mapping, withk source
relation symbols. Assume thatM12 has exactlym ≥ 1 inequiva-
lent normal inverses. ThenM12 has a Boolean normal inverse of
length at mostk + log2(m).

Note in particular that if the s-t tgd mappingM12 has a unique
normal inverse (so thatm = 1 in Theorem 8.2) thenM12 has a
Boolean normal inverse of length at mostk, wherek is the num-
ber of source relation symbols. This is the key to proving Theo-
rem 5.10.

It is an open problem as to whether a version of Theorem 8.2
holds in the nonfull case.

9. INVERTIBILITY IN THE LAV CASE
Recall that a schema mapping has theunique-solutions property

if no two distinct source instances have the same set of solutions.
[Fagin 2006] showed that the unique-solutions property is a nec-
essary condition for a schema mapping to have an inverse. [Fagin
2006] also showed that for LAV mappings (those specified by s-t
tgds with a singleton premise), the unique-solutions property is not
only a necessary condition but also a sufficient condition for invert-
ibility. The proof of this latter result was quite complicated. In this
section, we give a very simple proof.

Just as we defined a homomorphic version of the subset prop-
erty in Section 3, there is a homomorphic version of the unique-
solutions property, namely, thatI = I ′ wheneverchase12(I) ↔
chase12(I

′). Note that it follows immediately from the two ho-
momorphic versions that the subset property implies the unique-
solutions property.

We now give our greatly simplified proof that the unique solu-
tions property characterizes invertibility in the LAV case.

8



THEOREM 9.1. [Fagin 2006] A LAV s-t tgd mapping is invert-
ible if and only if it has the unique-solutions property.

PROOF. We just noted that the subset property implies the unique-
solutions property. Since satisfying the subset property is equiva-
lent to invertibility, the “only if” direction follows (even when the
s-t tgd mapping is not LAV).

Assume now thatM12 = (S1,S2, Σ12) is a LAV mapping that
satisfies the unique-solutions property. We now show thatM12

satisfies the subset property, and so is invertible. Assume thatI
andI ′ are such thatchase12(I) → chase12(I

′). Then

chase12(I ∪ I ′) = chase12(I) ∪ chase12(I
′) ↔ chase12(I

′)

where the equation follows from the fact thatM12 is LAV. Then
by the homomorphic version of the unique-solutions property,I ∪
I ′ = I ′ and thereforeI ⊆ I ′. This shows thatM12 satisfies the
homomorphic version of the subset property, as desired.

10. CONCLUDING REMARKS AND OPEN
PROBLEMS

In addition to resolving the key problem left open in [Fagin 2006]
as to the complexity of deciding if an s-t tgd mapping has an in-
verse, and also providing greatly simplified proofs of some known
results, we have explored a number of interesting issues, about the
structure of inverses, unique inverses, number of inverses, inverses
of inverses, and sizes of inverses. We have shown that in the full
case, these issues are, surprisingly, quite interrelated. We have also
shown that in the nonfull case, these tight interconnections do not
hold. As we noted in Sections 7 and 8, there remain open problems
about the size or length of inverses in the nonfull case. Perhaps
the most interesting open problem is whether every invertible s-t
tgd mapping (not necessarily full) has a polynomial-size Boolean
inverse, and if so, whether there is a polynomial-time algorithm for
producing it.
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APPENDIX

A. PROOFS

A.1 Proofs for Section 3

Proof of Proposition 3.1.We shall show that (1) and (2) are equiv-
alent, and then show that (2) and (3) are equivalent.

Assume (1) holds. SoM12 satisfies the subset property. Pick an
atomA and an instanceI such thatchase12(IA) → chase12(I).
By the homomorphic version of the subset property, it follows that
IA ⊆ I. Therefore, (2) holds.

Now assume that (1) fails. Therefore, the homomorphic version
of the subset property fails. Hence, there areI andI ′ such that
chase12(I) → chase12(I

′) andI 6⊆ I ′. SinceI 6⊆ I ′, we can
assume (by renaming constants if needed) that there is an atom
A such thatIA ⊆ I but IA 6⊆ I ′. SinceIA ⊆ I, we have
chase12(IA) → chase12(I). Since alsochase12(I) → chase12(I

′),
we have thatchase12(IA) → chase12(I

′), witnessing that (2) fails
(whereI ′ plays the role ofI).

Now notice that ifchase12(IA) → chase12(I) then necessar-
ily also chase12(IA) → chase12(I

′) for someI ′ ⊆ I with at
mostn1n2 facts, sincechase12(IA) maps into at mostn1 facts in
chase12(I) and each of those facts can be introduced intochase12(I)
by firing a single tgd inΣ12 on at mostn2 facts inI. It follows that
(2) and (3) are equivalent.

A.2 Proofs for Section 4

Proof of Proposition 4.2. SinceM21 is an inverse ofM12, we
know that(I, bI) |= Σ12 ◦ Σ21 and therefore there exists some
K such that(I,K) |= Σ12 and (K, bI) |= Σ21. Let U be an
arbitrary universal solution forI with respect toM12. Then there
is a homomorphismh : U → K that is the identity onI. Pick a
constraintϕ ∈ Σ21; by our normality assumption, it must be of the
form

α(x̄, ȳ) ∧ χA(x̄) ∧ η(x̄) → bA(x̄).

Assume thatU satisfies the premise ofϕ on ā, b̄. ThenK |=
α(h(ā), h(b̄)). SinceU |= χA(ā), we haveh(ā) = ā and there-
foreK |= α(ā, h(b̄)). Since(K, bI) |= Σ21, we must havebI |=bA(ā). This shows that(U, bI) |= ϕ. Sinceϕ is an arbitrary member
of Σ21, it follows that (U, bI) |= Σ21, as desired. SincebI ⊆ J ,
it follows easily that(U, J) |= Σ21. Since(I, U) |= Σ12 and
(U, J) |= Σ21, we have thatU witnesses(I, J) |= Σ12 ◦ Σ21, as
desired.

LEMMA A.1. LetM12 = (S1,S2, Σ12) be an s-t tgd mapping
andM21 = (S2, bS1, Σ21) be a normal mapping. ThenΣ21 is not
too strong if and only ifchase21(chase12(I)) ⊆ bI for every ground
instanceI.

PROOF. Assume first thatchase21(chase12(I)) ⊆ bI for every
ground instanceI. We must show that whenever there are ground
instancesI andJ such thatbI ⊆ J , then(I, J) |= Σ12 ◦Σ21. Let I
andJ be ground instances such thatbI ⊆ J . LetU = chase12(I),
and letU ′ = chase21(U). So(I, U) |= Σ12 and(U,U ′) |= Σ21.
Also, by assumption,U ′ ⊆ bI. Since alsobI ⊆ J , it follows
thatU ′ ⊆ J . Since(U,U ′) |= Σ21 andU ′ ⊆ J , we see that
(U, J) |= Σ21. Since(I, U) |= Σ12 and(U, J) |= Σ21, it follows
that(I, J) |= Σ12 ◦ Σ21, as desired.

Assume now thatΣ21 is not too strong. So(I, bI) |= Σ12 ◦ Σ21.
Let U = chase12(I), and letU ′ = chase21(U). We need only

show thatU ′ ⊆ bI. The argument in the proof of Proposition 4.2
shows that(U, bI) |= Σ21. SinceM21 is a normal mapping, it
is easy to see that the result of chasing an arbitrary instance with
Σ21 is a ground instance. In particular,U ′ is a ground instance.
SinceU ′ is the result of chasingU with Σ21, andU ′ is ground,
a standard property of the chase tells us that for every instanceJ

such that(U, J) |= Σ21, necessarilyU ′ ⊆ J . If we takeJ to bebI,
then we see thatU ′ ⊆ bI, as desired.

LEMMA A.2. LetM12 = (S1,S2, Σ12) be an s-t tgd mapping
andM21 = (S2, bS1, Σ21) be a normal mapping. ThenΣ21 is
not too weak if and only ifcIA ⊆ chase21(chase12(IA)) for every
source atomA.

PROOF. Assume first thatΣ21 is not too weak. So whenever
there are ground instancesI andJ such that(I, J) |= Σ12 ◦ Σ21,
thenbI ⊆ J . Let I beIA, and letJ bechase21(chase12(IA)) Then
(I, J) |= Σ12◦Σ21. SobI ⊆ J , that is,cIA ⊆ chase21(chase12(IA)),
as desired.

Assume now thatcIA ⊆ chase21(chase12(IA)) for every source
atomA. By renaming constants if needed, it follows that ifF is
a ground fact, thenbF ∈ chase21(chase12({F})). Let I andJ be
ground instances such that(I, J) |= Σ12 ◦Σ21; we must show thatbI ⊆ J . LetF be an arbitrary fact inI. SincebF is a ground fact in
chase21(chase12({F})) and since(I, J) |= Σ12 ◦ Σ21, it follows
by a standard property of the chase (that we also invoked in the
proof of Lemma A.1) that thatbF ∈ J . SincebF is an arbitrary fact
in bI, we see thatbI ⊆ J , as desired.

Proof of Theorem 4.4.Assume first thatchase21(chase12(I)) =bI for every ground instanceI. By Lemmas A.1 and A.2, we know
thatΣ21 is not too strong and not too weak. SoM21 is an inverse
of M12.

Conversely, assume thatM21 is an inverse ofM12. Therefore,
Σ21 is not too weak. LetI be a ground instance. ThenbI = ∪F∈I

bF ,
which by Lemma A.2 is contained in∪F∈Ichase21(chase12(F )).
It is clear that

∪F∈Ichase21(chase12(F )) ⊆ chase21(chase12(∪F∈IF )),

that is,∪F∈Ichase21(chase12(F )) ⊆ chase21(chase12(I). Com-
bining these inclusions, we see thatbI ⊆ chase21(chase12(I)). By
Lemma A.1 we have thatchase21(chase12(I)) ⊆ bI. Therefore,
we havechase21(chase12(I)) = bI, as desired.

Example wherebI 6⊆ chase21(chase12(I)).

EXAMPLE A.3. We now give an example from [Fagin, Kolaitis,
Popa and Tan 2007] whereM21 is a inverse ofM12 but where
there is a ground instanceI such thatbI 6⊆ chase21(chase12(I)).
Let S1 consist of the unary relation symbolP , and letS2 con-
sist of the binary relation symbolQ. Let Σ12 consist ofP (x) →
∃yQ(x, y), and letΣ21 consist of the constraintsQ(x, y) → P (y)
andQ(x, y) ∧ const(y) → P (x). LetM12 = (S1,S2, Σ12) and
M21 = (S2,cS1, Σ21).

We now show thatM21 is a inverse ofM12. To do this, we
need to show that ifI andJ are ground instances, then(I, J) |=
Σ12 ◦ Σ21 if and only if bI ⊆ J .

First, letI be a ground instance that consists ofn factsP (x1),
. . ., P (xn), and letK be {Q(xi, xi) : 1 ≤ i ≤ n}. It is easy
to see that(I,K) |= Σ12 and(K, bI) |= Σ21. Hence,(I, bI) |=
Σ12 ◦ Σ21, which implies that ifbI ⊆ J , then(I, J) |= Σ12 ◦ Σ21.
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Next, assume thatI andJ are ground instances such that(I, J) |=
Σ12 ◦ Σ21; we shall show thatbI ⊆ J . Since(I, J) |= Σ12 ◦ Σ21,
there isK such that(I,K) |= Σ12 and(K,J) |= Σ21. Suppose
I consists ofn factsP (x1), . . . , P (xn). Since(I,K) |= Σ12, we
know thatK contains{Q(xi, yi) | 1 ≤ i ≤ n}, for some choices
of y1, . . . , yn. There are two cases:

• Case 1.Someyi is not a constant. ThenJ containsP (yi), and
so is not ground. Hence, this case is not possible.

• Case 2.Everyyi is a constant. ThenJ containsP (xi), 1 ≤
i ≤ n, and soI ⊆ J , as desired.

This concludes the proof thatM21 is an inverse ofM12. How-
ever, letI = {P (0)}; it is easy to see thatbI 6⊆ chase21(chase12(I)).

Proof of Proposition 4.5. Assume by way of contradiction that
δ is a demanding conjunction forA, but that no atomB of δ is
demanding forA. So for every atomB of δ, there is a ground
instanceJB such thatIB → chase12(JB) andIA 6⊆ JB . Note that
since every member ofIB is a constant, andIB → chase12(JB),
necessarilyIB ⊆ chase12(JB). Let I be the union of the instances
JB . So IB ⊆ chase12(I). Since this is true for every atomB
of δ, it follows thatIδ ⊆ chase12(I), and soIδ → chase12(I).
Since for everyB we have thatIA 6⊆ JB , andIA is a singleton
set, it follows thatIA 6⊆ I. So we have thatIδ → chase12(I) and
IA 6⊆ I. This contradicts the assumption thatδ is demanding for
A. Therefore,δ contains a demanding atom forA, as desired.

We have shown that each demanding conjunction forA contains
a demanding atom forA. We now show that each essential conjunc-
tion for A contains an essential atom forA. Let δ be an essential
conjunction forA. So δ is a demanding conjunction forA, and
hence, by what we just showed,δ contains a demanding atomB
for A. Sinceδ is relevant forA, it follows easily thatB is relevant
for A. SinceB is both relevant and demanding forA, we see that
B is essential forA, as desired. .

Proof of Proposition 4.6.Assume thatA isP (v1, . . . , vk), where
v1, . . . , vk are variables, not necessarily distinct. Assume that the
variablevi does not appear inδ; we shall derive a contradiction.

Letd be a new constant, and letI be obtained fromIA by replac-
ing every occurrence ofcvi in IA byd. Sinceδ is relevant forA, we
know that there is a homomorphismh : Iδ → chase12(IA). So for
the same homomorphismh, we haveh : Iδ → chase12(I), since
cvi does not appear inIδ. SinceIδ → chase12(I), even though
IA 6⊆ I, it follows thatδ is not demanding forA, which contradicts
the assumption thatδ is essential forA.

We now relate the notions of “not too strong” and “not too weak”
to the notions of “demanding” and “relevant”.

THEOREM A.4. LetM12 = (S1,S2, Σ12) be an s-t tgd map-
ping andM21 = (S2, bS1, Σ21) be a normal mapping. Then

1. Σ21 is not too strong if and only if every constraint inΣ21 is
of the formδ → bA, whereδf is demanding forAf for every
weak renamingf consistent with the inequalities ofϕ.

2. Σ21 is not too weak if and only if for each source atomA,
there is a relevant conjunctionδ for A such thatδ → bA is a
weak renaming of a constraint inΣ21.

PROOF. (1) Assume first that there is a constraintϕ in Σ21 of
the formδ → bA and a weak renamingf consistent with the in-
equalities ofϕ such thatδf is not demanding forAf . Let δ′ be
δf , and letA′ beAf . Thenδ′ → cA′ is a normal constraint that is
a logical consequence ofΣ21. Sinceδ′ is not demanding forA′,
there is an instanceI such thatIδ′ → chase12(I), yet IA′ 6⊆ I.

SinceIδ′ → chase12(I), it follows thatcIA′ is the result of chasing
chase12(I) with δ′ → cA′. So cIA′ ⊆ chase21(chase12(I)) and
thereforechase21(chase12(I)) 6⊆ bI. By Lemma A.1,Σ21 is too
strong.

Conversely, assume thatΣ21 is too strong. Then, by Lemma A.1,
there is a ground instanceI such thatchase21(chase12(I)) 6⊆ bI. It
follows that there must be a constraint of the formδ → bA in Σ21

such that the result of chasingchase12(I) with δ → bA produces
a fact not inI. By renaming constants inI if needed, this tells us
that there is a weak renamingf such thatI(δf ) → chase12(I) and

I(Af ) 6⊆ I. Hence,δf is not demanding forAf .
(2) Assume first thatΣ21 is not too weak. Pick a source atomA.

By Lemma A.2, we know thatcIA ⊆ chase21(chase12(IA)). So
there must be a normal constraintϕ ∈ Σ21 that fires onchase12(IA)

to introducecIA. Hence, there must be a weak renamingδ → bA of
a constraint inΣ21 such thatIδ → chase12(IA). Soδ is relevant
for A.

Conversely, assume that for each source atomA, there is a rel-
evant conjunctionδ for A such thatδ → bA is a weak renaming
of a constraintϕ ∈ Σ21. Pick a source atomA. Then Iδ →
chase12(IA) becauseδ is relevant forA and therefore we havecIA ⊆ chase21(chase12(IA)) becauseϕ fires onchase12(IA) to
introducebA. By Lemma A.2,Σ21 is not too weak.

Proof of Theorem 4.8.This follows immediately from Theorem A.4.

Proof of Theorem 4.10.The implication (2)⇒ (3) follows from
Theorem 4.8. The implications (3)⇒ (4), and (4)⇒ (1), are im-
mediate. The implication (1)⇒ (2) follows by Proposition 4.12.

Proof of Proposition 4.12. It is clear thatωA is relevant forA.
We now show thatωA is demanding forA, which completes the
proof. SinceM is invertible, we know thatM satisfies the subset
property. Assume thatIωA → chase12(I) for some ground in-
stanceI; we must show thatIA ⊆ I. Now IωA = chase12(IA).
So chase12(IA) → chase12(I). By the implication (1)⇒ (3) of
Proposition 3.1, it follows thatIA ⊆ I, as desired.

A.3 Proofs for Section 5
Recall that ifM12 = (S1,S2, Σ12) andM21 = (S2,cS1, Σ21)

are schema mappings, thenM21 is an inverse ofM12 if and only
if for every pairI, J of ground instances, we have that(I, J) |=
Σ12 ◦Σ21 if and only if bI ⊆ J . Therefore, for pairs(J1, J2) where
J2 is not a ground instance, the pair(J1, J2) satisfying or not sat-
isfying Σ21 plays no role whatever in determining whether or not
M21 is an inverse ofM12. Based on this intuition, let us say that
Σ21 andΣ′

21 areweakly equivalentif wheneverJ1 is arbitrary and
J2 is a ground instance (contains no nulls, but only constants), then
(J1, J2) |= Σ21 if and only if (J1, J2) |= Σ′

21.1 We may also
say that(S2,cS1, Σ21) and(S2,cS1, Σ′

21) are then weakly equiv-
alent. Note that if(S2,cS1, Σ21) and(S2,cS1, Σ′

21) are both nor-
mal mappings, then they are weakly equivalent if and only if they
are equivalent. This is because if(S2,cS1, Σ21) is normal, and
(J1, J2) |= Σ21, thenJ2 is a ground instance.

We capture the intuition about the irrelevance of pairs(J1, J2)
whereJ2 is not a ground instance in the following simple proposi-
tion.

1This notion arises also in the full version of [Fagin, Kolaitis, Popa
and Tan 2007].
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PROPOSITION A.5. Let M12 be a schema mapping, and let
M21 andM ′

21 be weakly equivalent schema mappings. ThenM21

is an inverse ofM12 if and only ifM′
21 is an inverse ofM12.

PROOF. By symmetry, we need only show that ifM21 is an
inverse ofM12, thenM′

21 is an inverse ofM12. Let I, J be
ground instances. SinceM21 is an inverse ofM12, we know that
(I, J) |= Σ12 ◦ Σ21 if and only if bI ⊆ J . To show thatM′

21 is
an inverse ofM12, we need only show that(I, J) |= Σ12 ◦ Σ21 if
and only if(I, J) |= Σ12 ◦ Σ′

21.
Now (I, J) |= Σ12 ◦ Σ21 if and only if there isJ ′ such that

(I, J ′) |= Σ12 and(J ′, J) |= Σ21. SinceJ is ground, we have
that(J ′, J) |= Σ21 if and only if (J ′, J) |= Σ′

21. Hence,(I, J) |=
Σ12 ◦ Σ21 if and only if there isJ ′ such that(I, J ′) |= Σ12 and
(J ′, J) |= Σ′

21, which happens if and only if(I, J) |= Σ12 ◦ Σ′
21.

Therefore,(I, J) |= Σ12 ◦ Σ21 if and only if (I, J) |= Σ12 ◦ Σ′
21.

This was to be shown.

We now make use of Proposition A.5 to show that no schema
mapping has a unique inverse.

Proof of Theorem 5.1. Let M12 = (S1,S2, Σ12) be an in-
vertible schema mapping. Assume thatM21 = (S2,cS1, Σ21)
is an inverse ofM12. Let J∗ be some target instance, and let
K∗ be some source instance that contains a null value. LetP =
{(J1, J2) : (J1, J2) |= Σ21}. LetP ′ = P∪

n
(J∗, cK∗)

o
if (J∗, cK∗)

is not inP , andP ′ be the set differenceP\
n

(J∗, cK∗)
o

if (J∗, cK∗)

is in P , Define Σ′
21 by having (J1, J2) |= Σ′

21 if and only if
(J1, J2) ∈ P ′. LetM′

21 = (S2,cS1, Σ′
21). By construction, we

see thatΣ21 andΣ′
21 are not logically equivalent but are weakly

equivalent. It follows from Proposition A.5 thatM′
21 is another

inverse ofM12. .
Because of Proposition A.5, it is natural, as far as inverse is

concerned, to not distinguish between schema mappings that are
weakly equivalent. We now show that, in contrast to Theorem 5.1,
there is a schema mapping that has a unique inverse up to weak
equivalence.

THEOREM A.6. There is an invertible schema mappingM12

such that all inverses ofM12 are weakly equivalent.

PROOF. Let S1 andS2 be disjoint (and nonempty) schemas,
and letf be a one-to-one mapping from all ground instances ofS1

onto all instances (with or without nulls) ofS2. There is such a
mapping, since there is a countably infinite number of ground in-
stances ofS1, and there is a countably infinite number of instances
of S2. DefineΣ12 by letting (J1, J2) |= Σ12 if and only if J1

is a ground instance,J2 is a target instance, andJ2 = f(J1).
DefineΣ21 by letting (K1,K2) |= Σ21 if and only if bI ⊆ K2,
whereI = f−1(K1). Let M12 = (S1,S2, Σ12) andM21 =

(S2,cS1, Σ21). We begin by showing thatM21 is an inverse of
M12. We must show that(I, J) |= Σ12 ◦Σ21 if and only if bI ⊆ J .
Assume first that(I, J) |= Σ12 ◦ Σ21. Then there isJ ′ such that
(I, J ′) |= Σ12 and(J ′, J) |= Σ21. Since(I, J ′) |= Σ12, we know
thatJ ′ = f(I). Since(J ′, J) |= Σ21, it follows that bI ⊆ J , as
desired. Conversely, assume thatbI ⊆ J . Let J ′ = f(I). Then
(I, J ′) |= Σ12 and(J ′, J) |= Σ21, and so(I, J) |= Σ12 ◦ Σ21, as
desired.

Now letM′
21 = (S2,cS1, Σ′

21) be an arbitrary inverse ofM12.
We must show thatM′

21 is weakly equivalent toM21. Assume
first that (K1,K2) |= Σ21, whereK2 is a ground instance. We
must show that(K1,K2) |= Σ′

21. Since(K1,K2) |= Σ21, we
know thatbI ⊆ K2, whereI = f−1(K1). SincebI ⊆ K2, and

sinceM′
21 is an inverse ofM12, there isJ such that(I, J) |=

Σ12 and (J,K2) |= Σ′
21. Since(I, J) |= Σ12, we know that

J = f(I) = K1. Therefore, since(J,K2) |= Σ′
21, it follows that

(K1,K2) |= Σ′
21, as desired.

Conversely, assume that(K1,K2) |= Σ′
21, whereK2 is a ground

instance. We must show that(K1,K2) |= Σ21. Let I = f−1(K1).
So (I,K1) |= Σ12. Since also(K1,K2) |= Σ′

21, it follows that
(I,K2) |= Σ12 ◦Σ′

21. Therefore, sinceM′
21 is an inverse ofM12,

we know thatbI ⊆ K2. Hence,(K1,K2) |= Σ21, as desired.

The following proposition, which was proven in [Fagin, Kolaitis,
Popa and Tan 2007], says that for full s-t tgd mappings,const for-
mulas play no role in specifying an inverse.

PROPOSITION A.7. [Fagin, Kolaitis, Popa and Tan 2007] Let
M12 = (S1,S2, Σ12) be a full s-t tgd mapping. LetM21 =

(S2,cS1, Σ21), whereΣ21 is a set of s-t tgds with constants and
inequalities. LetM′

21 = (S2,cS1, Σ′
21), whereΣ′

21 is obtained
fromΣ21 by removing everyconst formula. LetI andJ be ground
instances. Then(I, J) |= Σ12 ◦ Σ21 if and only if(I, J) |= Σ12 ◦
Σ′

21.

Proof of Theorem 5.4. Assume first thatM12 is an invertible s-
t tgd mapping with a unique normal inverse. LetA be a source
atom. Assume thatδ is essential forA, andδ′ is demanding forA,
and both have formulasconst(x) for exactly the variablesx that
appear inA, Assume that we do not haveIδ → Iδ′ ; we shall derive
a contradiction. Assume without loss of generality thatδ′ has no
inequalities as conjuncts (if necessary, remove them). Lete be as
in Definition 4.9 withe(A) = δ. It follows from Theorem 4.10 that
Me

21 is an inverse ofM12. Letσ′ beδ′ ∧ ηA → bA, whereηA is a
conjunction of the inequalitiesx 6= y for distinct variablesx, y of
A. Let Σ21 = Σe

21 ∪ {σ′}. LetM21 = (S2,cS1, Σ21). It follows
from Theorem 4.8 thatM21 is also an inverse ofM12.

We now show thatMe
21 andM21 are not equivalent, which

gives our desired contradiction. LetI = Iδ′ . Let J be the re-
sult of chasingI with Σe

21. Clearly(I, J) |= Σe
21. We now show

that (I, J) 6|= σ′, and so(I, J) 6|= Σ21. Note that because of the
structure ofΣe

21, it follows thatJ is a ground instance.
Let bA(c̄) be the result of chasingI with σ′. We need only show

that bA(c̄) does not appear inJ . Let σ be an arbitrary member
of Σe

21. By construction ofΣe
21, we know thatσ is of the form

e(A) ∧ ηA′ → cA′, whereA′ is a prime source atom, and where
ηA′ is a conjunction of the inequalitiesx 6= y for distinct variables
x, y of A′. We must show that the result of chasingI with σ does
not producebA(c̄). There are two cases.

Case 1:A′ involves a different relation symbol thanA. So cer-
tainly the result of chasingI with σ does not producebA(c̄).

Case 2:A′ involves the same relation symbol asA. There are
two subcases.

Subcase 2a:A′ equalsA. Since there is no homomorphism from
Iδ to Iδ′ , that is, fromIδ to I, it follows thatσ does not fire onI.

Subcase 2b:A′ is different fromA. Then the equality pattern
of the variables inA′ is different from the equality pattern of the
variables inA. Hence, the result of chasingI with σ again does not
producebA(c̄).

We now prove the converse. Assume that for every source atom
A, if δ is an essential conjunction forA, andδ′ is a demanding
conjunction forA, both with formulasconst(x) for exactly the
variablesx that appear inA, thenIδ → Iδ′ . Let e be as in Def-
inition 4.9. SoMe

21 = (S2,cS1, Σe
21) is an inverse ofM12, by

Theorem 4.10. LetM21 = (S2,cS1, Σ21) be an arbitrary normal
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inverse ofM12. We need only show thatΣe
21 andΣ21 are logically

equivalent.
We first show thatΣ21 logically impliesΣe

21. Let σ be an ar-
bitrary member ofΣe

21. Thenσ is of the forme(A) ∧ ηA → bA.
Let δ bee(A). By part (2) of Theorem 4.8, we know that there is
an essential conjunctionδ′ for A such thatδ′ → bA is a weak re-
naming of a constraint inΣ21. Sinceδ andδ′ are both essential for
A, it follows by assumption thatIδ andIδ′ are homomorphically
equivalent. It is not hard to see that this implies thatΣ21 logically
impliesσ. Sinceσ is an arbitrary member ofΣe

21, it follows that
Σ21 logically impliesΣe

21, as desired.
We now show thatΣe

21 logically impliesΣ21. Let σ be an arbi-
trary member ofΣ21. By part (1) of Theorem 4.8, we know thatσ
is of the formδ′ → bA, whereA is a source atom and where(δ′)f

is demanding forAf for every weak renamingf consistent with
the inequalities ofσ. For each weak renamingf consistent with
the inequalities ofσ, let τf be obtained fromσf by adding to the
premise ofσf (if it is not already there) each inequalityx 6= y for
every pairx, y of distinct variables in the conclusion ofσf . It is
fairly straightforward to see thatσ is logically equivalent to the set
of all such formulasτf . So to prove thatΣe

21 logically impliesΣ21,
we need only show thatΣe

21 logically implies each such constraint
τf .

Now τf is a normal constraint of the formδ′′∧ηA′ →cA′, where
δ′′ is demanding forA′ (since as we said,(δ′)f is demanding for
Af ), andηA′ is the conjunction of all inequalitiesx 6= y for distinct
variablesx, y of A′. By further renaming variables if needed, we
can assume thatA′ is a prime atom. Now there is an essential
conjunctionδ for A′ such thatδ∧ ηA′ →cA′ is a normal constraint
in Σe

21. Let us denote this constraint byγ. Sinceδ is essential
for A, andδ′′ is demanding forA, it follows by assumption that
Iδ → Iδ′′ . It follows easily thatγ logically impliesτf . SoΣe

21

logically impliesτf , as desired.
In the next proposition, we give a sufficient condition for a unique

normal inverse.

PROPOSITION A.8. Let M12 = (S1,S2, Σ12) be an invert-
ible s-t tgd mapping. Assume that for every source atomA,

1. chase12(IA) is a singleton, and
2. every demanding conjunctionδ′ forAwith formulasconst(x)

precisely for the variablesx ofA haschase12(IA) → Iδ′ .

ThenM12 has a unique normal inverse.

PROOF. We shall make use of Theorem 5.4. LetA be arbitrary
source atom. Assume thatδ is an essential conjunction forA, and
δ′ is a demanding conjunction forA, both with formulasconst(x)
for exactly the variablesx that appear inA; we must show that
Iδ → Iδ′ . Sinceδ is relevant forA, we haveIδ → chase12(IA).
By assumption, we havechase12(IA) → Iδ′ . So Iδ → Iδ′ , as
desired.

Proof of Theorem 5.5. By Theorem 5.9 (whose proof does not
depend on Theorem 5.5), the fact thatM12 is invertible and onto
implies thatM12 is equivalent to a p-copy mapping. We now use
Proposition A.8 to show that a p-copy mapping has a unique normal
inverse.

If the p-copy mapping has the tgd

P (x1, . . . , xk) → Q(xf(1), . . . , xf(k)),

and if y1, . . . , yk are variables, not necessarily distinct, then let us
refer to the atomsP (y1, . . . , yk) andQ(yf(1), . . . , yf(k)) asbud-
dies.

Let A be a source atom. Clearly the first condition of Proposi-
tion A.8 holds. Now letδ′ be a demanding conjunction forA with
formulasconst(x) precisely for the variablesx of A. Let γ be the
conjunction of the buddies of the relational atoms inδ′. It is easy
to see thatIδ′ = chase12(Iγ). Sinceδ′ is demanding forA, it
follows thatIA ⊆ Iγ . Sochase12(IA) ⊆ chase12(Iγ). Clearly
chase12(Iγ) = Iδ′ . Hence,chase12(IA) ⊆ Iδ′ . so by Proposi-
tion A.8, it follows thatM12 has a unique normal inverse.

Proof of claim in Example 5.6. We shall use Proposition A.8 to
show thatM12 has a unique normal inverse. LetA be a source
atom. Clearly the first condition of Proposition A.8 holds. Now let
δ′ be a demanding conjunction forA. By symmetry of the roles of
the source atoms, we can assume without loss of generality thatA
is the source atomP1(x). Let δ′ be a demanding conjunction for
A with const formulaconst(x) (and no otherconst formula). We
now show thatδ′ must containA. Assume not; we shall derive a
contradiction.

Let c be the constant such thatIA = {P1(c)}, and letd be
a constant different fromc. Let I consist of the factsPi(d) for
1 ≤ i ≤ 4, along with the factsPi(c) for 2 ≤ i ≤ 4. So
chase12(I) consists of the factsQi(d) for 1 ≤ i ≤ 4, along with
the factsQi(c) for 2 ≤ i ≤ 4, along with the factsR(c) andR(d).
Now Iδ′ contains only one constant, namely the constantc, and
possibly also null values. Leth be a function whereh(c) = c and
h(n) = d for every nulln. Sinceδ′ does not containQ1(x), it fol-
lows thatIδ′ does not containQ1(c). SoIδ′ contains some subset
of {Q2(c), Q3(c), Q4(c)}, possibly along with some factsQi(n)
for some nullsn and for1 ≤ i ≤ 4, possibly along withR(c), and
possibly some factsR(n) for some nullsn. Hence,h is a homo-
morphism that mapsIδ′ to chase12(I). SinceIδ′ → chase12(I)
but IA 6⊆ I, this contradicts the assumption thatδ′ is demanding
for A. This contradiction shows thatδ′ must containA. Hence,
chase12(IA) ⊆ Iδ′ . so by Proposition A.8, it follows thatM12

has a unique normal inverse.
We now give a variant of Proposition 4.2 that holds for inverses

specified by disjunctive tgds with inequalities.

PROPOSITION A.9. Assume thatM12 = (S1,S2, Σ12) is a
full s-t tgd mapping,M21 = (S2,cS1, Σ21) is an inverse ofM12,
and Σ21 is a set of disjunctive tgds with inequalities. LetI be a
ground instance, and letU = chase12(I). Then(U, bI) |= Σ21,
andU witnesses(I, J) |= Σ12 ◦ Σ21 whenbI ⊆ J .

PROOF. SinceM21 is an inverse ofM12, we know that(I, bI) |=
Σ12 ◦ Σ21 and therefore there exists someK such that(I,K) |=
Σ12 and(K, bI) |= Σ21. SinceU is a universal solution forI with
respect toM12. there is a homomorphismh : U → K that is the
identity onI. Pick a constraintϕ ∈ Σ21; by assumption, it must be
of the form

α(x̄, ȳ) ∧ ∧η(x̄) → ψ(x̄),

whereη(x̄) is a conjunction of inequalities (possibly empty) among
the variables in̄x, and whereψ(x̄) is an existentially quantified
disjunction of conjunctions with free variables̄x. Assume thatU
satisfies the premise ofϕ on ā, b̄. ThenK |= α(h(ā), h(b̄)). Now
every member ofU is a constant, sinceU = chase12(I) andΣ12

is full. Thereforeh(ā) = ā andh(b̄) = b̄. soK |= α(ā, b̄).
Since(K, bI) |= Σ21, we must havebI |= ψ(ā). This shows that
(U, bI) |= ϕ. Sinceϕ is an arbitrary member ofΣ21, it follows
that(U, bI) |= Σ21, as desired. SincebI ⊆ J , it follows easily that
(U, J) |= Σ21. Since(I, U) |= Σ12 and(U, J) |= Σ21, we have
thatU witnesses(I, J) |= Σ12 ◦ Σ21, as desired.
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Proof of Theorem 5.9.
We begin by showing that (2)⇒ (1). Assume that (2) holds.

SinceM12 is invertible, Theorem 4.13 tells us that the canoni-
cal candidate inverse is indeed an inverse ofM12, soM12 has a
normal inverse. By Proposition A.7, theconst formulas are irrel-
evant, and soM12 has a inverse specified by tgds with inequal-
ities, and hence by disjunctive tgds with inequalities. Now as-
sume thatM21 = (S2,cS1, Σ21) andM′

21 = (S2,cS1, Σ′
21) are

both inverses ofM12, whereΣ21 and Σ′
21 are disjunctive tgds

with inequalities. We must show thatΣ21 andΣ′
21 are logically

equivalent. We now show thatΣ21 logically implies Σ′
21. By

symmetry, we have thatΣ′
21 logically impliesΣ21. Assume that

(J,K) |= Σ21. By replacing each null in(J,K) by a new con-
stant, we obtain(J ′,K′) where every entry of every tuple is a con-
stant, such that(J ′,K′) is isomorphic to(J,K) (but where the
isomorphism may map constants into either constants or nulls, and
may map nulls into either constants or nulls). SinceΣ21 has no
const formulas, it follows easily that(J ′,K′) |= Σ21. SinceM12

is onto, there is a ground instanceI such thatJ ′ = chase12(I).
So (I, J ′) |= Σ12. Since also(J ′,K′) |= Σ21, we have that
(I,K′) |= Σ12 ◦Σ21. Therefore, sinceM21 is an inverse ofM12,
we have thatbI ⊆ K′. Hence, sinceM′

21 is an inverse ofM12, we
have that(I,K′) |= Σ12 ◦ Σ′

21. So by Proposition A.9, we have
that (J ′,K′) |= Σ′

21. SinceΣ′
21 has noconst formulas, we have

as before(J,K) |= Σ′
21. This was to be shown.

We now show that (1)⇒ (3). Assume that (1) holds. We must
show thatM12 is equivalent to a p-copy mapping. By Theorem 4.10
and Proposition 4.5, we know that every source atom has an es-
sential target atom. Lete be a function that maps every source
atomA onto a target atome(A) that is essential forA. By The-
orem 4.10, we know that(S2,cS1, Σe

21) is an inverse ofA. Let
ME

21 = (S2,cS1,ΣE
21) be the result of removing allconst(x) con-

juncts in(S2,cS1, Σe
21). Note that every member ofΣE

21 is of the
form B ∧ ηA → bA, whereηA consists of all inequalities of the
form x 6= y wherex andy are distinct variables ofA. Note that
by Corollary 4.7, the variables inA andB are the same, soηA

has inequalities among all distinct variables ofB also. By Proposi-
tion A.7 we know thatME

21 is an inverse ofM12. Since (3) holds,
ME

21 is the unique inverse that is specified by disjunctive tgds with
inequalities. We now prove the following claim:

Claim 1: chase12(IA) is a singleton for each source atomA.
Assume thatA is a source atom wherechase12(IA) is not a sin-

gleton; we shall derive a contradiction. SinceM12 is invertible,
we know thatchase12(IA) is nonempty (otherwise, we would have
chase12(IA) = chase12(∅), and this gives a violation of the unique
solutions property). Denotee(A) by B. SoΣE

21 contains the for-
mulaB ∧ ηA → bA. Let νA be as in Definition 4.11. FormΣ21

from ΣE
21 by replacingB ∧ ηA → bA by νA ∧ ηA → bA, and let

M21 = (S2,cS1, Σ21). It follows from Theorem 4.8 thatM21 is
an inverse ofM12. We now show thatΣ21 is not logically equiva-
lent toΣE

21.
Assume thatB is the atomQ(x1, . . . , xt), and thatF is a fact

Q(a1, . . . , at). Let us say thatF is anexact matchforB if ai = aj

if and only ifxi andxj are the same variable, for alli, j. Similarly,
we define what it means for one atom to be an exact match for
another atom. LetJ consist of a single factF that is an exact match
for B. We now show that(J, ∅) 6|= ΣE

21, but(J, ∅) |= Σ21. SoΣ21

is not logically equivalent toΣE
21, as desired. The fact that(J, ∅) 6|=

ΣE
21 follows from the fact thatΣE

21 contains the formulaB∧ηA →bA, andJ contains a fact that is an exact match forB. It remains
to show that(J, ∅) |= Σ21. Let σ be a member ofΣ21 except for

νA ∧ ηA → bA. SinceJ consists of a single fact that is an exact
match forB. it follows thatσ does not fire onJ , because otherwise
F would be an exact match for the atomB′ in the premise ofσ, and
soB′ andB would be an exact match, which is not possible since
they are essential for atoms that are not an exact match for each
other. So(J, ∅) |= σ. We now show that(J, ∅) |= νA ∧ ηA →bA. To show this, we must show thatνA ∧ ηA → bA does not
fire onJ . If it were to fire onJ , then there would be a mapping
h on the variables inνA that maps each atom inνA ontoF and
(because ofηA) is one-to-one on the variables inνA. LetB′ be a
member ofνA other thanB. SinceB andB′ map onto the same
fact F , it follows thatB′ is, like B, aQ-stom. Assume thatB′

is Q(xi1 , . . . , xit), where eachxir is in {x1, . . . , xt}. Assume
thatF is the factQ(a1, . . . , at). Now h(xir ) = ar = h(xr) for
eachr, since bothB andB′ map ontoF . Sinceh is one-to-one on
variables, it follows thatxir andxr are the same variable for eachr.
SoB′ andB are the same atom, a contradiction. This contradiction
shows thatνA ∧ ηA → bA does not fire onJ , as desired. This
concludes the proof thatΣ21 is not logically equivalent toΣE

21.
SinceM21 andME

21 are both inverses ofM12, specified by tgds
with inequalities, even thoughΣ21 andΣE

21 are not logically equiv-
alent, this contradicts our assumption that (3) holds. This proves
Claim 1.

DefineΣ′
12 to consist of all s-t tgds of the formA→ νA, where

A is a prime atom with all variables distinct. Note by Claim 1 that
νA is a singleton atom. It is clear thatΣ12 logically impliesΣ′

12.
Later, we shall show thatΣ12 is logically equivalent toΣ′

12. First,
we prove another claim.

Claim 2: Assume thatA andB are atoms, and thatB is essential
for A with respect toΣ12. ThenΣ′

12 logically implies the s-t tgd
A→ B.

Assume that Claim 2 were false; we shall derive a contradiction.
Assume thatA is aP -atom. Defineν′A like νA, except that the
chase is withΣ′

12 instead ofσ12. Let B′ be ν′A. Note thatB′ is
a singleton atom, because it arises only by firing the s-t tgd inΣ′

12

whose premise is theP -atom with all variables distinct. SinceΣ′
12

does not logically imply the s-t tgdA → B, we know thatB is
different fromB′. SinceB′ is derived as the result of a chase with
Σ′

12, and sinceΣ12 logically impliesΣ′
12, it follows thatB′ is in

νA. SoνA contains at least the two distinct atomsB andB′. This
contradicts Claim 1, which is our desired contradiction.

Claim 3: Σ12 is logically equivalent toΣ′
12.

We already noted thatΣ12 logically impliesΣ′
12, so Claim 3 is

proven if we show thatΣ′
12 logically impliesΣ12. Assume not;

we shall derive a contradiction. We can assume without loss of
generality that every member ofΣ12 has a singleton conclusion.
Let α → B be a member ofΣ12 that is not a logical consequence
of Σ′

12. If α were to contain an atomA such thatB is essential for
A with respect toΣ12, then from Claim 2 it would follow thatΣ′

12

logically implies the s-t tgdA → B, and soΣ′
12 would logically

imply α→ B, a contradiction. Hence,α does not contain an atom
A such thatB is essential forA with respect toΣ12.

Assume thatB is the atomQ(x1, . . . , xt) wherex1, . . . , xt are
variables. Letτ be an arbitrary member ofΣ12 of the formδ →
Q(z1, . . . , zt), wherez1, . . . , zt are variables, not necessarily dis-
tinct, and wherexi andxj are the same variable wheneverzi and
zj are the same variable. Lethτ be a function with domain the vari-
ables inτ such thathτ (zi) = xi for eachi (this is well-defined,
sincexi andxj are the same variable wheneverzi andzj are the
same variable), and wherehτ maps each variable in the premise of
τ that is not in the conclusion ofτ onto a new variable. Letτ ′ be
the image ofτ underhτ . Thus,τ ′ is a weak renaming ofτ . It is
straightforward to verify that ifI is a source instance and the chase
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of I with τ produces a factF that is an exact match forB, then the
chase ofI with τ ′ producesF .

By construction, the conclusion ofτ ′ is B. Assume that the
premise ofτ ′ is δ′. Letψτ be the formula∃ybδ′, wherey consists
of the variables inτ ′ that are not inB. Let Z consist of all such
formulasψτ . In particular,Z contains∃ybα, wherey consists of
all variables inα that are not inB. NowZ is finite, since its size
is at most the number of members ofΣ12. Let γ be the formula
B∧η → z, whereη is the conjunction of all inequalities of the form
xi 6= xj wherexi andxj are distinct variables inB, and wherez
is the disjunction of the members ofZ. LetΣ21 = ΣE

21 ∪ {γ}, and
letM21 = (S2,cS1, Σ21).

We now show thatM21 is an inverse ofM12, and thatΣ21 is
not logically equivalent toΣE

21. To show thatM21 is an inverse of
M12, we must show that for all ground instancesI andJ :

(I, J) |= Σ12 ◦ Σ21 if and only if bI ⊆ J. (1)

SinceME
21 is an inverse ofM12, we know that for all ground in-

stancesI andJ :

(I, J) |= Σ12 ◦ ΣE
21 if and only if bI ⊆ J. (2)

Now Σ21 logically impliesΣE
21, sinceΣ21 is a superset ofΣE

21.
It follows easily thatΣ12 ◦ Σ21 logically impliesΣ12 ◦ ΣE

21. So
if (I, J) |= Σ12 ◦ Σ21, then(I, J) |= Σ12 ◦ ΣE

21, which, by (2),
implies thatbI ⊆ J . Assume now thatbI ⊆ J ; we must show that
(I, J) |= Σ12 ◦ Σ21. LetJ∗ = chase12(I). Since(I, J∗) |= Σ12,
we need only show that(J∗, J) |= Σ21. Now (J∗, J) |= ΣE

21,
by Proposition A.9. Therefore, sinceΣ21 = ΣE

21 ∪ {γ}, we need
only show that(J∗, J) |= γ. Assume thatγ fires onJ∗. Then
there is a one-to-one mappingh (one-to-one because ofη) from the
variables ofB to constants, that mapsB onto a factF of J∗. So
F is an exact match forB. SinceF is in J∗, there is a memberτ
of Σ12 that generatesF in the chase ofI with Σ12. Let τ ′ andδ′

be as before. SinceF is an exact match forB, it follows from an
earlier comment that the chase ofI with τ ′ generatesF . It follows
fairly easily that∃yδ′ is satisfied inI underh, so∃ybδ′ is satisfied
in bI underh. SincebI ⊆ J , it follows that∃ybδ′ is satisfied inJ
underh. But ∃ybδ′ is a disjunct in the conclusion ofγ. Therefore,
(J∗, J) |= γ, as desired.

We now show thatΣ21 is not logically equivalent toΣE
21. It is

clear that(IB , ∅) 6|= γ, and so(IB , ∅) 6|= Σ21. We now show that
(IB , ∅) |= ΣE

12. Since, as we showed, there is no atomA such that
B is essential forA with respect toΣ12, no member ofΣE

21 hasB
in its premise. So for each memberB′ ∧ η′ → A′ of ΣE

21, there is
no mappingh that mapsB′ ontoB and satisfiesη′. It follows that
(IB , ∅) |= ΣE

12, as desired.
We have shown thatM12 has two distinct, inequivalent inverses

given by disjunctive tgds with inequalities, namelyME
21 andM21.

This contradiction shows that Claim 3 holds.
We now state and prove our final claim.
Claim 4: For every target relation symbolQ, there is exactly one

member ofΣ′
12 whose conclusion is aQ-atom. Every variable in

this conclusion is distinct.
To prove this claim, we begin by showing that there must be

at least one member ofΣ12 whose conclusion is aQ-atom and
where every variable in this conclusion is distinct. Assume not; we
shall derive a contradiction. Letγ be the formulaQ(x1, . . . , xt) ∧
η → β, where the variablesx1, . . . , xt are distinct, whereη is
a conjunction of the inequalitiesxi 6= xj wheneveri 6= j, and
whereβ is an arbitrary disjunction of source atoms whose variables
altogether are exactlyx1, . . . , xt.2 Let Σ21 = ΣE

21 ∪ {γ}, and let
2A disjunction is required if no source atom has arity at leastt.

M21 = (S2,cS1, Σ21).
We now show thatM21 is an inverse ofM12, and thatΣ21 is

not logically equivalent toΣE
21. To show thatM21 is an inverse of

M12, we must show that (1) holds wheneverI andJ are ground
instances. LetJ∗ = chase12(I). As in the proof of Claim 2,
sinceΣ21 = ΣE

21 ∪ {γ}, we need only show that(J∗, J) |= γ.
Since by assumption there is no member ofΣ12 whose conclusion
is aQ-atom and where every variable in this conclusion is distinct,
it follows easily thatJ∗ does not contain aQ-factQ(c1, . . . , ct),
wherec1, . . . , ct are distinct constants. Soγ does not fire onJ∗,
and so(J∗, J) |= γ, as desired.

We now show thatΣ21 is not logically equivalent toΣE
21. Let

J consist of the singleton factQ(c1, . . . , ct), wherec1, . . . , ct are
distinct constants. Then(J, ∅) 6|= γ, and so(J, ∅) 6|= Σ21. How-
ever,(J, ∅) |= ΣE

21, since every member ofΣE
21 has a premise of

the formB∧η′, whereB is (up to renaming of variables) a conclu-
sion ofΣ12, and by assumption, there is no member ofΣ12 whose
conclusion is aQ-atom with all distinct variables.

We have shown thatM12 has two distinct, inequivalent inverses
given by disjunctive tgds with inequalities, namelyME

21 andM21.
This contradiction shows that there must be at least one memberσ
of Σ′

12 whose conclusion is aQ-atom and where every variable in
this conclusion is distinct.

We now show that there can be no other memberσ′ of Σ′
12 whose

conclusion is aQ-atom. Assume not; we shall derive a contradic-
tion. Assume that the premise ofσ is aP -atom and the premise
of σ′ is aP ′-atom. Sinceσ andσ′ are different, we know thatP
andP ′ are different, by construction ofΣ′

12. Since every variable
in the conclusion ofσ is distinct, there is a mappingh that maps
the variables inσ to the variables inσ′ that maps the conclusion of
σ onto the conclusion ofσ′. LetA be theP -atom that is the result
of applyingh to the premise ofσ. So the chase ofIA with Σ′

12

is IB′ , whereB′ is the conclusion ofσ′. This contradicts the fact
that conclusion ofσ′ is essential for the premise ofσ′. This con-
tradiction shows that the only member ofΣ12 whose conclusion is
aQ-atom isσ, where every variable in the conclusion is distinct.
This completes the proof of Claim 4.

Now the variables in the source and target of each member of
Σ′

12 are the same by Corollary 4.7, since the target is essential for
the source with respect toΣ12. By construction, for every source
relation symbolP , there is exactly one member ofΣ′

12 whose
premise is aP -atom, and every variable is distinct in thisP -atom.
By Claim 4, for every target relation symbolQ, there is exactly one
member ofΣ′

12 whose conclusion is aQ-atom, and every variable
is distinct in thisQ-atom. It follows thatM12 is a p-copy mapping.
Also, by Claim 3,Σ12 is logically equivalent toΣ′

12. So (3) holds,
as desired. This completes the proof that (1)⇒ (3).

We conclude the proof by showing that (3)⇒ (2). From (3),
we know that there is a schema mappingM′

12 that is equivalent to
M12 and that is a p-copy mapping. Clearly,M′

12 is invertible and
onto. It follows easily thatM12 is invertible and onto, as desired.

LEMMA A.10. Assume thatδ is relevant forA and demanding
for A′. ThenA andA′ are the same atom.

PROOF. Sinceδ is relevant forA, we know thatIδ → chase12(IA).
Therefore, sinceδ is demanding forA′, we haveIA′ ⊆ IA. Since
IA andIA′ are both singletons, we haveIA′ = IA, soA andA′

are the same atom, as desired.

Proof of Theorem 5.10. Assume thatM12 = (S1,S2, Σ12)
is a full s-t tgd mapping with a unique normal inverseM21 =
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(S2,cS1, Σ21), andM21 is not equivalent to the normalized ver-
sion of a near p-copy mapping. Assume without loss of generality
thatΣ21 is of minimal length (and also of minimal size in terms of
the number of characters) among the various logically equivalent
sets of normal constraints logically equivalent toΣ21. SinceM21

has q unique normal inverse, it follows from Theorem 8.2 (where
m = 1) thatM21 has length at mostk, wherek is the number of
source relation symbols.

Let P be an arbitrary source relation symbol, and letAP be a
P -atom with all variables distinct. IfbP is in the conclusion of no
member ofΣ21, thenchase21(chase12(IAP )) contains nobP -fact,
soΣ21 is too weak. Therefore,bP is in the conclusion of some mem-
ber ofΣ21. Since alsoΣ21 has at mostk constraints, it follows thatbP is in the conclusion of exactly one member ofΣ21. Let σP be
the member ofΣ21 whose conclusion is abP -atom. Every variable
in the conclusion ofσP is distinct, or elsechase21(chase12(IAP ))

does not containdIAP , soΣ21 is too weak. LetBP be aP -atom
with all variables the same. NowσP has no inequalities, or else
chase21(chase12(IBP )) does not containdIBP , soΣ21 is too weak.

The proof of Theorem 8.2 shows thatAP is good, that is, that
chase12(IAP ) is a singleton. This singleton is the only relevant
atom (with respect toΣ12) for AP , so it follows fairly easily from
part (2) of Theorem 4.8 (and the assumption thatΣ21 is of mini-
mal size) that the premise ofσP contains only a single relational
atom. This relevant atom is also essential forP , as noted in Theo-
rem 4.8. So the premise ofσP has a single relational atom, that is
essential for the conclusion ofσP . Note that this is also true about
each weak renaming ofσP (that is, the atomB′ in the premise of
the weak renaming is essential for the conclusionA′ of the weak
renaming. This is becauseA′ must have an essential atom, and the
only candidate isB′.

Let Q be an arbitrary relation symbol inS2, and letBQ be a
Q-atom with all variables the same. We now show that at most one
member ofΣ21 can haveQ appear in its premise. Assume thatσP

andσP ′ both haveQ appear in its premise; we must show thatP
andP ′ are the same. ThenBQ is essential for bothBP andBP ′

(this follows from our earlier comment about weak renamings of
σP ). Hence, by Lemma A.10, it follows thatBP andBP ′ are the
same atom, soP andP ′ are the same, as desired. By Corollary 4.7,
the variables in the premise and conclusion ofσP are the same.

It follows from what we have shown thatM21 is equivalent to
the normalized version of a near p-copy mapping. This was to be
shown. .

A.4 Proofs for Section 6

LEMMA A.11. LetM12 be a full s-t tgd mapping, andM21 =

(S2,cS1, Σ21) a normal inverse forM12. LetA be a source atom
andB a target atom wherecIA ⊆ chase21(IB). ThenB is demand-
ing forA with respect toΣ12.

PROOF. Assume thatIB ⊆ chase12(I); we must show that
IA ⊆ I. Let U = chase12(I). We know from Proposition 4.2
that (U, bI) |= Σ21. SinceΣ21 is full, this implies further that
chase21(U) ⊆ bI. SinceIB ⊆ chase12(I) andcIA ⊆ chase21(IB),
it follows thatcIA ⊆ chase21(chase12(I)) = chase21(U). Since
alsochase21(U) ⊆ bI, we have thatcIA ⊆ bI, and soIA ⊆ I, as
desired.

Proof of Theorem 6.1. Let M12 = (S1,S2, Σ12). LetM21 =

(S2,cS1, Σ21) be an invertible normal inverse ofM12. When-
ever we speak of relevant, demanding, or essential in this proof,

we mean with respect toΣ12. We shall reserveA andA′ for source
atoms (with relation symbols inS1), andB andB′ for target atoms
(with relation symbols inS2).

Claim 1: If B is a relevant atom for a source atomA, then
chase21(IB) = cIA.

We now prove Claim 1. Assume thatB is a relevant atom forA.
Now chase21(IB) is nonempty, since otherwisechase21(IB) =
chase21(∅), and soM21 would violate the unique-solutions prop-
erty and so be not invertible. SinceM21 is full, we know that that
chase21(IB) has no nulls, and so every fact inchase21(IB) is of
the form cIA′ for some atomA′. The claim is proven if we show
that whenevercIA′ ⊆ chase21(IB), thenA′ is the same atom asA.
So assume thatcIA′ ⊆ chase21(IB). By Lemma A.11, where the
role ofA is played byA′, we know thatB is demanding forA′.
SinceB is also relevant forA, it follows from Lemma A.10 thatA′

is the same atom asA, as desired.
Claim 2: Each source atomA has exactly one relevant atomB,

andB is essential forA.
We now prove Claim 2. SinceM12 is invertible, it follows from

Theorem 4.10 and Proposition 4.5, thatA has some essential atom
B. SoB is relevant forA. Assume thatA has another relevant
atomB′; we shall derive a contradiction. By Claim 1, we have that
chase21(IB) andchase21(IB′) both equalcIA, and so are equal.
This violates the unique-solutions property forM21, and soM21

is not invertible, which gives our desired contradiction.
Let us denote the unique relevant atom forA by BA. For the

next claim, recall that ifϕ is a formula, andf is a weak renaming,
thenϕf is the result of replacing every variablex in ϕ by f(x).

Claim 3: Let f be a weak renaming. Then(BA)f = BAf .
We now prove Claim 3. Assume thatAf = A′. SinceBA is

relevant forA, it is clear that the result(BA)f of weakly renaming
BA usingf is relevant forA′. That is,(BA)f is relevant forA′.
By definition, the unique relevant atom forA′ is BA′ . Therefore,
(BA)f = BA′ = BAf , as desired.

Claim 4: Let B be a target atom. ThenB is relevant for some
source atom.

We now prove Claim 4. We prove it first when every variable in
B is distinct. SinceM21 is invertible, we know thatchase21(IB) 6=
∅, by the unique solutions property. So there is some member
δ → bA of Σ21 that fires onIB . Sochase21(Iδ) includescIA. By
Claim 1, we have thatchase21(IBA) = cIA. Sochase21(IBA) ⊆
chase21(Iδ). SinceM21 is invertible, it satisfies (the homomor-
phic version of) the subset property (although the subset property
and its homomorphic version in Proposition 3.1 are shown to be
equivalent to invertibility for s-t tgd mappings, this holds also for
normal mappings, by the same proof). SoIBA ⊆ Iδ. Therefore,
δ hasBA as a conjunct. Since the constraintδ → bA of Σ21 fires
on IB , there is a homomorphism fromBA toB. Since every vari-
able inB is distinct, it follows thatBA andB are the same up to
a renaming of variables. Therefore, sinceBA is relevant forA, we
know thatB is relevant for some atom obtained by renaming the
variables ofA. This completes the proof of Claim 3 when all of the
variables inB are distinct.

LetB′ be a target atom where the variables need not be distinct.
LetB be an atom where all of the variables are distinct and where
B′ is obtained fromB by a weak renamingf , that is,B′ = (BA)f .
Since all of the variable inB are distinct, it follows from what we
have shown thatB is relevant for some source atomA, and soB is
simplyBA. Hence, by Claim 3, we know thatB′ isBAf . SoB′ is
relevant forAf .

Claim 5: LetA be a source atom with all variables distinct. Then
every variable inBA is distinct.
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We now prove Claim 5. SinceBA is essential forA, it follows
from Proposition 4.6 thatBA has exactly the same variables asA.
We now show that every variable inBA is distinct. Assume not;
we shall derive a contradiction. LetB′ be an atom with the same
relation symbol asBA but with every variable distinct. SoB′ has
strictly more variables thanA. Since also every variable inA is
distinct, and every variable inB′ is distinct, it follows that the arity
of B′ is strictly bigger than the arity ofA. By Claim 4,B′ is
relevant for some source atomA′. Since by Claim 2 we know that
A′ has a unique relevant atom, and this atom is essential forA′,
it follows thatB′ is essential forA′. So by Proposition 4.6, we
know thatB′ andA′ have the same variables. Therefore, since
every variable inB′ is distinct, the arity ofA′ is at least the arity
of B′, which as we noted is strictly bigger than the arity ofA. So
the arity ofA′ is strictly bigger than the arity ofA. SinceBA is
obtained fromB′ by a weak renaming, andB′ is relevant forA′,
it follows thatBA is relevant for an atomA′′ obtained fromA′

by a weak renaming. SinceBA is demanding forA, it follows
from Lemma A.10 thatA′′ andA are the same atom. But this is
impossible, sinceA′′ has the same arity asA′, and the arity ofA′ is
strictly bigger than the arity ofA. This is our desired contradiction.
This completes the proof of Claim 5.

Let Σ′
12 consist of all of the constraintsA → BA, whereA is a

prime atom with all variables distinct. LetM′
12 = (S1,S2, Σ′

12).
We now show thatM′

12 is a p-copy mapping and is equivalent to
M12.

LetA→ BA be a member ofΣ′
12. By construction, every vari-

able inA is distinct. As noted earlier,BA has exactly the same
variables asA, and by Claim 5, every variable inBA is distinct.
By construction, every source relation symbol appears in exactly
one premise ofΣ′

12. To complete the proof thatM′
12 is a p-copy

mapping, all that is left to show is that every target relation symbol
appears in exactly one conclusion ofΣ21.

LetQ be an arbitrary target relation symbol, and letB′ be aQ-
atom with every variable distinct. By Claim 4, we have thatB′ is
relevant for some source atomA′, and soB′ equalsBA′ . Assume
thatA′ is aP -atom. LetA be the primeP -atom with all variables
distinct. Letf be a weak renaming whereA′ is Af . By Claim 3,
we know thatBA′ , that is,B′, is (BA)f . Hence, sinceB′ is a
Q-atom, so isBA. SoQ appears in some conclusion ofΣ′

21.
We now show thatQ cannot be in more than one conclusion in

Σ′
12. SayQ were in the conclusion of the member ofΣ′

12 whose
premise has relation symbolP and also in the conclusion of the
member ofΣ′

12 whose premise has relation symbolP ′. Let F be
the factP (0, . . . , 0), where every variable is set to 0. Similarly, let
F ′ be the factP ′(0, . . . , 0), where every variable is set to 0. Then
the result of chasingF with Σ12 isQ(0, . . . , 0), and identically the
result of chasingF ′ with Σ12 isQ(0, . . . , 0). This is a contradic-
tion of the unique-solutions property. This concludes the proof that
M′

12 is a p-copy mapping.
We close by showing thatΣ12 andΣ′

12 are logically equivalent.
ClearlyΣ12 logically impliesΣ′

12. We now show thatΣ′
12 logically

impliesΣ12. We first show that each of the constraintsA′ → BA′

is a logical consequence ofΣ′
12. LetA be an atom with the same

relation symbol asA′ and with all variables distinct. So there is a
renamingf whereA′ isAf . By Claim 3, we know that(BA)f =
BA′ . SoA′ → BA′ is (A → BA)f . ThereforeA′ → BA′ is a
logical consequence ofA→ BA, and so ofΣ′

12, as desired.
Assume now thatϕ → B is another member ofΣ12. By Claim

4, we know thatB isBA for some source atomA. Sincechase12(IA)
is IBA , andchase12(Iϕ) includesIBA , it follows thatchase12(IA) ⊆
chase12(Iϕ). So by the subset property,IA ⊆ Iϕ. Therefore,A is
in ϕ. Soϕ→ B is a logical consequence ofA→ BA, and so is a

logical consequence ofΣ′
12.

A.5 Proofs for Section 7

Proof of Theorem 7.1.The family is parameterized by the positive
integerk. Let S1 = {P0, . . . , Pk}, and letS2 = {P ′

0, . . . , P
′
k,

Q0, . . . , Qk−1}. Assume that all of the relation symbols inS1 and
S2 are4k-ary.

Let x1, . . . , x4k be distinct variables. LetS1 consist of the s-t
tgdsPi(x1, x2, . . . , x4k) → P ′

i (x1, x2, . . . , x4k), for 0 ≤ i ≤
k. Define x̄i, for 0 ≤ i ≤ k − 1, by letting xi

4i+2 = x4i+1,
xi

4i+4 = x4i+3, and xi
j = xj if j 6∈ {4i+ 2, 4i+ 4}. For

example,̄x0 is (x1, x1, x3, x3, x5, x6, . . . , x4k−1, x4k), andx̄1 is
(x1, x2, x3, x4, x5, x5, x7, x7, x9, x10, . . . , x4k−1, x4k). LetS2 con-
sist of the s-t tgdsPi+1(x̄

i) → P ′
0(x̄

i), for 0 ≤ i ≤ k − 1. LetS3

consist of the s-t tgdsP0(x̄
i) → Qi(x̄

i), for 0 ≤ i ≤ k − 1. Let
Σ12 = S1 ∪ S2 ∪ S3, and letM12 = (S1,S2, Σ12).

We begin by showing thatM12 is invertible. LetT1 consist
of the s-t tgdsP ′

j(x1, x2, . . . , x4k) → cPj(x1, x2, . . . , x4k), for
1 ≤ j ≤ k (note that we do not include the casej = 0). Let T2

consist of the formula

P ′
0(x1, x2, . . . , x4k) ∧ ((x1 6= x2) ∨ (x3 6= x4))

∧ ((x5 6= x6) ∨ (x7 6= x8))

∧ . . .

∧ ((x4k−3 6= x4k−2) ∨ (x4k−1 6= x4k))

→ cP0(x1, x2, . . . , x4k).

LetT3 consist of the s-t tgdsQi(x̄
i) → cP0(x̄

i), for 0 ≤ i ≤ k−1.
Let Σ21 = T1 ∪ T2 ∪ T3, and letM21 = (S2,cS1, Σ21).

Note thatchase21 is well-defined, even in the presence of the
formula inT2.

We now show thatM21 is an inverse ofM12. It is sufficient
to show thatbI = chase21(chase12(I)) for each ground instance
I (this is because the analogue of Theorem 4.4 holds, by the same
proof). We first show thatbI ⊆ chase21(chase12(I)). If bPi(ā) is a
fact of bI (and soPi(ā) is a fact ofI), and if1 ≤ i ≤ k, then we see
from the tgds inS1 andT1 that bPi(ā) is in chase21(chase12(I)).
So assume thatcP0(ā) is a fact ofbI (and soP0(ā) is a fact ofI),
There are two cases.

Case 1:There isi with 0 ≤ i ≤ k − 1 such thata4i+2 = a4i+1

anda4i+4 = a4i+3. Then the s-t tgdP0(x̄
i) → Qi(x̄

i) in S3 and
the s-t tgdQi(x̄

i) → cP0(x̄
i) in T3 guarantee thatcP0(ā) is a fact

of chase21(chase12(I)).
Case 2:There is noi with 0 ≤ i ≤ k − 1 such thata4i+2 =

a4i+1 anda4i+4 = a4i+3. Then the s-t tgdP0(x1, x2, . . . , x4k) →
P ′

0(x1, x2, . . . , x4k) in S1 and the formula inT2 guarantee thatcP0(ā) is a fact ofchase21(chase12(I)).
We now show the reverse inclusion, thatchase21(chase12(I)) ⊆bI. BecauseM12 is LAV, and because of the LAV-like form of

M21, we see that each fact ofchase21(chase12(I)) is obtained
by chasing a single factPi(a1, a2, . . . , a4k) of I with a single
memberσ1 of Σ12, and then chasing the single tuple that results
from this chase by a single memberσ2 of Σ21. We must show
that the result of this second chase is either empty or is the factbPi(a1, a2, . . . , a4k).

We now consider cases.
Case 1:σ1 is the s-t tgd

P0(x1, x2, . . . , x4k) → P ′
0(x1, x2, . . . , x4k)

of S1. Assume thatσ1 was applied to the factP0(a1, a2, . . . , a4k)
of I to obtain the factP ′

0(a1, a2, . . . , a4k). The only member of
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Σ21 whose premise containsP ′
0 is the formula inT2, and so we

may assume thatσ2 is this formula. Since the conclusion ofσ2 iscP0(x1, x2, . . . , x4k), it follows that chasingP ′
0(a1, a2, . . . , a4k)

with σ2 gives either the empty set or the factcP0(a1, a2, . . . , a4k),
as desired.

Case 2:σ1 is the s-t tgd

Pi(x1, x2, . . . , x4k) → P ′
i (x1, x2, . . . , x4k)

of S1, for somei with 1 ≤ i ≤ k. Assumeσ1 was applied to the
factPi(a1, a2, . . . , a4k) of I to obtain the factP ′

i (a1, a2, . . . , a4k).
The only member ofΣ21 whose premise containsP ′

i is the tgd
P ′

i (x1, x2, . . . , x4k) → bPi(x1, x2, . . . , x4k), and so we may as-
sume thatσ2 is this tgd. Clearly, chasingP ′

i (a1, a2, . . . , a4k) with
σ2 gives either the empty set or the factbPi(a1, a2, . . . , a4k), as
desired.

Case 3:σ1 is the s-t tgd

Pi+1(x̄
i) → P ′

0(x̄
i)

of S2, for somei with 0 ≤ i ≤ k − 1. Assume thatσ1 was
applied to the factPi+1(a1, a2, . . . , a4k) of I to obtain the fact
P ′

0(a1, a2, . . . , a4k). So necessarilya4i+2 = a4i+1 anda4i+4 =
a4i+3. The only member ofΣ21 whose premise containsP ′

0 is
the formula inT2, and so we may assume thatσ2 is this formula.
But this formula is not fired byP ′

0(a1, a2, . . . , a4k), sincea4i+2 =
a4i+1 anda4i+4 = a4i+3. So this case is not possible.

Case 4:σ1 is the s-t tgd

P0(x̄
i) → Qi(x̄

i)

of S3, for somei with 0 ≤ i ≤ k− 1. Assume thatσ1 was applied
to the factP0(a1, a2, . . . , a4k) of I to obtainQi(a1, a2, . . . , a4k).
The only member ofΣ21 whose premise containsQi is the s-t tgd
Qi(x̄

i) → cP0(x̄
i) of T3, so we may assume thatσ2 is this s-t tgd.

It follows easily that the result of chasingQi(a1, a2, . . . , a4k) with
σ2 iscP0(a1, a2, . . . , a4k), as desired.

This concludes the proof thatchase21(chase12(I)) ⊆ bI, which
was the final step in the proof thatM21 is an inverse ofM12.

We now show that the size of the smallest normal inverse ofM12

is exponential in the size ofM12. Assume thatM′
21 = (S2,cS1,

Σ′
21) is a normal inverse ofM12. It follows from Theorem 4.4 that

for every ground instanceI:

bI = chase′21(chase12(I)). (3)

Let us refer to4i+ 1 and4i+ 3 asbuddies, for 0 ≤ i ≤ k − 1.
Let ā = (a1, . . . , a4k) be a4k-tuple of constants. Let us call̄a
specialif:

1. for each pairi1, i2 of buddies, exactly one of the equalities
ai1 = ai1+1 or ai2 = ai2+1 holds; and

2. these are the only equalities among members ofā (that is, if
ai = aj for distinct valuesi, j, then there is an oddt such
that{i, j} = {t, t+ 1}).

Let theequality profileof ā be the2k-tuple(δ1, δ3, δ5, . . . , δ4k−1)
whereδi = 0 if ai = ai+1, andδi = 1 if ai 6= ai+1. Let us
say that an equality profile isspecialif it is the equality profile of a
special tuplēa.

For simplicity in what follows, when we say that an inequality
xi 6= xj appears ina formula, we mean that either the inequality
xi 6= xj or the inequalityxj 6= xi actually appears. Letσ be
a member ofΣ′

21 whose conclusion is of the formcP0(x̄), where
x̄ = (xm1 , xm2 , . . . , xm4k ). For each odd numberj with 1 ≤
j ≤ 4k − 1, let us say thatj is of type 0 with respect toσ if

either (a)xmj andxmj+1 are the same variable, or else (b) they
are different variables and the inequalityxmj 6= xmj+1 does not
appear in the premise ofσ. If j is not of type 0 with respect toσ,
then let us say that it is oftype 1 with respect toσ. Thus,j is of
type 1 precisely ifxmj andxmj+1 are distinct variables and the
inequalityxmj 6= xmj+1 appears in the premise ofσ.

Let δ = (δ1, δ3, δ5, . . . , δ4k−1) be a special equality profile, and
let ā be a special4k-tuple of constants with equality profileδ. Let
I be a ground instance whose only fact isP0(ā). Now chase12(I)
consists of the single factP ′

0(ā) (the s-t tgds inS2 cannot be ap-
plied in the chase sincēa is special). It follows from (3) that there
must be a memberσδ of Σ′

21 such that the chase ofP ′
0(ā) with

σδ producesP0(ā). It is clear thatσδ must have the following
properties:

1. The conclusion ofσδ is of the formcP0(x̄), where
x̄ = (xm1 , xm2 , . . . , xm4k );

2. variablesxmr andxms can be the same variable only ifamr =
ams ;

3. i is of type 0 with respect toσδ for eachi whereδi = 0; and
4. the only relation symbol that appears in the premise ofσδ is
P ′

0.

We now show that for each oddi with 1 ≤ i ≤ 4k − 1, we
have thati is of typeδi with respect toσδ . We already have that if
δi = 0, theni is of type 0 with respect toσδ (this follows from the
third condition above forσδ). So we need only show that ifδi = 1,
theni is of type 1 with respect toσδ . Let i1 = i, and leti2 be the
buddy ofi. Sinceā is special, and sinceδi1 = 1, it follows that
δi2 = 0. Therefore, as noted before,i2 is of type 0 with respect to
σδ . Assume thati1 is also of type 0 with respect toσδ ; we shall
derive a contradiction.

Let h be a one-to-one mapping from the variables inσδ to con-
stants, where in particularh(xmi) = ami for eachi with 1 ≤
i ≤ 4k. This function is well-defined by the second condition
aboutσδ . Let J1 be the target instance that consists of all of the
factsP ′

0(h(y1), . . . , h(y4k)), where the atomP ′
0(y1, . . . , y4k) ap-

pears in the premise ofσδ . ObtainJ2 from J1 by replacing each
occurrence ofai1+1 by ai1 . Define ā′ = (a′1, . . . , a

′
4k) by let-

ting a′i1+1 = ai1 , and lettinga′j = aj if j 6= i1 + 1. Note
thata′i2+1 = a′i2 , sinceai2+1 = ai2 (becauseδi2 = 0), and so
a′i2+1 = ai2+1 = ai2 = a′i2 .

Defineh′ by letting h′(y) = h(y) if y is not xi1+1, and let-
ting h′(xi1+1) = h(xi1), that is,h′(xi1+1) = ai1 . SoJ2 con-
sists of all of the factsP ′

0(h
′(y1), . . . , h

′(y4k)), where the atom
P ′

0(y1, . . . , y4k) appears in the premise ofσδ . We now show that
h′ respects each of the inequalities ofσδ , that is, that ify 6= y′ is an
inequality that appears in the premise ofσδ , thenh′(y) 6= h′(y′).
There are three cases.

Case 1:{y, y′} does not containxi1+1. Thenh′(y) = h(y) and
h′(y′) = h(y). Now h(y) 6= h(y′), sincey andy′ are distinct
variables. Therefore,h′(y) 6= h′(y′), as desired.

Case 2:{y, y′} containsxi1+1 but notxi1 . Assume without loss
of generality thaty is xi1+1. Thenh′(y) = h(xi1) andh′(y′) =
h(y′). Sincey′ is not xi1 , we know thath(y′) 6= h(xi1). So
h′(y′) = h(y′) 6= h(xi1) = h′(y). Therefore,h′(y) 6= h′(y′), as
desired.

Case 3:{y, y′} = {xi1 , xi1+1}. This case is not possible, since
i1 is of type 0 with respect toσδ , and so the inequalityxmi1

6=
xmi1+1 does not appear in the premise ofσδ .

SinceJ2 consists of all of the factsP ′
0(h

′(y1), . . . , h
′(y4k)),

where the atomP ′
0(y1, . . . , y4k) appears in the premise ofσδ , and

sinceh′ respects each of the inequalities ofσδ , it follows that the
chase ofJ2 with σδ containscP0(ā

′). Form the source instanceI2
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from the target instanceJ2 by replacing each factP ′
0(b̄) by P0(b̄).

Let τ1 be the s-t tgdP0(x1, x2, . . . , x4k) → P ′
0(x1, x2, . . . , x4k)

is J2. Clearly, the chase ofI2 with τ1 is J2.
Sincei1 and i2 are buddies, there iss with 0 ≤ s ≤ k − 1

such that{i1, i2} = {4s+ 1, 4s+ 3}. Let I ′2 be the set difference
I2 \ P0(ā

′), and letJ ′2 be the set differenceJ2 \ P ′
0(ā

′). Then the
chase ofI ′2 with τ1 is J ′2. Let I ′′2 consist of the factPs+1(ā

′). Let
τ2 be the s-t tgdPs+1(x̄

i) → P ′
0(x̄

s). Sincea′i1 = a′i1+1 (by
construction) anda′i2 = a′i2+1 (as noted earlier), the chase ofI ′′2
with τ2 contains the factP ′

0(ā
′). Let I3 = I ′2 ∪ I ′′2 . So the chase

of I3 with {τ1, τ2} containsJ ′2 ∪ {P ′
0(ā

′)}, which containsJ2.
Sinceτ1 andτ2 are members ofΣ12, it follows that the chase of
I3 with Σ12 containsJ2. Since the chase ofI3 with Σ12 contains
J2, and the chase ofJ2 with σδ containscP0(ā

′), it follows that
chase′21(chase12(I3)) containscP0(ā

′), which is not inbI3. There-
fore, bI3 6= chase′21(chase12(I3)), which contradicts (3) whenI is
I3.

We just showed that ifδ = (δ1, δ2, δ5, . . . , δ4k−1) is a special
equality profile, then there is a memberσδ of Σ′

21 such that for
each oddi with 1 ≤ i ≤ 4k − 1, we have thati is of typeδi.
Sinceσδ andσδ′ are different whenδ 6= δ′, it follows thatΣ′

21

has at least as many members as there are special equality profiles.
Clearly, there are2k distinct special equality profiles. SoΣ′

21 has
at least2k members. This is sufficient to prove the theorem.

Proof of Theorem 7.3.LetM12 = (S1,S2, Σ12), whereΣ12 is a
finite set of full s-t tgds. For each memberϕ(x̄) → (A1∧ . . .∧Ar)
of Σ12, where eachAi is an atom, letΣ′

12 contain the s-t tgds
ϕ(x̄) → A1, . . . , ϕ(x̄) → Ar. Thus,Σ′

12 is a finite set of full s-t
tgds, each with a singleton conclusion, that is logically equivalent
to Σ12.

We now give a procedure to augmentΣ′
12 to a setΣ′′

12. For each
memberσ of Σ′

12, whose premise consists only ofP -atoms for
some single relational symbolP , define an equivalence relationEσ

on the variables that appear inσ as follows. Assume thatP is t-
ary. For eachi with 1 ≤ i ≤ t, letYi be the set of all variables that
appear in theith position of some atom in the premise ofσ. LetEσ

be the most refined equivalence relation (largest number of equiva-
lence classes) such that eachYi is a subset of an equivalence class
of Eσ. It is easy to see that each equivalence class ofEσ is a union of
Yi’s. For each equivalence class, select a unique representative, and
let [x] denote the representative of the equivalence class containing
x. Formσ† fromσ by replacing each variablex by [x]. Sinceσ† is
a “special case” ofσ (that is,σ† is obtained fromσ by identifying
some variables), it follows thatσ† is a logical consequence ofσ.
If σ is a member ofΣ′

12 whose premise contains aP -atom and a
Q-atom for two different relation symbolsP andQ, let σ† beσ.
Let U =

�
σ† : σ ∈ Σ′

12

	
, and letΣ′′

12 = Σ′
12 ∪ U . SinceΣ′′

12

consists ofΣ′
12 along with some logical consequences ofΣ′

12, it
follows thatΣ′′

12 is logically equivalent toΣ′
12. Since alsoΣ′

12 is
logically equivalent toΣ12, it follows thatΣ′′

12 is logically equiva-
lent toΣ12. By renaming variables if needed, we can assume that
no two distinct members ofΣ′′

12 have a variable in common. Fur-
thermore, we can assume that for each memberσ of Σ′′

12, there is
another memberσ� of Σ′′

12 that is obtained fromσ by renaming the
variables in a one-to-one manner and with a disjoint set of variables
from σ (we addσ� to Σ′′

12 if needed). It is easy to see that there is
a polynomial-time procedure for generatingΣ′′

12 from Σ12.
We now give a polynomial-time procedure for generating a set

Σ21 that specifies an inverse (if there is an inverse). Let us say
that a memberσ of Σ′′

12 is specialif the premise contains a single
atom, and if every variable in the premise appears in the conclu-
sion (and hence the same variables appear in the premise and the

conclusion). Letσ be a special member ofΣ′′
12. Assume thatσ is

P (xz1 , . . . , xzt) → Q(xi1 , . . . , xik ). So the conclusion ofσ is a
Q-atom. Letτ be an arbitrary member ofΣ′′

12, other thanσ, such
that the conclusion ofτ is aQ-atom. Assume that the conclusion
of τ is Q(xj1 , . . . , xjk ). Recall thatσ andτ have no variables in
common. LetEτ be the most refined equivalence relation (largest
number of equivalence classes) on the variables inσ andτ such that
xi` andxj` are in the same equivalence class, for1 ≤ ` ≤ k. Let
θ1τ be a conjunction of equalities among the variables inσ, where
the equalityxir = xis is an atom inθ1τ precisely ifxir andxis

are in the same equivalence class ofEτ . For each equivalence class
E of Eτ , select a unique representative. If this equivalence class
E contains a variable inσ, then choose the representative ofE to
be a variable inσ. (The only times that the equivalence classE
does not contain a variable inσ is whenE consists of a variable in
the premise ofτ but not in the conclusion ofτ .) Let [x]τ denote
the representative of the equivalence class ofEτ containingx. Let
us refer to the variables[xi1 ]

τ , . . . , [xik ]τ asdistinguished. Let us
say that aP -atomP (xw1 , . . . , xwt) in the premise ofτ is distin-
guishedif [xw` ]

τ is distinguished for1 ≤ ` ≤ t. If A is the distin-
guishedP -atomP (xw1 , . . . , xwt), defineγA to be the conjunction
of the equalities[xw` ]

τ = [xz` ]
τ for 1 ≤ ` ≤ t. Defineθ2τ to be

the disjunction of the formulasγA for each distinguishedP -atom
of τ . If this disjunction is empty (becauseτ has no distinguished
P -atom), thenθ2τ is the empty disjunction, which is logically equiv-
alent toFalse. Let θτ be the formulaθ1τ → θ2τ . Note that ifτ has
no distinguishedP -atoms, thenθτ is logically equivalent to¬θ2τ .
Let θ be the conjunction of the formulasθτ , over all membersτ of
Σ12 other thanσ, where the conclusion ofτ is aQ-atom. We now
defineσ∗ to beQ(xi1 , . . . , xik )∧θ → bP (xz1 , . . . , xzt). Note that
(the hatted version of) the premise ofσ is the conclusion ofσ∗, and
the conclusion ofσ is a part of the premise ofσ∗. Let Σ21 consist
of all of the formulasσ∗, whereσ is a special member ofΣ12. Let
M21 = (S2,cS1, Σ21).

Assume thatθ is a Boolean combination of equalities, andf is
a weak renaming of variables. Let us say thatθ holds underf
if the Boolean expression that results by replacing each equality
x = y by True whenf(x) andf(y) are the same variable, and
replacing each equalityx = y by Falsewhenf(x) andf(y) are
different variables, evaluates toTrue. Similarly, if g is a function
that maps variables to constants, then say thatθ holds underg if the
Boolean expression that results by replacing each equalityx = y
by Truewheng(x) andg(y) are the same constant, and replacing
each equalityx = y by Falsewheng(x) andg(y) are different
constants, Let us say thatf andg agree on equalitiesif for eachx,
we have thatf(x) = f(y) if and only if g(x) = g(y). Clearly, if
f andg agree on equalities, thenθ holds underf if and only if θ
holds underg. As before, ifϕ is a formula, letϕf be the result of
replacing every variablex in ϕ by f(x). If A is an atom, letAg be
the fact that arises by replacing every variablex in ϕ by g(x),

Claim: For every constraintσ∗ in Σ21, which must be of the
form β ∧ θ → bα, whereα is a source atom,β is a target atom
with the same variables asα, andθ is a Boolean combination of
equalities among the variables, and for every weak renamingf , we
have thatθ holds underf if and only if βf is an essential atom for
αf .

Note thatσ∗ is derived fromσ in Σ′′
12, whereσ is α → β.

Assume thatα is a P -atom andβ is aQ-atom. We now prove
the Claim. Assume first thatβf is essential forαf ; we wish to
show thatθ holds underf . To show this, we must show that if
τ is a member ofΣ′′

12 other thanσ, and the conclusion ofτ is a
Q-atom, thenθτ holds underf . Thus, assume thatθ1τ holds under
f ; we must show thatθ2τ holds underf . Now the conclusion of

x



σf is βf . Sinceθ1τ holds underf , it follows thatσf andτf have
the same conclusion. So the conclusion ofτf is βf . Let g be a
function that maps variables into constants and that agrees withf
on equalities. LetI be an instance whose facts are the factsAg for
each atomA in the premise ofτ . So the chase ofI with τ is βg.
Sinceβf is essential forαf , it follows thatαg is a fact inI. Soαg

is Ag for some atomA in the premise ofτ . It follows thatγA, as
defined earlier, holds underg, and soθ2τ holds underg. Sincef and
g agree on equalities, this implies thatθ2τ holds underf , as desired.

Assume now thatθ holds underf ; we must show thatβf is an
essential atom forαf . Let g be a function that maps variables into
constants and that agrees withf on equalities. Soθ holds underg.
Let I be an instance wherechase12(I) containsβg; we need only
show thatαg is a fact inI. It is easy to see that the result of chasing
with Σ12 andΣ′′

12 are the same. So the result of chasingI with
Σ′′

12 containsβg. Hence, there is a constraintτ in Σ′′
12 that fires on

I and producesβg. If τ is σ, thenαg is in I, as desired. Ifτ is
not σ, it is straightforward to verify thatθ1τ holds underg. Since
alsoθ holds underg, this implies thatθ2τ holds underg. So there is
some distinguished atomA in the premise ofτ such thatγA holds
underg. Hence,Ag andαg are the same fact. Sinceτ fires onI to
produceβg, there is a homomorphismh that maps the premise of
τ into I and that maps the conclusion ofτ ontoβg. Hence,h must
agree withg on the variables inα, and hence on the variables inA,
sinceA is distinguished. SoAg is in I. But we showed thatAg

andαg are the same fact. Soαg is in I, as desired. This concludes
the proof of the Claim.

Assume thatM12 has an inverse. We now use the Claim to prove
thatM21 is an inverse ofM12.

Assume thatσ∗ is a member ofΣ21, andσ∗ is β ∧ θ → bα.
Let k be the number of variables that appear inσ∗. Define the set
Tσ∗ as follows. For each weak renamingf of the variables inσ∗

such that the range off is in {x1, . . . , xk} and such thatθ holds

for f , let Tσ∗ contain the constraintsβf ∧ ηf → cαf , whereηf

is the conjunction of the inequalitiesf(x) 6= f(y) wherex andy
are variables ofσ∗ and wheref(x) andf(y) are different variables.
(The assumption that range off is in{x1, . . . , xk} is only to assure
thatTσ∗ be finite.) It is straightforward to see thatσ∗ is logically
equivalent toTσ∗ . Let Σ′

21 be the union of the setsTσ∗ over all
σ∗ in Σ21, and letM′

21 = (S1,S2, Σ′
12). We need only show

thatM′
21 is an inverse ofM12. ObtainΣ′′

21 from Σ′
21 by adding

to the premise of every memberτ of Σ′
21 the conjunctsconst(x)

wherex is a variable that appears inτ . LetM′′
21 = (S2,cS1, Σ′′

21)
By Proposition A.7, we know thatM′

21 is an inverse ofM12 if and
only if M′′

21 is an inverse ofM12. So we need only show thatM′′
21

is an inverse ofM12. Note that by construction,M′′
21 is normal.

We now use Theorem 4.8 to show thatM′′
21 is an inverse of

M12. Since eachTσ∗ was obtained by considering weak renam-
ingsf such thatθ holds forf , it follows easily from the Claim that
for every memberϕ of Σ′′

21, the premise ofϕ is essential for the
conclusion ofϕ. Hence, the first condition of Theorem 4.8 holds
(whenΣ′′

21 plays the role ofΣ21). We now show that the second
condition also holds. LetA be a source atom. SinceM12 is invert-
ible, we know by Proposition 4.12 thatωA is essential forA, and
so contains an atomB that is essential forA (with respect toΣ12).

It follows from the construction ofΣ′′
12 that there is a memberσ

of Σ′′
12 with a singleton premise (and a singleton conclusion) such

that the chase ofIA is the same withσ as it is withΣ12. Writeσ as
α → β. So there is a weak renamingf such thatαf is A andβf

isB. We now show that every variable inα appears inβ, and soσ
is special. Assume that some variablex appears inα but not inβ;
we shall derive a contradiction. Letf ′ be a weak renaming that is

like f except thatf ′(x) is a new variable. Soαf ′
is different from

A, althoughβf ′
is the same asβf , that is,B. Sochase12(Iαf′ )

containsIB , even thoughIA 6⊆ Iαf′ . This contradicts the fact that
B is essential forA. Hence,σ is special, as desired.

So there isθ such thatσ∗ is β ∧ θ → bα, andσ∗ is in Σ21. Since
βf (namely,B) is essential forαf (anmely,A), it follows from
the Claim thatθ holds underf . So there isδ such that the only
atom inδ is B, andδ → bA is a weak renaming of a constraint
in Σ′′

21. Hence, the second condition of Theorem 4.8 holds (when
Σ′′

21 plays the role ofΣ21), as desired. This completes the proof
thatM′′

21 is an inverse ofM12. By making use of Proposition A.7,
we can addconst formulas to the premises of member ofM′′

21 to
obtain a Boolean normal inverse ofM12.

A.6 Proofs for Section 8

Proof of Theorem 8.2. Assume thatM12 = (S1,S2, Σ12). Let
us say that the source atomB is good if chase12(IB) has exactly
one member. Let us say thatB is bad if B is not good. Letb be
the number of bad prime source atoms. We now show that2b ≤ m
(wherem is the number of inequivalent normal inverses ofM)
and thatM has a Boolean normal inverse of lengthk + b. Since
2b ≤ m, we have thatb ≤ log2(m), and sok+ b ≤ k+ log2(m).
The theorem follows.

For each source relation symbolP , letAP be the primeP -atom
P (x1, . . . xr) wherex1, . . . , xr are distinct. IfB is a P -atom
P (y1, . . . , yr), let ϕB be the formula that is the conjunction of
the equalitiesxi = xj for eachi, j whereyi andyj are the same
variable along with the inequalities of the formxi 6= xj for each
i, j whereyi andyj are different variables. Intuitively,ϕB com-
pletely describes the equality pattern of the variables inB. Let θP

be the disjunction of the formulasϕB whereB is a goodP -atom.
Let σP be the formulaωAP ∧ θP → cAP , whereωAP is defined as
in Definition 4.11.

Let B1, . . . , Bb be precisely the bad prime source atoms (they
may involve various relation symbols). IfBi isP (y1, . . . , yr), de-
fineηi to be the conjunction of the inequalities of the formyi 6= yj

whereyi andyj are distinct variables. By Proposition 4.12, we
know thatωBi is essential forBi with respect toΣ12, for eachi.
SinceBi is bad, it follows thatωBi is a conjunction of more than
one atom. By Proposition 4.5, we know that some atomCi in ωBi

is essential forBi with respect toΣ12, for eachi. Letψ0
i be the con-

straintCi ∧ ηi → cBi, and letψ1
i be the constraintωBi ∧ ηi → cBi.

Let v = (v1, . . . , vb) be an arbitrary{0, 1}-vector of lengthb.
DefineΣv

21 to consist of thek formulasσP (one for each source
relation symbolP ) along with theb constraintsψvi

i for 1 ≤ i ≤
b. Let Mv

21 = (S2,cS1, Σv
21). We now show that eachMv

21 is
an inverse ofM12, and thatMv

21 andMv′
21 are not equivalent if

v 6= v′. Since the number of vectorsv is 2v, this shows that
2b ≤ m. Further, since eachMv

21 is a Boolean normal inverse of
lengthk + b, this shows thatM has a Boolean normal inverse of
lengthk + b (in fact, it has at least2b Boolean normal inverse of
lengthk + b). This is sufficient to complete the proof.

Fix v = (v1, . . . , vb). We begin by showing thatMv
21 is an

inverse ofM12. We now define a functione that maps each prime
source atomB to an essential conjunctione(B) with respect to
Σ12. For the bad prime source atomBi, we let e(Bi) = Ci if
vi = 0, ande(Bi) = ωBi if vi = 1. By construction,e(Bi) is
essential forBi if vi = 0, and by Proposition 4.12, we know that
e(Bi) is essential forBi if vi = 1. For each good prime source
atomA, we lete(B) = ωB . Again by Proposition 4.12, we know
that e(B) is then essential forB. So by Theorem 4.10,Me

21 is
an inverse ofM. We now show thatMe

21 is equivalent toMv
21,

xi



which completes the proof thatMv
21 is an inverse ofM12.

For each prime source atomB whereB is bad,Me
21 andMv

21

contain the same constraint with conclusionbB. Let us now consider
the good prime source atomsB. The formulaσP is logically equiv-
alent to the set consisting of all of the formulasωAP ∧ϕB → cAP ,
whereB is a good primeP -atom. Assume thatB is a good prime
source atom. Letσ1 be the formulaωAP ∧ ϕB → cAP , and letσ2

be the formulaωB ∧ ηB → bB, where as beforeηB is the conjunc-
tion of all inequalities of the formx 6= y wherex andy are distinct
variables inB, By construction,σ2 is the unique member ofMe

21

with conclusionbB. So to complete the proof thatMe
21 is equiv-

alent toMv
21, we need only show that the formulaσ1 is logically

equivalent to the formulaσ2.
Assume thatB is the good atomP (y1, . . . , yr), wherey1, . . . , yr

are variables, not necessarily distinct. LetψB be the formula ob-
tained fromσ1 by replacing the variablexi by yi, for 1 ≤ i ≤ r.
We now show thatψB is logically equivalent to bothσ1 andσ2,
which implies thatσ1 andσ2 are logically equivalent, as desired.
In formingψB , two variablesxi andxj in σ1 are replaced by the
same variable precisely ifyi andyj are the same variable, which
holds precisely if the equalityxi = xj appears inϕB . It follows
easily thatψB is logically equivalent toσ1. We now show thatψB

is logically equivalent toσ2.
It is easy to see that the conclusions ofψB andσ2 are the same,

and that the result of replacing the variablexi by yi, for 1 ≤ i ≤ r,
in ϕB is equivalent toηB . Let τB be the result of replacing the
variablexi by yi in ωAP , for 1 ≤ i ≤ r. So we need only show
thatτB is equivalent toωB . Now the conjunct(s) ofτB must be in
ωB , by properties of the chase with s-t tgds. SinceωB is a singleton
(becauseB is good), it follows easily thatτB is the same asωB .
This concludes the proof thatMe

21 is equivalent toMv
21,

We conclude the proof by showing thatMv
21 andMv′

21 are not
equivalent ifv 6= v′. Sayv 6= v′, and thatv = (v1, . . . , vb)
andv′ = (v′1, . . . , v

′
b). So there isi with 1 ≤ i ≤ b such that

vi 6= v′i Assume without loss of generality thatvi = 0 andv′i = 1.
We now show that(ICi , ∅) satisfiesΣv′

21 but notΣv
21 This of course

shows thatMv
21 andMv′

21 are not equivalent. Clearlyψ0
i fires on

ICi , and so(ICi , ∅) does not satisfyψ0
i . Hence,(ICi , ∅) does

not satisfyΣv
21, becauseΣv

21 containsψ0
i . We now show that no

member ofΣv′
21 fires onICi . SinceBi is bad, we know thatωBi

has some other atomA in addition toCi as a conjunct. SinceCi

is essential forBi, it follows from Proposition 4.6 thatBi andCi

have the same variables. SinceΣ12 is full, every variable inA is in
Bi, and hence inCi. Assume thatCi isQ(y1, . . . , ym). ThenICi

consists of the factQ(cy1 , . . . , cym). If ψ1
i were to fire onICi , then

there would be a homomorphismh from the premise ofψ1
i to ICi .

SinceCi is part of the premise ofψ1
i , we must haveh(yi) = cyi

for 1 ≤ i ≤ m. Sinceh must mapA ontoQ(cy1 , . . . , cym), and
since every variable inA is amongy1, . . . , ym, it is easy to see that
A must beCi, which is a contradiction. Soψ1

i does not fire on
ICi . We now show that no other member ofΣv′

21 fires onICi . If

some memberψ
v′j
j were to fire onICi wherej 6= i, then because

of the inequalities inψ
v′j
j , it would follow that some member of

chase12(IBj ) is of the formQ(c1, . . . , cm), whereck = c` if and
only if yk = y`. So there would be a homomorphismICi →
chase12(IBj ). SinceCi is demanding forBi, it follows thatIBi ⊆

IBj . But this is impossible, sincei 6= j. So no memberψ
v′j
j fires

on ICi wherej 6= i. A similar argument shows that noσP fires on
ICi . So no member ofΣv′

21 fires onICi , and hence(ICi , ∅) satisfies
Σv′

21, as desired.
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