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The Structure of Inverses in Schema Mappings

Ronald Fagin and Alan Nash*

ABSTRACT Bernstein and Melnik 2007]; however, progress on the study of the

A schema mapping is a specification that describes how data struc-"Verse ope_rator was not madg unti r_ecently. Evgn f'r?d'”g. the ex-
tured under one schema (the source schema) is to be transformedct semantics of this operator is a delicate task, since in spite of the
into data structured under a different schema (the target schema).tr_"j‘o“t'on"jll use of the name mapping’, a schema mapping is not
The notion of an inverse of a schema mapping is subtle, IoecaluseS|mply a function that maps an instance of the source schema to

a schema mapping may associate many target instances with eac n instance of the_target schema_. Instead, for eagh source instance,
source instance, and many source instances with each target in-t e schema mapping may associate many target instances. Further-
stance. In PODS 2006, Fagin defined a notion of the inverse of amore, fgr each target instance, there may be many corresponding
schema mapping. This notion is tailored to the types of schema source instances. . ) .

mappings that commonly arise in practice (such as those specified . HOW_ShOU|d the inverse b? defined in our context? Let us asso-
by “source-to-target tuple-generating dependencies”). We resolve ciaté With the schema mappingl:> = (S1, Sz, X12) the setSi.

the key open problem of the complexity of deciding whether there _Of ordered pairg/, J) s_uc_h thatl is asource Instance, s a target

is an inverse. We also explore a number of interesting questions, NStance, and!, J) satisfiest, (written (1, J) [= X12). Perhaps
including: What is the structure of an inverse? When is the inverse 1€ most natural definition of the inverse of the schema mapping
unique? How many non-equivalent inverses can there be? When//112 would be a schema mappinty(; that is associated with the
does an inverse have an inverse? How big must an inverse peel21 = {(J,1) : (I,J) € S12}. This reflects the standard al-
Surprisingly, these questions are all interrelated. Finally, we give gebraic definition of an inverse, and is the definition that [Melnik

greatly simplified proofs of some known results about inverses. _2004] and [Melnik, Bernstem, Halgv_y_ and Ra_hm 2005] give forthe_
What emerges is a much deeper understanding about this fundalnverse. In those papers, this definition was intended for ageneric
mental operation. model managemfent cqntext, w.here mappings can .be defined in a
variety of ways, including as view definitions, relational algebra
expressions, etc. However, as discussed in [Fagin 2006], this defi-

1. INTRODUCTION nition does not work well in our context, since the Set above is
Schema mappings are high-level specifications that describe thenot associated with schema mappings defined by s-t tgds or natural

relationship between two database schemas. A schema mapping©Urce-to-target modifications of s-t tgds. )
is defined to be a tripleVt = (S, T, ), where$S (the source [Fagin 2006] showed that the identity mapping cannot be ob-

schempand T (thetarget schemjpare sequences of distinct rela-  t@ined by composing an s-t tgd mapping with any other schema
tion symbols with no relation symbols in common ands a set of mapping. The closest we can come with such a composition is the

database dependencies that specify the association between sour&PY mappingwhich is specified by s-ttgds that “copy” the source
instances and target instances. The most important case, in bot{Stance to the targetinstance. The inverse defined in [Fagin 2006,
theory and practice, arises whEris a finite set of source-to-target  Which we study in this paper, is defined essentially as follows: the
tuple-generating dependencies (s-t tgds) We refer to a schema mapS@MPosition of amapping and its inverse is the copy mapping. This
ping specified by s-t tgds as art tgd mapping These mappings is the natural adaptation to the setting of s-t tgds of the principle that

have also been used in data integration scenarios under the name df'€ composition of a mapping and its inverse should be the identity.

GLAV (global-and-local-as-view) assertions [Lenzerini 2002]. Our __Fagin showed how to construct an inverse of an s-t tgd mapping
main focus in this paper is on inverses for s-t tgd mappings. that is itself an s-t tgd mapping when such an inverse exists. He

Since schema mappings form the essential building blocks of also developed a number of tools for the study of inverses of s-t

such crucial data inter-operability tasks as data exchange and datd99 mappings. He showed that deciding invertibility of an s-t tgd
integration (see the surveys [Kolaitis 2005, Lenzerini 2002]), sev- MapPPing is cONP-hard, and left open the question as to whether it
eral different operators on schema mappings have been singled outS €ven decidable. We give a matching coNP upper bound, which
as deserving study in their own right [Bernstein 2003]. The compo- Shows that deciding invertibility is coNP-complete. '

sition operator and the inverse operator have emerged as two of the [Fagin, Kolaitis, Popa and Tan 2007] introduced and studied the
most fundamental operators on schema mappings. The composi10tion of & quasi-inverse of a schema mapping. This notion is a
tion operator has been investigated in depth [Fagin, Kolaitis, Popa Principled relaxation of the notion of an inverse of a schema map-

and Tan 2005, Madhavan and Halevy 2003, Melnik 2004, Nash, ping; intuitively, it is obtained from the notion of an inverse by

not differentiating between instances that are equivalent for data-
*Contact information: IBM Almaden Research Cen- €Xxchange purposes. During their development, they obtained a
ter, 650 Harry Road, San Jose, CA 95120. Email: number of results not just for quasi-inverses, but also for inverses.
fagin@almaden.ibm.com, anash@us.ibm.com




In particular, they showed that a certain simple combinatorial con-
dition (thesubset properiyis a necessary and sufficient condition
for an s-t tgd mapping to be invertible. They also gave an algo-
rithm for constructing @anonical candidate inverder an s-t tgd
mapping. Itis specified by using what they caletitgds with con-

(and in fact, we give a polynomial-time algorithm for generating
this Boolean normal inverse).

Is there a relationship between the number of normal inverses
and the size of the minimal Boolean normal inverse? We cannot
bound the number of normal inverses in terms of the size of the

stants and inequalitiesThese are like s-t tgds, but there may also minimal Boolean normal inverse, since there are examples with
be constant formulas and inequalities in the premise. They showedan infinite number of inequivalent normal inverses. However, we
that if an s-t tgd mapping is invertible, then its canonical candidate show that if there are only a small number of inequivalent normal
inverse is indeed an inverse. inverses, then the minimal number of constraints in a Boolean nor-

We definenormal inversesthat are specified by special cases of mal inverse is small. Specifically, we show thaMf is a full s-t tgd
s-t tgds with constants and inequalities. The canonical candidatemapping, withk source relation symbols and with exactly > 1
inverse is a normal inverse. Hence, if an s-t tgd mapping has an in-inequivalent normal inverses, thdrl has a Boolean normal inverse
verse, then it has a normal inverse. Normal inverses are especiallywith at mostk + log, (m) constraints.
nice, in that if] is a source instancé(! is an s-t tgd mapping spec-  Simpler proofs of known results. We give greatly simplified proofs
ified by &, and M’ is a normal inverse of that is specified by of two results whose previous proofs were quite complex. [Fagin
Y, then the result of chasinfwith 3 and then chasing the result  2006] introduced thenique-solutions propertyhich says that no
by ' gives back exactly (this is not true of arbitrary inverses). two distinct source instances have the same set of solutions. (A
We focus our study mainly on normal inverses. solutionfor a source instanceé with respect to a schema mapping

In addition to our result mentioned earlier where we resolve the M is a target instancé such tha{ 7, J) satisfies the constraints of
complexity of the deciding if an s-t tgd mapping is invertible, we AM.) He showed that the unique-solutions property is a necessary
obtain a number of other new results about inverses, that we now condition for a schema mapping to have an inverse. He gave a com-
discuss. plicated proof that for LAV mappings (those specified by s-t tgds
Unique inverses. As we show, no schema mapping has a unique with a singleton premise), the unique-solutions property is not only
inverse. What about a unique normal inverse? This is possible, anda necessary condition but also a sufficient condition for invertibil-
we give a characterization of those s-t tgd mappings with a unique ity. We give a simple proof of this result. Second, we give a simple

normal inverse.

In the full case (where the s-t tgds have no existential quanti-
fiers) there is an especially interesting story (which we show does
not hold in the nonfull case). Let us say that a full s-t tgd map-
ping M = (S, T, X) is ontoif every target instance is the result of
chasing some source instance withWe show that if a full s-t tgd
mapping is invertible and onto, then it has a unique normal inverse.

What about the converse? We show that the converse fails. What

if we enrich the language of possible inverses? Following [Fagin,
Kolaitis, Popa and Tan 2007], we defidesjunctive tgds with in-
equalitiesby allowing inequalities in the premise and disjunctions

in the conclusion (such mappings were shown to be necessary to

express quasi-inverses of full s-t tgd mappings in [Fagin, Kolaitis,
Popa and Tan 2007]). We show that a full s-t tgd mappwidas a
unique inverse specified by disjunctive tgds with inequalities if and
only if M is invertible and onto. Furthermore, we show thet
satifies these conditions if and onlyM is a slight generalization

of the copy mapping.

Inverse of an inverse. Surprisingly, it turns out to be rare that a
normal inverse of an s-t tgd mapping is itself invertible. We show
that if M is a full s-t tgd mapping with an invertible normal inverse,
then, once againM is a slight generalization of the copy mapping.
By combining this result with our results about unique inverses, we
obtain the unexpected result that a full s-t tgd mapphighas an
invertible normal inverse if and only iM has a unique inverse
specified by disjunctive tgds with inequalities. We also show that
this latter theorem does not hold if we remove the restriction that
M be full.

The size of an inverseHow big does a normal inverse need to be?
We show that there is a family of full, invertible s-t tgd mappings
M such that the size of the smallest normal invers@6fs expo-
nential in the size oM. Therefore, we broaden the class of normal
mappings by allowing not just inequalities but also Boolean com-
binations of equalities in the premises, and we call these mappings
Boolean normal Allowing Boolean normal mappings does not in-

crease the expressive power of normal mappings, but allows a more

compact representation. Indeed, we show that every invertible full
s-t tgd mapping has a Boolean normal inverse of polynomial size

proof of the result in [Fagin, Kolaitis, Popa and Tan 2007] that for
invertible s-t tgd mapping3, the canonical candidate inverse of
M isindeed an inverse o¥1.

2. PRELIMINARIES

Schemas and Schema Mapping# schema8 is a finite sequence
(R1,..., Ri) of relation symbols, each of a fixed arity. An-
stancel over S (which we may call ar8-instancé is a sequence
(RI,..., R}), where eaclR! is a finite relation of the same arity
as R;. We shall often use?; to denote both the relation symbol
and the relatiorR; that interprets it.

A schema mappings a triple M = (S, T, X) consisting of a
source schem8§, a target schemd, and a sef of constraints.
We say thatM is specified bys. If X is a finite set of s-t tgds,
then we may refer toV as ans-t tgd mappingWhenS andT are
clear from context, we will sometimes saywhen we should say
(S, T, X), and talk about a set of constraints, when we should talk
about a schema mapping.

Instances and Formulas.We consider instances over a two-sorted
universe ofvalues which can beconstantor (labelled) nulls We
assume that there is a countably infinite 6ebf constants and
a countably infinite setv of nulls, whereC and N are disjoint.
We write dom(I) for the (active) domain of an instande We
assume that every instandeis finite, and has values i€’ U N
(that is,dom(I) C C U N). We say that/ is aninstance over
S, or an S-instance, if the relation symbols df and S are the
same, with the same arities. In the context of a schema mapping
M = (S,T, X), we may refer to arB-instance as aource in-
stance and aT-instance as target instanceWe say that a source
instancel is groundif dom(I) C C.

If Pisanm-ary relation symbol ir8, andx, ...,z are vari-
ables, not necessarily distinct. théf{z1, ..., z,,) is arelational
atom or simplyatom(overS). We may refer to it as #-atom In
the context of a schema mapping = (S, T, X), we may refer to
a P-atom whereP is in S as asource atomand aP-atom where
P is in T as atarget atom If P is anm-ary relation symbol in
S, andcy, . .., cmy are values (constants or nulls), not necessarily
distinct. thenP(c1, ..., cm) is afact (overS). We may refer to it



as aP-fact We sometimes identify an instance with its set of facts.

We will refer to formulas that use theonst predicate; the in-
tended interpretation ofonst is thatconst(x) should hold pre-
cisely if z is assigned to a constant.

If ¢ is a conjunction of relational atoms (but nenst formulas),
then we definels to be an instance obtained froénas follows.
For each variable), assign a fixed constamt,, and let the facts
of Is consist of the fact®(c.,, ..., ¢y, ) WhereP(vy, ..., v) is
an atom ind. For example, if5 is P(z,y) A Q(y), thenIs is
the instancq P(cz, ¢y), Q(cy)}. If § is a conjunction of relational
atoms andonst formulas, then we defing as follows. For each
variablev such thatonst(v) is in §, assign a fixed constaag, and
for each remaining variable assign a fixed nuth,. Definels be
the facts that result by taking each relational atond end doing
the replacement we just described. For exampl&,isfP(z,y) A
Q(y) A const(z), thenIs is the instance P(cz, ny), Q(ny)}. It
is sometimes convenient to allofvto contain also inequalities of
the formz # y. In that case, we simply ignore the inequalities in
defining ;.

A renamingof variables is a one-to-one function that maps vari-
ables to variables. Aveak renamingf variables is a function (not
necessarily one-to-one) that maps variables to variables.

Define aprime atomto be one that contains precisely the vari-
ablesz1, z2, . ..,z for somek, and where the initial appearance
of x; precedes the initial appearance of if ¢ < j. For ex-
ample, P(z1, z2, z1, z3, x2) iS a prime atom, bu€)(z2, z1) and
R(z2,x3) are not. Note that for every relational atom, there is a
unique renaming of variables to obtain a prime atom.
Constraints. All sets of constraints we consider are finite, un-
less otherwise specified. We consider constraints of several forms.
A source-to-target tuple-generating dependency (s-t ig@)con-
straint of the fornVzVy(a(z, §) — 3z6(z, Z)), wherea is a con-
junction of source atoms and is a conjunction of target atoms
(we assume that the source sche8rand the target instancE are
given). Furthermore, there is a safety condition that every variable
in z appears in botlx and 5. We will generally omit writing the
VzVy part. If Z is empty, we say thap is full.

Homomorphisms. Let J, J' be two instances. A functioh
that maps values to values ish@momorphisnfrom J to J' if
for every constant, we have that(c) = ¢, and for every rela-
tion symbol R and each tupléas,...,a,) € R’, we have that

(h(a1),...,h(an)) € R”". We then writeJ — J'. The instances
J and J’ are said to béhomomorphically equivalerif there are
homomorphisms fromy to J’ and fromJ’ to J. We then write
J— J.

Solutions and Universal Solutions. Let M = (S, T, X) be a
schema mapping. We say thdtis a solutionfor I (under M)

if (I,J) = X. We write So[M, I) to denote the solutions for
I under M. We say that a solutioly for the ground instancé
is a universal solutionFagin, Kolaitis, Miller and Popa 2005] if
U — J for every solutionJ for I.

Composition and Inverse. We recall the concept of theomposi-
tion of two schema mappings, introduced in [Fagin, Kolaitis, Popa
and Tan 2005, Melnik 2004], and the concept ofiaverseof a
schema mapping, introduced in [Fagin 2006].

Let M2 = (S1,S2,X12) andMas = (S2, S3, X23) be schema
mappings. TheompositionM 2 0 M3 is a schema mappin:,
Ss3, X13) such that for ever;-instancel and everySs-instance
J, we have thatl, J) = X135 if and only if there is ar8,-instance
K suchtha(l, K) = Y12 and(K, J) = X23. When the schemas
are understood from the context, we will often wrilg; o X3 for
the compositionM 12 o Mas.

LetSbe a replica of the source sche®gathat is, for every rela-

tion symbolR of S, the schem3& contains a relation symb(ﬁ that

is not inS and has the same arity & We also assume thét and

S are distinct when? and .S are distinct. IfA is a relational atom
R(z1,...,zr), thenAisthe relational atoni®(x1, . .., xx). Simi-
larly, if FisafactR(ci,...,cx), thenA is the factR(ci, . .., cx).

If T is an instance 081, definel to be the corresponding instance
of S1. Thus,T consists precisely of the facfs such thatF is a
fact of I. If I is a ground instance, then we may also refef &5 a
ground instance.

The copy mappings the schema mappingl = (S,§, Y1),
whereXy4 consists of the s-t tgdB(z) — R(z) asR ranges over
the relation symbols irs. Thus, (I1,12) | X4 if and only if
L C I.

Let M2 = (S1,S2, X12) be a schema mapping. We say that
a schema mappingt21 = (S2, Ss, Y21) is aninverseof M, if
for all ground instances and.J, we have thatl, J) = 12 o g1
if and only if 7 C J.

Chasing. If M2 = (S1,S2, X12) is an s-t tgd mapping, then
chasing/ with ¥ produces a target instanéé such thatU is a
universal solution fod underM [Fagin, Kolaitis, Miller and Popa
2005]. We may writd/ = chase;2 (/). and say thal/ is theresult

of the chase. For definiteness, we use the version of the chase as de-
fined in [Fagin, Kolaitis, Popa and Tan 2005], although it does not
really matter, since whatever version of the chase we use, the re-
sults are all homomorphically equivalent. Similarly, we may write
chases1 (1) for the result of chasing with 32;. We shall also ex-
tend this notation to cases whetg, or X,; are not simply sets of

s-t tgds, but where we also allovenst formulas and inequalities

in the premises.

3. DECIDING INVERTIBILITY

In [Fagin 2006] it is shown that deciding invertibility is coNP-
hard, and it was left open as to whether it is even decidable. In this
section, we prove a matching coNP upper bound, which shows that
deciding invertibility is coNP-complete.

An s-t tgd mappingMi2 = (S1, S2, X12) has thesubset prop-
erty if 7 C I' whenever SdM2,1") C Sol(Miz,I). It was
shown in [Fagin, Kolaitis, Popa and Tan 2007] that the subset prop-
erty (which they called thé=, =)-subset property) is a necessary
and sufficient condition for invertibility of an s-t tgd mapping. [Fa-
gin, Kolaitis, Miller and Popa 2005] showed thatifl;- is an s-t
tgd mapping, then the solutions of a source instahaee exactly
the homomorphic images ohasei2 (). It follows easily that there
is a “homomorphic version” of the subset property, namely, that
I C I’ wheneverchasei2(I) — chasei2(I"). This homomorphic
version of the subset property is very convenient for our purposes.

We shall make use of the following proposition, whose proof
(like almost all proofs in this paper) appears in the Appendix. Note
that the second condition in this proposition is a special case of the
homomorphic version of the subset property.

PrRopPoOsITION 3.1. For an s-t tgd mapping\ 2
312), the following are equivalent:

(S1, Sz,

1. Myq isinvertible.
2. For every relational atond and instancd,

chasei2(f4) — chasei2(I) impliesI4 C I.

. For every relational atomA and instancel with at most
nine facts,

chasei2(fa) — chasei2(I) impliesIa C I



PROPOSITION 4.2, Assume thatM2; = (Sz,gz, Yo1)is a
normal inverse of the s-t tgd mappig 1> = (S1, Sz, X12). Let!
be a ground instance, and |ét be an arbitrary universal solution

Proposition 3.1 gives us a very simple proof of the desired coNP for I with respect taM12. Then(U, f) = o1, andU witnesses
upper bound on the problem of deciding invertibility of s-ttgd map- (7, ) = 52,5 0 $5; whenI C J.
pings.

wheren; is the number of facts ichase12(14) andns is the
maximal number of relational atoms in a premisenf.

S ) We now give an example that shows thatAf2; is not nor-
THEOREM 3.2. The problem of deciding if an s-t tgd mapping mal, then there may be no universal solution fathat witnesses
is invertible is coNP-complete (I,1) = $12 0 Say.

EXAMPLE 4.3. LetS; consist of a unary relation symbgl,
and letS» consist of a binary relation symb@l. Let X2 consist
of the single s-t tgdb(z) — Fy(T'(z,y) A T(y, z)), and let3a;
consist of the single s-t tg#ll(z, y) A T(y,z) — S(z). Note that
this latter s-t tgd is not a normal constraint, since it does not have
the formulaconst(zx) in its premise. LetM12 = (S1,S2, X12)
and/\/l21 = (Sz, Sq, 221).

Let I be an arbitrary nonempty ground instance, and/I&e an
arbitrary universal solution fof with respect td2;5. Assume that
4. STRUCTURE OF INVERSES S(c) is a fact ofI. ThenU must contain fact$’(c, n) andT'(n, c¢)

In this section, we study a class of mappings (that we roa for some nulln. If (U,J) |= X21, then necessarily contains
mal), which are an especially attractive choice for inverses of s-ttgd the factS(n), which is not a fact off. SoU does not witness
mappings. If an s-ttgd mapping has an inverse, thenithasanormal(y 7) = %, o X,;. However, if we takeK to be an instance
inverse, because the canonical candidate inverse (defined later) isyhose facts ardT(c,c) : S'(c)}, then it is easy to see thdt

PROOF The proof of coNP-hardness is in [Fagin 2006]. We
now show the coNP upper bound. We make use of the equiva-
lence of (1) and (3) in Proposition 3.1. To check thdi, =
(S1,S2, X12) is not invertible, guess a relational atay an in-
stancel such that/4 ¢ I wherel has at moshtin, facts, and a
homomorphisnmh : chasei2(fa) — chasei2(I) wheren; is the
number of facts irhasei2(14) andn; is the maximal number of
facts in a premise af12. [

~

normal. Since we are interested in inversels; = (Sa2, S1, Y1)
of s-t tgd mappings\12 = (S1, Sz, X12), the normal mappings
of interest to us have source schefitaand target schen®y; .

DEFINITION 4.1. A constraint isnormal if it is of the form
a A xa An — A, wherea is a conjunction of source atoms,
A is a target atomy 4 is the conjunction of the formulasnst(x)
for every variabler of A, andn is a conjunction (possibly empty)
of inequalities of the formx # y for distinct variablese, y of A.
Further, there is the safety condition that every variabld imust
appear ina. As usual, we suppress the leading universal quanti-
fiers. A schema mapping is said to be normal if all of its constraints
are normal.

Notice that wearequirethe const predicate on all variables i,
but justallow inequalities on variables id. Note also that every
normal constraint i§ull (has no existential quantifiers).

Let M1 = (Sl, Sa, 212) and/\/l21 = (Sz, é;, 221) be schema
mappings. Let us say thal; is too strong (forM ) if there are
ground instances and.J such thatl C .J but (I, J) £ X120 Xo1.
So X, is not too strong precisely if whenever there are ground
instancesl and J such thatl C J, then(I,J) = 12 0 So;.

If 12 is a set of s-t tgds, anfl2; is arbitrary, then it follows
from a result in [Fagin 2006] that,; is not too strong precisely
if (I, f) = Y12 0 X9y for every ground instancé Let us say that
Yo1 is too weak (forM2) if there are ground instancdsand .J
such that(7, J) = 212 0 Xos but] Z J. S0, is not too weak
precisely if whenever there are ground instantesid.J such that
(I,J) E 212 0 a1, thenfg J. It follows immediately from the
definition of inverse thatM», is an inverse ofM 4 if and only if
Yo is not too strong and not too weak.

If 32, is not too strong, then for all ground instanteand .J
where T C J, there is an instanc& “in the middle” such that
(I,K) E X2 and(K, J) | 321. We may say thak( witnesses
that (I, J) = Y12 o ¥o1. The next proposition says that ¥12;
is a normal inverse of\2, then an arbitrary universal solution
can play the role of this witness. This is a quite useful as a tool in
proving properties of normal inverses.

witnesses1, I) = X12 o X2;. Itis then straightforward to see that
Mz is aninverse ofM12. Thus, M2, is a (nonnormal) inverse of
M2 where no universal solution witness@s 7) = X12 0 Xos.

Noxv\let us “normalize”M; to obtain the normal inversets, =
(S2,S1, X5;), whereX;, consists of the single constraifi{z, y) A
T(y,z) A const(z) — §(az). Then, as Proposition 4.2 tells us, ev-
ery universal solution fof witnesseg1, J) = £12 0 X1.

We now discuss another nice property of normal inverses. It
was proven in [Fagin 2006] that iM12 = (S1,S2, X12) and
Moy = (Sa2,S1, 321) are both full s-t tgd mappings, thelts,
is an inverse ofM 1 if and only if chasez; (chasei2(1)) = T for
every ground instancé. The next theorem says that this strong
property (thathases; (chasei2 (1)) = T for every ground instance
I) holds for normal inverses1»;, even whenM; is not full.

THEOREM 4.4. Let M1z = (S1,S2, X12) be an s-t tgd map-
ping and My, = (Sz,SAl, 321) a normal mapping. Themz;
is an inverse of\,, if and only if chases: (chaser2 (1)) = 1 for
every ground instancé.

It is straightforward to verify that iftM,2 and M2, are as in
Example 4.3, therhases; (chasei2(I)) € 1. Itis more chal-
lenging to find an example wher#1s, is an inverse ofM 2 but
I¢ chasess (chaseq12(I)). An example (from [Fagin, Kolaitis,
Popa and Tan 2007]) is in the Appendix.

We now introduce some useful new tools for the study of normal
inverses.

4.1 Essential Conjunctions and Essential Atoms

Let ¥12 be a finite set of s-t tgds. Assume thatis a relational
atom, and) is a conjunctior A x A 7, whereca is a conjunction
of relational atomsy is a conjunction (possibly empty) @bnst
formulas const(x) for variablesz in A, andn is a conjunction
(possibly empty) of inequalities of the form # y for distinct
variablesr, y in A. Let us say thad is relevant forA (with respect
to X12) if I5 — chasei2(74). Note that the inequalities play no
role, but are allowed for notational convenience. Let us saybtisat



demanding ford (with respect ta;2) if for every ground instance
I such thatls — chasei12(I), necessarilyf4 C I. We say that
¢ is essential forA (with respect tax2) if § is both relevant and
demanding forA with respect tax;2. It is a consequence of this
definition that ifd is essential for4, then either (1) contains no
const formulas and has exactly the same variablesiasr (2) §
contains precisely the formulasnst(x) for every variabler of
A. (The fact that in both cases, every variabledrappears i

The proof of Theorem 4.8 proceeds by showing that part (1) of
Theorem 4.8 holds precisely ¥»; is not too strong, and part (2)
of Theorem 4.8 holds preciselyi,; is not too weak.

DEFINITION 4.9. LetM12 = (S1, S2, £12) be aschema map-
ping, whereX; is a finite set of s-t tgds. Letbe a partial function
whose domain is all prime source atoms that have an essential con-

junction. If the prime source atom has an essential conjunction,

is Proposition 4.6 below.) Both cases are possible, because therghene(A) is an essential conjunction fof that is a conjunction of

are two meanings afs: one whenj has noconst formulas (which
behaves as i# has the formulasonst(z) for every variabler of
A), and one when it does hawvenst formulas.

WhenX is full, then we are interested in the case whe&ie
simply a relational atom. In that case ifis demanding, then we
call 6 ademanding atomand similarly we define glevant atom
and anessential atom The reason we are interested in demand-

relational atoms and the formulasnst(z) for each variable: of
A. If A has no essential conjunction, thef!) is undefined. Let

51 consist of all formulag(A4) A na — A, whereA is a prime
source atom and wheeg A) is defined, andy4 consists of all in-
equalities of the formx # y wherez andy are distinct variables
of A.

ing atoms (and essential atoms) in the full case is because of the The next theorem shows how we can construct an inverse out of

following proposition.

PROPOSITION 4.5. Let M2 = (S1, S2, £12) be a full s-t tgd
mapping. Assume that is a source atom. Then every demanding
conjunction forA contains a demanding atom fot, and every
essential conjunction fad contains an essential atom fo.

Let us say that the s-t tgd mappidgli2 = (S1,S2, £12) has
the constant-propagation property for every ground instancé,
every member of the active domain bis a member of the active
domain ofchasei2(I) (that is,dom(I) C dom(chasei2(1))). It
is shown in [Fagin 2006] that iM 5 is invertible, then it has the
constant-propagation property. Similarly, we have the following
proposition.

PROPOSITION 4.6. Assume that is a source atom, andlis an
essential conjunction foA with respect to the sét» of s-t tgds.
Then every variable ind appears ind.

Itis easy to see that Proposition 4.6 has the following immediate
corollary.

COROLLARY 4.7. Assume thatd is a source atom, and® is
an essential atom foA with respect to the set;» of full s-t tgds.
Then the variables itB are exactly the variables id.

Recall that aweak renamings a function that maps variables
to variables (the word “weak” refers to the fact that the function
is not necessarily one-to-one). ¢fis a formula, andf is a weak
renaming, letp’ be the result of replacing every variablén ¢ by
f(z). We may refer tgo’ as aweak renaming ap. If ¢ is a normal
constraint, then we say thdtis consistent with the inequalities of
e if f(z) and f(y) are distinct for each inequality # y in the
premise ofp. The next theorem characterizes normal inverses of
s-t tgd mappings in terms of the notions @émandingrelevant
andessential

THEOREM 4.8. Let M2 = (S1,S2, ¥12) be an s-t tgd map-

ping and M1 = (Sa, S1, 321) be a normal mapping. Thefl2;
is an inverse oM 2 if and only if

1. Every constraint in Xo; is of the forms — A, wheres’
is demanding fordf for every weak renaming consistent
with the inequalities of.

2. For each source ator, there is a relevant conjunctiahfor

A such thats — A is a weak renaming of a constraint in
Y21. (By Part (1), this relevant conjunction is essential.)

essential conjunctions.

THEOREM 4.10. Let M, be an s-t tgd mapping. The follow-
ing are equivalent.
1. M2 isinvertible.

2. For every source atord, there is an essential conjunction
for A.

. M5, is an inverse ofM 2, for every partial functiore as in
Definition 4.9.

. M5, is an inverse ofM 2, for some partial functior as in
Definition 4.9.

D

In the full case, we can replace “essential conjunction” by “es-
sential atom” in part (2) of Theorem 4.10.

4.2 The Canonical Candidate Inverse

DEFINITION 4.11. LetMis = (S1,S2, ¥12) be an s-t tgd
mapping. For each source atam) let 74 be, as before, the in-
stance containing the fact obtained by replacing each variaisie
A by a distinct constant,. Let V4 be the result of chasing with
>12. Letvs be the conjunction of relational atoms obtained by
replacing every constant, of V4 by the variablev, and replacing
every nulln of V4 by a new variable,, (that does not appear ).

Let x a be the conjunction of the formulasnst(x) for each vari-
ablez in A, and letw4 be the conjunction af4 andx 4. Letna be

the conjunction of all inequalities of the form # y wherez and

y are distinct variables i, Thecanonical candidate inverd€a-

gin, Kolaitis, Popa and Tan 2007] of an invertible s-t tgd mapping
M2 = (S1,S2, X12) is the normal mapping\5, = (Sz,gz,
351) whereX5, contains, for every prime source atofn the con-
straintva A xa Ana — A. Note that because of the constant-
propagation property for invertible s-t tgd mappings, every variable
in A appears inv4, so these constraints are well-defined.

Itis shown in [Fagin, Kolaitis, Popa and Tan 2007] that/fi - is
an invertible s-t tgd mapping, then the canonical candidate inverse
of M2 isindeed an inverse 0¥1,5. The proof in [Fagin, Kolaitis,
Popa and Tan 2007] is quite complicated. We will now give a proof,
based on the following proposition, that is much simpler (given our
machinery).

PROPOSITION 4.12. Let M2 = (S1,S2, ¥12) be an invert-
ible s-t tgd mapping. Le#l be a source atom. Then,, as defined
in Definition 4.11, is an essential conjunction fdr



Thus, the role of the essential conjunction fbthat is required
in part (2) of Theorem 4.10 can be playeddby.

THEOREM 4.13. [Fagin, Kolaitis, Popa and Tan 2007] Assume
that M2 = (S1, S2, ¥12) is an invertible s-t tgd mapping. Then
the canonical candidate inverse @f(,» is indeed an inverse of
Mlz.

PROOF Lete be the function that assigns to each prime source
atom A the formulaw 4. By Proposition 4.12, we know thaf A)
is an essential conjunction fof. So by Theorem 4.10, we know
that M35, is an inverse of\. But M35, is the canonical candidate
inverse of M2, and so the canonical candidate inverséuf, is
an inverse ofM2, as desired. []

5. UNIQUE INVERSES

Say that two schema mappin@: , Sz, $12) and(S1, Sz, ¥i5)
areequivalentif ¥1» andX}, are logically equivalent. In the fol-
lowing theorem (and later), when we speak of “uniqueness”, we
mean uniqueness up to equivalence.

THEOREM 5.1. No schema mapping has a unique inverse.

Therefore, if we wish to study uniqueness of inverses, we must
restrict our attention to particular classes (such as normal inverses)
We have seen that normal inverses are an important class (in par:
ticular, every invertible s-t tgd mapping has a normal inverse) We
now give an example of an s-t tgd mapping with a unique normal
inverse, and another with multiple normal inverses.

EXAMPLE 5.2. Let M2 = (S1, Sz, X12), WhereS; consists
of the unary relation symbaR, whereS, consists of the unary
relation symbolS, and whereX, consists of the tgd?(z) —
S(z). LetXo; consist of the normal constraifi{x) A const(z) —
R(z), and letMy; = (Sz,SAl, 321). Itis easy to see thatto; is
a normal inverse of112. As we shall discuss shortly12; is the
unique normal inverse of112.

EXAMPLE 5.3. LetS; consist of the unary relation symba],
and letS» consist of the binary relation symb6l Let3;> consist
of the tgdR(z) — S(z,z). Let X2, consist of the normal con-
straintS (z, 2) A const(z) — R(z), and letS},; consist of the nor-
mal constraintS(z, y) A const(z) — ﬁ(x). Let M12 = (S1, S2,
$12), let Moy = (S2,S1, £a1), and letM4; = (Sa,S1, Th1).
It is straightforward to verify that\2; and M5, are inequivalent
normal inverses of\115.

Because of these two examples (but where the focus was on

unique inverses specified by tgds), [Fagin 2006] says, “It might
be interesting to examine the question of when there is a unique
inverse mapping specified in a given language.”

tgd mapping has a unique normal inverse, antlahdé’ are both
essential for4, thenIs andls, are homomorphically equivalent.

Let us say that a full s-t tgd mapping ésto if every target in-
stance is the result of chasing some source instance. That s, the full
s-t tgd mappingM12 = (S1, S2, X12) is onto if for every target
instanceJ there is a source instandesuch thatchasei2(I) = J.

Note that the mapping . of of Example 5.2 is onto, whereas the
mappingM . of Example 5.3 is not onto.

THEOREM 5.5. A full s-t tgd mapping that is invertible and
onto has a unique normal inverse.

For example, the mappingyt1» of Example 5.2, which is invert-
ible and onto, has a unique normal inverse by Theorem 5.5.

Does the converse hold? That is, is every full s-t tgd mapping
with a unique normal inverse necessarily onto? The next example
shows that this is false.

ExXAMPLE 5.6. LetS; consist of four unary relation symbols
P;,for1 < i < 4, andletS. consist of the four unary relation sym-
bolsQ;, for 1 < ¢ < 4 and the unary relation symb@l. Let ¥,
consist of the full s-t tgd¥’; (z) — Q:(z), for 1 < i < 4, along
with the full s-t tgdsP; () A P2(z) — R(x) andPs(z) A Ps(z) —
R(z). Let M12 = (S1,S2, ¥12). The mappingM 2 is not onto,
since the target instance whose set of fact§@s (0), Q2(0)} is

not a universal solution for any source instaidsuch an instance
I must contain the fact®;(0), P»(0), and so every solution for

I must also contain the fad?(0)). Let Mo = (5275\1, Yo1),
whereXs; = {Qz(m) A const(z) — Pi(z):1<i< 4}. Al-
though M5 is not onto, it is shown in the Appendix thait,
has a unique normal inverse, namgho; .

Although being invertible and onto is not a necessary and suffi-
cient condition for a full s-t tgd mapping to have a unique inverse,
is there a language with a richer set of constructs where this is true?
We now give such a language.

DEFINITION 5.7. Adisjunctive tgd with inequalities a con-
straint of the formuAn — 375, wherex is a conjunction of source
atoms g is a disjunction of conjunctions of target atoms, and a
conjunction (possibly empty) of inequalities of the forny# y for
distinct free variables, y of 3. Note that this is the same restriction
on inequalities that we have for normal mappings: the inequalities
must involve only free variables in the conclusion. Further, there is
the safety condition that every free variabledmust appear .
Again, we suppress the leading universal quantifiers.

Disjunctive tgds with inequalities were defined in [Fagin, Ko-
laitis, Popa and Tan 2007], where they were shown to be rich enough
to specify quasi-inverses of quasi-invertible full s-t tgd mappings. It

The next theorem gives a necessary and sufficient condition, basef@s @lso shown there that inequalities in the premise and both dis-

on our notions of “essential” and “demanding”, for an invertible s-t
tgd mapping to have a unique normal inverse.

THEOREM 5.4. An invertible s-t tgd mapping has a unique nor-
mal inverse if and only if for every source atofyif ¢ is an essen-
tial conjunction forA, andé’ is a demanding conjunction fod,
both with formulasconst(z) for exactly the variables: that ap-
pearinA, thenls — Is.

Assume thaty and §’ are both essential fod. By Proposi-
tion 4.6, it follows thaty andé’ each have all the variables i It
is then not hard to show from Theorem 5.4 that if an invertible s-t

junctions and existential quantifiers in the conclusion are needed
in general to specify quasi-inverses of quasi-invertible full s-t tgd
mappings. Note thatonst formulas are not allowed. Every invert-
ible full s-t tgd mapping has an inverse specified in this language,
even without the disjunctions, namely the canonical candidate in-
verse with theconst formulas dropped. (The reason it is all right
to drop theconst formulas is because of a simple result in [Fagin,
Kolaitis, Popa and Tan 2007] thatnst formulas play no role in
the inverse of full s-t tgd mappings; this is Proposition A.7 in the
Appendix.)

Recall that thecopy mappingthat is used to define the inverse,
is the schema mappirdd = (S, S, Y1a), WhereX4 consists of the



s-ttgdsR(z) — P:(:f) asR ranges over the relation symbolsSn M1 = (Sq, é\l 321) is the normalized version of a near p-copy

We now define a-copy mappingwhere thep stands for “partial” mapping (it is only “near”, because the relation symBafloes not
or “permutation”) that is a generalization of the copy mapping. appear in¥,;). This is not a coincidence. As a consequence of
a later result (Theorem 8.2) that relates the number of normal in-
DEFINITION 5.8. The schema mappin@, T, X) is ap-copy verses to the number of constraints in an inverse, we obtain the
mappingif: following result.

1. Every member of is of the form THEOREM 5.10. If a full s-t tgd mapping has a unique normal

P(x1, ... w6) — QT .- (), inverseMo1, thenM_gl is equivalent to the normalized version of
. . . . a near p-copy mapping.
where P is a source relation symbal) is a target relation
symbol,z1, ...,z are distinct variables, anflis a permu- We close this section with a explanation of wiynst formulas
tation of {1,...k}. are not allowed in the language for inverses used in Theorem 5.9.
Would the theorem still be true if we were to enrich the language
for inverses still further to be disjunctive tgds with inequalities and
constants? It turns out that allowing batbnst formulas and ex-
3. Every target relation symbol appears in exactly one conclu- istential quantifiers makes uniqueness hopeless. For example, con-
sion of . sider the schema mappintyti> of Example 5.2. Let; be the
constraintS () A const(z) — R(z), and leto; be the constraint
For example, assume taf consists of the binary relation sym- g(3) — 3yR(y). In addition to the inversé(,; given in Exam-
bol P, and the ternary relation symbéh, andS: consists of the  ple 5.2, which is specified by, another inverse is specified by

2. Every source relation symbol appears in exactly one premise
of 3.

binary relation symbat), and the ternary relation symbQl,. As- {o1,02}. The constraint, is not logically implied by the con-
sume that:, consists of the s-t tgd#: (z,y) — Q1(y, =) and strainto, because of theonst formula in the premise of; but
Py(z,y,2) — Q2(y,z,z). Then(S1, Sz, Xi12) is a p-copy map-  notq,. More generally, if there were an s-t tgd mappib, with
ping. a unique inverse specified by disjunctive tgds with inequalities and

The next theorem says that disjunctive tgds with inequalities constants, then from the implication (&) (3) of Theorem 5.9, it
form arich enough language that a full s-t tgd mapping has a unique would follows thatAM}, is equivalent to a p-copy mapping. But
inverse in this language if and only if it is invertible and onto. then the obvious generalization of the construction we just gave for

a second inverse 0¥1,, of Example 5.2 would show tha1, has

THEOREM 5.9. Let M1z = (S1,S2, 12) be a full s+t tgd inequivalent inverses specified by disjunctive tgds with inequalities

mapping. The following are equivalent. and constants

1. M2 has a unique inverse specified by disjunctive tgds with

inequalities. 6. INVERSE OF THE INVERSE
2. M, is invertible and onto. In this section, we consider the question as to when a normal
inverse of a schema mapping is itself invertible. Surprisingly, it
turns out to be rare that a normal inverse of an s-t tgd mapping is
invertible. We begin with the full case.

3. M2 is equivalent to a p-copy mapping.

Note that we cannot replace (2) in the statement of the theorem
by simply “M2 is onto”, because of the schema mapping with
source relation symbolB and R and the single target relation sym-
bol @, that is specified by the tgd3(z) — Q(z), R(z) — Q(x).

This schema mapping is clearly onto but not invertible.

Let us reconsidefM 2 from Example 5.6. It has a unique nor-
mal inverse, but sincé 1, is not equivalent to a p-copy mapping,
it follows from Theorem 5.9 thatM;» does not have a unique in-
verse specified tlx disjunctive tgds with inequalities. In addition

THEOREM 6.1. Let M5 be a full s-t tgd mapping. Thef;2
has an invertible normal inverse if and onlyfft - is equivalent to

a p-copy mapping.

The following theorem, which gives an unexpected connection
between unique inverses and invertible inverses, follows immedi-
ately from Theorems 5.9 and 6.1.

to M1 = (Sz2,S1, ¥21) from Example 5.6, another inverse is THEOREM 6.2. Let M2 be a full s-t tgd mapping. The follow-
specified byX»; along with the disjunctive tg®(z) — (Pi(z) Vv ing are equivalent.
P3(@)). 1. M- has a unique inverse specified by disjunctive tgds with

Define anear p-copy mappintp be a full s-t tgd mapping1 =
(S, T, X) where (i) for each member of X, the premise and con-
clusion of o are each singletons, with the same variables in the =~ 2. M2 has an invertible normal inverse.
premise as in the conclusion, and with the variables in the con- 3. A4y, is equivalent to a p-copy mapping.
clusion all distinct, and where (ii) every memberBfappears in
the conclusion of exactly one member Bf and every member We now show by example that Theorem 6.2 fails when we drop
of S appears in the premise of at most one membeX ofThus, the assumption that1,> be full.

a near p-copy mapping may differ from being a p-copy for two

reasons. First, the variables in premise are not necessarily dis- EXAMPLE 6.3. LetS; consist of the unary relation symbols
tinct. Second, some member Sfmay fail to appear irt. By P, and P, and letS. consist of the unary relation symbdls and
the normalized versiof an s-t tgd mapping, we mean the map- Q.. Let 212 consist of the s-t tgd#®; () — Q1(z) and Pz (z) —
ping that results by adding to the premise of every tgd the formulas Jy(Q2(z) A Q1(y)). Let X7, consist of the normal constraints
const(z) for every variabler that appears in the conclusion. Re-  Pi(z) A const(z) — Q1(z) and Pz(x) A const(z) — Q2(x).
turning again to Example 5.6, we see that the unique normal inverseLet X5, consist of the normal constrain€g; (z) A const(z) —

inequalities.



ﬁ(x) andQ2(z) A const(z) — }/D;(x). Let 35, consist of the constraints ir12. In this section, we show that for each full s-t tgd
normal constraint€):(z) A const(z) — jD\l(x) and Q2 (z) A mappingM., there is a relationship between the minimal length
Q:1(y) A const(z) — E(z). Let M1z = (Si1,S2, S12), let of a Boolean inverse fak1,, and the number of normal inverses of
My = (S1,S2, 54s), let Moy = (S Sy ), and letM}, — M2 We first show that we cannot bound the number of inverses

12__\OL =2, a2/ 3L =2 2 in terms of the minimal length of a Boolean normal inverse, since
(S2,81,%5). Itis straightforward to verify that 121 and My, there is a full s-t tgd mapping with infinitely many distinct normal
are inequivalent normal inverses.bf2, and M, is anormalin- - jqyerses. We then show that we can bound the minimal length of a
verse OfM2.1. So condition (2) of Theorem 6.2 holds, sint¢2; Boolean normal inverse in terms of the number of inverses (and the
is a normal inverse oM 2, and M}, is an inverse of\Mz;. How-

- - ! ! number of relation symbols).
ever, condition (1).0f Theorem 6.2 fails, singel,> has two in- We begin by giving an example of a full s-t tgd mapping with
equivalent normal inverses, namekl»; and M5,. Furthermore, infinitely many distinct normal inverses.
it is not hard to see that condition (3) of Theorem 6.2 fails also.
EXAMPLE 8.1. LetS; consist of the unary relation symbgs,

7. THE SIZE OF AN INVERSE and letS» consist of the binary relation symb@l. Let 1> consist

In this section, we consider the question of whether there is a of the st tgdP(x) — Q(z,z). Let %4, consist of the normal
polynomial-size inverse in some language. We show that for s-t constraint
tgd mappings, the size of the smallest normal inverse may be expo-  Q(xz,y1) A Q(y1,y2) A ... A Qyr—1,yx) A Q(yr, )
nential. We also show, however, that if we expand the language to Aconst(z) — P(z).
allow Boolean combinations of equalities rather than simply con-
junctions of inequalities in the premise, then in the full case, there Let M, = (S1,S2, X12), and letM5; = (Sa, §1 ¥51). ltis
is always a polynomial-size inverse (that can be computed in poly- straightforward to verify that for every ground instantand for
nomial time). eachk > 1 we havechasek, (chaseio(I)) = f(Wherechaselgl(J)
is the result of chasing with 35,). It therefore follows from The-
orem 4.4 thatM5, is an inverse ofM1, for everyk. It is also
straightforward to verify thabh, and2’51 are not logically equiv-
alentifk # k'. So.M;2 has infinitely many inequivalent normal
inverses.

THEOREM 7.1. There is a family of full s-t tgd mappings, each
of which is invertible, but where the size of the smallest normal
inverse is exponential in the size of the schema mapping.

DEFINITION 7.2. A constraint i8oolean normalf it is of the
forma A xa A — A, wherex is a conjunction of source atoms,
A is a target atomy 4 is the conjunction of the formulasnst ()
for every variabler of A, andd is a Boolean combination (possibly
empty) of equalitiesr = y for variablesz, y of A. Further, there

is the safety condition that every variable Anmust appear inv. THEOREM 8.2. Let M, be a full s-t tgd mapping, with source
Again, we suppress the leading universal quantifiers. A schemare|ation symbols. Assume thatt;» has exactlym > 1 inequiva-
mapping is said to be Boolean normal if all of its constraints are |ent normal inverses. Thef!,, has a Boolean normal inverse of
Boolean normal. length at mosk + log, (m).

The next theorem says that we can bound the minimal length of
a Boolean normal inverse in terms of the number of inverses (and
the number of relation symbols).

Thus, we obtain the definition of “Boolean normal” from the defi- Note in particular that if the s-t tgd mappingti2 has a unique
nition of “normal” by allowing Boolean combinations of equalities normal inverse (so that: = 1 in Theorem 8.2) theo\ 1, has a

in the premise, rather than simply conjunctions of inequalities. Itis Boolean normal inverse of length at mdstwherek is the num-
easy to see that every Boolean normal schema mapping is equivaher of source relation symbols. This is the key to proving Theo-
lent to a normal schema mapping. That is, allowing Boolean com- rem 5.10.

binations of equalities in the premise, rather than simply conjunc- |t is an open problem as to whether a version of Theorem 8.2
tions of inequalities. does not increase the expressive power. How-holds in the nonfull case.

ever, allowing Boolean combinations of equalities in the premise

does potentially allow a more compact representation. In fact, the 9. INVERTIBILITY IN THE LAV CASE

next theorem, in combination with the previous theorem, shows . . .
that this does indeed happen. _ Recall that_a schema mapping has tinéque-solutions property
if no two distinct source instances have the same set of solutions.
THEOREM 7.3. There is a polynomial-time algorithm such that ~ [Fagin 2006] showed that the unique-solutions property is a nec-
if the input is a schema mappintyt» specified by a finite set of ~ €SSary condition for a schema mapping to have an inverse. [Fagin
full s-t tgds, then the output is a polynomial-size Boolean normal 2006] also showed that for LAV mappings (those specified by s-t

schema mapping that is an inverse/of,» if M has an inverse. tgds with a singleton premise), the unique-solutions property is not
only a necessary condition but also a sufficient condition for invert-

It is open as to whether such a polynomial-time algorithm exists ibiIity. The prc_)of of this Iqtter result was quite complicated. In this
in the nonfull case. Itis even open in the nonfull case as to whether section, we give avery simple proof. _ _
or not there always exists a Boolean normal inverse of polynomial  Just as we defined a homomorphic version of the subset prop-

size if an inverse exists. erty in Section 3, there is a homomorphic version of the unique-
solutions property, namely, thdt= I’ wheneverchase2(I) <
8. RELATING THE LENGTH OF AN IN- chasei2(I'). Note that it follows immediately from the two ho-

momorphic versions that the subset property implies the unique-

VERSE TO THE NUMBER OF INVERSES  goutions property.

If Mi2 = (S1,S2, ¥12) is a schema mapping, wheke,, is We now give our greatly simplified proof that the unique solu-
a set of constraints, define thengthof M2 to be the number of tions property characterizes invertibility in the LAV case.



THEOREM 9.1. [Fagin 2006] A LAV s-t tgd mapping is invert-
ible if and only if it has the unique-solutions property.

PROOF We just noted that the subset property implies the unique-
solutions property. Since satisfying the subset property is equiva-

lent to invertibility, the “only if” direction follows (even when the
s-t tgd mapping is not LAV).

Assume now that2 = (S1, Sz, X12) is a LAV mapping that
satisfies the unique-solutions property. We now show thhb
satisfies the subset property, and so is invertible. Assumelthat
andI’ are such thathasei2(I) — chasei2(I’). Then

chasei2(I U I = chasei2 (1) U chaselz(I') < chaseio (I')

where the equation follows from the fact th&t» is LAV. Then

by the homomorphic version of the unique-solutions propédrty,
I’ = I’ and thereford C I’. This shows thai\, satisfies the
homomorphic version of the subset property, as desiréd.

10. CONCLUDING REMARKS AND OPEN
PROBLEMS
In addition to resolving the key problem left open in [Fagin 2006]

as to the complexity of deciding if an s-t tgd mapping has an in-
verse, and also providing greatly simplified proofs of some known
results, we have explored a number of interesting issues, about the
structure of inverses, unique inverses, number of inverses, inverses
of inverses, and sizes of inverses. We have shown that in the full
case, these issues are, surprisingly, quite interrelated. We have also
shown that in the nonfull case, these tight interconnections do not
hold. As we noted in Sections 7 and 8, there remain open problems
about the size or length of inverses in the nonfull case. Perhaps
the most interesting open problem is whether every invertible s-t
tgd mapping (not necessarily full) has a polynomial-size Boolean
inverse, and if so, whether there is a polynomial-time algorithm for

producing it.
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APPENDIX
A. PROOFS

A.1 Proofs for Section 3

Proof of Proposition 3.1.We shall show that (1) and (2) are equiv-
alent, and then show that (2) and (3) are equivalent.

Assume (1) holds. Sa1,, satisfies the subset property. Pick an
atom A and an instancé such thaichasei2(14) — chasei2(I).

By the homomorphic version of the subset property, it follows that
14 C I. Therefore, (2) holds.

Now assume that (1) fails. Therefore, the homomorphic version
of the subset property fails. Hence, there &rand I’ such that
chasei2(I) — chaseio(I') andl € I'. Sincel € I', we can
assume (by renaming constants if needed) that there is an ato
Asuchthatly C I'butiy € I'. Sincels C I, we have
chasei2(I4) — chasei2(I). Since als@hase () — chasei2(I”),
we have thathasei2(I4) — chasei2(I’), witnessing that (2) fails
(wherel’ plays the role off).

Now notice that ifchasei2(14) — chasei2(I) then necessar-
ily also chasei2(l4) — chasei2(I") for somel’ C I with at
mostnins facts, sincechasei2(74) maps into at most; facts in
chasei2(I) and each of those facts can be introduceddhize 2 (1)
by firing a single tgd irf12 on at mostu, facts inI. It follows that
(2) and (3) are equivalent. [

A.2 Proofs for Section 4

Proof of Proposition 4.2. Since M, is an inverse ofM;2, we
know that(I,7) = 12 o 321 and therefore there exists some
K such that(I,K) = Y1 and (K,I) = 2. LetU be an
arbitrary universal solution fof with respect taM;2. Then there
is a homomorphisnk : U — K that is the identity orl. Pick a
constrainty € X21; by our normality assumption, it must be of the
form

a(Z,§) A xa(T) An(E) — A(T).

Assume thatU satisfies the premise a@f on a,b. ThenkK |
a(h(a), h(b)). SinceU = xa(a), we haveh(a) = a and there-
fore K = «(a, h(b)). Since(K, f) E Y21, we must have =
ﬁ(a). This shows thatU, f) k= . Sincey is an arbitrary member
of 31, it follows that (U, 1) |= 21, as desired. Sincé C J,
it follows easily that(U, J) | 32:. Since(I,U) E %2 and
(U, J) = X21, we have thal withessegI, J) |= X1z o 3a1, @s
desired. [

LEmMMA A.l. LetMi2 = (S1, Sz, X12) be an s-ttgd mapping
and M1 = (S2,S1, ¥21) be a normal mapping. TheX; is not

too strong if and only ithases; (chasei2 (1)) C Tfor every ground
instancel.

PROOF Assume first thathasez; (chase12(I)) C T for every
ground instancd. We must show that whenever there are ground
instanced and.J such thatl C J, then(, J) k= $150 ;. Let]
and.J be ground instances such that .J. Let U = chasea(1),
and letU’ = chasegl( ) SO(I U) ): Yo and(U U) ): o1,
Also, by assumption{/’ C 1. Since alsol C J, it follows
thatU’ C J. Since(U,U’) | ¥21 andU’ C J, we see that
(U, J) = X21. Since(I,U) = X2 and(U, J) = Xo, it follows
that(I,J) | 12 o X1, as desired.

Assume now thak,; is not too strong. S@I, f) E Y12 0 321
Let U = chasei2(I), and letU’ = chase2:(U). We need only

show thatU’ C 1. The argument in the proof of Proposition 4.2
shows that(l, 1) = S.1. Since My, is a normal mapping, it

is easy to see that the result of chasing an arbitrary instance with
3,1 is a ground instance. In particulds, is a ground instance.
SinceU’ is the result of chasing/ with ¥2;, andU’ is ground,

a standard property of the chase tells us that for every instédnce
such thafU, J) = X1, necessarily/’ C J. If we takeJ to bel,

then we see thdtf’ C f, as desired. [

LEMMA A.2. LetM12 = (S1, S2, X12) be an s-ttgd mapping
and My = (Sz,§1, 321) be a normal mapping. TheBa; is
not too weak if and only i, C chases1 (chasei2(14)) for every
source atom.

ProOOFE Assume first thabls; is not too weak. So whenever

Mhere are ground instancésand J such that(Z, J) = £12 o Xa1,

thenI C J. Let beIA, and letJ bechabezl(chaselg(IA)) Then
(I,J) E L120%2:1. Sol C J,thatis I, C chasez1 (chasei2(14)),
as desired. .

Assume now thaf4 C chases; (chasei2(14)) for every source
atom A. By renaming constants if needed, it follows thafFifis
a ground fact, thed’ € chasesz; (chasei2({F'})). LetI and.J be
ground instances such th@t, J) = 212 o X21; we must show that
I C J. LetF bean arbitrary fact id. SinceF is a ground fact in
chases; (chasei2({F'})) and sincgl, J) |= 312 o Xy, it follows
by a standard property of the chase (that we also invoked in the
proof of Lemma A.1) that that' € J. SinceF is an arbitrary fact
in T, we see thal C J, as desired. [J

Proof of Theorem 4.4. Assume first thathasez1 (chasei2(1)) =

T for every ground instancé By Lemmas A.1 and A.2, we know
that3ls; is not too strong and not too weak. 3d-; is an inverse
of Mais.

Conversely, assume thatl,; is an inverse of\M 2. Therefore,
Y91 is nottoo weak. Lel be a ground instance. Thén= Upezﬁ,
which by Lemma A.2 is contained i0rcrchases; (chasei2 (F)).
Itis clear that

Urerchasesi (chasei2(F')) C chasesi (chasei2(Uper F)),

that is,Urerchasess (chasei2(F)) C chasesr (chasei2(I). Com-
bining these inclusions, we see tHa chases: (chase1z(1)). By
Lemma A.1 we have thathases; (chasei2(I)) C I. Therefore,
we havechasez: (chasei2(1)) = 1, as desired. [

Example wherel ¢ chasez;(chasei2(1)).

ExampPLE A.3. We now give an example from [Fagin, Kolaitis,
Popa and Tan 2007] wher#1,; is a inverse ofM;2 but where
there is a ground instandesuch thatl Z chases; (chaseia(1)).
Let S; consist of the unary relation symbét, and letS, con-
sist of the binary relation symb@). Let 31> consist of P(z) —
JyQ(z,y), and letX,; consist of the constraintd(z, y) — P(y)
andQ(zx,y) A const(y) — P(x). Let M12 = (S1,S2, X12) and
M1 = (S2,S1, X21).

We now show thaiMs; is a inverse ofMi2. To do this, we
need to show that if and.J are ground instances, théf, J) =
Y12 0 Xoy ifand only if I C J.

First, letI be a ground instance that consistsiofacts P(x1),

.o P(xn), and letK be {Q(z;,z;) : 1 < i < n}. Itis easy
to see thal(l, K) & 12 and(K,f) = 3. Hence,(I,f) =
%12 0 Xa;, which implies that iff C J, then(I, J) |= £1 0 Sa;.



Next, assume thatandJ are ground instances such tiiat J) =
$12 0 $91; we shall show thal C J. Since(I, J) | Y12 0 o1,
there isK such that(/, K) E 312 and (K, J) E 321. Suppose
I consists ofw facts P(x1), ..., P(xx). Since(I, K) = X12, we
know thatK contains{Q(z;,y:) | 1 < i < n}, for some choices
of y1,...,yn. There are two cases:

e Case 1.Somey; is not a constant. Thes containsP(y; ), and
so is not ground. Hence, this case is not possible.

e Case 2.Everyy; is a constant. Thed containsP(z;), 1 <
i <n,andsal C J, as desired.

This concludes the proof thet1», is an inverse ofM 2. How-
ever, letl = {P(0)};itis easytoseethdtZ chasesi(chase;2([I)).

Proof of Proposition 4.5. Assume by way of contradiction that
¢ is a demanding conjunction fof, but that no atomB of ¢ is
demanding forA. So for every atomB of ¢, there is a ground
instance/p such thafp — chasei2(Jg) andls € Jg. Note that
since every member dfz is a constant, anfls — chasei2(Jg),
necessarily s C chasei2(Jg). LetI be the union of the instances
Jg. SolIp C chasei2(I). Since this is true for every ato®
of 4, it follows thatIs C chasei2(I), and sols — chasei2(I).
Since for everyB we have thatf4 € Jg, andI,4 is a singleton
set, it follows that/4 € I. So we have thats — chasei2(7) and
I4 ¢ I. This contradicts the assumption thiais demanding for
A. Therefore§ contains a demanding atom fdr, as desired.

We have shown that each demanding conjunctiomffaontains
ademanding atom fod. We now show that each essential conjunc-
tion for A contains an essential atom fdr Let § be an essential
conjunction forA. So¢é is a demanding conjunction fof, and
hence, by what we just showedl contains a demanding atof
for A. Sinces is relevant forA, it follows easily thatB is relevant
for A. SinceB is both relevant and demanding fdr, we see that
B is essential forA, as desired. [

Proof of Proposition 4.6. Assume that is P (v, . .., vx), where
v1,..., v are variables, not necessarily distinct. Assume that the
variablev; does not appear ify we shall derive a contradiction.

Letd be a new constant, and |[Ebe obtained frond 4 by replac-
ing every occurrence @f,, in 14 by d. Sinced is relevant for4, we
know that there is a homomorphism Is — chasei2(14). So for
the same homomorphisim we haveh : Is — chasei2(I), since
cv; does not appear ifi;. Sincel; — chaseia(I), even though
14 ¢ I,itfollows thatd is not demanding fod, which contradicts
the assumption thdtis essential ford. [

We now relate the notions of “not too strong” and “not too weak”
to the notions of “demanding” and “relevant”.

THEOREM A.4. Let M2 = (S1,S2, ¥12) be an s-t tgd map-
ping and Mz, = (Sz,gl, ¥21) be a normal mapping. Then
1. 34, is not too strong if and only if every constraint¥p; is
of the forms — A, wheres’ is demanding ford” for every
weak renaming’ consistent with the inequalities gt
2. Y21 is not too weak if and only if for each source atotn

there is a relevant conjunctiofifor A such that§ — Aisa
weak renaming of a constraint ;.

PROOF (1) Assume first that there is a constrajnin X5, of
the forms — A and a weak renaming consistent with the in-
equalities ofp such thats/ is not demanding ford/. Let 8’ be
7, and letA’ be AY. Thens’ — A’ is a normal constraint that is
a logical consequence &f»;. Sinced’ is not demanding ford’,
there is an instancé such thatls; — chasei12(1), yetI,s & 1.

Sincelss — chasei2(I), it follows thatT ,, is the result of chasing
chasei2(I) with 6’ — A, SOI/\A/ C chases; (chasei2(1)) and
thereforechases: (chase12(I)) € 1. By Lemma A.1,5,; is too
strong.

Conversely, assume thab; is too strong. Then, by LemmaA.1,
there is a ground instandesuch thathases: (chasei2(I)) Z 1. It
follows that there must be a constraint of the fo&m—Lﬁ in Xo1
such that the result of chasinfiase12(7) with § — A produces
a fact not inI. By renaming constants ihif needed, this tells us
that there is a weak renamirfgsuch that/ s, — chasei2(7) and
I ary € I. Hence” is not demanding fort/.

(2) Assume first thak,; is not too weak. Pick a source atomn
By Lemma A.2, we know thal, C chases1 (chasei12(14)). So
there must be a normal constrapnt X2, that fires orchasei2(14)
to introducef;. Hence, there must be a weak renaming- A of
a constraint int; such thatls — chasei2(74). S04 is relevant
for A.

Conversely, assume that for each source atbrthere is a rel-
evant conjunctiory for A such thatd — A is a weak renaming
of a constraintp € X,;. Pick a source atorl. Thenl; —
chasei2(14) because is relevant forA and therefore we have
Ia C chases1 (chasei12(14)) becausep fires onchasei2(14) to
introduceA. By Lemma A.2,%; is not too weak. [

Proof of Theorem 4.8.This follows immediately from Theorem A.4.

Proof of Theorem 4.10. The implication (2)= (3) follows from

Theorem 4.8. The implications (33 (4), and (4)= (1), are im-

mediate. The implication (1} (2) follows by Proposition 4.12.
U

Proof of Proposition 4.12. It is clear thatw 4 is relevant forA.
We now show thatv4 is demanding ford, which completes the
proof. SinceM is invertible, we know thai\ satisfies the subset
property. Assume thaf,, — chasei2(I) for some ground in-
stancel; we must show thafs C I. Now I, = chasei2(a).
Sochasei12(I4) — chasei2(I). By the implication (1)= (3) of
Proposition 3.1, it follows thats C I, as desired. [

A.3 Proofs for Section 5

Recall that ifM15 = (S1, Sz, £12) andMa1 = (Sz, S1, Sa1)
are schema mappings, thér,; is an inverse o\, if and only
if for every pairI, J of groundinstances, we have that, J) &
Y120 X9 if and only iffg J. Therefore, for pair§.J:, J2) where
J2 is not a ground instance, the péif, J>) satisfying or not sat-
isfying 21 plays no role whatever in determining whether or not
My is an inverse oM, 2. Based on this intuition, let us say that
Y51 andXy, areweakly equivalenif wheneverJ; is arbitrary and
Jo is a ground instance (contains no nulls, but only constants), then
(Ji,J2) = Y21 if and only if (J1,J2) = 5.0 We may also
say that(S2, Sq, Y21) and (Sz, Sy, ¥51) are then weakly equiv-
alent. Note that ifSz, S1, ¥21) and(Sz, S1, ¥51) are both nor-
mal mappings, then they are weakly equivalent if and only if they
are equivalent. This is because(B2, S1, ¥21) is normal, and
(J1,J2) E 221, thenJs is a ground instance.

We capture the intuition about the irrelevance of péifs, J2)
where.J; is not a ground instance in the following simple proposi-
tion.

1This notion arises also in the full version of [Fagin, Kolaitis, Popa
and Tan 2007].



PROPOSITION A.5. Let M1, be a schema mapping, and let
M1 and M3, be weakly equivalent schema mappings. Thesn
is an inverse of\M 12 if and only if M5, is an inverse of\12.

PROOF By symmetry, we need only show that M2 is an
inverse of M2, then M5, is an inverse ofMi2. Let I,J be
ground instances. Sinckls; is an inverse ofM;2, we know that
(I,J) = $12 0 Soy ifand only if T C J. To show thatMy, is
an inverse ofM 2, we need only show thdfl, J) = 12 0 Xy if
and only if (1, J) = 312 0 Z5;.

Now (I,J) | 12 o X9y if and only if there isJ’ such that
(I,J) E L1z and(J', J) &= Z21. SinceJ is ground, we have
that(J', J) | 32 ifand only if (J', J) = 35;. Hence(I, J) =
Y12 0 Xop if and only if there isJ’ such that(Z, J') = ¥12 and
(J',J) = 35,1, which happens if and only {f7, J) &= 312 0 35;.
Therefore,(I, J) = Y12 0 $oy ifand only if (1, J) = 312 0 $5;.
This was to be shown. ]

We now make use of Proposition A.5 to show that no schema

mapping has a unique inverse.

Proof of Theorem 5.1. Let M2 = (S1,S2, ¥12) be an in-
vertible schema mapping. Assume thits: = (S2,S1, ¥21)

is an inverse ofM2. Let J* be some target instance, and let
K™ be some source instance that contains a null value.PLet_
{(J1,J2) : (J1,J2) = Sa1}. Let P’ = PU{(J*,K*)} if (J*, K*)
isnotin P, andP’ be the set differencé?\{ (J*, I/(\*)} if (J*, I/(\*)

is in P, Define X%, by having(Ji1,J2) = X5 if and only if
(J1,J2) € P'. Let M5, = (S2,S1, %;1). By construction, we
see thatZ,; and X5, are not logically equivalent but are weakly

equivalent. It follows from Proposition A.5 thatt5, is another
inverse ofMy2. [l

since M5, is an inverse ofM, there isJ such that(I,J) =
Y12 and (J,K2) | 5. Since(I,J) E Y12, we know that
J = f(I) = Ki. Therefore, sincéJ, K2) | X5, it follows that
(K1, K2) = X5, as desired.

Conversely, assume th@;, K2) | 35,, whereK is a ground
instance. We must show th@k;, K») |= Zo1. Let] = f71(K).
So (I, K1) | X12. Since alsq K1, K2) | ¥4, it follows that
(I, K2) = 312 0%5;. Therefore, sincé 5, is an inverse of\l:2,
we know thatl C K». Hence,(K1, K3) |= Sa1, as desired. [J

The following proposition, which was proven in [Fagin, Kolaitis,
Popa and Tan 2007], says that for full s-t tgd mappirgsast for-
mulas play no role in specifying an inverse.

PROPOSITION A.7. [Fagin, Kolaitis, Popa and Tan 2007] Let
Miz = (S1,S2, X12) be a full s-t tgd mapping. LeMa;
(S2, Sy, ¥21), whereX,; is a set of s-t tgds with constants and
inequalities. LetMb; = (Sz,S1, X5,), whereX), is obtained
from X2, by removing everyonst formula. Letl and.J be ground
instances. Thef/, J) = 312 0 X3 ifand only if (1, J) = X120

/
21

Proof of Theorem 5.4. Assume first thatM, is an invertible s-
t tgd mapping with a unique normal inverse. Lé&tbe a source
atom. Assume that is essential ford, andé’ is demanding ford,
and both have formulasonst(z) for exactly the variables that
appear inA, Assume that we do not have — I5/; we shall derive
a contradiction. Assume without loss of generality thiahas no
inequalities as conjuncts (if necessary, remove them).elbet as
in Definition 4.9 withe(A) = 4. It follows from Theorem 4.10 that
MSs, is aninverse of\15. Leto’ bed’ Ana — A, wheren is a
conjunction of the inequalities # y for distinct variables, y of

Because of Proposition A.5, it is natural, as far as inverse is A. LetZ,; = 35, U {0'}. Let Mgy = (sz,sAl, Y21). It follows
concerned, to not distinguish between schema mappings that ar&rom Theorem 4.8 that,; is also an inverse of1;s.

weakly equivalent. We now show that, in contrast to Theorem 5.1,

We now show thatM$5; and M»; are not equivalent, which

there is a schema mapping that has a unique inverse up to weakgives our desired contradiction. Lét= I5. Let J be the re-

equivalence.

THEOREM A.6. There is an invertible schema mapping 2
such that all inverses of1,, are weakly equivalent.

PROOF Let S; and Sz be disjoint (and nonempty) schemas,
and letf be a one-to-one mapping from all ground instanceS0f
onto all instances (with or without nulls) &.. There is such a
mapping, since there is a countably infinite number of ground in-
stances 081, and there is a countably infinite number of instances
of Sz. DefineX1; by letting (J1, J2) = 312 if and only if J;
is a ground instance/, is a target instance, anéd, = f(J1).
Define X2, by letting (K1, K2) = o1 if and only ifI C Ko,
wherel = fﬁl(Kl). Let M1 = (81782,212) and Mq; =
(SZ7§I, 321). We begin by showing thaM: is an inverse of
M 2. We must show thatl, J) (= S120 %o ifand only if 7 C J.
Assume first thatl, J) &= 12 o X21. Then there is/’ such that
(I,J") E T2 and(J’, J) = Z21. Since(I, J') | 12, we know
thatJ’ = f(I). Since(J’,J) k= S, it follows that] C J, as
desired. Conversely, assume tfiat J. Let.J’ = f(I). Then
(I,J') E Z12and(J', J) | 321, and so(I, J) | T12 0 Xo1, @S
desired. .

Now let M5, = (S2,S1, £5;) be an arbitrary inverse aff;s.
We must show that\5, is weakly equivalent toMs;. Assume
first that (K1, K2) = 321, where K, is a ground instance. We
must show that K1, K2) = X5,. Since(Ki, K2) | a1, we
know thatfg K>, wherel = ffl(Kl). Sincefg K>, and

sult of chasingl with X5,. Clearly (I, J) = X£5,. We now show
that(Z,J) & o', and so(I, J) [~ X21. Note that because of the
structure of25,, it follows that.J is a ground instance.

Let E(E) be the result of chasingwith o’. We need only show
that 2((‘:) does not appear id. Let o be an arbitrary member
of ¥5,. By construction ofX5,, we know thato is of the form
e(A) Anar — :4\’, where A’ is a prime source atom, and where
14+ iS a conjunction of the inequalities# y for distinct variables
x,y of A’. We must show that the result of chasihgvith o does
not produce@(é). There are two cases.

Case 1: A’ involves a different relation symbol thah. So cer-
tainly the result of chasing with o does not producﬁ(é).

Case 2: A’ involves the same relation symbol ds There are
two subcases.

Subcase 2aA’ equalsA. Since there is no homomorphism from
Is to Is/, that is, fromIs to I, it follows thato does not fire or .

Subcase 2b:A’ is different fromA. Then the equality pattern
of the variables ind’ is different from the equality pattern of the
variables inA. Hence, the result of chasirdgwith o again does not
produceﬁ(é).

We now prove the converse. Assume that for every source atom

A, if 6 is an essential conjunction fot, andé’ is a demanding
conjunction for A, both with formulasconst(x) for exactly the
variablesz that appear i, thenl; — Is5. Lete be as in Def-

inition 4.9. SoM35; = (Sz,gz, 51) is an inverse ofM 2, by
Theorem 4.10. LeM2; = (Sz, S1, X21) be an arbitrary normal



inverse ofM 2. We need only show thais, andX,; are logically
equivalent.

We first show thats; logically impliesX5,. Leto be an ar-
bitrary member of25,. Theno is of the forme(A) A na — A,
Let 5 bee(A). By part (2) of Theorem 4.8, we know that there is
an essential conjunctioéf for A such thats’ — Ais a weak re-
naming of a constraint iX»;. Sinced andd’ are both essential for
A, it follows by assumption thafs and s, are homomorphically
equivalent. It is not hard to see that this implies tRat logically
implieso. Sinceo is an arbitrary member of5,, it follows that
Y91 logically implies335,, as desired.

We now show thakl$; logically impliesXs;. Let o be an arbi-
trary member of,,. By part (1) of Theorem 4.8, we know that
is of the formé’ — A, whereA is a source atom and whefé& )’
is demanding ford? for every weak renaming’ consistent with
the inequalities otr. For each weak renaminfj consistent with
the inequalities of, let 7 be obtained fromrf by adding to the
premise ofs (if it is not already there) each inequality+ y for
every pairz, y of distinct variables in the conclusion ef . It is
fairly straightforward to see that s logically equivalent to the set
of all such formulas;. So to prove thaks; logically impliesXs1,
we need only show thats; logically implies each such constraint
Tf-

Now 7 is a normal constraint of the ford’ An 4 — A’ where
6" is demanding ford’ (since as we saidy’)” is demanding for
A7), andn 4 is the conjunction of all inequalities # y for distinct
variablesz, y of A’. By further renaming variables if needed, we
can assume that’ is a prime atom. Now there is an essential
conjunctions for A’ such that Ans — A’ is a normal constraint
in 35,. Let us denote this constraint by Sinced is essential
for A, and§” is demanding for4, it follows by assumption that
Is — Is. It follows easily thaty logically impliesty. So X5,
logically impliesty, as desired. [

In the next proposition, we give a sufficient condition for a unique
normal inverse.

PROPOSITION A.8. Let M2 = (S1,S2, X12) be an invert-
ible s-t tgd mapping. Assume that for every source atom

1. chasei2(I4) is a singleton, and

2. every demanding conjunctiéhfor A with formulasconst(z)
precisely for the variables of A haschasei2(l4) — Is/.

ThenM 2 has a unique normal inverse.

PROOF We shall make use of Theorem 5.4. L&be arbitrary
source atom. Assume thais an essential conjunction fot, and
4§’ is a demanding conjunction fot, both with formulasonst(x)
for exactly the variables: that appear in4; we must show that
Is — Is. Sinced is relevant forA, we havels — chasei2(14).
By assumption, we havehasei2(14) — Iy. Sols — I, as
desired. [J

Proof of Theorem 5.5. By Theorem 5.9 (whose proof does not
depend on Theorem 5.5), the fact thet; - is invertible and onto
implies thatM is equivalent to a p-copy mapping. We now use

Proposition A.8 to show that a p-copy mapping has a unique normal

inverse.
If the p-copy mapping has the tgd

P(.T}l,. .. ,LE}C) — Q(.Tf(l),. .. ,acf(k)),

and ifyi, ..., yx are variables, not necessarily distinct, then let us
refer to the atom#(y1, ..., yx) andQ(yra),- - -, Y x)) asbud-
dies

Let A be a source atom. Clearly the first condition of Proposi-
tion A.8 holds. Now lety’ be a demanding conjunction fer with
formulasconst(z) precisely for the variables of A. Let~ be the
conjunction of the buddies of the relational atom'in |t is easy
to see thatl;; = chasei2(I,). Sinced’ is demanding for4, it
follows thatZ4 C I,. Sochasei2(la) C chasei2(I,). Clearly
chasei2(Iy) = Is. Hence,hasei2(la) C Is. so by Proposi-
tion A.8, it follows thatM 2 has a unique normal inverse. []

Proof of claim in Example 5.6. We shall use Proposition A.8 to
show thatM 2 has a unique normal inverse. Ldtbe a source
atom. Clearly the first condition of Proposition A.8 holds. Now let
4’ be a demanding conjunction fer. By symmetry of the roles of
the source atoms, we can assume without loss of generalitylthat
is the source aton®; (x). Letd’ be a demanding conjunction for
A with const formulaconst(z) (and no otheronst formula). We
now show tha$’ must containA. Assume not; we shall derive a
contradiction.

Let ¢ be the constant such thati = {Pi(c)}, and letd be
a constant different frone. Let I consist of the facts;(d) for
1 < i < 4, along with the factsP;(c) for 2 < ¢ < 4. So
chasei2(I) consists of the fact§;(d) for 1 < i < 4, along with
the factsQ; (c) for 2 < ¢ < 4, along with the factsR(c) andR(d).
Now I contains only one constant, namely the constarand
possibly also null values. Lét be a function wheré(c) = ¢ and
h(n) = d for every nulln. Sinced’ does not contai) (z), it fol-
lows that/s, does not contaii®:(c). Sols contains some subset
of {Q2(c), Q3(c), Qa(c)}, possibly along with some fact3; (n)
for some nulls: and forl < i < 4, possibly along withR(c), and
possibly some fact®(n) for some nullsn. Hence,h is a homo-
morphism that map$s: to chasei2(I). Sincelss — chasei2(I)
butI, ¢ I, this contradicts the assumption ti#atis demanding
for A. This contradiction shows that must containd. Hence,
chase12(1a) C Is. so by Proposition A.8, it follows that -
has a unique normal inverse. [

We now give a variant of Proposition 4.2 that holds for inverses
specified by disjunctive tgds with inequalities.

PROPOSITION A.9. Assume thaiM2 = (S1,S2,¥12) is a

full s-t tgd mappingM21 = (S2, S1, 321) is an inverse ofM 2,
and X, is a set of disjunctive tgds with inequalities. Lebe a

ground instance, and l&/ = chasei2(I). Then(U,I) = Yo,
andU witnesses!, J) = X2 o 32y when! C J.

~

PROOF SinceMy; is aninverse oM 2, we knowtha(l, I) =
Y12 0 ¥21 and therefore there exists sorfiesuch that(7, K) &

Y12 and (K, 1) = 321. SinceU is a universal solution fof with
respect taM 2. there is a homomorphisi: U — K that is the
identity onI. Pick a constrainp € X»1; by assumption, it must be
of the form

a(Z, §) A An(Z) — P(2),

wheren(Zz) is a conjunction of inequalities (possibly empty) among
the variables inz, and wherey(z) is an existentially quantified
disjunction of conjunctions with free variables Assume that/
satisfies the premise gf ona, b. ThenK |= a(h(a), h(b)). Now
every member ol is a constant, sincE = chasei2(I) andXi»
is full. Thereforeh(a) = a andh(b) = b. sSOK = «(a,b).
Since (X, f) = Y21, we must have = ¢(a). This shows that
(U, f) = ¢. Sinceyp is an arbitrary member afis4, it follows
that (U, T) = Sa1, as desired. Sinck C J, it follows easily that
(U, J) E X21. Since(I,U) E 212 and(U, J) = 221, we have
thatU witnesseg I, J) = X12 o X1, as desired. [



Proof of Theorem 5.9.

We begin by showing that (2r (1). Assume that (2) holds.
Since M5 is invertible, Theorem 4.13 tells us that the canoni-
cal candidate inverse is indeed an inverse\dfs, so M2 has a
normal inverse. By Proposition A.7, thenst formulas are irrel-
evant, and soM 2 has a inverse specified by tgds with inequal-
ities, and hence by disjunctive tgds with inequalities. Now as-
sume thatM; (s2,§1, Yo1) and My, = (Sz,éz, ¥5,) are
both inverses ofM2, whereXo; and 5, are disjunctive tgds
with inequalities. We must show thatz; and 5, are logically
equivalent. We now show thafs; logically implies ¥5,. By
symmetry, we have that’; logically impliesX2;. Assume that
(J,K) = X21. By replacing each null irf.J, K') by a new con-
stant, we obtairf.J’, K') where every entry of every tuple is a con-
stant, such thatJ’, K’) is isomorphic to(J, K) (but where the
isomorphism may map constants into either constants or nulls, and
may map nulls into either constants or nulls). Siég has no
const formulas, it follows easily that.J’, K’) = 321. SinceM;2
is onto, there is a ground instanéesuch that/’ = chasei2(I).

So (I,J) E ¥12. Since also(J’,K’) | Y21, we have that
(I, K') |E 12 0 Z21. Therefore, sinceMo; is an inverse of\1:2,
we have thaf C K’. Hence, sinceM}, is an inverse of\l,2, we
have that(7, K') = 12 o £5;. So by Proposition A.9, we have
that(J', K') = 35;. SinceX5; has noconst formulas, we have
as beforg.J, K) |= 3%;. This was to be shown.

We now show that (13 (3). Assume that (1) holds. We must
show thatM; is equivalent to a p-copy mapping. By Theorem 4.10
and Proposition 4.5, we know that every source atom has an es-
sential target atom. Let be a function that maps every source
atom A onto a target atom(A) that is essential ford. By The-

I~

orem 4.10, we know thafS2, S1, X5,) is an inverse ofd. Let
ME = (82, SAl,Efl) be the result of removing atlonst(x) con-
juncts in(Sz, SAl ¥51). Note that every member &% is of the
form B A na — A, wheren, consists of all inequalities of the
form = # y wherex andy are distinct variables ofi. Note that
by Corollary 4.7, the variables il and B are the same, s
has inequalities among all distinct variables®also. By Proposi-
tion A.7 we know thatMZ] is an inverse of\1,. Since (3) holds,
M£E, is the unique inverse that is specified by disjunctive tgds with
inequalities. We now prove the following claim:

Claim 1: chasei2(14) is a singleton for each source atofn

Assume thatd is a source atom wheréasei2(74) is not a sin-
gleton; we shall derive a contradiction. Singd,. is invertible,
we know thathase12(14) is nonempty (otherwise, we would have
chasei12(14) = chasei2(0), and this gives a violation of the unique
solutions property). Denotg(A) by B. SoX% contains the for-
mulaB A na — A. Letv4 be as in Definition 4.11. Forr&s;
from 2 by replacingB A na — A by va Ama — A, and let
Moy = (s2,§1, 321). It follows from Theorem 4.8 that1s; is
an inverse ofM 2. We now show thak,; is not logically equiva-
lenttoXZ].

Assume thatB is the atomQ(zx1, ..., z:), and thatF’ is a fact
Q(ai,...,a:). Letus say that’ is anexact matclior B if a; = a;
if and only if z; andx; are the same variable, for allj. Similarly,
we define what it means for one atom to be an exact match for
another atom. Lef consist of a single fadt’ that is an exact match
for B. We now show thatJ, ®) = 25, but(J,0) | Z21. S0Xa;
is not logically equivalent t&?, as desired. The fact théf, §) =
% follows from the fact thakbZ; contains the formul® Ana —
A, andJ contains a fact that is an exact match r It remains
to show that(.J, #) = X21. Leto be a member oE,; except for

vaAna — A. SinceJ consists of a single fact that is an exact
match forB. it follows thato does not fire o/, because otherwise
F would be an exact match for the atdsh in the premise ofr, and
so B’ and B would be an exact match, which is not possible since
they are essential for atoms that are not an exact match for each
other. So(J,0) = o. We now show thafJ,0) = va Ana —

A. To show this, we must show thaty A na — A does not
fire on J. If it were to fire onJ, then there would be a mapping
h on the variables in4 that maps each atom in4 onto F' and
(because of)4) is one-to-one on the variablesin. Let B’ be a
member ofv4 other thanB. SinceB and B’ map onto the same
fact F, it follows that B’ is, like B, a @Q-stom. Assume thaB’

is Q(xs,,...,xi, ), Where eachr;, is in {z1,...,z:}. Assume
that F is the factQ(a1,...,a+). Now h(z;,.) = ar = h(z,) for
eachr, since bothB and B’ map ontoF'. Sinceh is one-to-one on
variables, it follows that;, andz, are the same variable for each
SoB’ andB are the same atom, a contradiction. This contradiction
shows thatvy A na — A does not fire onJ, as desired. This
concludes the proof that,; is not logically equivalent t&C%, .

SinceMs; andME are both inverses 081, specified by tgds
with inequalities, even though,; andX%; are not logically equiv-
alent, this contradicts our assumption that (3) holds. This proves
Claim 1.

DefineX}, to consist of all s-t tgds of the formd — v.4, where
A is a prime atom with all variables distinct. Note by Claim 1 that
v4 is a singleton atom. It is clear that » logically implies X,.
Later, we shall show that, is logically equivalent ta),. First,
we prove another claim.

Claim 2: Assume thatd andB are atoms, and tha& is essential
for A with respect taz;2. ThenX, logically implies the s-t tgd
A — B.

Assume that Claim 2 were false; we shall derive a contradiction.
Assume thatd is a P-atom. Definev/, like v4, except that the
chase is with¥}, instead ofo1.. Let B bev/,. Note thatB’ is
a singleton atom, because it arises only by firing the s-t tgdhin
whose premise is thE-atom with all variables distinct. Sincg/,
does not logically imply the s-t tgdl — B, we know thatB is
different fromB’. SinceB’ is derived as the result of a chase with
Y12, and sincex;, logically impliesX,, it follows that B’ is in
va. Sova contains at least the two distinct atol@sand B’. This
contradicts Claim 1, which is our desired contradiction.

Claim 3: X1, is logically equivalent taz,.

We already noted that, logically impliesX},, so Claim 3 is
proven if we show thak}, logically impliesX12. Assume not;
we shall derive a contradiction. We can assume without loss of
generality that every member &f;» has a singleton conclusion.
Leta — B be a member of;, that is not a logical consequence
of ¥75. If a were to contain an atom such thatB is essential for
A with respect td;2, then from Claim 2 it would follow thakE’,
logically implies the s-t tgdd — B, and soX}, would logically
imply o — B, a contradiction. Hencey does not contain an atom
A such thatB is essential ford with respect ta22.

Assume thaB is the atomQ(x1, . .., z:) wherez,, ..., z; are
variables. Letr be an arbitrary member &2 of the formé —
Q(z1,...,2:), Wherezi, ..., z: are variables, not necessarily dis-
tinct, and wherer; andz; are the same variable whenewgrand
z; are the same variable. Lkt be a function with domain the vari-
ables inT such thath.(z;) = x; for each: (this is well-defined,
sincex; andx; are the same variable whenewgrand z; are the
same variable), and whehe maps each variable in the premise of
7 that is not in the conclusion of onto a new variable. Let’ be
the image ofr underh,. Thus,7’ is a weak renaming of. It is
straightforward to verify that if is a source instance and the chase



of I with 7 produces a fack’ that is an exact match fds, then the
chase off with 7" producesF’.

By construction, the conclusion of is B. Assume that the
premise ofr’ is 8'. Let, be the formuladyd’, wherey consists
of the variables inr’ that are not inB. Let Z consist of all such
formulas,. In particular,Z containsJya, wherey consists of
all variables ina that are not inB. Now Z is finite, since its size
is at most the number of members Xf,. Let~ be the formula
BAn — z,wheren is the conjunction of all inequalities of the form
z; # x; wherez; andz; are distinct variables i, and where
is the disjunction of the members &f LetXo; = X% U {~}, and
let Moy = (Sz, S1, 221).

We now show thaifM s is an inverse ofM 2, and thatts; is
not logically equivalent ta%’. To show thatMs; is an inverse of
M2, we must show that for all ground instandeand J:

(I,J) = $12 0 Sqy ifand only if I C J. (1)

SinceMZ; is an inverse of\M2, we know that for all ground in-
stanced andJ:

(I,J) = S12 055 ifand only if T C J. 2

Now X»; logically implies©;, sinceXs; is a superset of; .
It follows easily thatXi2 o S, logically implies12 o %, So
if (I, J) 'Z 212 o 221, then([, J) ): 212 e} ZQEI, WhiCh, by (2),
implies thatfg J. Assume now thal C J; we must show that
(I, J) ): Y12 0 X0, Let J* = chaselg(l). Sil”ICE(I7 J*) ': 212,
we need only show that/*, J) = Z21. Now (J*,J) | =5,
by Proposition A.9. Therefore, sind; = ©% U {y}, we need
only show that(J*,J) = ~. Assume thaty fires onJ*. Then
there is a one-to-one mappihgone-to-one because gf from the
variables ofB to constants, that map3 onto a factF’ of J*. So
Fis an exact match foB. SinceF is in J*, there is a member
of X1 that generateg’ in the chase of with ¥15. Let 7’ andd’
be as before. SincE' is an exact match foB, it follows from an
earlier comment that the chaselofvith ' generateg. It follows
fairly easily that3y ¢’ is satisfied inf underh, sA03y5A’ is satisfied
in T underh. Sincel C J, it follows that3y¢’ is satisfied inJ
underh. But Hyg’ is a disjunct in the conclusion of. Therefore,
(J*,J) = v, as desired.

We now show thaE,; is not logically equivalent t&%;. Itis
clear that(7g,0) F~ v, and so(Ig, D) £ ¥21. We now show that
(Is,0) = ©f. Since, as we showed, there is no atdmsuch that
B is essential ford with respect to 12, no member oE%, hasB
in its premise. So for each memhBf Ay’ — A’ of £, there is
no mappingh that mapsB’ onto B and satisfieg’. It follows that
(Ip,0) = ©L, as desired.

We have shown that 1> has two distinct, inequivalent inverses
given by disjunctive tgds with inequalities, name¥Z; and M.
This contradiction shows that Claim 3 holds.

We now state and prove our final claim.

Claim 4: For every target relation symb@), there is exactly one
member of£}, whose conclusion is @-atom. Every variable in
this conclusion is distinct.

To prove this claim, we begin by showing that there must be
at least one member df,> whose conclusion is &-atom and
where every variable in this conclusion is distinct. Assume not; we
shall derive a contradiction. Letbe the formulaQ(z1,...,z:) A
n — (3, where the variables, ..., z; are distinct, wherey is
a conjunction of the inequalities; # x; wheneveri # j, and
whereg is an arbitrary disjunction of source atoms whose variables
altogether are exactly;, ..., z;.% Let¥o; = X% U {~}, and let

2A disjunction is required if no source atom has arity at leéast
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M1 = (S2,S1, X21).

We now show thaiM; is an inverse ofM2, and thatts, is
not logically equivalent t&Z;. To show thatMs; is an inverse of
M2, we must show that (1) holds wheneveand J are ground
instances. Let/* = chasei2(I). As in the proof of Claim 2,
sinceXz; = X5 U {y}, we need only show that/*, J) = ~.
Since by assumption there is no membeke$ whose conclusion
is a@-atom and where every variable in this conclusion is distinct,
it follows easily that/* does not contain §-fact Q(ci, ..., c),
wherec, . .., ¢; are distinct constants. Spdoes not fire on/*,
and so(J*, J) = v, as desired.

We now show thab; is not logically equivalent ta2%. Let
J consist of the singleton fa€@(ci, ..., ct), wherecy, ..., ¢ are
distinct constants. ThefJ, ) (- v, and so(J, §) ¥~ 1. How-
ever,(J,0) | %5, since every member g2 has a premise of
the formB An’, whereB is (up to renaming of variables) a conclu-
sion of 312, and by assumption, there is no membeke$ whose
conclusion is &)-atom with all distinct variables.

We have shown that 1,2 has two distinct, inequivalent inverses
given by disjunctive tgds with inequalities, nameWZ; and Mo, .
This contradiction shows that there must be at least one member
of £1, whose conclusion is @-atom and where every variable in
this conclusion is distinct.

We now show that there can be no other menaef X, whose
conclusion is aQ-atom. Assume not; we shall derive a contradic-
tion. Assume that the premise ofis a P-atom and the premise
of ¢’ is a P’-atom. Sincer and¢’ are different, we know thaP
and P’ are different, by construction af,. Since every variable
in the conclusion of is distinct, there is a mappink that maps
the variables inr to the variables i’ that maps the conclusion of
o onto the conclusion af’. Let A be theP-atom that is the result
of applyingh to the premise ofr. So the chase of4 with 3,
is Iz, whereB’ is the conclusion of’. This contradicts the fact
that conclusion of’ is essential for the premise of. This con-
tradiction shows that the only memberXf. whose conclusion is
a Q-atom iso, where every variable in the conclusion is distinct.
This completes the proof of Claim 4.

Now the variables in the source and target of each member of
Y1, are the same by Corollary 4.7, since the target is essential for
the source with respect 6,2. By construction, for every source
relation symbolP, there is exactly one member af;, whose
premise is aP-atom, and every variable is distinct in thisatom.
By Claim 4, for every target relation symb@), there is exactly one
member ofY}, whose conclusion is @-atom, and every variable
is distinct in thisQ-atom. It follows thatM» is a p-copy mapping.
Also, by Claim 3,X15 is logically equivalent t&,. So (3) holds,
as desired. This completes the proof that=£1)3).

We conclude the proof by showing that (3) (2). From (3),
we know that there is a schema mappibtf, that is equivalent to
M2 and that is a p-copy mapping. Clearly{}, is invertible and
onto. It follows easily thatM 2 is invertible and onto, as desired.

|

LEMMA A.10. Assume that is relevant forA and demanding
for A’. ThenA and A’ are the same atom.

PROOF Sinced is relevant ford, we know thatls — chasei2(Z4).
Therefore, sincé is demanding ford’, we havel 5, C I4. Since
I, andI, are both singletons, we havg, = I4, soA and A’
are the same atom, as desired.]

Proof of Theorem 5.10. Assume thatMi2 = (S1,S2, X12)
is a full s-t tgd mapping with a unique normal inverads;



(Sz,é:, ¥21), and M3 is not equivalent to the normalized ver-
sion of a near p-copy mapping. Assume without loss of generality
thatX,; is of minimal length (and also of minimal size in terms of
the number of characters) among the various logically equivalent
sets of normal constraints logically equivalentlg,. Since M1
has g unique normal inverse, it follows from Theorem 8.2 (where
m = 1) that M2, has length at most, wherek is the number of
source relation symbols.

Let P be an arbitrary source relation symbol, and gt be a
P-atom with all variables distinct. 1P is in the conclusion of no
member of321, thenchases: (chasei2(14,)) contains naP-fact,

S0 is too weak. Thereford/? is in the conclusion of some mem-
ber ofX2;. Since alsd2; has at mosk constraints, it follows that
P is in the conclusion of exactly one memberXf;. Letop be
the member 0B, whose conclusion is &-atom. Every variable
in the conclusion of p is distinct, or elsehases: (chase12(1a,))
does not contaid/A\P, S0 Yo is too weak. LetBp be aP-atom
with all variables the same. Nowp has no inequalities, or else
chases; (chasei2 (15, )) does not contailﬂg;, S0X2; is too weak.

The proof of Theorem 8.2 shows thdt- is good, that is, that
chase12(14,) is a singleton. This singleton is the only relevant
atom (with respect t&12) for Ap, so it follows fairly easily from
part (2) of Theorem 4.8 (and the assumption that is of mini-
mal size) that the premise ofp contains only a single relational
atom. This relevant atom is also essential Ryras noted in Theo-
rem 4.8. So the premise ef> has a single relational atom, that is
essential for the conclusion ef-. Note that this is also true about
each weak renaming ofp (that is, the atonB’ in the premise of
the weak renaming is essential for the conclusirof the weak
renaming. This is becaus&# must have an essential atom, and the
only candidate is3’.

Let ) be an arbitrary relation symbol iz, and letBg be a
Q-atom with all variables the same. We now show that at most one
member of22; can have) appear in its premise. Assume tlaat
andop/ both haveQ) appear in its premise; we must show tifat
and P’ are the same. TheR,, is essential for bottBpr and Bp:
(this follows from our earlier comment about weak renamings of
op). Hence, by Lemma A.10, it follows thdp and Bp: are the
same atom, s& andP’ are the same, as desired. By Corollary 4.7,
the variables in the premise and conclusiow gfare the same.

It follows from what we have shown that1,; is equivalent to
the normalized version of a near p-copy mapping. This was to be
shown. [

A.4 Proofs for Section 6

LEMMA A.11. Let M3 be afull s-ttgd mapping, and s =
(S2, S1, 321) a normal inverse forM 2. Let A be a source atom
andB atarget atom wheré, C chasez; (I5). ThenB is demand-
ing for A with respect ta2».

PROOF Assume thatig C chase;2(); we must show that
In C I. LetU = chase;2(). We know from Proposition 4.2

that (U, f) = X21. SinceXy; is full, this implies further that
chases1 (U) C I. Sincelp C chasei2(I) andla C chase:1 (1),
it follows that 74 C chasesi(chasei2(I)) = chase21(U). Since

alsochases; (U) C f we have thatf4 C I, andsol4 C I, as
desired. [J

Proof of Theorem 6.1. Let M5 = (S1, So, 212). Let Mo =

(Sz,SAl, 321) be an invertible normal inverse o%1,2. When-
ever we speak of relevant, demanding, or essential in this proof,

Vii

we mean with respect f8,2. We shall reservel and A’ for source
atoms (with relation symbols ii;), andB and B’ for target atoms
(with relation symbols ir82).

Claim 1. If B is a relevant atom for a source ata then
chases1 (Ig) = Ia.

We now prove Claim 1. Assume thatis a relevant atom foA.
Now chasez; (I5) is nonempty, since otherwiséhases; (Ig) =
chases (0), and saMs; would violate the unique-solutions prop-
erty and so be not invertible. Sindel»; is full, we know that that
chases1 (Ig) has no nulls, and so every factéhasez: (1) is of

the formI/A\/ for some atom4’. The claim is proven if we show
that whenever 4, C chases: (I5), thenA’ is the same atom a4.

So assume thdﬂ/ C chase21(Ig). By Lemma A.11, where the
role of A is played byA’, we know thatB is demanding for4’.
SinceB is also relevant fod, it follows from Lemma A.10 thatl’
is the same atom a$, as desired.

Claim 2: Each source atord has exactly one relevant atoR
andB is essential forA.

We now prove Claim 2. Sinc#1,- is invertible, it follows from
Theorem 4.10 and Proposition 4.5, tbhhas some essential atom
B. So B is relevant forA. Assume thatd has another relevant
atomB’; we shall derive a contradiction. By Claim 1, we have that

chases1 (Ip) andchasez: (Ip/) both equalls, and so are equal.
This violates the unique-solutions property fot2;, and saMs;
is not invertible, which gives our desired contradiction.

Let us denote the unique relevant atom fbiby B4. For the
next claim, recall that ifp is a formula, andf is a weak renaming,
theny’ is the result of replacing every variabten ¢ by f(z).

Claim 3: Let f be a weak renaming. ThélB4)’ = B,,;.

We now prove Claim 3. Assume that’ = A’. SinceB, is
relevant for4, it is clear that the resu(tB.1 )’ of weakly renaming
B using f is relevant forA’. That is,(B.)’ is relevant forA’.

By definition, the unique relevant atom fak’ is B 4,. Therefore,
(Ba)! = B4 = By, as desired.

Claim 4: Let B be a target atom. TheB is relevant for some
source atom.

We now prove Claim 4. We prove it first when every variable in
Bis distinct. SinceM s, is invertible, we know thathases: (Ig) #

(¢, by the unique solutions property. So there is some member
5 — A of Sy, that fires on/. Sochasez1 (Is) includesZ,. By

Claim 1, we have thathasez; (Ip,) = Ta. Sochases (Ip,) C
chases1 (Is). SinceMo; is invertible, it satisfies (the homomor-
phic version of) the subset property (although the subset property
and its homomorphic version in Proposition 3.1 are shown to be
equivalent to invertibility for s-t tgd mappings, this holds also for
normal mappings, by the same proof). 59, C I5. Therefore,

0 hasB4 as a conjunct. Since the constraint— A of £, fires

on Ig, there is a homomorphism frofd4 to B. Since every vari-
able in B is distinct, it follows thatB 4 and B are the same up to

a renaming of variables. Therefore, sinBg is relevant forA, we
know thatB is relevant for some atom obtained by renaming the
variables ofA. This completes the proof of Claim 3 when all of the
variables inB are distinct.

Let B’ be a target atom where the variables need not be distinct.
Let B be an atom where all of the variables are distinct and where
B'is obtained fromB by a weak renaming, thatis,B’ = (B4)’.
Since all of the variable iB are distinct, it follows from what we
have shown thaB is relevant for some source atofy and soB is
simply B 4. Hence, by Claim 3, we know th&' is B,;. SoB’ is
relevant forA’.

Claim 5: Let A be a source atom with all variables distinct. Then
every variable inB 4 is distinct.



We now prove Claim 5. Sinc&4 is essential for4, it follows
from Proposition 4.6 thaB 4 has exactly the same variablesAs
We now show that every variable B4 is distinct. Assume not;
we shall derive a contradiction. L&’ be an atom with the same
relation symbol as3 4 but with every variable distinct. SB’ has
strictly more variables tharl. Since also every variable iA is
distinct, and every variable iB’ is distinct, it follows that the arity
of B’ is strictly bigger than the arity off. By Claim 4, B’ is
relevant for some source atodi. Since by Claim 2 we know that
A’ has a unique relevant atom, and this atom is essentiallfor
it follows that B’ is essential ford’. So by Proposition 4.6, we
know that B’ and A’ have the same variables. Therefore, since
every variable inB’ is distinct, the arity ofd’ is at least the arity
of B’, which as we noted is strictly bigger than the arity4f So
the arity of A’ is strictly bigger than the arity ofl. SinceB4 is
obtained fromB’ by a weak renaming, anB’ is relevant forA4’,
it follows that B4 is relevant for an atom’’ obtained fromA’
by a weak renaming. SincB4 is demanding forA, it follows
from Lemma A.10 thatA”” and A are the same atom. But this is
impossible, sincel” has the same arity a¥', and the arity ofd’ is
strictly bigger than the arity ofl. This is our desired contradiction.
This completes the proof of Claim 5.

Let X, consist of all of the constraintd — B, whereA is a
prime atom with all variables distinct. Leit}, = (S1, S2, 212).
We now show thaiM1, is a p-copy mapping and is equivalent to
M.

Let A — Ba be a member oE},. By construction, every vari-
able in A is distinct. As noted earlietB4 has exactly the same
variables as4, and by Claim 5, every variable iB 4 is distinct.

By construction, every source relation symbol appears in exactly | gty,, = 7y U T, U T3, and letMa; = (Sz, S1, ¥a1)

one premise ok,. To complete the proof that1’, is a p-copy
mapping, all that is left to show is that every target relation symbol
appears in exactly one conclusionXf; .

Let Q be an arbitrary target relation symbol, and ®tbe aQ-
atom with every variable distinct. By Claim 4, we have tlfizitis
relevant for some source atos, and soB’ equalsB 4. Assume
that A’ is a P-atom. LetA be the primeP-atom with all variables
distinct. Letf be a weak renaming wher&' is Af. By Claim 3,
we know thatB 4/, that is, B, is (Ba)’. Hence, sinceB’ is a
Q-atom, so isB4. SoQ appears in some conclusion©f; .

We now show that) cannot be in more than one conclusion in
¥1,. SayQ were in the conclusion of the member%f, whose
premise has relation symb@ and also in the conclusion of the
member of}, whose premise has relation symiol. Let F' be
the factP(0, ..., 0), where every variable is set to 0. Similarly, let
F’ be the factP’ (0, .. ., 0), where every variable is set to 0. Then
the result of chasing” with 312 is Q(0, . .., 0), and identically the
result of chasing™’ with 312 is Q(0,...,0). This is a contradic-
tion of the unique-solutions property. This concludes the proof that

12 is a p-copy mapping.

We close by showing that;» andX}, are logically equivalent.
ClearlyX;2 logically impliesXf,. We now show that, logically
impliesX1>. We first show that each of the constraints — B4
is a logical consequence &f;,. Let A be an atom with the same
relation symbol asi” and with all variables distinct. So there is a
renamingf whereA’ is A, By Claim 3, we know thatB4)’ =
Bar. SOA" — By is (A — Ba)f. ThereforeA’ — By isa
logical consequence of — B, and so of£),, as desired.

Assume now thap — B is another member df,,. By Claim
4, we know thaB is B4 for some source atom. Sincechasei2(14)
isIp,,andchasei2(1,) includesl s, , it follows thatchasei2(14) C
chasei2(I,). So by the subset propertyy C I,. Therefore A is
in ¢. Sop — B is a logical consequence df — B4, and sois a
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logical consequence &f},. [
A.5 Proofs for Section 7

Proof of Theorem 7.1.The family is parameterized by the positive
integerk. LetSy = {P,..., Py}, and letS, = {P,..., P,
Qo, ..., Qr—1}. Assume that all of the relation symbolsSa and
So aredk-ary.

Let 1, ..., x4 be distinct variables. Le$; consist of the s-t
tgds P; (w1, z2, ..., xar) — Pl(x1,22,...,241), fOr 0 < i <
k. Definez’, for 0 < i < k — 1, by letting z%;,» = @441,
Thits = Taigs, andz} x; if j & {4i+2,4i+4}. For
example,fo is (1'17 X1,T3,T3,L5,L6, ..., Ldk—1, .fE4k), andz! is
(Ih T2,T3,T4,T5,T5,T7,T7,T9,T10,- - -, Tdk—1, £C4k). LetS> con-
sist of the s-t tgds>,4+1 (7*) — Py(z*),for0 <i <k —1. LetSs
consist of the s-t tgd#®,(z°) — Q:(z%), for0 < i < k — 1. Let
Y12 =51 USs U S3, and letM 2 = (Sl, Sa, 212).

We begin by showing thatM, is invertible. Let7) consist
of the s-t tgdSPJ{(cchxg, RN 1'41@) — /P;(lj, T2, ..., ﬂ?4k), for
1 < j < k (note that we do not include the cage= 0). LetT5
consist of the formula

Po(z1,22,...,xa8) A (21 # 22) V (23 # 24))
AN (s # w6) V (T7 # T8))
VAN
A (zan—3 # Tar—2) V (Tan—1 # Tak))
— j—‘%(asl,xg,...,:mk).

Let T} consist of the s-t tgdg; (z*) — Po(z'), for0 < i < k—1.

Note thatchases; is well-defined, even in the presence of the
formula inTs.

We now show thatM2; is an inverse ofM2. It is sufficient
to show thatl = chasez:(chasei2(I)) for each ground instance
I (this is because the analogue of Theorem 4.4 holds, by the same
proof). We first show thaf C chasesi (chasei2(1)). If Isi(a) isa
fact off(and soP;(a) is afactofl), and if1 < i < k, then we see
from the tgds inS; and7} that ﬁi(a) is in chases1 (chaseq2(1)).

So assume thaTPE(d) is a fact ofI (and soPy(a) is a fact ofI),
There are two cases.

Case 1:Thereisi with 0 < i < k — 1 such thatug;+2 = a4it1
andasita = asiv3. Then the s-ttgdP (") — Q,(z*) in S3 and
the s-t tgdQ:(z*) — Po(z') in Ts guarantee thabs (a) is a fact
of chasez1 (chasei2([1)).

Case 2:There is no; with 0 < ¢ < k — 1 such thata; 12 =
A4i+1 anda4i+4 = (4i+3. Then the s-t '[g(Po (1’1, o, ... ,{E4k-) —
Py(z1,®2,...,74x) in S1 and the formula irll> guarantee that
Po(a) is a fact ofchases: (chasea(I)).

We now show the reverse inclusion, tbhtses; (chasei2(1)) C
I BecauseM 5 is LAV, and because of the LAV-like form of
Moz, we see that each fact @hases; (chasei2(I)) is obtained
by chasing a single facP;(a1, a2, ..., asr) of I with a single
membero; of 312, and then chasing the single tuple that results
from this chase by a single membes of X2;. We must show
that the result of this second chase is either empty or is the fact
P»;(al, az, ..., a4k).

We now consider cases.

Case 1.0; is the s-t tgd

P0($17I27. .. ,-T4k) — Pé(ml,:pg,. .. 71'4k)

of S;. Assume that; was applied to the fad® (a1, az, . . .
of I to obtain the factP;(a1, az, . .

) a4k)
.,aax). The only member of



Y21 whose premise containg) is the formula inTs, and so we
may assume that, is this formula. Since the conclusion 6§ is
ﬁ;(xl,xg, ..., xak), it follows that chasingPy (a1, az, ..., ax)
with o2 gives either the empty set or the fd/é‘?t(al, a2, ..., 04k ),
as desired.

Case 2.0, is the s-ttgd

Pi(xl,xg,...,a:%) — Pi/(ﬂ,’l,ﬂ,’z,...,ﬂl‘4k)

of 51, for some: with 1 < 7 < k. Assumeo; was applied to the
factP;(a1, as, ..., ass) of I to obtainthe facP; (a1, as, . . ., aar)-
The only member ofl;; whose premise containg; is the tgd

Pl(z1,22,...,24r) — Pi(x1,22,...,24), and SO we may as-
sume thav is this tgd. Clearly, chasing; (a1, as, . . ., as) with
o2 gives either the empty set or the fat(a1, az,...,asr), as

desired.
Case 3.0; is the s-t tgd

P (2') — Py(a")

of S, for somei with 0 < ¢ < k£ — 1. Assume that; was
applied to the factP;11(a1, a2, ...,asr) Of I to obtain the fact
Pé (al, az, ..., a4k). So necessarily4i+2 = Q4i+1 anda4i+4 =
asi+3. The only member of.; whose premise containg; is
the formula inT3, and so we may assume thst is this formula.
But this formula is not fired b¥?; (a1, as, - . . , aax ), SiNC€a4i+2 =
a4i+1 andaq; 14 = aqi+3. SO this case is not possible.
Case 4.0, is the s-t tgd

Po(z') — Qi(T")

of Ss, for somei with 0 < ¢ < k — 1. Assume that; was applied
to the factPo(al, az,..., a4k) of I to obtainQ,'(al, az,..., a4k).
The only member oE2; whose premise contair@; is the s-t tgd
Qi(z") — Py(z) of T3, so we may assume thay is this s-t tgd.
It follows easily that the result of chasing; (a1, az, . . ., asx) With
oo IS ﬁg(al, az, ..., a4k), as desired.

This concludes the proof thahases; (chasei2(I)) C T, which
was the final step in the proof thatl»; is an inverse of\/;,.

We now show that the size of the smallest normal inversefgb
is exponential in the size of112. Assume thatM5, = (S2, S,
¥51) is a normal inverse afM;,. It follows from Theorem 4.4 that
for every ground instanck

T = chaseb, (chaseia(1)). (3)

Let us refer todz + 1 and4: + 3 asbuddiesfor0 < i < k — 1.
Leta = (a1,...,asr) be adk-tuple of constants. Let us call
specialif:

1. for each paiti1, i2 of buddies, exactly one of the equalities

Aiy = Ay +1 OF Qi = Qip41 h0|dS; and
2. these are the only equalities among membeis (@fiat is, if
a; = ay for distinct valuesi, j, then there is an odtisuch
that{i,j} = {t,t + 1}).
Let theequality profileof a be the2k-tuple (41, d3, 05, . . . , dar—1)
Where&; = 0if a; = Ai+1, and&; =1if a; 7é Aj41- Let us
say that an equality profile specialif it is the equality profile of a
special tuple.

For simplicity in what follows, when we say that an inequality
z; # x; appears ina formula, we mean that either the inequality
x; # x; or the inequalityz; # x; actually appears. Let be
a member of25; whose conclusion is of the fonﬁ%(a‘s), where
T = (Tmy,Tma,---,ZTmy, ). FOr each odd number with 1 <
j < 4k — 1, let us say thay is of type O with respect ta if

either (a)r,; andz.,; ., are the same variable, or else (b) they
are different variables and the inequality,; # x,;,, does not
appear in the premise of. If j is not of type 0 with respect to,
then let us say that it is diype 1 with respect te. Thus,j is of
type 1 precisely ifr,,,;, andz,,;,, are distinct variables and the
inequalityz,,; # zm,,, appears in the premise of

Letd = (61,03, 0s, ..., 04x—1) be a special equality profile, and
let a be a specialk-tuple of constants with equality profite Let
I be a ground instance whose only facg(@). Now chaseis (1)
consists of the single fad®;(a) (the s-t tgds inS> cannot be ap-
plied in the chase sinceis special). It follows from (3) that there
must be a members of $5; such that the chase d?(a) with
og producesPy(a). It is clear thatcg must have the following
properties:

1. The conclusion of s is of the forme\o(:z), where
T = (xmlzxrrm» cee 7~Tm4k);

2. variables:,,, andz,,, can be the same variable onlyiif,, =
Qmg s

3. iis of type 0 with respect te 5 for eachi whered; = 0; and

4. the only relation symbol that appears in the premisesois
P.

We now show that for each oddwith 1 < ¢ < 4k — 1, we
have that is of typed; with respect tars. We already have that if
d; = 0, theni is of type 0 with respect tes (this follows from the
third condition above fos5). So we need only show thatdf = 1,
theni is of type 1 with respect tes. Leti; = ¢, and letiy be the
buddy ofi. Sincea is special, and sincé&;, = 1, it follows that
di, = 0. Therefore, as noted beforg, is of type 0 with respect to
os. Assume that; is also of type 0 with respect tos; we shall
derive a contradiction.

Let i be a one-to-one mapping from the variables jto con-
stants, where in particuldt(z,,;) = am, for eachi with 1 <
i < 4k. This function is well-defined by the second condition
aboutog. Let J; be the target instance that consists of all of the
facts Py (h(y1), - - -, h(yar)), where the atonP; (y1, - . . , yax) ap-
pears in the premise afs. ObtainJ> from J; by replacing each
occurrence ofi;, +1 by a;,. Definea’ = (af,...,a};,) by let-
ting aj, .1 = ai,, and lettinga; = a; if j # i1 + 1. Note
thatai, ., = aj,, sincea;,+1 = a;, (because;, = 0), and so
Uil = Qig11 = Qiy = Q.

Defineh’ by letting h'(y) = h(y) if y is notz;,+1, and let-
tlng h/(mil+1) = h(Iil), that iS,h/(Iil_t,_l) = Qi - So .J, con-
sists of all of the fact?;(h'(y1), ..., h' (yax)), where the atom
Py(y1,- - -, yax) appears in the premise of;. We now show that
K’ respects each of the inequalitiesogf, that is, that ify # ¢’ is an
inequality that appears in the premiseogf, thenh'(y) # h'(y').
There are three cases.

Case 1:{y,y'} does not contaiw;, +1. Thenh'(y) = h(y) and
K (y') = h(y). Now h(y) # h(y’), sincey andy’ are distinct
variables. Thereforéy/(y) # h'(y'), as desired.

Case 2:{y, y'} containse;, +1 but notz;, . Assume without loss
of generality that is z;, +1. Thenh/(y) = h(zi,) andh’(y’) =
h(y'). Sincey’ is notz;,, we know thath(y’) # h(z; ). So
W (y') = h(y') # h(zi,) = h'(y). Thereforep(y) # h'(y'), as
desired.

Case 3:{y,y'} = {zi,, =i, +1}. This case is not possible, since
i1 is of type O with respect tos, and so the inequality,,, #
Tm,, 4, does not appear in the premisecyf.

Since J, consists of all of the factd(h'(y1), ...,k (yar)),
where the aton®; (y1, . . ., yax) appears in the premise af;, and
sinceh’ respects each of the inequalitiesay, it follows that the
chase ot/; with o containstE(a’). Form the source instande



from the target instancé; by replacing each fad®}(b) by Py (b).
Let r; be the s-t tgdPo(xl, o, ... ,.T4k) — Pé(.%‘l,.rg, Ceey 374k)
is J2. Clearly, the chase df, with 71 is Js.

Since; andis are buddies, there iswith 0 < s < k-1
such that{i1,i2} = {4s + 1,4s + 3}. LetI5 be the set difference
I\ Py(a’), and letJ; be the set differencé, \ Pj(a’). Then the
chase off; with 71 is J5. Let I3 consist of the facP;1(a’). Let
2 be the s-t tgdP.;1(z') — P5(z°). Sincea], = aj, 1, (by
construction) and;, = aj,, (as noted earlier), the chase Bf
with 72 contains the facP;(a’). LetIs = I3 U I5. So the chase
of I3 with {71, 72} contains.J; U {Py(a’)}, which contains/s.
Sincer; and. are members oE,2, it follows that the chase of
I3 with 312 containsJz. Since the chase g with X2 contains
J2, and the chase of; with o5 containsPy(a’), it follows that
chaseb; (chasei2(I3)) containsf%(a’), which is not inJs. There-
fore, Is # chaseb; (chasei2(I3)), which contradicts (3) whef is
Is.

We just showed that i6 = (41, d2, 05, ...,d4x—1) iS a special
equality profile, then there is a memhbeg of 5, such that for
each oddi with 1 < ¢ < 4k — 1, we have that is of typed;.
Sinceos andog are different wherd # &', it follows that 35,

has at least as many members as there are special equality profilef the equalitiesz,, | = |

Clearly, there ar@" distinct special equality profiles. S¢,; has
at leas2® members. This is sufficient to prove the theorem[]

Proof of Theorem 7.3.Let M2 = (S1, S2, ¥12), whereX s is a
finite set of full s-t tgds. For each memhefz) — (A1 A...AA,)
of ¥12, where each4; is an atom, letZ}, contain the s-t tgds
o(T) — A1,...,0(T) — A,. Thus,X, is a finite set of full s-t
tgds, each with a singleton conclusion, that is logically equivalent
to X1o.

We now give a procedure to augmetit, to a set2?,. For each
membero of 3},, whose premise consists only &f-atoms for
some single relational symbél, define an equivalence relatiép
on the variables that appeardnas follows. Assume thaP is ¢-
ary. For each with 1 < i < ¢, letY; be the set of all variables that
appear in théth position of some atom in the premisexafLet &,

conclusion). Ler be a special member aff,. Assume thatr is
P(z.y,...,22) — Q(z4y,. ..,z ). So the conclusion of is a
Q-atom. Letr be an arbitrary member af7,, other thars, such
that the conclusion of is a@Q-atom. Assume that the conclusion
of 7is Q(zj,, ..., z;,). Recall thatr andr have no variables in
common. Let€” be the most refined equivalence relation (largest
number of equivalence classes) on the variablesandr such that
z;, andz;, are in the same equivalence class,fo€ ¢ < k. Let
6% be a conjunction of equalities among the variables invhere
the equalityz;, = z;, is an atom ind} precisely ifz;, andz;,
are in the same equivalence clasg6f For each equivalence class
E of €7, select a unique representative. If this equivalence class
E contains a variable ia, then choose the representativefoto
be a variable ino. (The only times that the equivalence cldss
does not contain a variable énis whenE consists of a variable in
the premise of- but not in the conclusion of.) Let [z]” denote
the representative of the equivalence clas§™otontainingz. Let
us refer to the variablds:;, |7, . . ., [x;,]” asdistinguished Let us
say that aP-atom P(xy,, , - - -, Tw, ) in the premise of- is distin-
guishedif [x.,]" is distinguished foi. < ¢ < ¢. If A is the distin-
guishedP-atomP (z ., , - - -, Tw, ), definey 4 to be the conjunction
x.,]” for 1 < £ < t. Defined? to be
the disjunction of the formulass for each distinguished-atom
of 7. If this disjunction is empty (becausehas no distinguished
P-atom), therf? is the empty disjunction, which is logically equiv-
alent toFalse Let6, be the formuladl — #2. Note that ifr has
no distinguishedP-atoms, therd, is logically equivalent to~62.
Let 6 be the conjunction of the formul#s, over all members of
Y12 other thany, where the conclusion af is a@Q-atom. We now
defines* to beQ (s, , . .., zi, )AO — P(z.,,...,.,). Note that
(the hatted version of) the premisedmfs the conclusion of*, and
the conclusion of is a part of the premise of*. Let X2, consist
of all of the fcimulasl-*, whereo is a special member af;,. Let
Moz = (S2,81, ¥21).

Assume that is a Boolean combination of equalities, afids
a weak renaming of variables. Let us say thatolds underf
if the Boolean expression that results by replacing each equality

be the most refined equivalence relation (largest number of equiva-Z = ¥ by True when f(z) and f(y) are the same variable, and

lence classes) such that edichis a subset of an equivalence class
of &,. Itis easy to see that each equivalence clags @$ a union of

replacing each equality = y by Falsewhen f(z) and f(y) are
different variables, evaluates Toue Similarly, if g is a function

Y;'s. For each equivalence class, select a unique representative, anghat maps variables to constants, then sayétetids undey if the
let [z] denote the representative of the equivalence class containingBoolean expression that results by replacing each equality y

x. Formea' from o by replacing each variableby [z]. Sinces' is
a “special case” of (that is,o is obtained froms by identifying
some variables), it follows that' is a logical consequence of
If o is a member of;, whose premise contains2-atom and a
Q-atom for two different relation symbolB andQ, let o' beo.
LetU = {o': 0 € 5}, and letS}, = £}, UU. SinceXy,
consists of:}, along with some logical consequencesdif,, it
follows thatX?, is logically equivalent to=,. Since alsa2), is

logically equivalent td;», it follows thatX7, is logically equiva-

by Truewheng(z) andg(y) are the same constant, and replacing
each equalityx = y by Falsewheng(z) and g(y) are different
constants, Let us say thatandg agree on equalitief for eachz,
we have thaif(x) = f(y) if and only if g(x) = g(y). Clearly, if
f andg agree on equalities, thehholds underf if and only if 6
holds undegy. As before, ifp is a formula, Ietpf be the result of
replacing every variable in ¢ by f(z). If Ais an atom, led? be
the fact that arises by replacing every variablie ¢ by g(z),

Claim: For every constraing™ in Y21, which must be of the

lent to 1. By renaming variables if needed, we can assume that form 8 A 6 — @, wherea is a source atomj is a target atom

no two distinct members ot/, have a variable in common. Fur-
thermore, we can assume that for each merabef X7, there is
another member® of £, that is obtained frora by renaming the

with the same variables as andé is a Boolean combination of
equalities among the variables, and for every weak renaghimge
have tha# holds underf if and only if 37 is an essential atom for

variables in a one-to-one manner and with a disjoint set of variables & -

from o (we addo® to X7, if needed). It is easy to see that there is
a polynomial-time procedure for generating, from X15.
We now give a polynomial-time procedure for generating a set

Note thato™ is derived fromo in 75, whereo is @ — .
Assume thaty is a P-atom andg is a Q-atom. We now prove
the Claim. Assume first that’ is essential for’; we wish to

Y1 that specifies an inverse (if there is an inverse). Let us say Show thatf holds underf. To show this, we must show that if

"

that a membes of X7,

is specialif the premise contains a single

T is a member o2}, other thans, and the conclusion of is a

atom, and if every variable in the premise appears in the conclu- @-atom, therf holds underf. Thus, assume thaf holds under
sion (and hence the same variables appear in the premise and thd; We must show thaf~ holds underf. Now the conclusion of



of is B8¢. Sinced! holds underf, it follows thato? and+? have
the same conclusion. So the conclusionréfis 7. Let g be a
function that maps variables into constants and that agreesfwith
on equalities. Lef be an instance whose facts are the fattgor
each atomA in the premise of-. So the chase aof with 7 is 89.
Sinces’ is essential fon?, it follows thata? is a fact inl. Soa?

is A9 for some atomA in the premise of-. It follows thatv., as
defined earlier, holds under and sa@? holds undeg. Sincef and

g agree on equalities, this implies titholds underf, as desired.

Assume now thaf holds underf; we must show tha’ is an
essential atom for?. Let g be a function that maps variables into
constants and that agrees wjtlon equalities. S@ holds undeg.

Let I be an instance whergase 2(I) containsg?; we need only
show thain? is a factinI. Itis easy to see that the result of chasing
with 12 and Y, are the same. So the result of chasingith

Y5 contains3?. Hence, there is a constrainin X7, that fires on
I and produces?. If 7 is o, thena? is in I, as desired. Ifr is
not o, it is straightforward to verify thaf: holds underg. Since
also# holds undeg, this implies that? holds undey. So there is
some distinguished ato in the premise of- such thaty4 holds
underg. Hence,A? anda? are the same fact. Sineefires onI to
produces?, there is a homomorphisii that maps the premise of
7 into I and that maps the conclusionobnto39. Henceh must
agree withg on the variables i, and hence on the variablesin
since A is distinguished. Saol? is in I. But we showed tha#l?
anda? are the same fact. S& isin I, as desired. This concludes
the proof of the Claim.

Assume that\, has an inverse. We now use the Claim to prove
that Mo is an inverse ofM 2.

Assume that* is a member of,;, ando™ is B A0 — a.
Let k be the number of variables that appeatin Define the set
T,~ as follows. For each weak renamiyfgof the variables inr*
such that the range of is in {z1, ...,z } and such thaf holds

for f, let T+ contain the constraint8” A n; — of, wheren;
is the conjunction of the inequalitigqz) # f(y) wherex andy
are variables of * and wheref (z) andf(y) are different variables.
(The assumption that range pfs in {z1, ..., zx } is only to assure
thatT,~ be finite.) It is straightforward to see that is logically
equivalent toT,«. Let X5, be the union of the sets,~ over all
o* in Xo1, and letM5; = (S1,S2, X12). We need only show
that MY, is an inverse ofM12. ObtainX4; from X5, by adding
to the premise of every memberof 5, the conjunctsonst(z)

wherez is a variable that appears in Let MY, = (S2,S1, %))
By Proposition A.7, we know that1, is an inverse of\1;+ if and
only if M7, is aninverse of\12. So we need only show that5;
is an inverse of\M 2. Note that by construction\15; is normal.

We now use Theorem 4.8 to show th&t; is an inverse of
M;2. Since eacl,~ was obtained by considering weak renam-
ings f such that holds for f, it follows easily from the Claim that
for every membery of 3, the premise ofp is essential for the
conclusion ofy. Hence, the first condition of Theorem 4.8 holds
(whenx?%, plays the role of£2;). We now show that the second
condition also holds. Le#l be a source atom. Sindet;, is invert-
ible, we know by Proposition 4.12 thats is essential ford, and
S0 contains an ator® that is essential fod (with respect t0212).

It follows from the construction o/, that there is a member
of ¥, with a singleton premise (and a singleton conclusion) such
that the chase df4 is the same witlr as it is withX2. Write o as
a — (3. So there is a weak renamingsuch thaio” is A and 3/
is B. We now show that every variable inappears i, and sar
is special. Assume that some variableppears irv but not ins;
we shall derive a contradiction. L¢t be a weak renaming that is

Xi

like f except thatf’(x) is a new variable. sa’ is different from

A, althoughg’" is the same ag/, that is, B. So chase12(I_ ;)
contains/z, even thoughla Z I,/ . This contradicts the fact that
B is essential forA. Hence g is special, as desired.

So there i®) suchthat™ is 3 A 0 — @, ando™ is in ¥2;. Since
5% (namely, B) is essential for/ (anmely, A), it follows from
the Claim that? holds underf. So there iy such that the only
atom ind is B, ands — A is a weak renaming of a constraint
in 3%,. Hence, the second condition of Theorem 4.8 holds (when

9, plays the role of2;), as desired. This completes the proof
that M5, is an inverse of\12. By making use of Proposition A.7,
we can addonst formulas to the premises of member.bf}; to
obtain a Boolean normal inverse 8f1,. [

A.6 Proofs for Section 8

Proof of Theorem 8.2. Assume thaiM 2 = (S1, Sz, ¥12). Let
us say that the source atoBhis goodif chasei2(I5) has exactly
one member. Let us say th&tis badif B is not good. Le®b be
the number of bad prime source atoms. We now showhat m
(wherem is the number of inequivalent normal inverses./of)
and thatM has a Boolean normal inverse of lengtht+ b. Since
2% < m, we have thab < log,(m), and sdk + b < k + log, (m).
The theorem follows.

For each source relation symhB| let Ap be the primeP-atom
P(z1,...z,) wherezq,...,z, are distinct. IfB is a P-atom
P(y1,...,yr), let ¢p be the formula that is the conjunction of
the equalitiest; = z; for eachi, j wherey, andy; are the same
variable along with the inequalities of the form # x; for each
1,7 wherey; andy; are different variables. Intuitivelyps com-
pletely describes the equality pattern of the variableBinet 6 p
be the disjunction of the formulasg whereB is a goodP-atom.
Letop be the formulava, A fp — Ap, wherew 4, is defined as
in Definition 4.11.

Let By, ..., By be precisely the bad prime source atoms (they
may involve various relation symbols). H; is P(y1, ..., y-), de-
finen; to be the conjunction of the inequalities of the foym# y;
wherey; andy; are distinct variables. By Proposition 4.12, we
know thatwp, is essential forB; with respect tax;2, for each:.
SinceB; is bad, it follows thatvg, is a conjunction of more than
one atom. By Proposition 4.5, we know that some at@Gnin wxg,
is essential foB; with respect ta; 2, for eachi. Letq)? be the con-
straintC; An; — B;,and lety)? be the constrainbs, An; — B,.

Letv = (v1,...,v) be an arbitrary{0, 1}-vector of lengthb.
Define X3, to consist of thek formulasop (one for each source
relation symbolP) along with theb constraints);* for 1 < i <
b. Let MY, = (S2,S1, 3¥,). We now show that eacMy, is
an inverse ofM 2, and thatM3; and/\/lg’{ are not equivalent if
v # v/. Since the number of vectons is 2", this shows that
2° < m. Further, since eachy, is a Boolean normal inverse of
lengthk + b, this shows thaiM has a Boolean normal inverse of
lengthk + b (in fact, it has at leas2® Boolean normal inverse of
lengthk + b). This is sufficient to complete the proof.

Fix v.= (v1,...,vs). We begin by showing thaM3,; is an
inverse ofM;2. We now define a functioa that maps each prime
source atomB to an essential conjunctios( B) with respect to
312. For the bad prime source atomy, we lete(B;) = C; if
v; = 0, ande(B;) = wg, if v; = 1. By constructiong(B;) is
essential forB; if v; = 0, and by Proposition 4.12, we know that
e(B;) is essential forB; if v; = 1. For each good prime source
atomA, we lete(B) = wp. Again by Proposition 4.12, we know
thate(B) is then essential foB. So by Theorem 4.1QMs; is
an inverse ofM. We now show thatM5; is equivalent taM3;,



which completes the proof thatt3, is an inverse ofM».

For each prime source atoB whereB is bad, M35, and M3,
contain the same constraint with conclusiBnLet us now consider
the good prime source atomis The formulas p is logically equiv-
alent to the set consisting of all of the formulasg, A 5 — @,
whereB is a good primeP-atom. Assume thaB is a good prime
source atom. Letr; be the formulava, A ¢ — Zl}, and letos
be the formulavg A g — B, where as beforgp is the conjunc-
tion of all inequalities of the formex # y wherex andy are distinct
variables inB, By constructiongs is the unigue member 0§15,
with conclusionB. So to complete the proof tha15, is equiv-
alent toM3;, we need only show that the formuta is logically
equivalent to the formulas.

Assume thaB is the good aton®(y1, . . . , yr), whereys, ..., y»
are variables, not necessarily distinct. kgt be the formula ob-
tained fromo by replacing the variable; by y;, for1 < ¢ < r.
We now show that)g is logically equivalent to botlr; andos,
which implies thatr; ando, are logically equivalent, as desired.
In forming ¥ &, two variablesz; andx; in o1 are replaced by the
same variable precisely if; andy; are the same variable, which
holds precisely if the equality; = x; appears inpg. It follows
easily that) s is logically equivalent ter;. We now show that) s
is logically equivalent ta.

It is easy to see that the conclusions/gf ando, are the same,
and that the result of replacing the variabledy y;, for1 < i < r,
in pp is equivalent tons. Let 7 be the result of replacing the
variablex; by y; in wa,, forl < ¢ < r. So we need only show
thatrp is equivalent tavs. Now the conjunct(s) ofg must be in
wg, by properties of the chase with s-t tgds. Singeis a singleton
(becauseB is good), it follows easily that is the same asp.
This concludes the proof that1$, is equivalent toM3,

We conclude the proof by showing thaty; and/\/l‘z’i are not
equivalent ifv # v'. Sayv # v/, and thatv = (v1,...,v)
andv’ = (vi,...,v;). So there ig with 1 < i < b such that
v; # v; Assume without loss of generality that = 0 andv; = 1.
We now show thatic, , 0) satisfieﬁ;{ but notXy; This of course

shows thatM3,; andM;’{ are not equivalent. Clearly! fires on
Ic,, and so(I¢,,0) does not satisfy{. Hence,(I¢,,0) does
not satisfyXy;, because.y; containsyy. We now show that no
member ofE‘g’{ fires onlc,. SinceB; is bad, we know thav g,
has some other atom in addition toC; as a conjunct. Sinc€;
is essential foiB;, it follows from Proposition 4.6 thaB; andC;
have the same variables. Since; is full, every variable inA is in
B;, and hence irC’;. Assume that; is Q(y1, ..., ym). Thenlg,
consists of the fad@(cy,, - - . , ¢y, )- If ¥} were to fire onlc,, then
there would be a homomorphishifrom the premise of); to Ic;,.
SinceC; is part of the premise of;, we must havéi(y;) = c,,
for 1 < ¢ < m. Sinceh must mapA ontoQ(cy, ,- .., cy,,), and
since every variable il is amongyi, . . ., ym, it is easy to see that
A must beC;, which is a contradiction. Seé; does not fire on
Ic,. We now show that no other memberBﬁ fires onlc,. If

!’
some membein:J were to fire onlc, wherej # i, then because
!

of the inequalities irw;j, it would follow that some member of
chasei2(Ip,) is of the formQ(ci, . . ., cm ), Wherecy = ¢, if and
only if y» = y¢. So there would be a homomorphisfa, —
chasei2(Ip,). SinceC; is demanding foB;, it follows that/p, C

Ip;. But this is impossible, since# j. So no membew;jé fires
on I¢, wherej # 4. A similar argument shows that rg- fires on
I¢,. Sono member aby, fires onl¢,, and hencélc, , 0) satisfies
2‘2’{, as desired. [J
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