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1 Abstract 
 

Efficient metadata management is a key aspect of a robust storage system. Traditional 

models of metadata management used in most modern storage systems are too restrictive 

and inefficient. The two key requirements on metadata management systems is a) 

consistency – integrity of the metadata is crucial at all times and under failures for correct 

functioning of a system, and b) reliability – system will reliably maintain the event and/or 

metadata update once a success is returned.  There are instances when metadata update 

becomes a bottleneck in the system and in such cases, any improvement in metadata 

update performance will directly improve the system performance. By using the method 

described in this research report, a storage system can improve its metadata update 

performance with out incurring additional hardware costs and yet meet the client 

guarantees for metadata consistency and recoverability. 

2 Related Work 

2.1 Two-Phase commit on disk 

 

Traditional storage systems cache the metadata in volatile memory and harden it on disk 

as and when the metadata changes. Even if a storage system uses nonvolatile memory to 

protect user data from power failure, it typically does not use the nonvolatile memory to 

store its metadata. In most cases, the reliability needs of the metadata are not met by the 

underlying nonvolatile memory that may have limited battery life. In these systems, as 

and when the metadata changes in volatile cache memory, it needs to be immediately 

hardened to disk, before posting completion to clients requesting the metadata update. To 

guarantee correctness, the metadata is updated in volatile memory using single phase 

commit and on disk using a two-phase commit protocol, which then permits rolling 

forwards or backwards if there is an interruption during the metadata update process. To 

meet the reliability needs, the metadata may be stored on multiple disks. The drawback of 

this method is the associated latency involved in writing to disk as and when the metadata 

changes; the clients have to wait till the metadata is updated on disk to guarantee that the 

state transition is persistent, thus directly impacting the overall system performance.  
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2.2 Two-Phase commit on memory 

 

There are some modern storage systems that use nonvolatile memory to store metadata 

and achieve the same reliability guarantees, but improved metadata update performance. 

These systems typically don’t just depend on battery protection, but use mechanisms such 

as Early Power-Off Warning (EPOW) to trigger the hardening process to disk. We may 

call such a nonvolatile memory system as highly resilient. In such a system, the trigger to 

harden the metadata is independent of when clients update the metadata. Thus, using only 

a single phase commit of metadata on memory could result in inconsistent metadata 

across power failures. To guarantee consistency of the metadata, which is required to 

guarantee correctness of the metadata update algorithm, these systems require the use of 

two-phase commit protocol in nonvolatile memory instead of disk. It should be noted that 

this is the primary difference when compared to work in section 2.1, where the two-phase 

commit protocol is used on disk and not in memory. However, there may be multiple 

copies stored on multiple disks to meet the reliability needs. The latency introduced by 

the additional phase, which does not involve any disk access, is much smaller compared 

to the disk latency required in “Two-Phase commit on disk” model. From the client’s 

perspective, the nonvolatile cache memory offers much higher metadata performance 

primarily because it doesn’t involve hardening the metadata to disk during normal 

operation. The drawback with this scheme is the requirement of a highly resilient 

nonvolatile cache memory to store the metadata, especially given that lower cost systems 

can’t afford it.  

Overview of 2-PC on Disk 

1. Event 

2. State update 

Disk state 1 Disk state 2 

Volatile 
Memory 
State 

3. Disk update 4. Disk update 

5. Success 

  

• For consistency requirements we need to update the 2 metadata states on 
disk in serial.   

• Latency is high as the event has to wait for 2 commits on the disk 
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2.3 Issues with related work 

 

 

 

 

 

 

 

 

 

 

2.4 Need for a New Solution 

 

Now, consider a lower cost storage system that requires the improved metadata update 

performance, similar to that achieved in “Two-Phase commit in Memory” methodology, 

but cannot afford the highly resilient nonvolatile memory. The novel method described in 

this report here effectively combines the two methods described above to achieve 

improved metadata update performance using just volatile memory.  

Non-volatile 

State Copy 1 

Non-volatile 

State Copy 2 

1. Event 

3. State 

update 

6. Success 

2. Phase 0 Event 

5. State 

update 

On EPOW 

Disk State 

• Latency is low as only non - volatile memory needs to be updated 

• Failure on EPOW could result in loss of state 

Interface 

4. Phase 1 Event 

Disks 

Overview of 2-PC in Memory 

System Benefits System Properties  

Consistent copy in 
memory 
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Recovery 
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Memory 

� 2-PC in memory 
� 1-PC on disk 

� 1-PC in memory 
� 2-PC on disk  

Hardening Algorithm 
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EPOW 2-PC in 

Memory 

Continuous 2-PC on 

Disk 

Commit to Disk 
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3 Summary 

3.1 Brief Description 

 

The goal of this research report is to propose a novel method that improves the metadata 

update latency of a storage system that can only afford volatile memory and disk to 

harden the metadata.  

 

Section 2.1 describes a methodology that performs single-phase commit on volatile 

memory and two-phase commit on disk. Section 2.2 describes a methodology that 

performs two-phase commit in non-volatile memory. By combining the ideas described 

in section 2.1 and 2.2, viz., two-phase commit in volatile memory and two-phase commit 

on disk, and by batching unrelated metadata updates, we can bring the benefits of both 

the worlds together – fast metadata update on a system that does not have highly resilient 

nonvolatile memory.  

3.2 Advantages 

 

The core idea briefly described above has the following advantages: 

1. Improved metadata update response time in traditional storage systems that 
cannot afford highly resilient nonvolatile memory, but can only afford volatile 

memory and disk to store its metadata 

2. The method explained alongwith is a novel algorithm which deals with recovery 
of system control state post a system failure 

3. The method explained alongwith proves that the algorithm can recover cluster 
state data with failure on failure scenario and will assist in making forward 

progress in the system 

4 Description 

4.1 Algorithm background 

 

The 2-phase-commit (2-PC) protocol in the distributed algorithm context: 

1. A coordinator node generates a transaction (stimulus) for all the nodes in the 
distributed system 

2. Each node in the first phase can either reply to the coordinator node with an 
accept or an abort response 

3. If all the nodes reply with an accept message to the coordinator node, the 
coordinator node starts the second phase with a commit stimuli 

4. If any of the nodes reply with an abort message to the coordinator node, the 
coordinator node starts the second phase with a rollback stimulus 

 

The 2-phase-state update protocol: This protocol can be used in a single system to 

always have one consistent state even with the application of new stimuli or a batch of 

new stimuli. This property when coupled with roll-forward or roll-back of consistent 
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state provides fast recovery from failure scenarios. Traditionally this type of state update 

protocol is implemented in systems with non-volatile memory. Here we present an 

algorithm which extends the application of this 2-phase-state update protocol to the 

systems with volatile memory and persistent storage. 

 

The benefit of this protocol for these systems is: 

1. Consistent state aids in failure recovery 
2. Performance benefit in terms of disk I/Os by virtue of batching of stimuli updates. 
3. In systems with “warmstart” capabilities we can recover from memory without 

requiring read from the disks. 

4.2 Algorithm Terminology 

 

Terms Used Description 

V1, V2 2 copies in volatile memory.   

D1, D2 D1 and D2 copies represent the copies (of cluster state 

data) stored on disk.    

T T implies Toggle.  Toggle operation implies to mark the 

copy as inconsistent because we will update the contents 

of this copy of data in the following step.   

 

4.3 Algorithm description 

 

(N-1)th Event  
Disk 
Update  

 

Volatile 
State Copy 

V1 

Volatile 
State Copy V2 

Nth Event  
Memory 
Update  

Phase 0 

Volatile 
State Copy 

V1 

Nth Event  
Memory 
Update  

Phase 1 

Volatile 
State Copy 

V2 

Nth Event  
Disk 
Update  

Parallel 2-PC: Phase Snapshot 
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The algorithm is based on parallel update of the contents in virtual memory and disk 

state.  In the diagram below, the blocks and arrows with same colors represent the states 

which are tied together for update.  

 

 
 

Based on this representation we can infer that,  

1. Update of V1 (application of new stimuli) will be in parallel with update of D2 
(V2 -> D2). We will refer to it as Phase-0 of 2-phase-state update protocol. 

2. Update of V2 (application of new stimuli) will be in parallel with update of D1 
(V1 -> D1). We will refer to it as Phase-1 of 2-phase-state update protocol. 

3. The transition or Toggle between the two phases will have to be in parallel 
(simultaneous) as depicted by arrows in the above diagram. This also becomes the 

synchronization point as updates are only applied upon these phase boundaries. 

 

This described algorithm will guarantee that at any moment in the system:  

1. There will be a consistent state both in memory and disk 
2. The consistent state on disk will never be more than 1 stimuli batch behind the 

consistent state in memory. 

 

Toggle algorithm for the state transition and proof of at least one consistent copy on the 

disk.  Inconsistent state in the memory context is that a new batch of stimuli is being 

applied.  Inconsistent state in the disk context is that a consistent state in memory is being 

made persistent on disk.  In the table below,  

• A value of 1 under either of 4 copies implies inconsistent state, and 0 

implies consistent state  

• Row in red is the transition or toggle point between phases or a phase 

boundary 

• Rows in black are just intermediate states a system can be in without 

transitioning a phase  

• There is no order in between the 2 intermediate states possible within a 

phase. Either of the 2 intermediate states can occur first. But both of them 

will occur and only once each 

• These are the only states a system can be in given the above constraints 

 

 

V1 

 

D1 

 

 

V2 

 

D2 
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Given the possible states a system can be in from above table, it is proved that at any 

given point we will have a valid consistent state both in disk and in memory. 

 

Phase state variable: 

1. This variable gets toggled at phase boundary and based on its value we know 
whether we are in Phase 0 or Phase 1 

2. In the case of system recovery during warmstarts if we want to recover into a 
particular phase and want to avoid reading the disk, we will have to maintain a 

“phase state” variable 

3. In normal operation also its toggle becomes the trigger point for state update 

5 Analysis 

5.1 Metadata State Update Time  

 

Algorithm Metadata update Time 

2-PC on Disk V + 2D 

2-PC in Memory 2V 

Parallel 2-PC Max (2V, 2D) 

 
 

V1 V2 D1 D2 
1 0 0 1 
1 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 1 0 
0 1 0 1 
1 0 0 1 

 

Phase 0 

Phase 1 

Parallel 2-PC: System States 

  

 

Volatile 
State Copy V1 

Volatile 
State Copy V2 
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� “V”: Metadata update time in memory; “D”: Disk update time 

� In comparison to 2-PC on Disk if “V << D” then “Parallel 2-PC” performs no worse 
than 2-PC on Disk.  For all other case where “V <= 2D”, our methodology of “Parallel 

2-PC” performs better than 2-PC on Disk 

� In comparison to 2-PC on Memory if “V >> D” then “Parallel 2-PC” not only performs 

no worse than 2-PC on Memory but also provides consistent metadata state on disk and 

does not have to worry about failures on EPOW. 

5.2 Comparison of all three arts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The difference between our new model and the older one is that in case of power rest 

failures we will always do a roll-back.  This might imply application of a stimulus more 

than once, but it will be from the same consistent state. So if the agent have case 4b they 

should be fine.  In case of disk failures, we are no worse than any of the prior arts. 
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