
RJ10427 (A0801-006) January 23, 2008
Computer Science

IBM Research Report

Fast Metadata Update by Using Two-Phase Commit on
Volatile Memory and Disk

Tarun Thakur, Veera Deenadhayalan, Karan Gupta, Paul Muench
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

 - 2 -

1 Abstract

Efficient metadata management is a key aspect of a robust storage system. Traditional

models of metadata management used in most modern storage systems are too restrictive

and inefficient. The two key requirements on metadata management systems is a)

consistency – integrity of the metadata is crucial at all times and under failures for correct

functioning of a system, and b) reliability – system will reliably maintain the event and/or

metadata update once a success is returned. There are instances when metadata update

becomes a bottleneck in the system and in such cases, any improvement in metadata

update performance will directly improve the system performance. By using the method

described in this research report, a storage system can improve its metadata update

performance with out incurring additional hardware costs and yet meet the client

guarantees for metadata consistency and recoverability.

2 Related Work

2.1 Two-Phase commit on disk

Traditional storage systems cache the metadata in volatile memory and harden it on disk

as and when the metadata changes. Even if a storage system uses nonvolatile memory to

protect user data from power failure, it typically does not use the nonvolatile memory to

store its metadata. In most cases, the reliability needs of the metadata are not met by the

underlying nonvolatile memory that may have limited battery life. In these systems, as

and when the metadata changes in volatile cache memory, it needs to be immediately

hardened to disk, before posting completion to clients requesting the metadata update. To

guarantee correctness, the metadata is updated in volatile memory using single phase

commit and on disk using a two-phase commit protocol, which then permits rolling

forwards or backwards if there is an interruption during the metadata update process. To

meet the reliability needs, the metadata may be stored on multiple disks. The drawback of

this method is the associated latency involved in writing to disk as and when the metadata

changes; the clients have to wait till the metadata is updated on disk to guarantee that the

state transition is persistent, thus directly impacting the overall system performance.

 - 3 -

2.2 Two-Phase commit on memory

There are some modern storage systems that use nonvolatile memory to store metadata

and achieve the same reliability guarantees, but improved metadata update performance.

These systems typically don’t just depend on battery protection, but use mechanisms such

as Early Power-Off Warning (EPOW) to trigger the hardening process to disk. We may

call such a nonvolatile memory system as highly resilient. In such a system, the trigger to

harden the metadata is independent of when clients update the metadata. Thus, using only

a single phase commit of metadata on memory could result in inconsistent metadata

across power failures. To guarantee consistency of the metadata, which is required to

guarantee correctness of the metadata update algorithm, these systems require the use of

two-phase commit protocol in nonvolatile memory instead of disk. It should be noted that

this is the primary difference when compared to work in section 2.1, where the two-phase

commit protocol is used on disk and not in memory. However, there may be multiple

copies stored on multiple disks to meet the reliability needs. The latency introduced by

the additional phase, which does not involve any disk access, is much smaller compared

to the disk latency required in “Two-Phase commit on disk” model. From the client’s

perspective, the nonvolatile cache memory offers much higher metadata performance

primarily because it doesn’t involve hardening the metadata to disk during normal

operation. The drawback with this scheme is the requirement of a highly resilient

nonvolatile cache memory to store the metadata, especially given that lower cost systems

can’t afford it.

Overview of 2-PC on Disk

1. Event

2. State update

Disk state 1 Disk state 2

Volatile
Memory
State

3. Disk update 4. Disk update

5. Success

• For consistency requirements we need to update the 2 metadata states on
disk in serial.

• Latency is high as the event has to wait for 2 commits on the disk

 - 4 -

2.3 Issues with related work

2.4 Need for a New Solution

Now, consider a lower cost storage system that requires the improved metadata update

performance, similar to that achieved in “Two-Phase commit in Memory” methodology,

but cannot afford the highly resilient nonvolatile memory. The novel method described in

this report here effectively combines the two methods described above to achieve

improved metadata update performance using just volatile memory.

Non-volatile

State Copy 1

Non-volatile

State Copy 2

1. Event

3. State

update

6. Success

2. Phase 0 Event

5. State

update

On EPOW

Disk State

• Latency is low as only non - volatile memory needs to be updated

• Failure on EPOW could result in loss of state

Interface

4. Phase 1 Event

Disks

Overview of 2-PC in Memory

System Benefits System Properties

Consistent copy in
memory

Read consistent copy
from disk

Warmstart

Recovery

High

Low

Cost

Non- Volatile

Volatile

Memory

� 2-PC in memory
� 1-PC on disk

� 1-PC in memory
� 2-PC on disk

Hardening Algorithm

Low

High

Update

Latency

EPOW 2-PC in

Memory

Continuous 2-PC on

Disk

Commit to Disk

 - 5 -

3 Summary

3.1 Brief Description

The goal of this research report is to propose a novel method that improves the metadata

update latency of a storage system that can only afford volatile memory and disk to

harden the metadata.

Section 2.1 describes a methodology that performs single-phase commit on volatile

memory and two-phase commit on disk. Section 2.2 describes a methodology that

performs two-phase commit in non-volatile memory. By combining the ideas described

in section 2.1 and 2.2, viz., two-phase commit in volatile memory and two-phase commit

on disk, and by batching unrelated metadata updates, we can bring the benefits of both

the worlds together – fast metadata update on a system that does not have highly resilient

nonvolatile memory.

3.2 Advantages

The core idea briefly described above has the following advantages:

1. Improved metadata update response time in traditional storage systems that
cannot afford highly resilient nonvolatile memory, but can only afford volatile

memory and disk to store its metadata

2. The method explained alongwith is a novel algorithm which deals with recovery
of system control state post a system failure

3. The method explained alongwith proves that the algorithm can recover cluster
state data with failure on failure scenario and will assist in making forward

progress in the system

4 Description

4.1 Algorithm background

The 2-phase-commit (2-PC) protocol in the distributed algorithm context:

1. A coordinator node generates a transaction (stimulus) for all the nodes in the
distributed system

2. Each node in the first phase can either reply to the coordinator node with an
accept or an abort response

3. If all the nodes reply with an accept message to the coordinator node, the
coordinator node starts the second phase with a commit stimuli

4. If any of the nodes reply with an abort message to the coordinator node, the
coordinator node starts the second phase with a rollback stimulus

The 2-phase-state update protocol: This protocol can be used in a single system to

always have one consistent state even with the application of new stimuli or a batch of

new stimuli. This property when coupled with roll-forward or roll-back of consistent

 - 6 -

state provides fast recovery from failure scenarios. Traditionally this type of state update

protocol is implemented in systems with non-volatile memory. Here we present an

algorithm which extends the application of this 2-phase-state update protocol to the

systems with volatile memory and persistent storage.

The benefit of this protocol for these systems is:

1. Consistent state aids in failure recovery
2. Performance benefit in terms of disk I/Os by virtue of batching of stimuli updates.
3. In systems with “warmstart” capabilities we can recover from memory without

requiring read from the disks.

4.2 Algorithm Terminology

Terms Used Description

V1, V2 2 copies in volatile memory.

D1, D2 D1 and D2 copies represent the copies (of cluster state

data) stored on disk.

T T implies Toggle. Toggle operation implies to mark the

copy as inconsistent because we will update the contents

of this copy of data in the following step.

4.3 Algorithm description

(N-1)th Event
Disk
Update

Volatile
State Copy

V1

Volatile
State Copy V2

Nth Event
Memory
Update

Phase 0

Volatile
State Copy

V1

Nth Event
Memory
Update

Phase 1

Volatile
State Copy

V2

Nth Event
Disk
Update

Parallel 2-PC: Phase Snapshot

 - 7 -

The algorithm is based on parallel update of the contents in virtual memory and disk

state. In the diagram below, the blocks and arrows with same colors represent the states

which are tied together for update.

Based on this representation we can infer that,

1. Update of V1 (application of new stimuli) will be in parallel with update of D2
(V2 -> D2). We will refer to it as Phase-0 of 2-phase-state update protocol.

2. Update of V2 (application of new stimuli) will be in parallel with update of D1
(V1 -> D1). We will refer to it as Phase-1 of 2-phase-state update protocol.

3. The transition or Toggle between the two phases will have to be in parallel
(simultaneous) as depicted by arrows in the above diagram. This also becomes the

synchronization point as updates are only applied upon these phase boundaries.

This described algorithm will guarantee that at any moment in the system:

1. There will be a consistent state both in memory and disk
2. The consistent state on disk will never be more than 1 stimuli batch behind the

consistent state in memory.

Toggle algorithm for the state transition and proof of at least one consistent copy on the

disk. Inconsistent state in the memory context is that a new batch of stimuli is being

applied. Inconsistent state in the disk context is that a consistent state in memory is being

made persistent on disk. In the table below,

• A value of 1 under either of 4 copies implies inconsistent state, and 0

implies consistent state

• Row in red is the transition or toggle point between phases or a phase

boundary

• Rows in black are just intermediate states a system can be in without

transitioning a phase

• There is no order in between the 2 intermediate states possible within a

phase. Either of the 2 intermediate states can occur first. But both of them

will occur and only once each

• These are the only states a system can be in given the above constraints

V1

D1

V2

D2

 - 8 -

Given the possible states a system can be in from above table, it is proved that at any

given point we will have a valid consistent state both in disk and in memory.

Phase state variable:

1. This variable gets toggled at phase boundary and based on its value we know
whether we are in Phase 0 or Phase 1

2. In the case of system recovery during warmstarts if we want to recover into a
particular phase and want to avoid reading the disk, we will have to maintain a

“phase state” variable

3. In normal operation also its toggle becomes the trigger point for state update

5 Analysis

5.1 Metadata State Update Time

Algorithm Metadata update Time

2-PC on Disk V + 2D

2-PC in Memory 2V

Parallel 2-PC Max (2V, 2D)

V1 V2 D1 D2
1 0 0 1
1 0 1 0
0 1 0 1
0 1 1 0
1 0 1 0
0 1 0 1
1 0 0 1

Phase 0

Phase 1

Parallel 2-PC: System States

Volatile
State Copy V1

Volatile
State Copy V2

 - 9 -

� “V”: Metadata update time in memory; “D”: Disk update time

� In comparison to 2-PC on Disk if “V << D” then “Parallel 2-PC” performs no worse
than 2-PC on Disk. For all other case where “V <= 2D”, our methodology of “Parallel

2-PC” performs better than 2-PC on Disk

� In comparison to 2-PC on Memory if “V >> D” then “Parallel 2-PC” not only performs

no worse than 2-PC on Memory but also provides consistent metadata state on disk and

does not have to worry about failures on EPOW.

5.2 Comparison of all three arts

The difference between our new model and the older one is that in case of power rest

failures we will always do a roll-back. This might imply application of a stimulus more

than once, but it will be from the same consistent state. So if the agent have case 4b they

should be fine. In case of disk failures, we are no worse than any of the prior arts.

Low+ Medium Consistent copy in
memory

Staged � 2-PC in memory
� 2-PC on disk
� nth phase in
memory and (n-1)th
phase in disk are in
parallel

Volatile Parallel

2-PC

System Benefits System Properties

Consistent copy in
memory

Read consistent copy
from disk

Warmstart

Recovery

High

Low

Cost

Non-
Volatile

Volatile

Memory

� 2-PC in memory
� 1-PC on disk

� 1-PC in memory
� 2-PC on disk

Hardening

Algorithm

Low

High

Update

Latency

EPOW 2-PC on

Memory

Continuous 2-PC on

Disk

Commit to

Disk

