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We have studied the antiferromagnetic quantum phase transition of a 2D Kondo-Heisenberg square
lattice using the non-linear sigma model. A renormalization group analysis of the competing Kondo
– RKKY interaction was carried out to 1-loop order in the ǫ expansion, and a new quantum critical
point is found, dominated by Kondo fluctuations. In addition, the spin-wave velocity scales loga-
rithmically near the new QCP, i.e breakdown of hydrodynamic behavior. The results allow us to
propose a new phase diagram near the AFM fixed point of this 2D Kondo lattice model.

PACS numbers:

The physics of heavy-fermion metals, systems that
contain both localized f -electrons and conduction elec-
tron bands, has been of great interest in the strongly-
correlated community for several decades. Initial work
by Doniach [1] pointed out the competition between the
Kondo (JK) and the RKKY (JH) interaction, and the
quantum critical point (QCP) associated with the tran-
sition from an antiferromagnetic metal (AFM) to a para-
magnetic (PM) state as JK and JH vary. Work on the
two-impurity model [2, 3] showed that the RKKY and
Kondo coupling are not mutually exclusive either for fer-
romagnetic or antiferromagnetic interactions. In fact, a
correlated Kondo effect is the rule rather than the ex-
ception, with the impurities partially compensated by
the conduction electrons, and partially by each other
(for AF interactions). In 1-D, there have been various
numerical [4] and analytical [5, 6] studies. However,
the physics of higher dimensional systems and the corre-
sponding quantum phase transition (QPT) is much less
well-understood.

A commonly assumed scenario is that the f -electrons
delocalize and are included in the Fermi surface, resulting
in a large Fermi surface as given by Luttinger’s Theorem
[7, 8], and the QPT is of the spin density-wave (SDW)
type. This QPT has typically been understood in the
Hertz-Millis approach [9, 10], and the physics of delocal-
ized f -electrons forming a heavy fermi liquid have been
well-understood in a large-N approach [11, 12, 13]. How-
ever, experimental studies have shown that the Hertz-
Millis picture may be inadequate for describing the be-
havior of the system near the QCP [14, 15]. An alterna-
tive picture of the AFM to PM transition is that the f -
electrons do not delocalize and become part of the Fermi
surface, hence the Fermi surface is small. This picture
has been proposed by several groups [16, 17], and stud-
ied within the DMFT approach [16, 18]. Exotic ground
states have also been proposed for Kondo lattice systems
[19, 20, 21] that include fractionalized quasi-particles.

We study the effect of the Kondo coupling on the anti-
ferromagnetic phase transition, and also see if the various
exotic states can be obtained from a more microscopic

approach. We assume that the AFM state has a small
Fermi surface, with no“hot-spots” spanned by the Neel
vector (π, π), as shown in Fig. 1. To study the AFM

FIG. 1: Diagram of Fermi surface with no “hot”-spots nested
by Q = (π, π). The solid black lines indicate the Fermi sur-
face, and the dashed black lines indicate the magnetic B.Z.
.

QPT of the two-dimensional (2D) square Kondo lattice
with a small Fermi surface, we map the system onto a
non-linear sigma model (NLSM) coupled to conduction
electrons. We then obtain an effective Lagrangian by in-
tegrating out the fermionic degrees of freedom, and carry
out a renormalization group (RG) analysis to one-loop
within the ǫ-expansion. The calculations and results are
described in the following sections.

As we shall show, there is a new QCP, with logarithmic
scaling due to the Kondo interaction that plays an essen-
tial role in the QPT. The Kondo interaction strongly af-
fects the spin-wave fluctuations near the QCP, and leads
to logarithmic scaling of the spin-wave velocity, implying
localization of the spin-waves due to the Kondo effect.
Based upon the RG results, we also propose a possible
phase diagram near the AFM state.

The Hamiltonian for the Kondo-Heisenberg model is
written as:

H =
∑

~k

ǫ~kc
†
~k
c~k + J

∑

<i,j>

~Si · ~Sj +K
∑

i

~Si · ~Sc(~ri) (1)
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where J,K > 0, are the Heisenberg and Kondo cou-
pling respectively, and ~Sc(~ri) = c†i,ασαβci,α. Since we are
interested in the AFM phase, the Heisenberg term can be
mapped onto the non-linear sigma model in a well-known
manner [22]. The local spin, ~Si = (−1)i~n+ 1

|~S|~l , has both

a Neel component, ~n, and a small ferromagnetic moment,
~l ∝ ∂τ~n×~n. The conduction electrons couple to both the

Neel vector, ~Sc(~ri) · ~n, and also the ferromagnetic part

of the local spin, ~Sc(~ri) · ~l. Upon integrating out the
electrons, we obtain two 4th order terms, one due to the
coupling to the Neel component and the other to the fer-
romagnetic part. As we have assumed a Fermi surface
that is not nested by the AF wave vector, (π, π), there
is a kinetic energy gap for the former term. Similarly,
there are no low-lying fermionic excitations that couple
to ~n to give rise to Landau damping; hence it remains a
z = 1 theory. The effective Lagrangian in terms of the
Goldstone modes, πa, where a ∈ x, y is,

L =
1

c

∫

dω1

2π

dd~k1

(2π)d
(ω2

1 + c2|~k1|2)πi(k1)π
i(−k1)

+
g

c

∫

dω1

2π
..
dω4

2π

dd~k1

(2π)d
..
dd~k4

(2π)d
(i2)(ω2 ω4 + c2~k2 · ~k4)π

a(k1)π
a(k2)π

b(k3)π
b(k4)δ(k1 + k2 + k3 + k4)

+gk

∫

dω1

2π
..
dω3

2π

dd~k1

(2π)d
..
dd~k3

(2π)d

|ω3|
vF |~k3|

ǫabeǫcde(iω1 iω2)π
a(k1)π

b(k3 − k1)π
c(k2)π

d(−k3 − k2) (2)

Fig. 2 shows the Feynman diagrams for the spin-wave
propagator and the two interaction vertices.

p :
c

ω2 + c2|~p|2

a, k

b, k1 c, k2

d, k3

: −
g

c
(ω1ω3 + c

2~k1 · ~k3)

×δ
ab

δ
cd

b, k3 − k1
d, −k2 − k3a, k1

c, k2 : −gk

|ωk3
|

vF |~k3|
(ω1ω2)

×ǫ
eab

ǫ
ecd

FIG. 2: Feynman rules for the spin-wave propagator and two
vertices. The third diagram is the vertex due to the Kondo
interaction.

The spin-wave coupling, g = c
ρs

, effective Kondo

coupling, gk = π
4 (K

c
)2N(EF ), spin-wave velocity, c =√

2dJSa, and spin-wave stiffness, ρs = JS2a2−d, are de-
rived in terms of microscopic quantities: the Heisenberg
coupling J , Kondo coupling, K, lattice spacing, a, spin
length, S, electronic DOS at EF , N(EF ), and Fermi ve-

locity, vF . For convenience, we have written k = (ω,~k).
Following methods similar to Brezin et al. [23, 24],

we define a renormalized theory at a momentum scale µ,
and invariance of the theory under a change of µ gives
the following Callan-Symanzik (C-S) equation,

(µ
∂

∂µ
+ βc

∂

∂c
+ βg

∂

∂g
+ βgk

∂

∂gk

− N

2
γπ +

N

2
γg)Γ

(N)
r = 0

(3)
We carried out a renormalization group calculation to

1-loop order within the ǫ-expansion, and the system is
taken to be (1 + (1 + ǫ))-dimension. The 1-loop correc-
tions to the spin-wave propagator, G(k), and the Kondo

coupling vertex, Γ
(4)
gk are calculated. The diagrams for the

spin-wave propagator are shown in Fig. 3, and there are
11 diagrams for the Kondo vertex which are not shown
for convenience. We then define the following renormal-
ization factors to absorb the divergences: the spin-wave
coupling renormalization Zg, spin-wave velocity renor-
malization Zc, and the Kondo coupling renormalization
Zgk

. A straightforward perturbative calculation shows
that the spin-wave velocity is renormalized, as expected
from the Kondo term which breaks Lorentz-invariance.
The wave-function renormalization Zπ is obtained from
the 1-loop correction to 〈σ(x)〉. We then obtain the fol-
lowing beta functions,

βg ≡ ∂g

∂ logµ
= ǫg − 1

4π
g2 +

1

8π

c2

vF

ggk

βgk
≡ ∂gk

∂ logµ
= −ǫgk +

1

4π2

vF

c2
g2

+
4π + a1

4π2
ggk − a2

4π2

c2

vF

g2
k

βc ≡ ∂c

∂ logµ
=

1

8π

c3

vF

gk

γπ ≡ ∂ logZπ

∂ logµ
=

1

2π
g

γg ≡ ∂ logZg

∂ logµ
=

1

2π
g − 1

8π

c2

vF

gk (4)

where a1 = 1
4π2 (2

√
π + 4√

π
+ log(2) + 1

2ψ
(0)(3

4 ) −
1
2ψ

(0)(5
4 ) − 1) and a2 = 1

4π2 (5
√
π + 2 log(2) + π3/2

4 (2 +

ψ(0)(− 1
2 )−2ψ(0)(1

2 ))− π
4 − 5

2 ), and ψ(0)(z) is the digamma
function.
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FIG. 3: The two diagrams that contribute at one-loop order
to the propagator. The left diagram is the usual spin-wave
correction, and the right diagram is the correction due to the
Kondo interaction.

From βg and βgk
, we obtain the following RG-flow

phase diagram, Fig. 4, which shows that the unstable
fixed point in the NLSM has shifted to a new tetra-critical
point at gc ≈ 9.1πǫ and gk,c ≈ 10.2πǫ vF

c2 .

Tetra-critical point

~

II

I

III

IV

FIG. 4: Plot of RG flow.

Fig. 4 shows four possible phases within reach of the
ǫ-expansion. In region I, both g and gk flow towards
zero, i.e. a stable AFM phase as expected. In region II,
g flows towards zero and gk flows away to a large value,
indicating that the RKKY interaction between the spins
is relevant. Since the RKKY coupling of the ferromag-
netic moments is relevant, we expect a spiral phase with
the ferromagnetic part of the spin having a wave-vector
of 2kF . A recent spin-polarized STM study of a lattice
of manganese atoms on a tungsten surface shows a spiral
phase with a wavelength of λs = 12nm [25]. The Fermi
wavelength is λF = 20 nm, and 1/2λF ≈ λs, indicating
that it may be an experimental realization of the spiral
phase of our theory (Region II).

In region IV, g flows away to some large value, and gk

flows to zero, which is basically identical to the quantum-
disordered phase in the NLSM. Additional studies [26, 27]
have shown that proliferation of topological excitations
drive the system into a valence-bond solid state. In re-
gion III, both g and gk flow away to some large value,
indicating a Kondo driven paramagnetic phase where the
Kondo coupling is relevant and the spins are disordered.
A possibility would of course be a heavy fermi liquid PM
state, but more exotic Kondo-stabilized spin liquid states
as mentioned above are also possible.

We study the nature of the tetra-critical point, and
show that it is an infinite-order phase transition governed
by a logarithmic singularity. We solved Eq. 3 and 4 near
the QCP, and obtained the correlation length, spin-wave
velocity and propagator. The C-S equation is solved in
a standard manner using the method of characteristics,
and is given by

Γ(2)
r (ω, c|~k|, g, gk) = exp−

R p
µ

d log µ
′

γg−γπ

Γ(2)
r (ω, cr|~k|, gr, gk,r) (5)

where, cr, gr and gk,r are solutions of Eq. 4, and p =
√

ω2 + c|~p|2 is the momentum scale we are interested in.
Solving the Hessian of βg and βgk

gives two negative
eigenvalues, showing that the tetra-critical point is an
unstable fixed point, and the dominant eigenvalue lies
along the separatrix between regions I and IV. Since the
three coupled β functions are difficult to solve in general
near the critical point, we will solve it along the direc-
tion of the dominant eigenvalue, where we know g as a
function of gk and c. Linearizing the β functions we are
able to obtain the following solutions.

c(µ) ≈ c0
√

1 + 1
2 log y(µ)

y0

y(µ) ≈ y0

(

2ProductLog

(

1

2
exp

(

1

2
(
Λ

µ
)

5

2ǫ

)))2

(6)

Λ is the cutoff of the bare theory with the unrenormal-
ized parameters. Here y is defined as gk = gk,c(1−y), and
y0 measures the initial distance from the critical point.
The function ProductLog(x) is also known as the Lam-
bert function, W (x). From Eq. 6, we obtain the correla-
tion length, ξ when y(µ) ∼ 1, and a0 ∼ Λ−1.

ξ

a0
≈
(

y(µ)

y0

)
1

5ǫ
(

log
y(µ)

y0

)
2

5ǫ

(7)

This shows that we have an infinite-order phase transi-
tion that is dominated by a logarithmic singularity. The
phase transition due to spin-wave fluctuations seen in the
NLSM is now dominated instead by Kondo fluctuations
of the spins. This clearly shows that local Kondo fluctu-
ations play an essential role in driving the QPT, and is
reflected in the Kondo interaction being relevant for the
two phases found in region II and III.

We also solved for the spin-wave propagator near the
QCP using Eq. 5, which gives,

Γ(2)
r ≈

(

y(µ)

y0

(

log
y(µ)

y0

)2
)

1

2
+ 1

5

(

ω2 +
c20|~k|2

1 + 1
2 log y(µ)

y0

)

(8)
Note that in Eqns. 6 - 8, the exponents are numerical

values that depend on a1 and a2; the actual values are
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1
2 ≈ 1

1.96 and 1
5 ≈ 1

4.97 , which we closely round off in the
exponents.

Eq. 6 shows that for small enough momentum, p ≪
(e + 2)−

2

5ǫ Λ, the spin wave velocity scales logarithmi-
cally, which can be seen as a cross-over length-scale from
Gaussian behavior to critical behavior of the spin waves.
Similar behavior occurs in the Grinstein-Pelcovits renor-
malization of the elastic constants in smectic crystals [28].
Therefore for a small enough region close to the QCP and
small enough momentum, the spin-wave velocity scales
logarithmically as,

c(µ) ∼ c0
√

log y(µ)
y0

(9)

Thus for asymptotically small momentum, the spin-
wave velocity vanishes logarithmically, indicating break-
down of hydrodynamic behavior. This implies that the
spin waves become increasingly localized near the QCP,
and that localized Kondo-induced spin flips that fluctu-
ate temporally may also be critical modes at the QCP,
which may be a mechanism for driving the system into a
heavy fermion or new exotic phase. Similar ideas of local
quantum criticality have been proposed by other groups
[18, 29], and a similar study using Shankar’s fermionic
RG method found a Lifshitz transition [30].

In conclusion, we have studied the antiferromagnetic
quantum phase transition of a Kondo lattice with a small
Fermi surface. Since the Fermi surface has no “hot”-
spots nested by (π, π), there is no Landau damping of
the spin waves, and the theory remains z = 1. The effec-
tive theory contains a new Kondo driven interaction that
significantly renormalizes the spin wave velocity, and is
essential in driving the quantum phase transition.

The RG results suggest a possible phase diagram with
two disordered phases, one with the Kondo coupling rel-
evant, and the other with the Kondo coupling irrelevant,
where exotic phases with fractionalized quasi-particles
may be found. One result of our calculations is that
the Kondo coupling is irrelevant in the magnetic phase,
but is relevant in one of the disordered phases, which is in
agreement with some of the experimental results showing
a change in Fermi surface size [14].

The key result of our RG calculations is that the QCP
of the NLSM is now shifted to a Kondo-driven infinite-
order QCP that is characterized by a logarithmic sin-
gularity. The velocity of the critical modes are loga-
rithmically slowed down due to Kondo fluctuations with
the conduction electrons near the QCP, leading to lo-
calization at sufficiently small momenta. This clearly
shows that local Kondo physics plays an essential role
in the quantum phase transition, as opposed to the stan-
dard view of a spin wave driven QPT that is seen in the
NLSM. The logarithmic scaling of the spin-wave veloc-
ity is a quantum analog of a similar logarithmic scaling
of the elastic coefficient seen in a classical Lifshitz tran-
sition. The appearance of localized critical modes at a

QCP, termed local quantum criticality, is a topic of great
current interest. An outstanding issue is the effects of
topological excitations on the QCP that we have found,
especially in the presence of Kondo coupling to conduc-
tion electrons. Our work could be of relevance to heavy
fermion systems that display effective 2D-like transitions,
and also to STM-engineered 2D Kondo lattices.

We would like to thank Steve Kivelson, Steve Shenker
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