
RJ10438 (A0811-005) November 4, 2008
Computer Science

IBM Research Report

Interpreting Hand-Written How-To Documentation

Tessa Lau, Clemens Drews, Jeffrey Nichols
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Interpreting Hand-Written How-To Documentation

Tessa Lau, Clemens Drews, and Jeffrey Nichols
IBM Almaden Research Center

650 Harry Rd
San Jose, CA 95120 USA

{tessalau,cdrews,jwnichols}@us.ibm.com

ABSTRACT
Hand-written instructions are a common way of disseminat-
ing how-to information. However, studies have shown that
written instructions are difficult to follow. Users could bene-
fit from a system that understands hand-written instructions
and provides users with assistance in following them. While
general natural language understanding is extremely diffi-
cult, we believe that understanding should be possible in the
more limited domain of how-to instructions. In this paper,
we present an investigation of parsing and understanding
hand-written instructions. We began by collecting a cor-
pus of instructions for 43 web-based tasks. A qualitative
study of these instructions revealed that despite a wide vari-
ation in quality, there is a common set of verbs and nouns
that are used to describe tasks on web sites. We then imple-
mented and compared three how-to instruction interpreters:
one based on keyword matching, one based on a grammar,
and one using machine learning. The best of these inter-
preters achieved 53% accuracy in interpreting instructions
in our corpus.

Author Keywords
instructions, how-to, documentation, parsing, interpretation

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces

INTRODUCTION
Written how-to documentation is everywhere, from the in-
struction manuals that accompany software packages to FAQ
documents available online. Like a cooking recipe, these in-
structions tell us in step by step order how to accomplish
a task. Today, many instructions are distributed in elec-
tronic form. For example, in the enterprise, employees are
routinely sent instructions via email on how to update their
emergency contact information, classify their IT assets, trans-
fer employees into a different division, or search for job
openings. In the consumer web space, webmasters are pub-
lishing tutorials on how to use their applications.

Submitted for review to IUI 2009.

Unfortunately, studies have found that people have difficulty
following written instructions [8, 14]. Some people report
difficulty mapping from the written instruction to the target
on the screen, and having to systematically search the on-
screen interface for the named button. Others lose track of
where they are in the instructions, resulting in following in-
structions out of order, or missing steps entirely. Such prob-
lems can be exacerbated if users are distracted in the middle
of the tasks and must return to them later having lost most of
their context.

While guided help systems such as Coachmarks [2], Sten-
cils [5], and CoScripter [9] partially address this problem,
most such systems rely on documentation that has already
been authored for use with their system. They cannot take
advantage of the vast array of existing how-to literature al-
ready available on the web that has been written for humans
by humans. If we could automatically parse and interpret
these instructions, we could augment these guided help sys-
tems with a much broader library of documentation and im-
prove the user experience of how-to instructions.

Ultimately, the problem of understanding hand-written in-
structions amounts to understanding natural language. How-
ever, we believe that most instructional material uses a more
structured subset of language that may be amenable to au-
tomated processing, particularly if we limit the domain of
interest to a specific platform. In the web domain, which
is the focus of this paper, much documentation uses a com-
mon set of terminology to describe operations, using verbs
such as “click” and “type” and objects such as “link” and
“textbox”.

In this paper, we formalize the problem of understanding
how-to documentation and contrast three different approaches
to the problem. We evaluate our results on several datasets
of hand-written instructions collected from the internet and
email. Our best algorithm, based on machine learning, is
able to understand 53% of the usable statements in our dataset.

In summary, this paper makes the following contributions:

• A formalization of the problem of understanding hand-
written how-to instructions;

• A qualitative analysis and manually-labeled corpus of hand-
written instructions collected from the internet; and

• A comparison of three algorithms for interpreting written
instructions automatically.

1

We begin with a brief overview of related work. We then
introduce the data we have collected and present an initial
qualitative analysis of the data. Next, we introduce the prob-
lem of understanding how-to instructions, and describe our
three approaches to the problem. We then report the results
of a comparative study of the performance of our three ap-
proaches, and discuss the implications for system design. Fi-
nally, we conclude with a discussion of future work.

RELATED WORK
Previous studies have illustrated some of the limitations of
how-to documentation, and proposed various approaches to
fix it. Lau et al’s Sheepdog project [8] found that people
have difficulty following directions online, including diffi-
culty mapping from the written text to the on-screen widget
and difficulty following instructions in the correct sequence.
Prabaker et al’s DocWizards system [14] presents users with
a guided walkthrough of demonstrationally-authored docu-
mentation, highlighting steps as necessary in the Eclipse in-
terface to visually lead users through the instructions. The
CoScripter system [9, 10] provides a similar guided walk-
through interface for web tasks. All of these systems assume
that instructions have previously been recorded in a propri-
etary format; progress on automatically interpreting hand-
written instructions could enable each of these systems to
work with a much wider library of existing instructions.

Our work has been inspired by previous systems that auto-
matically parse hand-written requests in email. For exam-
ple, Tomasic et al’s VIO system [15] parses hand-written
instructions in email and automatically extracts commands
to fill out a form to effect a change on a web site. Where
VIO is designed to work with a pre-specified set of possible
forms, our system aims to work with arbitrary web pages,
where the set of possible actions is not known in advance.
Lockerd et al’s Mr. Web system [12] found that users utilize
a constrained form of English when communicating with a
webmaster over email. We believe a similar effect occurs in
how-to documentation, where a constrained form of English
is used to describe interactions with web applications.

Our work follows in the footsteps of Perkowitz et al’s work
on mining models of human activity from the web [13]. Their
PROACT system uses RFID tags in the local environment to
sense objects being interacted with, and then mines the web
for human-written activities involving these objects (e.g., a
pot and the water faucet are used to make tea). PROACT
then uses these activity descriptions to do activity recogni-
tion based on RFID sensor input. In contrast, we are mining
how-to instructions in order to actually carry them out on a
user’s behalf, rather than simply recognizing when then are
being done.

Little and Miller’s Keyword Commands system [11] was one
of the first to interpret user-generated instructions as actions
on web pages. Their algorithm for parsing hand-written in-
structions is similar to one of the three interpreters we exam-
ine in this paper. While keyword-based approaches are great
at interpreting underspecified commands, they can produce
many false positives when given instructions that do not con-

scenarios # steps # segments
MT1 24 158 274
MT2 19 142 289

Table 1. Summary of datasets

tain any actionable commands (which occur frequently in the
datasets we have studied).

DATASETS
In order to evaluate our algorithms on hand-written instruc-
tions, we wanted to collect a corpus of instructions written
by people describing how to accomplish a task on the web.
We crowdsourced the problem by creating a set of tasks on
Amazon’s Mechanical Turk marketplace, asking volunteers
to write how-to instructional text in exchange for USD$0.25
per set of instructions. As Kittur et al found [6], we needed
to iterate several times on our task description in order to get
our workers to produce the desired output.

In our first iteration, we gave users a single text box and
asked them to write up instructions, including the goal of
the task and the website to which it was applicable. The
responses we received for this task were very high-level.
For example, one response began with: to search for free
samples on the internet, go to a search engine and type in
“free samples” as a keyword. We were hoping to have more
specific instructions explaining exactly what page to visit,
which buttons to click, which form fields to fill in, etc.

So we reformulated the task in a way that we hoped would
encourage workers to provide more structured, detailed in-
structions. We explicitly asked participants to write instruc-
tions for novice computer users. Instead of a single textbox,
we provided a sequence of ten individual textboxes labelled
“Step #1”, “Step #2”, and so on. An overflow box was given
for additional steps. We also asked them to fill in the URL to
which these instructions referred (and included a JavaScript
verifier that would not let them submit their instructions un-
less it contained a URL). Finally, we offered bonus payments
for more detailed instructions.

The results from the reformulated task were much more spe-
cific and in line with what we had been expecting. Our work-
ers wrote up instructions for a wide range of websites and
tasks. Their scenarios included how to create a gmail ac-
count, how to buy a fan on Amazon.com, and how to create
a level 70 WarCraft character using a web-based character-
editing tool. Most of the scenarios described tasks on publically-
accessible websites, though several required authenticated
access to perform, such as logging in to Wachovia’s online
banking site, or accessing a university’s internal website.

We collected two sets of instructions using the revised Me-
chanical Turk task and formed two datasets, MT1 and MT2.
MT1 contains 24 scenarios, with a total of 158 steps. MT2
contains 19 scenarios, with 142 steps.

2

QUALITATIVE ANALYSIS
We began this project with a number of hypotheses about
the nature and structure of how-to documentation. However,
once we began analyzing the dataset, we were surprised by
a number of features. First, there were a large number of
spelling and grammar mistakes in the collection. For exam-
ple, this step was part of a set of instructions on how to use
Google search:

I 1. Click “I’m Felling Luck’ to go direclty to a website
that involves your description.

The three misspellings and pair of mismatched quotes are
representative of the mistakes we found in the larger cor-
pus. For the results described in this paper, we have left the
data intact and not done any spelling or grammar correction
on the data. Any excerpts quoted in this paper preserve the
original mistakes made by the authors.

Second, there was a large variation in complexity of each
individual step description. Some participants described one
action per step, such as the example above. Others grouped
together many actions into a single step:

I 2. After you have filled in the information on this page,
click the bottom button that says “Next.” Now a form that
asks for more information will pop up. If the bank already
has information about your payee (such as the electric com-
pany), then an address will pop up. Check to see that the
address is correct. Fill in the address if the form doesn’t
have one already. All the spots that have asterisks next to
them need to be filled in or you won’t get to have your payee
confirmed. Hit the “Next” button on the bottom of the page
after you have filled in all the parts of the form.

This step includes multiple instructions as well as commen-
tary about those instructions. For example, the author ad-
vises the reader that the starred fields are required, and to
double-check that the address shown is correct.

Another feature illustrated by this example is the presence of
verification steps. These are instructions that help the reader
keep in sync by advising the reader what to look for or what
to expect. In the previous quote, “now a form that asks for
more information will pop up” is an example of a verifica-
tion step. No action needs to be taken for this instruction; it
merely advises the reader that in order to proceed, this form
must now be visible on screen. While our current algorithms
do not attempt to do anything with this type of instruction,
we envision future systems being able to understand these
verification steps and use them to ensure the user is on the
right path.

We also assumed that writers would use a simple verb-object
grammar to describe actions on web pages. However, we of-
ten found out-of-order instructions – instructions where the
description of the object to be interacted with came before
the instruction to operate it, such as in the following exam-
ple:

Action Value Target type
Go to URL -
Click - link
Enter text textbox
Select listitem listbox
Turn on/off - checkbox/

radiobutton

Table 2. Supported web commands

I 3. Just underneath where is says “Step 1” there is a
button saying “browse”, click on it.

We also observed the presence of many conditional steps,
such as the following:

I 4. If you would like the Wikipedia page to remember
your user id everytime you go there, then click the ‘Remem-
ber Me’ box. If you are on a public computer (i.e. people
other than use use the computer) and you do not want others
to be able to edit data in your name, then do not click this
box; you will be required to sign-in everytime you would like
to add/edit something on Wikipedia.

Finally, we noticed that several steps contained implicit lan-
guage:

I 5. You can use the “Preview” button to see how it looks.

There is no explicit instruction to click the Preview button,
only advice that one can click it if they wanted to. A human
reading this step may or may not choose to click the button,
depending on their needs.

Labeling the data
Because our goal is to be able to automatically understand
commands in handwritten documentation, we manually la-
beled our datasets.

Based on reading the instructions and manually following
them ourselves, we identified a number of “web commands”
that describe operations on web pages (Table 2). These com-
mands collectively cover the vast majority of instructions on
web pages, with click being the most frequent action.

In addition, we observed a number of different methods of
identifying the interaction target on each page. While peo-
ple occasionally used color or location to identify targets,
the most common descriptor seemed to be a textual string
representing the target’s label or caption (e.g., “the Regis-
ter link” or “the Preview button”). Thus, we have made the
assumption that the combination of action, value, target la-
bel, and target type suffices to uniquely specify the desired
interaction within each command.

Some steps contained more than one web command. In or-
der to simplify the problem, we split each step into one or
more segments, such that each segment contained at most
one command. Commentary/advice were split into separate
segments. Table 1 shows how many segments were identi-

3

Action type MT1 MT2
Go to 18 14
Click 101 100
Enter 51 40
Select 1 0
Check 3 0
No action 100 135

Table 3. Segment types in each dataset

fied in each dataset.

Then we labeled each segment with the type of command (go
to, click, enter, select, check, or no action). Table 3 shows
the breakdown of command types in each corpus. Clicks
were the most commonly-occurring action, followed by en-
tering text. A large fraction of segments did not describe
an action; these represent the commentary/advice segments
discussed earlier.

UNDERSTANDING HOW-TO INSTRUCTIONS
At a high level, we have formalized the problem of under-
standing how-to instructions into two parts: segmentation
and interpretation (Figure 1). Given a document containing
written instructions, we first segment the document into in-
dividual segments S1, S2, ...Sn such that each segment con-
tains at most one command. For a first pass, we can leverage
the structure of the document; many how-to documents use
bulleted or numbered lists to organize instructions into a se-
quence of steps.

However, within each step, the text may describe one or
more commands to perform. For example, the text “enter
your name and click go” contains the two individual com-
mands “enter your name” and “click go”. Each command
has a different action type (enter, click) and is applied to
a different target in the application. The second phase of
segmentation splits each step into the individual segments
contained within the step.

Second, given a step segment and the context in which that
instruction is to be followed (e.g., the web page to which the
instruction applies), we want to interpret that instruction rel-
ative to the web page and formulate an executable action.
The executable action should contain enough information
for a machine to programmatically perform this action on
the given web page.

~~~~~

~~~ ~
~ ~~

Segmentation

~~ ~~~~~~~ ~~
Interpretation

Web
page

Figure 1. Understanding how-to instructions

We represent an executable action as a tuple EA = (A, V, T)
containing:

• A - Action: the type of action to perform, such as going
to a URL, clicking a link, entering text, selecting an op-
tion from a listbox, or turning on/off a checkbox or radio
button

• V - Value: the URL to go to, the text to enter in a textbox,
or the value to be chosen from a listbox

• T - Target: the uniquely specified target on which to op-
erate

A target T can be identified in a number of ways. For in-
stance, the XPath of a node within an HTML DOM can be
an unambiguous identifier. However, textual references in
written instructions often employ a more user-friendly iden-
tification scheme based on a target’s label and type. There-
fore, we use two properties to specify the target T :

• TL - Target label: a textual description of a target, which
may be its label, caption, or other descriptive text

• TT - Target type: the type of a target (e.g., link, textbox,
listbox)

A target label and target type is not always sufficient to uniquely
identify a target if there is more than one such target fitting
that description (e.g., two buttons labeled search). One so-
lution is to specify an ordinal (e.g., the second button) or a
qualifier (e.g., the button under the Windows logo) for dis-
ambiguation. While we saw a few instances of these dis-
ambiguators, they occurred rarely in our datasets. We have
chosen not to use them as target specifiers.

The next two sections describe our approach to the problems
of segmentation and interpretation.

SEGMENTATION
Examination of the MT1 dataset revealed that compound
steps (steps containing more than one segment) were very
common. Authors frequently grouped together multiple in-
structions to be performed on the same page into the same
step. However, in order to programmatically execute these
instructions, we need to split each step into its component
instructions so that they can be interpreted individually.

We experimented with two different approaches to segmen-
tation. Our first approach, the Simple Segmenter (SS), used
a simple tokenization scheme to split each step on occur-
rences of the word and, the word then, periods, and new-
lines.

Our second approach, a Machine Learning-based Segmenter
(SML), used machine learning to predict segment regions.
We used MinorThird [3] to train a CRF learner [7] to extract
segments from steps. The CRF learner classifies each token
in an input document into whether it begins, continues, or
ends a segment region. The features used for classification
were the default features used by Minorthird, and include the
token value, values of tokens to the left and right, character

4

Precision Recall F1
SS 0.42 0.57 0.48
SML 0.58 0.47 0.52

Table 4. Comparison of segmentation algorithms

types (e.g., punctuation), and the classification of previous
tokens in the document. We trained SML on the MT1 train-
ing set, and report results for both algorithms on the MT2
dataset.

The results are summarized in Table 4. Both SS and SML

have fairly low precision and recall. The low performance is
primarily due to the difficulty of the segmentation problem
and the challenge of doing shallow segmentation without ac-
cess to a language model.

The SS algorithm suffered from the expected problems of
using surface-level features for segmentation. For example,
the word “and” sometimes is used to delimit segments, and
sometimes is used in a label or as a conjunction within a
single segment. For example, SS mistakenly splits the fol-
lowing step on the word “and”:

I 6. In the upper left corner, enter in the account number
and password associated with the account

Similarly, splitting on periods is often the correct choice, but
fails on cases where periods are used within a sentence, such
as in the expression “e.g.”. Using a language model would
likely improve our results significantly.

Another challenge for the segmenter was verification steps,
such as “now the picture should appear on the screen.” Al-
though we labeled verification steps as separate segments,
instruction writers often combined these with commentary
and actions, making it difficult to automatically split those
steps into segments. For example, both SS and SML mis-
classified the following steps as each being a single segment
(curly braces indicate true segment boundaries):

I 7. {When your inbox has come up}, {you can see how
many new emails you got}

I 8. {The website will display the payment information
for you to review}, {if everything looks correct click on con-
firm.}

INTERPRETATION
As shown in Figure 2, interpreters take as input a segment
and its associated context (such as a web page) and output
an executable action EA that can be taken on that web page.

We have developed three different approaches to interpret-
ing how-to instructions. The sloppy interpreter (SL) is a
keyword-based algorithm that uses the web page context and
the words in the instruction to directly generate executable
actions for that web page. The structured interpreter (ST)
uses a grammar-based parser to extract the action, value, tar-
get label, and target type from the instruction. It then uses a

resolver to search the current web page for a target with this
label and type, and outputs an executable action composed
of the predicted action, value, and target. Both SL and ST
have been used in the CoScripter system; SL in the origi-
nal version [10] and ST in the current version. The machine
learning-based interpreter (ML) is similar to ST except that
instead of the grammar-based parser, it uses trained docu-
ment classifiers and information extractors to predict the ac-
tion and extract the value, target label, and target type from
each instruction. It then uses the same resolver used in ST to
resolve the target descriptor into a target on the current web
page.

The intermediate representation (A, V, TL, TT) is produced
by both ST and ML, which is then resolved into an exe-
cutable action (A, V, T) on a specific web page. However,
because SL does not produce this intermediate representa-
tion but directly produces the executable action, we can-
not compare its parsing performance to the other two ap-
proaches. We can only compare all three approaches on the
executable actions they produce.

Sloppy Interpreter
The SL algorithm has been described in more detail previ-
ously [10], however we will briefly discuss it here.

SL interprets a segment of text in the context of a web page.
It begins by enumerating all elements on the page with which
users can interact (e.g., links, buttons, text fields). It then
generates a label for each element using the getLabel
function described below. SL then assigns a score to each el-
ement by comparing the words in the input instruction with
those in the element’s label. The highest scoring element is
output as the predicted target.

The scoring process works as follows. Each element starts
with an initial score of 0. For each word in the instruc-
tion that matches a word in the element’s label, SL increases
the score of that element. The increase is uniform for most
matching words, however certain common words (such as
“the”) have been downweighted. An element’s score is also
increased if a verb appears in the instruction that can be ap-
plied to the element. For example, if click appears in the

Sloppy interpreter

Segment
Executable
action I

Strict
parser

Segment
Resolver Executable

action I

Context

Context

ML
parser

Segment
Resolver Executable

action I
Context

Strict interpreter

ML interpreter

Figure 2. Three interpreters: sloppy (SL), structured (ST), and ML

5

instruction then all link elements would have their score in-
creased, and similar increases would happen for text fields
if enter appeared. If target type appears in the instruction,
such as link and text box, then elements of that type
will also have their score increased. If after scoring all el-
ements on the page, two elements have the same score, SL
picks the one that appears first on the page.

Once an element has been found, it determines the type of
action to be performed on it. For example, links are always
imply click actions; textboxes imply enter commands.
Certain actions, such as enter, also require a value. This
value is extracted by removing words from the instruction
that are closely associated with the element label; the re-
maining words are likely to be the value. Additional heuris-
tics are used to improve accuracy, such as preferring words
that follow a preposition.

The sloppy parser was originally designed with the assump-
tion that its input will always contain an action, and thus
it will always produce an action that can be executed on the
current web page. We expect SL to generate a number of un-
wanted results with the datasets we collected as they contain
a number of steps that are not meant to describe an action
that is to be executed.

Structured Interpreter
ST uses an LL(1) parser that parses imperative English in-
structions that are applicable to the web domain. This limits
the flexibility of the instructions that can be recognized, but
has the advantage that it is simple, fast, and precise. If the
structured parser accepts an instruction we can be very sure
that it is a well formed statement. Statements it successfully
accepts are of the form:

I 9. go to www.gmcard.com

I 10. click on the “Save and Submit” button

The verb at the beginning of each statement describes the
action. Optionally a value can be specified, followed by a
description of the target label and an optional target type.
Figure 3 shows an excerpt of the BNF grammar recognized
by this parser, for click actions. The result of a successful
parse of a human readable instruction is the extraction of the
tuple Action A, Value V , Target Label TL and Target Type
TT from the parsed instruction.

If the instruction is successfully parsed by ST, then we make
sure that the instruction is valid in the context of the current
web page. This process is shared with the machine-learning
based interpreter and is discussed later.

Click ::= click {on} the TargetSpec
TargetSpec ::= TargetLabel {TargetType}
TargetLabel ::= “String”
TargetType ::= link | button | item | area

Figure 3. Excerpt from structured parser’s grammar

Machine learning-based interpreter
Interpreting written instructions can be formulated as a ma-
chine learning problem. By using state-of-the-art informa-
tion extraction techniques, we hypothesized that we could
build a parser that is more tolerant of variations in instruction
wording (one of the weaknesses of the structured parser) yet
achieves a higher precision than the keyword-based sloppy
parser.

Using the MT1 dataset, we trained a multi-class document
classifier on the set of segments. For each segment, this clas-
sifier predicts a class label representing the action type of
the segment (goto, click, enter, select, check, or no action).
We used the OneVsAll learner from the MinorThird pack-
age [3], which builds N different classifiers, each of which
discriminates between instances of one class and all the re-
maining classes. The results of the N individual classifiers
are combined to form the final prediction. We used the de-
fault MinorThird settings, which specify a Maximum En-
tropy learner as the inner classifier, and used the default set
of features.

Once each segment has been classified with an action, we
trained individual extractors to identify the crucial parts of
each segment necessary to execute it. For goto actions, we
extract the URL. For clicks and checks, we extract a target
type and a target label – enough to specify which target to
click on. For enter actions, we extract the target type, target
label, and (where possible) the text to enter into the text field.
For select actions, we extract the target type, target label, and
the name of the item to select from the dropdown.

For each of these 11 extraction tasks, we trained a separate
annotator using the MinorThird toolkit. Each annotator was
trained on the labelled data in the MT1 dataset. For example,
the goto-value annotator was trained to extract the values
from the 18 goto segments in MT1. We used the default
MinorThird settings to create the annotators, which use a
VPHMM learner [4].

Once the target label and target type have been identified
for each action, we use the same algorithm as the structured
parser to map this description to a specific target on the web
page.

Resolving targets
Our current system resolves the target label and target type
into the target element using a function called findTarget.
The parsing stage of the interpreter will have extracted an
action, a target label and a target type. These latter two val-
ues are passed to findTarget, and, if successful, find-
Targetreturns a HTML DOM element as the target. The
extraction is done in three steps.

First, findTargetidentifies all targets of the desired target
type on the current web page. For example, the target type
“link” will enumerate all link elements. For the type but-
ton, the enumeration contains the union of all elements of
type button, all input elements with a type attribute of
submit, and all link elements that contain an image.

6

Next, findTargetgenerates one label for each element
in the enumeration using a getLabelfunction. getLa-
beltakes a DOM node as a parameter and returns a label
for that element. The label is generated from text the au-
thor of the web page explicitly or implicitly used as a label,
including the HTML label element, alt text and other
accessibility features of HTML. If none of these are avail-
able, getLabel will extract visible text in close proximity
to the element to use as a label. Heuristics are used to gener-
ate the best possible label. For links, an easy heuristic is to
use the text enclosed in the link element. For a checkbox,
any text immediately to the right will be used first, and text
to the left is used only if no text is found to the right.

Finally, findTargetcompares the labels generated by get-
Labelfor each element in the enumeration against the tar-
get label. If an exact match is found, then that element is
returned as the target. It is important to note that this imple-
mentation of findTargetwill fail to find a target if it is
given a partial label, such as “Search” for a button actually
labeled “Google Search”. We will discuss the implications
of this behavior for our results later in the Discussion sec-
tion.

Contrasting the interpreters
We expect the three different interpreters to have different
behavior on our dataset. SL performs a keyword-based match
between the instruction and the web page, which allows it to
predict an action even when the instruction is underspecified.
However, this same characteristic makes it unpredictable on
text that does not contain a direct command; SL will always
predict some action, even if the instruction does not contain
a command.

In contrast, the ST parser relies on a grammar to parse in-
coming statements. Because few people write their instruc-
tions exactly according to our grammar, we do not expect
ST to achieve a high recall – we expect very few of the in-
structions in the dataset to match the ST parser’s syntax ex-
actly. However, when a statement does match the grammar,
we expect ST to have a very high precision, and parse the
statement correctly.

We hope that the ML parser combines some of the best fea-
tures of SL and ST. By examining features of the entire input
segment, we expect it to be able to predict the action type
with fairly high precision, despite variances in wording that
would trip up the ST parser. The extraction model learned
by the ML parser will also hopefully be better at recognizing
target labels and target types than the ST parser, which can
only recognize target descriptors when the entire command
obeys the correct syntax.

The ultimate performance of the ST and ML interpreters will
depend on the capabilities of the resolver component and its
findTargetfunction. For the purposes of this paper we
describe a very simple resolver, which is only capable of
finding targets given their exact label. Therefore the instruc-
tion must mention the full label of each target (and be spelled
correctly) in order for the ST/ML resolver to correctly re-

Action Value Target Target Total
Label Type

ST, all 0.50 0.88 0.66 0.71 0.43
ML, all 0.84 0.88 0.76 0.78 0.50
ST prec 0.91 1.00 0.75 0.50 0.82
ST rec 0.06 0.08 0.06 0.01 0.06
ML prec 0.82 0.32 0.67 0.79 0.27
ML rec 0.84 0.24 0.34 0.26 0.28

Table 5. ST/ML parser comparison. “All” reports the accuracy of each
system on the full test set. “prec” is the fraction of correctly predicted
items out of the set of segments with a prediction. “rec” is the fraction
of items for which the correct prediction was made, out of the total
number of segments with an action. The “Total” column reports when
the system gets all possible fields correct.

solve that target on a web page. In contrast, by combining
parsing and resolving into a single step, SL’s algorithm is ca-
pable of locating targets given few or no words of the target
label. This feature should give SL an advantage when the
target is underspecified.

EVALUATION
We compared the performance of our interpreters using two
different experiments. First, since the ST and ML inter-
preters both generate an intermediate parse of the input seg-
ment, we were able to directly compare the performance of
the parser components by comparing their intermediate rep-
resentations.

However, parsing is only the first step to understanding; we
would also like to know whether the interpreter produces the
correct executable action given an input segment. Our sec-
ond experiment evaluates the performance of all three inter-
preters and compares their ability to produce complete exe-
cutable actions given instructional segments.

Parsing performance
The ST and ML parsers both produce intermediate parses of
each instruction segment prior to resolving them into full-
fledged executable actions on a web page. Due to the large
variation in writing styles, we expected the structured parser
to be able to parse only a small subset of the handwritten
instructions (the subset that conforms to the syntax we have
defined for web commands).

As the first two lines in Table 5 show, the ST parser and
the ML parser exhibit nearly comparable performance on
the MT2 dataset. However, the ML parser is much more
effective at recognizing actions than the ST parser. This is
due to the fact that the ST parser rarely recognizes any ac-
tions as being grammatically correct, and its default is to pre-
dict noaction. Since nearly half of our dataset consists of
noaction segments, a default prediction of noaction
causes the ST parser to do fairly well. However, a system
that always predicted not to do anything with instructions
would not be a very useful system.

So we measured the performance of the ST and ML parsers
on only the subset of segments that contain actions. The

7

precision and recall figures in Table 5 reflect these metrics.
Precision measures the fraction of times the parser made the
correct prediction, out of the total number of labelled in-
stances (i.e., segments that contain an action, ignoring the
noaction segments as unlabeled). Recall measures the
fraction of correctly predicted labels out of the total number
of labelled instances. These metrics effectively ignore the
noaction segments in the dataset and focus on the sys-
tem’s performance with segments that do specify an action.

In this condition, the ST parser displays extremely high pre-
cision (91%) but abysmally low recall (6%). Of the 154 seg-
ments that contain an action, the ST parser made a predic-
tion for only 11 of those. These numbers are consistent with
our hypothesis that the ST parser would not be able to parse
most of the instructional segments due to the wide variation
in language used by participants to express web commands.
On the other hand, where it is able to parse a segment, it
nearly always parses it correctly. The value is extracted with
100% precision and target label with 75% precision. The
low target type precision (50%) is correlated with the ex-
tremely low target type recall (1%), which basically means
that very few of the statements contained a target type in the
syntax expected by the ST parser. Of those two, one was
correct and one was incorrect.

By comparison, the ML parser performs much better. Recall
that the ML parser uses a multi-class classifier to predict the
action type given the entire input segment. It correctly pre-
dicts the action 82% of the time, with an 84% recall, show-
ing that the ML parser is generally able to classify segments
with the correct action. The ML parser’s performance on the
extraction tasks (extracting the value, target label, and tar-
get type) is still comparable with the ST parser overall; but
focusing on the actionable steps, its recall is much higher.
This shows that the ML parser is able to extract these fields
from the unstructured text much more often than the struc-
tured parser can, and shows the benefits of the ML approach
over the use of a strict grammar.

Interpretation performance
We evaluate the interpretation performance of SL, ST, and
ML interpreters by comparing their performance each to the
performance of a test subject. The test subject was given an
instruction segment and the matching web page. The sub-
ject noted the action that would result from following this
instruction. We compare the human subject’s action against
the executable action predicted by our interpreters, and count
our prediction as correct if they match.

We evaluated the interpreters on the MT2 dataset. Some
instruction segments had to be discarded to assure that we
could deterministically compare the actions generated by the
human subject with the ones generated by the SL, ST, and
ML interpreters. We could only verify actions on web pages
we had access to. Some instructions that required accounts
on financial institutions’ websites were discarded. Other in-
struction segments had to be discarded because the web page
had changed in such a way that the instruction was no longer
applicable. For example, facebook.com underwent a major

update of their user interface, and many of the instructions
for facebook.com are no longer applicable to the new inter-
face design. Instruction that required a human interpreta-
tion, knowledge only a human could provide, or that speci-
fied multiple targets were also discarded. Table 6 illustrates
the segment classes that were discarded.

Total in MT2 289
Inaccessible 122
Requires Human Interpretation 30
Segments for study 137

Table 6. Classification of segments for interpretation experiment

The results of the overall interpretation performance exper-
iment is shown in Table 7. As we expected, ST performed
very poorly on everything but noaction instructions in the
the MT2 dataset and very well on noaction instructions.
The overall performance of ST therefore looks much better
than it really is. Since the dataset used contains nearly 50%
noaction instructions, the interpretation performance of
ST can be expected to be at least that high. SL performed
well on segments that contained an action, but since it lacked
the ability to predict noactions, its overall performance is
diminished.

action
Interpreter click enter goto noact. total
SL 0.46 0.22 0.77 0.00 0.23
ST 0.03 0.00 0.08 0.99 0.50
ML 0.31 0.06 0.23 0.84 0.53
Total 39 18 13 67 137

Table 7. Percentage correctly-interpreted segments for each action
class

Overall the ML interpreter was able to successfully recog-
nize twice as many instructions as SL, and that without the
problems that SL has when it comes to noaction instruc-
tions. It recognized more than 80% of those. Its performance
on interpreting enter instructions is low. This is due to the
fact that it had trouble extracting the exact value component
that was meant to be entered in the target.

DISCUSSION
The sloppy interpreter used in the original CoScripter sys-
tem (formerly known as Koala) was amazingly simple, and
performed well on a wide variety of instructions. However,
the downside to its lax approach to parsing is that it often
incorrectly parses statements and suggests incorrect actions.
When used to automate script execution, scripts would of-
ten go awry, clicking the wrong links and leading the user to
unpredictable web pages.

The interpretation performance reported for SL agrees with
our field observations. While SL correctly interpreted many
of the statements, it never correctly predicted noaction.

The structured interpreter was designed in an attempt to miti-
gate the problems created by the sloppy interpreter. By pars-
ing only a limited subset of instruction syntax, we hoped

8

that the structured parser could improve the precision of the
sloppy interpreter. While this has been useful at increasing
the robustness of the CoScripter system, it is not up to the
task of parsing arbitrary hand-written instructions.

As we expected, the ML interpreter performs better than
either the SL or ST interpreters. Its high performance is
largely due to correct recognition of noaction instruc-
tions, for which the SL interpreter would have incorrectly
predicted an action. However, the ML interpreter is also
able to correctly interpret many of the actionable commands
nearly as well as the SL interpreter. Thus it provides a rea-
sonable tradeoff between the looseness of the SL interpreter
and the strictness of the ST interpreter.

IMPLICATIONS FOR DESIGN
The empirical results in the previous section show that our
ML interpreter is capable of correctly interpreting 53% of in-
structional segments in a dataset of hand-written instructions
collected from the web.

Given the difficult nature of the problem, we are encouraged
by this result. We anticipate incorporating these results into
a system that can import legacy instructions directly from
the web, and guide the user through them step by step, au-
tomating steps where applicable. Within the context of such
a system, correctly identifying when no action is required is
nearly as important as predicting the correct action when one
is required. Based on our experience with CoScripter, a sys-
tem that interprets instructions incorrectly can be extremely
disorienting to users.

We also wish to point out that a guided walkthrough system
can be useful even if not all the components of an executable
action are recognized correctly. For example, if the system
recognized an enter action on a specific target, but could
not guess the value to fill in to the field, it could still high-
light the target field and prompt the user to type in their de-
sired value. Such a system could still be useful to users even
though some steps are not interpreted completely accurately
given our current metrics.

To shed more light on misclassification failures and how they
might impact the performance of a system built on our algo-
rithms, we present a confusion matrix comparing the actual
action and the predicted action for the ML interpreter (Ta-
ble 8).

Many of the noaction instructions could have been inter-
preted as other types of instructions. In some cases, this was

Predicted
Actual click enter goto select noaction
click 90 0 0 0 10
enter 6 29 0 0 5
goto 0 2 11 0 1
select 0 0 0 0 0
noaction 11 7 3 0 114

Table 8. ML parser confusion matrix

due to commentary referencing buttons on the page without
explicit commands to activate them, which caused the clas-
sifier to mistake a noaction for a click:

I 11. You can use the “Preview” button to see how it
looks.

I 12. A window should pop up with a big button marked
“Print” and the map.

A system that instructed the user to click on each of these
buttons would probably not be considered in error.

The language used to describe pressing keys on the keyboard
often resembled the language for clicking buttons with the
mouse. We made a (somewhat arbitrary) decision to classify
the former as enter commands and the latter as click
commands. Often the classifier would mistakenly classify
these enter instructions as clicks, as in the following
examples:

I 13. press enter

I 14. hit the tab button to move from space to space

Correctly classifying these commands seems to require com-
mon sense knowledge about keyboards, for example know-
ing that the button labeled “Tab” is a physical button on the
keyboard, and probably not a link on the web page. How-
ever, if the system mistakenly predicted that a link labeled
“tab” were to be clicked, it is likely that such a link did not
exist on the current web page, so the system would be un-
able to interpret this instruction, and present it the user for
manual interpretation. Because of the “fail-soft” nature of
these types of errors, we feel that a system that attempted to
automatically interpret how-to instructions would perform
relatively well in practice.

CONCLUSION
In summary, we have presented an analysis of and solu-
tions to the problem of automatically understanding hand-
written how-to instructions. We reported on the collection
of a dataset of hand-written instructions for 43 web tasks,
and presented a qualitative analysis of these instructions. We
have compared two approaches to segmenting instructions,
and showed that it is a difficult problem that likely requires
language model analysis. We presented and compared three
different approaches to instruction interpretation, showing
that the machine learning-based algorithm outperforms both
the keyword-based and grammar-based algorithms, achiev-
ing 53% accuracy at interpreting instructional statements.
Our results indicate that automatic how-to instruction un-
derstanding shows promise, and may soon enable the cre-
ation of systems that assist users in following hand-written
instructions.

Many directions remain for future work. We would like to
combine the three approaches into a single meta-interpreter
that combines the precision of the ST interpreter with the
enhanced recall of the SL and ML interpreters. We plan

9

to incorporate our best approach into the CoScripter system
so that users encountering how-to documentation online can
quickly import and execute it in the system. Finally, we plan
to validate our results using more data, including some writ-
ten by professional technical writers, to confirm that higher-
quality documentation exhibits more structure and is easier
to understand.

REFERENCES
1. M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C.

Miller. Automation and customization of rendered web
pages. In UIST ’05: Proceedings of the 18th annual
ACM symposium on User interface software and
technology, pages 163–172, New York, NY, USA,
2005. ACM.

2. Designing Coachmarks. http:
//developer.apple.com/documentation/
mac/AppleGuide/AppleGuide-24.html,
1996.

3. W. W. Cohen. Minorthird: Methods for Identifying
Names and Ontological Relations in Text using
Heuristics for Inducing Regularities from Data.
http://minorthird.sourceforge.net,
2004.

4. M. Collins. Discriminative Training Methods for
Hidden Markov Models: Theory and Experiments with
Perceptron Algorithms. In EMNLP ’02: Proceedings of
the 2002 conference on Empirical Methods in Natural
Language Processing (EMNLP), 2002.

5. C. Kelleher and R. Pausch. Stencils-based tutorials:
design and evaluation. In CHI ’05: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 541–550, New York, NY, USA, 2005.
ACM.

6. A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user
studies with Mechanical Turk. In CHI ’08: Proceeding
of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems, pages 453–456,
New York, NY, USA, 2008. ACM.

7. J. D. Lafferty, A. McCallum, and F. C. N. Pereira.
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In ICML ’01:
Proceedings of the Eighteenth International Conference
on Machine Learning, pages 282–289, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

8. T. Lau, L. Bergman, V. Castelli, and D. Oblinger.
Sheepdog: learning procedures for technical support. In
IUI ’04: Proceedings of the 9th international
conference on Intelligent user interfaces, pages
109–116, New York, NY, USA, 2004. ACM.

9. G. Leshed, E. M. Haber, T. Matthews, and T. Lau.
CoScripter: automating & sharing how-to knowledge in
the enterprise. In CHI ’08: Proceeding of the
twenty-sixth annual SIGCHI conference on Human
factors in computing systems, pages 1719–1728, New
York, NY, USA, 2008. ACM.

10. G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber,
and E. Kandogan. Koala: capture, share, automate,
personalize business processes on the web. In CHI ’07:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 943–946, New
York, NY, USA, 2007. ACM.

11. G. Little and R. C. Miller. Translating keyword
commands into executable code. In UIST ’06:
Proceedings of the 19th annual ACM symposium on
User interface software and technology, pages
135–144, New York, NY, USA, 2006. ACM.

12. A. Lockerd, H. Pham, T. Sharon, and T. Selker.
Mr.web: an automated interactive webmaster. In CHI
’03: CHI ’03 extended abstracts on Human factors in
computing systems, pages 812–813, New York, NY,
USA, 2003. ACM.

13. M. Perkowitz, M. Philipose, K. Fishkin, and D. J.
Patterson. Mining models of human activities from the
web. In WWW ’04: Proceedings of the 13th
international conference on World Wide Web, pages
573–582, New York, NY, USA, 2004. ACM.

14. M. Prabaker, L. Bergman, and V. Castelli. An
evaluation of using programming by demonstration and
guided walkthrough techniques for authoring and
utilizing documentation. In CHI ’06: Proceedings of
the SIGCHI conference on Human Factors in
computing systems, pages 241–250, New York, NY,
USA, 2006. ACM.

15. A. Tomasic, J. Zimmerman, and I. Simmons. Linking
messages and form requests. In IUI ’06: Proceedings of
the 11th international conference on Intelligent user
interfaces, pages 78–85, New York, NY, USA, 2006.
ACM.

10

http://developer.apple.com/documentation/mac/AppleGuide/AppleGuide-24.html
http://developer.apple.com/documentation/mac/AppleGuide/AppleGuide-24.html
http://developer.apple.com/documentation/mac/AppleGuide/AppleGuide-24.html
http://minorthird.sourceforge.net

	Introduction
	Related work
	Datasets
	Qualitative analysis
	Labeling the data

	Understanding how-to instructions
	Segmentation
	Interpretation
	Sloppy Interpreter
	Structured Interpreter
	Machine learning-based interpreter
	Resolving targets
	Contrasting the interpreters

	Evaluation
	Parsing performance
	Interpretation performance

	Discussion
	Implications for design
	Conclusion
	REFERENCES

