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Nuclear double resonance between statistical spin polarizations

M. Poggio, H. J. Mamin, C. L. Degen, M. H. Sherwood, and D. Rugar

IBM Research Division, Almaden Research Center, 650 Harry Rd., San Jose CA
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Abstract

We demonstrate nuclear double resonance for nanometer-scale volumes of spins where random

fluctuations rather than Boltzmann polarization dominate. When the Hartmann-Hahn condition

is met in a cross-polarization experiment, flip-flops occur between two species of spins and their

fluctuations become coupled. We use magnetic resonance force microscopy to measure this effect

between 1H and 13C spins in 13C-enriched stearic acid. The development of a cross-polarization

technique for statistical ensembles adds an important tool for generating chemical contrast in

nanometer-scale magnetic resonance.

PACS numbers: 76.70.-r, 05.40.-a, 76.60.-k, 76.60.Pc
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The physics of microscopic spin ensembles can be distinctly different from that of macro-

scopic ensembles. For example, in volumes of nuclear spins smaller than about (100 nm)3,

random spin flips generate a fluctuating polarization that exceeds the typical thermal (or

Boltzmann) polarization [1–3]. These spin fluctuations are a major source of dephasing

in solid-state quantum systems [4, 5], and their control is an important prerequisite for

nanometer-scale magnetic resonance imaging (MRI) and spectroscopy [6–11]. Recent exper-

iments using magnetic resonance force microscopy (MRFM) [12, 13] have extracted useful in-

formation from random polarization and harnessed it for nanometer-scale three-dimensional

imaging [7]. One way to further improve nanometer-scale MRI is to combine its imaging

capability with the chemical selectivity intrinsic to magnetic resonance.

Here we apply nuclear double resonance to achieve such a form of contrast using cross-

polarization (CP) between statistically polarized 1H and 13C spins in 13C-enriched stearic

acid. CP is widely used in NMR for the signal enhancement of low-abundance and low-γ

nuclei and forms the basis for many advanced multidimensional spectroscopy techniques

[14]. Indeed, CP has been demonstrated as an efficient chemical contrast mechanism for

micrometer-scale one-dimensional MRFM imaging based on Boltzmann polarization [15–

17]. This spectroscopic method is not directly applicable to statistically polarized volumes

of spins since at any given time the polarization has a random sign and magnitude, making

measured signals intrinsically irreproducible. One way around this problem, as demonstrated

here, is to observe the change in the correlation time of the fluctuations [3, 18].

CP relies on matching the rotating-frame Zeeman splittings of two different spin species

(denoted as I and S) in order to promote cross-species spin flip-flops through the heteronu-

clear dipolar coupling [14]. For this purpose, two strong rf fields are applied with frequencies

near the Larmor resonance of the respective spins. According to the original work by Hart-

mann and Hahn, efficient transfer is achieved when the rf field strengths are such that the

respective Rabi frequencies have a similar magnitude [14, 19]. The Rabi frequency is deter-

mined by the effective field in the rotating frame; for a spin I, the effective field is given

by Beff,I = B1I x̂
′ + 2π

γI
∆νI ẑ, where B1I is the magnitude and ∆νI = νI − γI

2π
B0 is the reso-

nance offset of the rf field with a frequency νI . γI is the nuclear gyromagnetic ratio of I,

x̂′ is a unit vector in the rotating frame, and ẑ is a unit vector along the static field B0

(likewise for the S spin). The Hartmann-Hahn (HH) condition can then be expressed as

γI |Beff,I| = γS |Beff,S|. The efficiency of CP depends on the angles of the effective fields with
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respect to the x̂′ axis in the respective rotating frames, so that the most efficient transfer

occurs when ∆νI = ∆νS = 0 and γHB1H = γCB1C [15]. For samples with a high spin density

and strong nuclear moments, the transfer process is typically very efficient, occurring on a

characteristic time-scale set by the dipolar coupling frequency between spins. In stearic acid

it is estimated at about 16 µs [20, 21].

For Boltzmann polarizations, a spin temperature description is commonly used in which

the two spin polarizations are viewed as thermal ensembles [22]. When the HH condition is

met, the two spin ensembles come into thermal contact and their temperatures equilibrate.

In this way, one thermal ensemble can be used to enhance or deplete the polarization of the

other ensemble.

For statistically polarized nuclear spins, the same exchange of polarization occurs, except

that the mean polarization of both spin ensembles is zero. When there is no HH contact,

the polarization of an ensemble in the rotating frame fluctuates about zero with a variance

that is given by the number of spins in that ensemble. The fluctuations in each ensemble

occur on a time-scale determined by that ensemble’s rotating frame relaxation rate. When

the HH condition is met, double resonance allows rapid flip-flop processes that exchange

polarization between the I and S spin ensembles, while simultaneously conserving the total

polarization. As a result, fluctuations can occur on a much faster time-scale.

To obtain a more quantitative picture, we consider the case for a spin-1/2 system where

the polarizations of the ensembles are represented by nI and nS, defined as the difference

between spin-up and spin-down populations for the I and S spins respectively. The dynamics

of the HH transfer can then be described by a set of detailed balance equations that use

spin population difference instead of spin temperature (see Ref. [19], Eq. (8)),

∂nI
∂t

= −kInI −
kIS
N

(NSnI −NInS) + rI(t) + rIS(t), (1)

∂nS
∂t

= −kSnS +
kIS
N

(NSnI −NInS) + rS(t)− rIS(t), (2)

where N is the total number of spins in the ensemble, NI and NS are the number of I and

S spins respectively (N = NI +NS), kI and kS are the spin-lattice relaxation rates, and kIS

is the average rate of exchange between I and S spins.

The original work by Hartmann and Hahn (Ref. [19], Eq. (8)) does not account for

statistical spin fluctuations. To describe the random excitations that lead to statistical

polarization, we therefore introduce three stochastic functions rI(t), rS(t) and rIS(t), equiv-
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alent to the number of I-spin flips, S-spin flips, and cross-species spin flip-flops per unit

time, respectively. We assume white spectral densities for these functions and further re-

quire that on sufficiently long time-scales, the variance of the fluctuating polarizations is

equal to the number of spins in the ensemble [1, 11]. The resulting (double-sided) spectral

densities are SrI = 2kINI and SrS = 2kSNS. The spectral density SrIS
= 2kISNINS/N is

similarly obtained [23].

The coupled differential equations (1) and (2) can be solved in frequency space, yielding

expressions for the spectral densities of nI and nS. We concentrate our analysis on the

spectral density of the I-spin fluctuations:

SnI
=

2NI

[(
kI + kIS

NS

N

)
ω2 +

(
kS + kIS

NI

N

) [
kIkS + kIS

(
kI

NI

N
+ kS

NS

N

)]]
ω4 +

[
k2
I + k2

S + k2
IS + 2kIS

(
kI

NS

N
+ kS

NI

N

)]
ω2 +

[
kIkS + kIS

(
kI

NI

N
+ kS

NS

N

)]2 . (3)

Evaluation of (3) allows us to determine the behavior of the I-spin fluctuations for arbitrary

values of kI , kS and kIS. We consider two particularly relevant cases. As expected, in the

regime of negligible CP where kIS � kI , kS, the I-spin fluctuations occur on a time-scale

τI = k−1
I with a variance equal to NI : lim

kIS/kI→0
kIS/kS→0

SnI
=

2τINI

1 + ω2τ 2
I

.

In the regime of strong CP where kIS � kI , kS, two time-scales emerge. Rapid polar-

ization transfer between spin ensembles leads to fast spin fluctuations with a characteristic

time τIS = k−1
IS and a variance NINS/N . The reduction of the variance compared to NI

occurs because the total polarization is conserved on time-scales short compared to τI and

τS = k−1
S , thereby limiting the phase space of possible states. On top of the rapid exchange

of polarization between spin ensembles, the polarization also fluctuates on a much slower

time-scale τavg =
(
kI

NI

N
+ kS

NS

N

)−1
with a variance given by N2

I /N . Note that the sum of

the rapid and slow variances is once again NI . It is not surprising, then, that in this strong

CP limit the I-spin spectral density approaches the sum of two spectral densities, each with

one of the two characteristic times and variances:

lim
kI/kIS→0
kS/kIS→0

[SnI
] = lim

kI/kIS→0
kS/kIS→0

[
2τISNINS/N

1 + ω2τ 2
IS

+
2τavgN

2
I /N

1 + ω2τ 2
avg

]
. (4)

Thus, the main signature of CP is the presence of spin fluctuations faster than τI . Simple

coin-flipping simulations support these findings.

We demonstrate nuclear CP between statistically polarized 1H and 13C spins in an ex-

periment using a custom-built magnetic resonance force microscope [18]. For these species,
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where γH/γC = 3.9772, the combination of the minimum B1I needed for adiabatic inver-

sions and the maximum allowed current in our microfabricated rf field source prevent us

from reaching the condition of most efficient CP, γHB1H = γCB1C . Nevertheless, we are

able to observe significant CP at non-zero resonance offsets where the HH condition is met.

The sample is a 10-µm-sized particle of stearic acid, C18H36O2, where >99% of the carbon

is 13C. The particle is placed upon an ultrasensitive, single-crystal Si cantilever (120 µm

long, 3 µm wide, and 0.1 µm thick), with part of the particle sticking out beyond the

end of the cantilever. In vacuum and at the operating temperature of 4.2 K, the sample-

loaded cantilever has a resonant frequency f0 = 1/T0 = 2.9 kHz, an intrinsic quality factor

Q0 = 44000, and a spring constant k = 86 µN/m. We actively damp the cantilever in order

to give it a fast response time of 25 ms. An FeCo nanomagnetic tip is used to produce the

large (∼ 106 T/m) spatial field gradient required for generating magnetic forces of a few

attonewtons between the spins in the sample and the tip. A microwire underneath the tip

generates an rf field of a few millitesla that induces magnetic resonance in the sample [18].

The MRFM measurement is carried out on a stearic acid sample positioned 100 nm above

the magnetic tip in an externally applied magnetic field |Bext| = 2.64 T.

We measure the spin polarization by periodically inverting the nuclei of choice using

adiabatic rapid passages [11, 18]. We operate in a fixed magnetic field B0 = Bext + Btip

(|B0| = 2.72 T), where Btip is the field produced by the magnetic tip. We periodically

sweep the frequency νI of a transverse rf magnetic field B1I through the Larmor resonance

condition, νI = γI

2π
B0 so as to induce adiabatic inversions of the nuclear spin polarization.

In the presence of the magnetic tip, periodic inversions of the spin polarization generate an

alternating force that drives the mechanical resonance of the cantilever. The amplitude of

cantilever oscillation, which we measure using optical interferometry, is then proportional

to the I-spin polarization. We can measure either the 1H or the 13C statistical polarization

by adjusting the rf center frequency of the adiabatic passages.

In order to observe polarization transfer, we perform adiabatic passages on one isotope —

the “observed” or I-spin isotope. This measurement produces a signal that is proportional

to the fluctuating I-spin polarization. Simultaneously, we address the other isotope — the

“unobserved” or S-spin isotope — with cw radiation at or near its Larmor frequency. This

continuously applied resonant B1S is constant in the rotating frame and remains locked to

a statistical polarization of S spins with a correlation time τS. The basic scheme is shown
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in Fig. 1.

When the HH condition is fulfilled, polarization transfer occurs between the statistically

polarized “observed” and “unobserved” spin ensembles. Measurements are shown in Fig. 2

for both 1H and 13C in the role of the “observed” isotope. In both experiments we increment

the resonance offset ∆νS of the S spins while detecting the I spins with frequency sweeps

centered on ∆νI = 0. We record both the signal variance and the correlation time of the

I-spin fluctuations. Dips in the correlation time appear at those frequencies where ∆νS

satisfies the HH condition. Since the signal is recorded in a narrow band (17 Hz) around

the cantilever resonance, a reduction in the correlation time due to CP also gives rise to a

reduction in the observed force signal.

Fig. 2 shows two distinct CP regimes. In the first regime, shown in Fig. 2(a), we observe

the 1H spins, using γHB1H = 280 kHz and γCB1C = 29 kHz, so that γIB1I > γSB1S.

Again, as we increment ∆νC , γC |Beff,C| comes to a minimum at resonance according

to γC |Beff,C| =
√

(γCB1C)2 + (2π∆νC)2. For two bands of ∆νC symmetric about zero,

γC |Beff,C| intersects the trajectory of γH |Beff,H| thereby fulfilling the HH condition [16]. The

resulting CP produces the double-dip structure shown in Fig. 2(a). The most efficient CP

and therefore the most significant reduction in the 1H correlation time (i.e. the deepest

part of the dips) occurs for a HH match at the vertex of the γH |Beff,H| hyperbola shown

in Fig. 2(a). At these intersections the slopes of γC |Beff,C| and γH |Beff,H| match, producing

the longest possible HH contact. In addition, CP is most efficient when ∆νC and ∆νH are

smallest resulting in small angles of the effective field.

In the second regime, shown in Fig. 2(b), we observe the 13C spins using γHB1H = 120

kHz and γCB1C = 62 kHz, so that γIB1I < γSB1S. As we increment ∆νH , γH |Beff,H| comes

to a minimum at resonance according to γH |Beff,H| =
√

(γHB1H)2 + (2π∆νH)2. In this case,

there is one band of ∆νH symmetric about zero for which γH |Beff,H| intersects the trajectory

of γC |Beff,C|. The resulting CP produces the single-dip structure of Fig. 2(b). For the same

reasons which apply in the first regime, the most efficient CP occurs for ∆νH = 0 where the

HH match is closest to the vertex of the γC |Beff,C| hyperbola. The same single- and double-

dip behavior shown in Fig. 2 appears in Fig. 2 of the original paper on CP by Hartmann

and Hahn [19].

We have measured a series of spectra of the double-dip type for different γHB1H and

γCB1C . Typical results are shown in Fig. 3(a). Using simple Lorentzian fits to determine the
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position of the dips, we extract the splitting for all spectra. From the condition γI |Beff,I| =

γS |Beff,S| and as pointed out by Hartmann and Hahn (Ref. [19], Eq. (75)), the dips in

Fig. 3(a) should appear at

∆νC = ±∆νC,HH ≡ ±
√
γ2
H

4π2
B2

1H −
γ2
C

4π2
B2

1C , (5)

so that the splitting is 2∆νC,HH . The experimental data in Fig. 3(b) and (c) agree within the

error with the theoretical curve representing (5) without any adjustable parameters. Note

that the magnitudes of B1H and B1C are calibrated by independent nutation experiments

on each species [18]. Given this agreement, we confirm that our double-resonance features

result from the HH effect.

While in our experiments it was possible to observe the 13C signal directly, double-

resonance detection is particularly useful when one isotope with spin S has a weak resonance

signal, either because of a small γS or a low abundance. The presence of the S spins

can then be detected via the stronger signal of the I spins. The ability to perform CP

in statistical ensembles provides the possibility of new contrast mechanisms for nanoscale

MRI applications. For example, organic material with many proximate 13C and 1H atoms

could be distinguished from interstitial water molecules, which possess only 1H. Statistical

double resonance could be combined with advanced spectroscopy techniques for chemical

characterization of materials at the nanometer-scale. Ultimately, such techniques could

be applied to discern individual protein components in complex nanometer-scale biological

structures.

We acknowledge support from the NSF-funded Center for Probing the Nanoscale (CPN)

at Stanford University.
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FIG. 1: A schematic diagram showing the rf frequencies νI and νS during an experiment. With

νS constant, periodic sweeps of νI through resonance adiabatically invert the I spins. The effect

of incrementing νS is represented by the dotted arrow.
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