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Abstract. Distributed, adaptive, hard real-time applications, such as process con-
trol or guidance systems, have requirements that go beyond those of traditional
real-time systems: accommodation of a dynamic set of applications, autonomous
adaptation as application requirements and system resources change, and security
between applications from different organization. Developers need a middleware
with features that support developing and running these applications, especially
as commercial and defense systems become more “network-centric”. The Virtual
Mission Bus (VMB) middleware, targeted at both distributed IT systems and real-
time systems, provides the essential basic services to support these applications
and the tools for building more complex services, all while while keeping the
middleware kernel minimal enough for embedded system use. We successfully
used the VMB to prototype a distributed spacecraft cluster system.

1 Introduction

Networked or distributed embedded systems are increasingly common and important.
Some examples are new “network-centric” defense systems that integrate services in
different locations and heterogeneous systems from multiple suppliers. Others include
building, industrial, and energy-distribution systems that employ sensor and control net-
works. The flexible, distributed approach is also seen as part of the solution for avoiding
cost and schedule overruns in government systems procurement [1].

We are developing the Virtual Mission Bus (VMB) middleware to provide features
that support these applications. While these have the requirements of other real-time
applications, they also require the flexibility to integrate multiple applications, some of
which change after the system has been deployed, and the adaptability to respond au-
tonomously to faults and application requirement changes. This leads to an integration
of traditional middleware features and real-time resource management.

As an example, consider a simple control and data acquisition application that il-
lustrates the integration challenges for flexible, real-time applications. It might consist
of multiple basic components, each implemented as an independent process running
on a node in a network: an interface to observe and command the system, sensors and
actuators, a fault-tolerant real-time controller that periodically communicates with the
sensors and actuators, and a data store to keep a record of system state. The sensors
and actuators would need standard interfaces to isolate the controller from changes in
the underlying hardware. The controller and data store would need to be fault-tolerant,
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but with different approaches: the controller might use a hot standby, while the store
might might use replication. On failure of a component, the application would need to
recover using redundant components, and then try to find unused system resources to
regenerate the failed component. The application should also try to maintain balanced
resource usage by migrating components from heavily-loaded to lightly-loaded nodes.

Supporting flexible and adaptable real-time applications requires more than just the
features of both existing middleware and existing real-time environments (§3). Most
middleware is aimed more at IT applications than embedded systems, and focuses on
communication between applications or on connecting application services; some pro-
vide a security model for these interactions. Most real-time environments provide for
timely task execution or (soft) real-time data delivery between processes.

The VMB provides the features required by these applications with an architecture
of simple, composable mechanisms implemented as libraries and reusable system com-
ponents. Thus, simple embedded applications, such as sensor applications, need only
a minimal number of mechanisms with a small runtime footprint and require the un-
derstanding of only a few system features. More complex applications can incorporate
greater function by building on the basic mechanisms. The building-block approach
extends to structuring the applications as components running on individual nodes.

The VMB provides real-time resource management mechanisms for CPU, mem-
ory, and network communication. The mechanisms ensure that application components
have the required resources to execute on their assigned nodes, and isolate components
so that they cannot interfere with each other. An application specifies the required re-
sources for each of its component (§5.1) and uses a resource configuration mechanism
to assign its components to nodes (§5.3). A resource scheduler ensures that each com-
ponent gets its share (§5.2).

VMB application components interact with each other via an RPC-like communcia-
tion protocol (§6.1). Like other RPC protocols, components declare supported interfaces
(§6.2). Unlike other protocols, ours is designed to be the building block for higher-level
application-specific consistency and consensus mechanisms, by carrying message or-
dering information but not in itself maintaining consistency or message ordering.

The VMB includes experimental support for building reusable application design
patterns (§7). These patterns capture common internal application structures—as a set
of replicas, a primary-backup pair, a pipeline of data processing stages, and so on, or
even combinations of these. A basic group membership mechanism, implemented over
the VMB communication protocol, is the foundation for the reusable patterns.

Finally, the VMB supports application security (§8). These mechanisms serve both
as internal defenses within an application, helping to contain faults from spreading,
and as external defenses between applications, allowing only authorized accesses. The
security features build on low-level resource isolation to protect individual components.

We have implemented a VMB middleware prototype (§9) and used it in the Pleiades
system of interoperating clustered spacecraft under the DARPA System F6 program [2].
Pleiades has hard real-time guidance and control applications interacting with non-real-
time data analysis applications, and requires fault tolerance and security for these appli-
cations. The prototype validates that the VMB fulfills requirements for distributed and
real-time operation as well as requirements for flexible and adaptive systems.
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2 Related work

The research on which the VMB is based is long and varied. We give references to some
representative related work.

Middleware systems We can categorize the real-time, distributed systems middleware
literature by the approach to communication. These approaches include RPC-oriented,
message queueing, and group communication and consensus systems.

RPC-oriented systems build on RPC as a structuring communication primitive. The
CORBA standard [3], Java RMI [4], and SOAP [5] are perhaps the most influential,
and focus on request-response communication between a client and server, often in the
context of an “object” on the server. The VMB shares the RPC-like pattern, but differs
by focusing on RPC as a building block rather than a complete mechanism in itself.

Extensions to RPC-oriented systems provide real-time support. For example, the
MEAD system [6] implements the real-time CORBA interface [7], and is one of several
CORBA implementations that use a group communication system to support one-to-
many communications to replicated services. MEAD adds adaptive replication mecha-
nisms for fault tolerance to the real-time CORBA design, along with resource monitor-
ing and proactive fault prediction and recovery. The VMB focuses on lower-level mech-
anisms than MEAD; one can build the replication mechanisms and proactive fault han-
dling from MEAD atop VMB primitives. At the same time, the VMB provides greater
support for heterogeneous systems where replication is not the appropriate fault toler-
ance strategy and where applications are explicitly assembled from reusable agents.

Message queuing and publish-subscribe systems, in abstract, have a global data
space into which processes put and get data. The OMG Data Distribution Service [8]
is one example among many. Data is often organized into topics or channels to which
processes subscribe to receive asynchronous updates when data changes. Real-time ver-
sions have been developed that include deadlines, reliability, and data retention aspects.
These systems are often implemented on top of lower-level communication systems.
Publish-subscribe systems promote interoperable, flexible communication between sys-
tem components, but they do not by themselves address many lower-level issues such
as functional fault tolerance, functional consistency, or system resource management.

Group communication and consensus systems provide one-to-many messaging in-
side a defined group of processes. Some systems, such as the Horus and Ensemble [9]
systems, yield a consistent (for example, totally ordered) and reliable view of message
traffic. Other systems are built around consensus protocols, especially the Paxos [10]
family of protocols, organizing process activity around a sequence of consensus deci-
sions. These systems can be extended to support Byzantine fault tolerance [11]. The
VMB communication protocol provides primitives that can implement group commu-
nication and consensus mechansisms, but that avoids the weight of these mechanisms
when they are not appropriate. The VMB protocol supports building the consistency
of sending different messages to a set of receivers, while group communication pro-
tocols typically send the same message to all receivers. This flexibility is useful when
composing an application from multiple, pre-existing components that provide differ-
ent operations that should nonetheless be performed consistently. The VMB does not
currently attempt to address Byzantine fault tolerance, however.
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Other distributed communication design patterns exist for organizing middleware-
like systems. For example, peer-to-peer toolkits such as Chord [12] organize application
processes by using an overlay network for routing data or queries; application recon-
figuration is then cast as a overlay reconfiguration. The VMB provides components
suitable for building peer-to-peer systems. Indeed, in an early prototype, we built a
peer-to-peer publish-subscribe system using the basic VMB communication protocol.

Some middleware systems focus on sharing data, promoting interoperability be-
tween services by sharing database tables or distributed data structures such as a dis-
tributed hash table [13] or B-tree [14]. The VMB constructs enable application devel-
opers to implement shared data stores in a variety of ways. In an early prototype, we
built a reusable VMB data store component from an embedded {key, value} database.

Resource configuration and real-time The VMB manages resources using real-time
schedulers for processes running on CPUs on individual nodes and for network traffic
between nodes. Real-time CPU and network scheduling are well-investigated topics
that have been successfully reduced to practice in many systems, but that are typically
designed for one type of real-time processing.

Many traditional real-time CPU scheduling algorithms are based on either rate
monotonic (based on static process priorities) or earliest deadline first scheduling (based
on dynamic process priorities [15]). Both are designed for relatively static sets of hard
real-time tasks. Neither provides for the dynamic, adaptable nature of VMB task sets.

Some more recent systems support adaptive real-time processes. The QRAM sys-
tem [16] provides a solution for optimizing the resource allocations to sets of pro-
cesses with (possibly adaptive) convex benefit functions relating their “quality” to the
resources assigned to them. The DQM system [17] supports dynamic adaptive soft real-
time applications with discrete quality of service levels. Neither supports a full range of
different types of processes with the degree of adaptivity required for the VMB.

Other systems examine simultaneously management of processes with different
types of timeliness requirements. The HLS Hierarchical Scheduler [18] uses multi-
ple different schedulers in a hierarchy, where one scheduler would schedule time slots
allocated to it from another. HLS demonstrated the feasibility of integrated scheduling,
but proved too unwieldy for actual use.

The Constant Bandwidth Server [19] is one of the first scheduling frameworks to
handle different types of real-time processes in a single scheduler. The RBED CPU
scheduler [20] similarly supports multiple different types of real-time processes, hard
and soft real-time, both adaptive and non-adaptive. The RBED CPU scheduler is based
on the resource allocation and dispatching (RAD) model, which separately manages
the amount of resources allocated to each process and the times of delivery of those
resources. The VMB schedulers borrow concepts from the RAD model.

VMB resource configuration builds on previous research on the replica placement
problem [21] of placing replicated data over a network to maximize client performance.
Minerva system [22] and Ergastulum [23] investigated how to provision storage systems
for a wide variety of workloads. Similarly, Harmony [24] provides a solution for placing
storage and computation within a network to maximize overall performance. The VMB
uses similar techniques to assign application components to nodes in a network.
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3 Architectural requirements

The Virtual Mission Bus is middleware for distributed, adaptive systems that host multi-
ple applications with heterogeneous real-time requirements. Thus, it must provide both
the usual features for distributed systems, such as a communication model, interoper-
ability mechanisms, and naming, and those for real-time systems, such as predictable,
timely task execution and communication. Unlike many other middleware systems, it
must also support applications for resource-constrained embedded environments.

Our target systems in general will host multiple interacting applications that are de-
ployed at different times. For these applications to operate correctly, they must meet all
their real-time behavior requirements (even as other applications change around them)
and communicate properly with new applications. Most existing real-time systems do
not protect applications from the behavior of each other, so their development processes
emphasizes exhaustive pre-deployment testing of static configurations and disallows
post-deployment change. In contrast, the VMB isolates applications from each other.

Different applications will have different real-time requirements. Control systems
are usually hard real-time, while data analysis can be soft real-time. Other applications
may not have specific real-time requirements, but they must coexist with applications
that do. Keeping in mind that applications can be added or removed dynamically, this
means the VMB needs to support a model of resource management that can correctly
intermix these heterogeneous requirements in one system.

Application components will need to communicate using an appropriate commu-
nication model. Nearly all middleware systems provide a communication mechanism,
but most are designed around a single model, thus imposing structure on applications;
for example, data distribution services structure applications on data subscriptions, and
group communication services structure applications as process groups. The VMB takes
a building block approach, via reusable components and application design patterns,
that facilitates implementation of and reasoning about several communication models.

Many applications require autonomous fault recovery and adaptation. Applications
often run redundant components in different fault domains (for example, control sys-
tems often use a primary-backup structure, while data stores use n-replication). When
a fault happens, an application must recover from the fault by reconfiguring itself (for
example, by activating a backup), and should try to restore redundancy by obtaining
resources and starting a replacement component. Similarly, when application require-
ments or available system resources change, an application must be able to migrate
or reorganize its components accordingly. The VMB provides resource configuration
mechanisms for an application to specify resource requirements and allocate resources.

Finally, many of our target systems will host applications from different organiza-
tions, and with different classification levels. Some of the applications are critical to the
safe operation of expensive systems and vital national assets. Thus, applications must
be protected from each other, from attacks from the outside, and from faults on the in-
side of an application. The requirements for security complement the requirement that
real-time application components must be isolated from each other. The VMB security
mechanisms allow a designer to reason about how heterogeneous systems will interact,
which is an essential building block for certifying systems with dynamic application
populations.
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Fig. 1. VMB architecture. The example shows a system of three applications running on four
nodes. Each application consists of one or more agents that communicate with each other through
microtransactions. Different nodes provide different specialized hardware, such as storage, sen-
sors, or actuators.

4 Virtual Mission Bus design

In the Virtual Mission Bus, an agent is the executable building block of a system. An
agent is code that executes on one node and consuming local computing, memory, and
storage resources. Nodes can host multiple agents. An application is then a collection
of one or more agents that together perform some useful function. Each agent in an
application can have a different role, such as managing the application, performing
control decisions, storing sensor data, and so on. In the example in Figure 1, Application
A consists of three agents, running on nodes 1, 3, and 4.

The VMB is implemented as middleware running on each node. Depending on the
local operating system, part of the VMB executes as part of an agent process, while
other parts execute as service processes or in the OS kernel, as needed.

The VMB manages the resources on a node (§5). Each agent can request a certain
resource allocation, and the VMB works with the local OS to enforce that allocation.
The corollary is that each agent is isolated from other agents: an agent will always get
its allocation, and will not overrun its allocation unless there are unallocated resources
on the node (modulo security issues (§8)). The application is responsible for requesting
sufficient resources for its agents to complete their work. In the example, each agent
has reserved some of the CPU on its node.

Agents communicate through a microtransaction protocol that provides RPC-like
communication (§6). The protocol supports a simple one-phase read version where op-
erations can take effect immediately at receivers, and a two-phase update version where
operations do not take effect unless all of the receivers have agreed to the operations.
As in shown Figure 2, the protocol supports both one-to-one and one-to-many opera-
tions. The protocol adds ordering information to operation messages so that applications
can build consistency and ordering mechanisms that provide an appropriate degree of
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Fig. 2. One- and two-phase microtransaction operations.
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Fig. 3. Reusable design patterns in the VMB. Grey boxes are reused code packages or libraries;
they encode common patterns such as a manager-worker pattern for group membership and a
primary-backup pattern for failover.

atomicity or serializability. In the example in Figure 1, the agents from Application A
communicate with each other, and with agents from Applications B and C.

Many communications between agents have real-time constraints, and so the VMB
supports real-time network communication. An application can reserve network perfor-
mance (§5) between pairs of agents. Each message that is sent is then associated with
one reservation, and its transit through the network is scheduled accordingly.

The scheduling and communication primitives make up the core of the VMB, on
which we build reusable patterns for more sophisticated features, as shown in Figure 3.
The VMB provides three features for building these patterns: code packages that pack-
age up a defined piece of functionality to be used in agents (typically in a shared library,
depending on the OS), reusable agents that provide common application functions such
as data stores or fault tolerance monitors, and application structures that capture encode
agent arrangements, such as primary-backup, replication, or data pipelining.

Since all applications must share system resources, the VMB supports coordinating
resource allocation (§5.3). In our past work [25] we investigated algorithms to allocate
resources across multiple applications based on their local requirements. In the VMB
we extend this work to consider network communication requirements. In the normal
case, each application computes its own optimal placement, based on the resources
available from nodes it trusts. But in some cases, multiple applications must reconfig-
ure themselves together, and so defer to a shared resource management service. In the
example in Figure 1, Application A originally queried all four nodes in the system, com-
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puted an appropriate resource allocation, and created its agents. If the application later
needs to (say) increase the amount of computation done by its agent on node 3, it will
determine how much CPU resource is available on different nodes, and may increase
the allocation for the existing agent or migrate the agent to a different node.

The VMB supports security where required by applications (§8). The building blocks
are a certificate-based mechanism for identifying and authenticating agents and appli-
cations to each other, a method for encoding access rights and delegating them from one
principal to another, and encryption negotiation based on the certificates, along with the
resource isolation provided within a node. Security relationships such as trust among
the members of an application can be encoded using these primitives. In the example
Figure 1, each agents in Application A proves its membership with a certificate; the
application overall identifies its owner with another certificate. When the agent on node
1 sends an operation to the agent from Application B on node 2, the receiver verifies the
certificate chain of the sender, and checks that Application A has a credential issued by
the owner of Application B that granted permission for the operation.

Finally, the VMB provides some basic distributed services. The two most impor-
tant are naming and code distribution. The name service provides a graph-structured
name space for the system, modeled after that of the Amoeba distributed operating sys-
tem [26]. The code distribution service provides a secure mechanism for transporting
agent implementations between nodes. Naturally, we build both of these services from
core VMB primitives.

5 Resource management and scheduling

The Virtual Mission Bus supports real-time control systems, and so it needs to control
resource usage precisely. This includes CPU time, memory, and network communica-
tion; a fault-tolerant or secure applicatiosn need stable storage as well.

The VMB isolates agents from interfering with each other. Each agent is given an
allocation of CPU, memory, storage, and communication resources, and each resource
is managed so that the agent will get its allocation, no matter how other agents behave.

There are two reasons we focus on isolation: system correctness and security. It
must be possible to add a new application to a running system, validate that its resource
requirements are met, and be sure that both the new application will execute correctly
and that the new application cannot disturb the correct execution of existing applica-
tions. Compare this to standard practice in most embedded system development, where
all of the tasks that can be performed in a system must be defined, validated, and tested
a priori, before deployment, and at runtime lack internal defensibility against system
components that misbehave.

Our approach is to formalize resource specification, and then divide resource man-
agement into two layers: a long-term resource configuration problem, which includes
the traditional task of admission control, and short-term resource scheduling.

5.1 Resource specification

The VMB supports a wide range of kinds of agents and applications, from synchronous
embedded controllers through to interactive applications at the edges of systems. Some
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of these require hard real-time task execution, while others do not. Some use significant
amounts of CPU time, while others consume storage and network bandwidth. Differ-
ent applications take different approaches to fault tolerance. Table 1 summarizes the
resources that the VMB manages, and how their requirements are specified.

Table 1. VMB resource specifications

Resource Units
Agent CPU time baseline CPU seconds per period
Agent memory bytes
Agent stable storage bytes
Agent-to-agent network bytes per period
Agent placement constraints same or separate node or cluster as other agent(s)

maximum network latency to other agent(s)

The VMB uses the Resource Allocating/Dispatching (RAD) model [20] for re-
source specification. This model, original developed for CPU scheduling and since
extended for disk [27] and network scheduling, supports hard and soft real-time pro-
cesses in a single framework by specifying the amount of the resource that is needed
and the period in which the resource is needed. The admission control algorithms for
this model are simple under reasonable assumptions of task granularity.

Since each node may have a different model processor, the amount of memory and
CPU cycles to achieve a particular task may vary from node to node. We are currently
using a simple approach for allocation, in which an application specifies that it needs x
CPU seconds per period on a baseline processor, and each node is treated as providing
the equivalent of y of these baseline CPU seconds per second. This approach suffices
for the embedded processors we have today. In the future, we plan to investigate more
sophisticated portable representations.

Network bandwidth is also specified using a RAD model, by the amount of band-
width between two agents and the period on which the bandwidth should be available.

The VMB resource specification includes constraints for ensuring that agents are on
different nodes or groups of nodes, and that network communication latency is within
some bound. A fault tolerant application might require that redundant agents are in
separate failure domains.

Some agents require minimal resource control. Consider a web server that is the
interface between a sensor system and the larger Internet: it needs interoperability with
the real-time systems but is not itself real-time. This kind of system can specify that it
only needs best-effort resource management.

5.2 Short-term resource scheduling

When an agent is created, it is assigned a certain amount of node and network resources.
The resource configuration and admission control systems—discussed next—ensure
that this assignment is feasible, so once the resources are assigned it is up to the nodes
and networks to ensure that the agent gets its those resources. This calls for scheduling.
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For memory and stable storage, each agent is given an amount and must work inside
that amount. Operating system mechanisms are used to enforce these limits.

CPU resources are controlled by the operating system’s scheduler. For real-time
systems, we replace the existing CPU scheduler with the RBED scheduler [20], which
uses the RAD scheduling model.

The VMB also provides a high-level API for managing real-time tasks. This API
allows an agent to declare explicit tasks that need to be performed, the time at which
those tasks should be started, and get feedback on whether the tasks are completing on
time. The tasks execute in the context of the agent’s CPU reservation, and so the agent
must ensure that the reservation matches the tasks that will be executed.

We are investigating network resource management, adapting the work that has been
done to date on real-time network protocols, and on scheduling in IPv6 network stacks,
to use RAD-style scheduling. Our current design uses the flow label field in IPv6 pack-
ets to associate packets with a network reservation, and has packet schedulers in senders
and routers to ensure that each reservation is honored.

5.3 Long-term resource configuration

Each application in a system needs to autonomously allocate enough resources for each
of its agents, even as the system changes. This includes the traditional admission con-
trol problem; once a feasible allocation is made, short-term scheduling will ensure cor-
rect execution. Long-term configuration decisions are made when node or network re-
sources change and when application requirements change.

A good resource allocation will accommodate as many applications as possible
while respecting fault independence and latency constraints. In many cases this in-
volved keeping communicating agents as close together as possible to minimize the
total network resource they use.

We have developed a family of heuristics for this kind of problem, based on heuris-
tics for the multidimensional bin packing and knapsack problems. These derive from
our earlier work [28, 25], where we demonstrated heuristics that configured agents with-
out considering network resources. These heuristics build on the Toyoda heuristic [29]
and the variant we used in the Minerva system [22]. Our new heuristics add network
resources to the n-dimensional resource vector space considered when computing how
well an agent fits onto a node.

Our approach combines centralized and decentralized solutions. Centralized decision-
making is easier to implement and can yield better results because it has a global view
of system state. However, “centralization” is not easily defined in a system that is po-
tentially very large in scope, is not necessarily fully connected (especially in fault sit-
uations), and where security considerations prohibit sharing configuration information.
We decentralize the configuration problem as much as possible, where each applica-
tion includes one manager agent (§7) that is responsible for computing an allocation
for the application’s agents based on the resources it already has and the resources that
trusted nodes report they have available. In some cases, however, configuration needs to
be centralized—in particular, when recovering from a node failure. This usually occurs
when some application that was not directly affected by the failure must be reconfigured
to make room for another application (for example, so that the affected application can
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keep all its agents on different nodes for fault tolerance). The centralized configuration
heuristic attempts to find a small set of applications to jointly reconfigure.

6 Communication between agents

6.1 Microtransaction protocol

All VMB agents communicate via a microtransaction protocol that provides RPC-like
request-response operations. As shown before in Figure 2, the protocol supports a one-
phase read version and a two-phase update version. A sender can group one or more
one-phase or two-phase operations together into one microtransaction, provided that all
of the operations are only of one kind or the other. The protocol is based on our earlier
work on simple protocols for consistent operations in distributed systems [30, 31].

Microtransactions provide the building blocks for consistent ordering within the
system, assuming crash failures in a timed-asynchronous system model. The protocol
uses orderings based on timestamps, as opposed to orderings based on locking or on a
centralized ordering service. A sending agent tags its outgoing microtransactions with a
globally-unique timestamp. A receiving agent tags a data object that microtransactions
can manipulate with two timestamps: the most recent read of the data, and the most
recent update to the data. An agent, broadly speaking, will reject a microtransaction
with an earlier timestamp than the ones on the data. An agent can generate timestamps
from any monotonically increasing clock that is loosely synchronized to clocks at other
agents and has fine enough granularity to produce unique timestamps, but an agent with
a slow clock may find that its microtransactions never succeed.

The protocol does not by itself enforce consistency and durability properties. The re-
ceiver is responsible for performing application-specific integrity checking on incoming
microtransaction operations, and for logging updates on data objects to stable storage.

6.2 Interfaces

Each VMB agent exports one or more interfaces that define the operations it can pro-
cess. The interfaces are expressed in a simple IDL. Each interface has a globally-unique
name, following the naming convention used for Java packages of the DNS name of the
sponsoring organization with elements in reverse order, followed by a path name for
the specific interface—for example, com.ibm.vmb.example.interface. Inter-
faces are also have version numbers. An interface imposes a syntactic, but not semantic,
constraint on an agent.

Each operation in the interface is defined as the operation “type” (one-phase or
two-phase), a name for the operation, and a signature of typed input and output param-
eters. The parameter types include basic numbers and strings, references to application-
specific types, and variable-length arrays of these types.

A VMB interface represents an informal contract between sender and receiver. The
sender can expect that the receiver supports all of the operations named in an exported
interface, and that the functionality of the underlying implementations conforms to
some externally-defined standard. The version number on an interface helps to iden-
tify when the expected functionality changes, even if the operation signatures do not
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change. In addition, one interface can include another: if an agent exports interface
A, and interface A includes interface B, then the agent must also support interface B.
This allows for creating interfaces that represent a profile of multiple interfaces that a
particular kind of agent is expected to support.

The VMB includes IDL processor tools that generate sender and receiver stubs. The
code for each interface is generated separately, so that support for some interfaces can
be packaged into reusable code packages, while other interfaces are supported directly
by agent-specific code.

The interface system supports implementing higher-level communication patterns
as libraries that can be reused in multiple applications. We have to date implemented
group membership, totally-ordered group communication, and one-to-many publish-
subscribe mechanisms (§7). The consistency mechanisms in the microtransaction pro-
tocol allow these communication patterns to work together in a consistent way.

7 Application design patterns

The VMB provides parameterized building blocks to support a range of distributed ap-
plication design patterns. These building blocks, in the form of libraries that export
microtransaction interfaces (§6) or local APIs, provide a variety of common application
support services, such as protocols for managing consistent views of global state, mech-
anisms for scheduling and executing real-time tasks, or buffering data in a distributed
processing pipeline. The goal is to strike a balance between APIs that provide arbitrary
flexibility but no support, such as simple messaging, and those that provide support by
forcing applications into one structure, such as group communication.

A key decision when implementing a distributed application is in assigning spe-
cialized roles to agents in an application. An application may organize its agents into
primary-backup, N -replicated, or pipelined structures, depending its data flow and fault
tolerance requirements. The VMB group services implements a basic manager-worker
agent pattern to provides failure detection and global state maintenance mechanisms, as
shown in Figure 4. The application, by using the manager to assign roles to workers, can
then use the group services as the foundation for implementing higher-level patterns.

7.1 Group services

The VMB group services support the structuring of an application in a manager-worker
pattern. The current group services include a lease protocol for mutual detection of
agent failures, a view-change protocol for maintenance of consistent global application
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state, an election protocol for selecting a new manager, and a join protocol for bring-
ing new workers into an existing group. These protocols are implemented in worker
and manager libraries that implement the appropriate interface, and call into applica-
tion logic on key group events. The group services are based on the Palladio replica
management protocol [32].

The lease protocol enables a manager to periodically test if a worker is still alive. To
test a worker, a manager sends a one-phase lease request to a worker containing a new
lease expiry time. If a worker does not receive a new lease from its manager before the
current expiry time, it believes that the manager has failed. Likewise, if a manager does
not receive a reply to a lease request before the current expiry time, it believes that the
worker has failed.

The view-change protocol enables a manager to push changes in the global metadata
view of an application to all workers consistently. Basic metadata includes a group
membership list of the manager and all known live workers; an application may add
other information such as application security credentials. To propose a new view, a
manager starts a two-phase view-change operation with all known live workers. If the
workers acknowledge receipt of the new view, the manager can commit to the view.

7.2 Implementing higher-level patterns using group services

The manager-worker pattern is a foundation for many higher-level patterns. The man-
ager supports implementation of these patterns by assigning distinguished roles to its
workers, and by using the view-change protocol in the group services to ensure that all
workers have a consistent view of their roles. Some higher-level patterns include:

– Primary-backup servers. The manager designates one worker in a group as a pri-
mary server, and other workers as backup servers. If the manager detects the failure
of the primary, it redesignates one of the backups as the primary.

– N -replicated servers. The manager designates N workers as replicas. If the man-
ager detects the failure of a replica, it spawns a new replica and assists with syn-
chronizing the state with that of the existing replicas.

– Pipelined processing agents. The manager associates each worker with a pipeline
stage. Alternatively, a set of unmanaged agents can arrange themselves in a pipeline
outside of the group services, but without the benefit of a manager to detect failures.

The evaluation CF and imaging applications (§9.2) uses the primary-backup and
pipeline patterns.

7.3 Other common real-time application patterns

The VMB includes several other shared library APIs and reusable agents, including:

– A timer services API for scheduling and executing hard real-time tasks.
– Publish-subscribe style communications between data producers and consumers. A

set of VMB publish-subscribe interfaces, built on microtransactions, enables con-
sumers to receive data updates from producers, either on a regular schedule or as
new data comes available.
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– A generic data store agent. The VMB provides a data store agent that keeps (key,
value) pairs in a database, and that developers can customize with a maximum
capacity and set of record retention policies. The data store supports the publish
interface for pushing records to a downstream consumer, and the subscribe interface
for pulling records from an upstream producer.

8 Information assurance

The VMB integrates information assurance (IA), or security, into its basic structure.
Some systems need security because they incorporate applications from multiple orga-
nizations or that run at different security levels. Other systems do not intrinsically have
multiple security levels, but they share infrastructure—such as shared networks—with
non-trusted applications.

8.1 Levels of protection

The VMB IA architecture is flexible because it has to accommodate applications and
users that have widely different threat models to defend against.

The simplest systems have one level of IA and act on behalf of one organization.
These systems do not need “security” in the traditional sense; however, our experience
is that simple protection mechanisms are worth implementing because they help contain
faults, rather than to protect against attack. For example, computing a simple message
checksum or including an “authentication” handshake when establishing a communica-
tion session helps to detect application bugs.

A collection of commercial-grade applications sharing an untrusted system forms an
intermediate IA level. These systems need communication encryption and authentica-
tion to protect against network-based attacks; network resource management to mitigate
some forms of denial of service attacks; and authorization checks that users are not at-
tempting to misuse the system. These attacks can be addressed using commercial-grade
security practices.

DoD multilevel security (MLS) addresses the most complex threats, including covert
channels for information disclosure. It requires system policies for mixing data from
different sources, and rules for the classification level derived information products.
These concerns require certified IA systems, including OS kernels and networks.

8.2 Design approach

We are currently designing and implementing the VMB information assurance mech-
anisms. They are modular, so that different applications can select mechanisms appro-
priate to their threat model. We are implementing commercial-grade solutions first, and
will extend to MLS solutions in future.

The resource-isolated agent is the basis for security. Each node provides a trusted
computing environment that ensures the integrity of the code that agents run, its mem-
ory, and its storage. Protected storage allows an agent to store identity and security cre-
dentials safely. This assurance depends critically on operating system protection mech-
anisms.
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Agents that communicate using the microtransaction protocol use authenticated
and encrypted communication sessions. At present we are using the Internet Trans-
port Layer Security 1.2 standard [33], which uses X.509 certificates to distribute and
authenticate public-key encryption pairs, and negotiates symmetric session encryption
keys.

Each operation that one agent sends to another is checked for authorization. Autho-
rization derives from sponsoring principals that delegate rights to users, who delegate
in turn to applications, and from there to agents. These rights are encoded as metadata
included in X.509 certificates. Sponsoring principals act as certificate authorities, and
rights delegations are represented as links in a certificate chain.

Typical usage is for service provider and service consumer organizations to first
establish a contractual trust relationship, represented as cross-certificates that encode
the usage rights that the service provider is delegating to the consumer. The consumer
organization delegates those rights to its applications; each application has a certificate
representing the application as a whole. The application in turn delegates rights by
issuing certificates to the agents that make up the application. Rights can be restricted
at each step, so that (for example) only one agent ends up with the operational right to
make a request of the service provider’s application.

The services that all applications use, such as naming and resource management,
are designed for security and learn from our experience with existing Internet services.
Naming, for example, is implemented as a federation of name services, each of which
is operated by a known service provider. The authentication and authorization mecha-
nisms allow one to be sure that the name system is not being tampered with or spoofed.
This approach draws on the efforts to improve the Internet Domain Name Service [34].

9 Implementation and evaluation

We are implementing the Virtual Mission Bus as part of the Pleiades clustered space-
craft system [2] for the DARPA System F6 program [35]. System F6 should demon-
strate that a “fractionated” cluster of small, individually launched spacecraft connected
by a wireless network can deliver better value and utility than an equivalent tradi-
tional, large, monolithic satellite. With Pleiades, our approach is to treat every hardware
element—mission-specific payload components, spaceflight components, and ground
terminals—as a VMB node in a distributed computing system, and transform the con-
trol software into a set of distributed applications. A unified IPv6 network built over the
intra-spacecraft, inter-spacecraft, and space-ground wired and wireless links connects
together all of these elements. VMB application agents manage every aspect of sys-
tem operation, including mission sensing and actuation, independent spacecraft flight,
cluster flight, and ground command and control.

In the first phase of the F6 program, we evaluated the VMB architecture for Pleiades
by building a hardware-in-the-loop (HIL) cluster test bed, implementing prototype ver-
sions of much of the VMB and application software, and demonstrating key system
operation tasks. Pleiades, even with only an unoptimized prototype of the VMB, is al-
ready able to accomplish its real-time command and control tasks.
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9.1 Hardware-in-the-loop test bed

The hardware-in-the-loop (HIL) test bed is a simulation environment used to validate
VMB functionality and other Pleiades components. The HIL test bed includes accurate
physics models of satellite systems, and an accurate enough computing environment
validate the feasibility of using the VMB to implement distributed spacecraft systems.
The HIL test bed named for its supports of incremental, transparent insertion of actual
flight hardware components in place of their corresponding simulated components.

The test bed consists of x86 Linux and Microsoft WindowsTMserver pairs that each
simulates a Pleiades spacecraft, connected by Ethernet networks. Spacecraft physics,
such as position, attitude, and sensor and actuator states, are simulated with modified
version of the Dynamic Spacecraft Simulator (DSS) from Orbital Sciences Corporation
running on the Windows server. Another x86 Linux server hosts all ground agents,
including those that send commands to and retrieve telemetry from the spacecraft.

Virtual machines (VMs) hosted on the Linux server in a pair simulate the component
nodes of a spacecraft, and a virtual IPv6 intra-spacecraft network connects the nodes.
Component nodes include the flight control processor, flight sensors and actuators, and
mission payload. A Wind River VxSim VM running the VxWorks 6.6 operating system
implements each node, and the VxSimNetDS package implements the intra-spacecraft
network. For the prototype, the memory of each VxSim is set to 128 MB.

A router component node in each spacecraft routes communications from the intra-
spacecraft network to the inter-spacecraft or space-ground networks. All inter-spacecraft
and space-ground communications pass through a network impairment driver. This
driver allows the test bed to emulate the network latencies and conditions associated
with space flight, such as the variability of bandwidth or error rates with distance, or
the visibility of ground stations from a spacecraft.

9.2 Utility evaluation

The VMB middleware enables the rapid development of modularized real-time control
applications, particularly in environments previously dominated by monolithic systems
designs. We demonstrated this by successfully developing three interdependent appli-
cations in Pleiades for basic spacecraft flight control, cluster guidance, and mission
payload operation. A different team led the development of each application, but our
approach of using microtransactions coupled with interface definitions (§6) provided
the clear module boundaries needed to integrate the applications into a unified system.

In the first evaluation step, we successfully validated the basic microtransaction and
IDL design, by migrating existing monolithic spacecraft flight control software (FSW)
and the ground control applications to more flexible VMB-based implementations. We
modified a legacy FSW application to communicate with spacecraft flight sensor and
actuator components through microtransactions over an intra-spacecraft IPv6 network
rather than through local signaling channels (such as serial lines), but otherwise retained
the original flight control logic; for each component, we defined a new microtransac-
tion interface and transformed the component into a node with a subsystem agent that
exported the interface. We then modified a legacy ground control application to commu-
nicate with the new VMB-based FSW instance on each spacecraft through a protocol
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Fig. 5. Cluster flight software structure. A worker on each spacecraft in a cluster, in cooperation
with the spacecraft FSW, makes local guidance decisions. A manager on one of the spacecraft in
a cluster monitors workers, and nominates one worker to make cluster-wide guidance decisions.
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Fig. 6. Imaging application structure. An imaging control application, consisting of a primary
and backups watched by a manager, directs independent subsystems to maneuver a spacecraft
and capture images. A data store buffers images when waiting for a space-ground link to open.

translator. We confirmed through simulations on the HIL test bed that the VMB-based
applications were operationally equivalent to their monolithic predecessors.

In the next step, we successfully designed and implemented a VMB-based dis-
tributed real-time control application, by designing and implementing the cluster flight
software (CF) application (Figure 5). The CF employed the manager-worker pattern to
structure its agents. A worker agent on each spacecraft in a cluster made local guidance
decisions, relying on the spacecraft FSW instance for maneuvering. A manager agent
on one of the spacecraft in a cluster detected failed workers, and nominated one worker
to make cluster-wide guidance decisions. Each worker agent used the timer services
API (§7.3) to managed its regular control cycle. We confirmed through simulations
on the HIL that the CF correctly maintained spacecraft in relative cluster orbits. We
also demonstrated the utility of the building-block paradigm, by having the CF worker
agents developed by one team interoperate with the FSW developed by another team.

In the final evaluation step, we successfully demonstrated the utility of the VMB
building-block paradigm by developing an Earth observation and imaging mission ap-
plication (Figure 6) that used previously developed applications as services. An imaging
controller agent used the timer services API to translate a request to capture an image
of a set of coordinates into a schedule of spacecraft operations: slewing the spacecraft
(via the FSW) to point an imager component at the coordinates, holding the spacecraft
stationary after the slew (again via the FSW), and capturing an image; a manager agent
enabled switching from an existing controller agent on one node to a new controller on
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another node. The imager subsystem agent published captured images to a buffering
data store (§7.3) in space, which in turn published the images to a data store on the
ground when a space-ground link became available. Reuse of the FSW application, as
well as built-in VMB support of common real-time application patterns (§7.3), enabled
us to limit the imaging application development time to less than ten person-months.

9.3 Performance evaluation

Our prototype VMB system performs correct command and control operations for dis-
tributed real-time systems. We demonstrated this ability in a HIL simulation that con-
sisted of seven spacecraft running the FSW, CF, and imaging applications. Our results
showed correct simulated operations in real time and in “fast-time” at five times real
time. The “fast time” result indicates that the virtual nodes were at most 20% utilized
in real-time operation, as synchronization mechanisms in the DSS disallowed running
faster than correct physics behavior would allow. As we focus in future phases on opti-
mizations for speed, efficiency, and memory, we expect performance to improve further.

10 Conclusions

The Virtual Mission Bus takes the architectural approach of providing a minimal set of
features that promote building consistent, reusable higher-level features for distributed,
adaptive, real-time applications. This approach allows an application to use the struc-
ture that best fits it, and helps to avoid using scarce processor resources on unneeded
features. The result is that the VMB low-level features are complementary to higher-
level middleware services. We have implemented a straightforward group membership
and communication mechanism, redundant application component policies, publish-
subscribe communication, and reusable agent designs in a VMB prototype.

Our experience building and testing the Pleiades clustered spacecraft system vali-
dates our approach. Teams at three different organizations have used the VMB to imple-
ment their portions; the pieces integrated smoothly and properly controlled a simulated
system of multiple spacecraft. The VMB design evolved while building the Pleiades
system, most notably adding security and publish-subscribe features—using existing
mechanisms as building blocks–as we came to understand the requirements for them.

We are continuing research on resource scheduling and configuration, the micro-
transaction protocol, and security, and continuing development on the VMB prototype.
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