
RJ10481 (A1103-008) March 16, 2011
Computer Science

IBM Research Report

Large-Scale Matrix Factorization with Distributed Stochastic
Gradient Descent

Rainer Gemulla
Max-Planck-Institut für Informatik

Saarbrücken, Germany

Peter J. Haas, Erik Nijkamp,  Yannis Sismanis
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA  95120-6099
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich



Large-Scale Matrix Factorization with
Distributed Stochastic Gradient Descent

Rainer Gemulla1 Peter J. Haas2 Erik Nijkamp2 Yannis Sismanis2

1Max-Planck-Institut für Informatik 2IBM Almaden Research Center
Saarbrücken, Germany San Jose, CA, USA

rgemulla@mpi-inf.mpg.de {phaas, enijkam, syannis}@us.ibm.com

March 1, 2011

We provide a novel algorithm to approximately factor large matrices with millions
of rows, millions of columns, and billions of nonzero elements. Our approach rests
on stochastic gradient descent (SGD), an iterative stochastic optimization algorithm.
We first develop a novel “stratified” SGD variant (SSGD) that applies to general loss-
minimization problems in which the loss function can be expressed as a weighted sum
of “stratum losses.” We establish sufficient conditions for convergence of SSGD using
results from stochastic approximation theory and regenerative process theory. We then
specialize SSGD to obtain a new matrix-factorization algorithm, called DSGD, that can
be fully distributed and run on web-scale datasets using MapReduce. DSGD has good
speed-up behavior and handles a wide variety of matrix factorizations. We describe
the practical techniques used to optimize performance in our DSGD implementation.
Experiments suggest that DSGD converges significantly faster and has better scalability
properties than alternative algorithms.

1



Contents

1. Introduction 3

2. Example and Prior Work 4

3. Stochastic Gradient Descent 7
3.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. SGD for Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4. Stratified SGD 9
4.1. The SSGD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2. Convergence of SSGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3. Conditions for Stratum Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5. The DSGD Algorithm 16
5.1. Interchangeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2. A Simple Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3. The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6. DSGD Implementation 21

7. Experiments 23
7.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2. Relative Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3. Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.4. Selection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.5. Other Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8. Conclusions 31

A. MapReduce Algorithms for Matrix Factorization 33
A.1. Specialized Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.2. Generic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

B. Parallelization Techniques for Stochastic Approximation 41

C. Example Loss Functions and Derivatives 43

2



1. Introduction

Low-rank matrix factorizations are effective tools for analysis of “dyadic data,” which aims at
discovering and capturing the interactions between two entities [12, 15, 18, 20, 22]. Successful
applications include topic detection and keyword search (where the corresponding entities are
documents and terms), news personalization (users and stories), and recommendation systems
(users and items). In large applications, these problems can involve matrices with millions of
rows (e.g., distinct customers), millions of columns (e.g., distinct items), and billions of entries
(e.g., transactions between customers and items). At such scales, distributed algorithms for matrix
factorization are essential to achieving reasonable performance [12, 13, 22, 27].

In practice, exact factorization is generally neither possible nor desired, so virtually all “matrix
factorization” algorithms actually produce low-rank approximations, attempting to minimize a “loss
function” that measures the discrepancy between the original input matrix and product of the factors
returned by the algorithm; we use the term “matrix factorization” throughout to refer to such an
approximation.

With the recent advent of the MapReduce parallel processing framework, web-scale matrix
factorizations have become practicable and are of increasing interest to web companies, as well as
other companies and enterprises that deal with massive data. Indeed, MapReduce can be used not
only to factor an input matrix, but also to efficiently construct the input matrix from massive, detailed
raw data, such as customer transactions. To facilitate distributed processing, prior approaches would
pick an embarrassingly parallel matrix factorization algorithm and implement it on a MapReduce
cluster; the choice of algorithm was driven by the ease with which it could be distributed. In
this paper, we take a different approach and start with an algorithm that is known to have good
performance in non-parallel environments. Specifically, we start with stochastic gradient descent
(SGD), an iterative optimization algorithm which has been shown, in a sequential setting, to be very
effective for matrix factorization [18]. Although the generic SGD algorithm is not embarrassingly
parallel, we can exploit the special structure of the factorization problem to obtain a version of SGD
that is fully distributed and scales to extremely large matrices.

The key idea is to first develop a “stratified” variant of SGD, called SSGD, that is applicable
to general loss-minimization problems in which the loss function L(θ) can be expressed as a
weighted sum of “stratum losses,” so that L(θ) = w1L1(θ) + · · ·+ wqLq(θ). At each iteration, the
algorithm takes a downhill step with respect to one of the stratum losses Ls, i.e., approximately in
the direction of the negative gradient −L′s(θ). Although each such direction is “wrong” with respect
to minimization of the overall loss L, we prove that, under appropriate regularity conditions, SSGD
will converge to a good solution for L if the sequence of strata is chosen carefully.

We then specialize SSGD to obtain a novel distributed matrix-factorization algorithm, called
DSGD. Specifically, we express the input matrix as a union of (possibly overlapping) pieces, called
“strata.” For each stratum, the stratum loss is defined as the loss computed over only the data points
in the stratum (and appropriately scaled). The strata are carefully chosen so that each stratum has
“d-monomial” structure, which allows SGD to be run on the stratum in a distributed manner. For
example, a stratum corresponding to the nonzero entries in a block-diagonal matrix with k blocks
is d-monomial for all d ≤ k. The DSGD algorithm repeatedly selects a stratum according to the

3



general SSGD procedure and processes the stratum in a distributed fashion. Stratification is a
technique commonly used to reduce the variance of noisy estimates [4, Sec. V.7], such as gradient
estimates in SGD; here we re-purpose the stratification technique to derive a distributed factorization
algorithm with provable convergence guarantees.

Our contributions are as follows:
1. We present SSGD, a novel stratified version of SGD, that is applicable to any optimization

problem in which the loss function can be represented as a weighted sum of stratum losses.
2. We formally establish sufficient conditions for the convergence of SSGD using results from

stochastic approximation theory and regenerative process theory.
3. We specialize SSGD to obtain DSGD, a novel distributed algorithm for low-rank matrix

factorization. Both data and factors are fully distributed. DSGD has low memory requirements
and scales to matrices with millions of rows, millions of columns, and billions of nonzero
elements.

4. We describe practical techniques for implementing DSGD and optimizing its performance.
5. We show that DSGD is amenable to MapReduce, a popular framework for distributed pro-

cessing.
6. We compare DSGD to state-of-the-art distributed algorithms for matrix factorization. Our

experiments suggest that DSGD converges significantly faster, and has better scalability.
Unlike many prior algorithms, DSGD is a generic algorithm in that it can be used for a variety

of different loss functions. In this paper, we focus primarily on the class of factorizations that
minimize a “nonzero loss.” This class of loss functions is important for applications in which a zero
represents missing data and hence should be ignored when computing loss. A typical motivation for
factorization in this setting is to estimate the missing values, e.g., the rating that a customer would
likely give to a previously unseen movie.

The rest of the paper is organized as follows. In Sec. 2, we introduce the factorization problem
by means of an example, and discuss prior approaches to its solution. Sec. 3 describes the basic
(non-parallel) SGD algorithm and its application to the matrix factorization problem. In Sec. 4
we develop the stratified variant of SGD and establish sufficient conditions for convergence. We
specialize SSGD in Sec. 5 to obtain our DSGD matrix factorization algorithm. We first discuss
the special “interchangeability” structure that we exploit to permit distributed execution of SGD
within a stratum, and then show how to exploit this structure by means of a simple example that
corresponds to processing of a single stratum by DSGD. We then give the general algorithm, which
combines distributed processing within strata and careful selection of a stratum sequence. Practical
implementation considerations are discussed in Sec. 6 and our empirical study of DSGD is described
in Sec. 7. We conclude in Sec. 8.

2. Example and Prior Work

To gain understanding about applications of matrix factorizations, consider the “Netflix problem” [5]
of recommending movies to customers. Netflix is a company that offers tens of thousands of movies
for rental. The company has more than 15M customers, each of whom can provide feedback about

4



their personal taste by rating movies with 1 to 5 stars. The feedback can be represented in a feedback
matrix such as


Avatar The Matrix Up

Alice ? 4 2
Bob 3 2 ?
Charlie 5 ? 3

.

Each entry may contain additional data, e.g., the date of rating or other forms of feedback such
as click history. The goal of the factorization is to predict missing entries (?); entries with a high
predicted rating are then recommended to users for viewing. This is an instance of a recommender
system based on matrix factorization, and has been successfully applied in practice. See [18] for an
excellent discussion of the intuition behind this approach.

The traditional matrix factorization problem can be stated as follows. Given an m× n matrix V
and a rank r, find an m× r matrix W and an r × n matrix H such that V = WH . As discussed
previously, our actual goal is to obtain a low-rank approximation V ≈WH , where the quality of
the approximation is described by an application-dependent loss function L. We seek to find

argmin
W ,H

L(V ,W ,H),

i.e., the choice of W and H that give rise to the smallest loss. For example, assuming that missing
ratings are coded with the value 0, loss functions for recommender systems are often based on the
nonzero squared loss

LNZSL =
∑

i,j:V ij 6=0

(V ij − [WH]ij)
2 (1)

and usually incorporate regularization terms, user and movie biases, time drifts, and implicit
feedback.

In the following, we restrict attention to loss functions that, like LNZSL, can be decomposed into a
sum of local losses over (a subset of) the entries in V ij . I.e., we require that the loss can be written
as

L =
∑

(i,j)∈Z

l(V ij ,W i∗,H∗j) (2)

for some training set Z ⊆ { 1, 2, . . . ,m } × { 1, 2, . . . , n } and local loss function l, where Ai∗ and
A∗j denote row i and column j of matrix A, respectively. Many loss functions used in practice—
such as squared loss, generalized Kullback-Leibler divergence (GKL), and Lp regularization—can
be decomposed in such a manner [25]; see Appendix C for more examples. Note that a given loss
function L can potentially be decomposed in multiple ways. In this paper, we focus primarily on the
class of nonzero decompositions, in which Z = { (i, j) : V ij 6= 0 } refers to the nonzero entries in
V . As mentioned above, such decompositions naturally arise when zeros represent missing data.
Our algorithms can handle other decompositions as well; see our preliminary results for GKL in
Sec. 7. To avoid trivialities, we assume throughout that there is at least one training point in every

5



row and in every column of V ; e.g., every customer has rated at least one movie and every movie
has been rated at least once.1

To compute W and H on MapReduce, all known algorithms start with some initial factors
W 0 and H0 and iteratively improve them. The m× n input matrix V is partitioned into d1 × d2
blocks, which are distributed in the MapReduce cluster. Both row and column factors are blocked
conformingly: 

H1 H2 · · · Hd2

W 1 V 11 V 12 · · · V 1d2

W 2 V 21 V 22 · · · V 2d2

...
...

...
. . .

...
W d1 V d11 V d12 · · · V d1d2

,
where we use superscripts to refer to individual blocks. The algorithms are designed such that each
block V ij can be processed independently in the map phase, taking only the corresponding blocks
of factors W i and Hj as input. Some algorithms directly update the factors in the map phase (then
either d1 = m or d2 = n to avoid overlap), whereas others aggregate the factor updates in a reduce
phase.

Existing algorithms can be classified into specialized algorithms, which are designed for a
particular loss, and generic algorithms, which work for a wide variety of loss functions. Specialized
algorithms currently exist for only a small class of loss functions. For GKL loss, Das et al. [12]
provide an EM-based algorithm, and Liu et al. [22] provide a multiplicative-update method. In
[22], the latter MULT approach is also applied to squared loss and nonnegative matrix factorization
with an “exponential” loss function (exponential NMF). Each of these algorithms in essence takes
an embarrassingly parallel matrix factorization algorithm developed previously—in [15, 16] for
the EM algorithm and in [20, 21] for the MULT methods—and directly distributes it across the
MapReduce cluster. Zhou et al. [27] show how to distribute the well-known alternating least squares
(ALS) algorithm to handle factorization problems with a nonzero squared loss function and an
optional weighted L2 regularization term. Their approach requires a double-partitioning of V : once
by row and once by column. Moreover, ALS requires that each of the factor matrices W and H
can (alternately) fit in main memory. More details on each of the foregoing algorithms can be found
in Appendix A.

Generic algorithms are able to handle all differentiable loss functions that decompose into
summation form. A simple approach is distributed gradient descent (DGD [13, 14, 23]), which
distributes gradient computation across a compute cluster, and then performs centralized parameter
updates using, for example, quasi-Newton methods such as L-BFGS-B [8]. Partitioned SGD
approaches make use of a similar idea: SGD is run independently and in parallel on partitions of
the dataset, and parameters are averaged after each pass over the data (PSGD [14, 24]) or once
at the end (ISGD [23, 24, 28]). These approaches have not been applied to matrix factorization
before. Similarly to L-BFGS-B, they exhibit slow convergence in practice (see Sec. 7) and need to

1Clearly, recommendation is impossible for a customer who has never rated a movie or a movie that has never been
rated; mathematically, the W factors for an empty row or the H factors for an empty column can be set to any
arbitrary value without affecting the loss, so the factorization problem is not well posed in this case.

6



store the full factor matrices in memory. This latter limitation can be a serious drawback: for large
factorization problems, it is crucial that both matrix and factors be distributed. Our present work
on DSGD is a first step towards such a fully distributed generic algorithm with good convergence
properties.

3. Stochastic Gradient Descent

In this section, we discuss how to factorize a given matrix via standard (non-parallel) SGD.

3.1. Preliminaries

The goal of SGD is to find the value θ∗ ∈ <k (k ≥ 1) that minimizes a given loss L(θ). The
algorithm makes use of noisy observations L̂′(θ) of L′(θ), the function’s gradient with respect to
θ. Starting with some initial value θ0, SGD refines the parameter value by iterating the stochastic
difference equation

θn+1 = θn − εnL̂′(θn), (3)

where n denotes the step number and { εn } is a sequence of decreasing step sizes. (We assume
throughout that each εn is nonnegative and finite.) Since−L′(θn) is the direction of steepest descent,
(3) constitutes a noisy version of gradient descent. Figure 1 illustrates this process with an example
in which θ is 2-dimensional.

Stochastic approximation theory can be used to show that, under certain regularity conditions [19],
the noise in the gradient estimates “averages out” and SGD converges to the set of stationary points
satisfying L′(θ) = 0. Of course, these stationary points can be minima, maxima, or saddle points.
One may argue that convergence to a maximum or saddle point is unlikely because the noise in
the gradient estimates reduces the likelihood of getting stuck at such a point. Thus { θn } typically
converges to a (local) minimum of L. A variety of methods can be used to increase the likelihood
of finding a global minimum, e.g., running SGD multiple times, starting from a set of randomly
chosen initial solutions.

In practice, one often makes use of an additional projection ΠH that keeps the iterate in a given
constraint setH . For example, there is considerable interest in nonnegative matrix factorizations [20],
which corresponds to setting H = { θ : θ ≥ 0 }. The projected algorithm takes form

θn+1 = ΠH

[
θn − εnL̂′(θn)

]
. (4)

In addition to the set of stationary points, the projected process may converge to the set of “chain
recurrent” points [19], which are influenced by the boundary of the constraint set H .

3.2. SGD for Matrix Factorization

To apply SGD to matrix factorization, we take θ to be (W ,H) and decompose the loss L as
in (2) for an appropriate training set Z and local loss function l. For brevity, we suppress the
constant matrix V in our notation. Denote by Lz(W ,H) = Lij(W ,H) = l(V ij ,W i∗,H∗j) the

7



 1 

 1.5 

 2 

 2.5 

 3 
 4  4.5 

 5 
 5.5  6 

 6.5 
 7 

−0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

L'(θ0)

L̂'(θ0)

θ0

l

θ
*

θn

Figure 1: Example of SGD

local loss at position z = (i, j). Then L(W ,H) =
∑

z∈Z Lz(W ,H) and hence L′(W ,H) =∑
z∈Z L

′
z(W ,H) by the sum rule for differentiation. DGD methods exploit the summation form

of L′: they compute the local gradients L′z in parallel and sum up. In contrast, SGD obtains noisy
gradient estimates by scaling up just one of the local gradients, i.e.,

L̂′(W ,H) = NL′z(W ,H),

where N = |Z| and the training point z is chosen randomly from the training set. Algorithm 1 uses
SGD to perform matrix factorization.

Algorithm 1 SGD for Matrix Factorization
Require: A training set Z, initial values W 0 and H0

while not converged do /* step */
Select a training point (i, j) ∈ Z uniformly at random.
W ′

i∗ ←W i∗ − εnN ∂
∂W i∗

l(V ij ,W i∗,H∗j)

H∗j ←H∗j − εnN ∂
∂H∗j

l(V ij ,W i∗,H∗j)

W i∗ ←W ′
i∗

end while

Note that, after generating a random training point (i, j) ∈ Z, we need to update only W i∗ and
W ∗j , and do not need to update factors of the form W i′∗ for i′ 6= i or H∗j′ for j′ 6= j. This
computational savings follows from our representation of the global loss as a sum of local losses.

8



Specifically, we have used the fact that

∂

∂W i′k
Lij(W ,H) =

{
0 if i 6= i′

∂
∂W ik

l(V ij ,W i∗,H∗j) otherwise
(5)

and

∂

∂Hkj′
Lij(W ,H) =

{
0 if j 6= j′

∂
∂Hkj

l(V ij ,W i∗,H∗j) otherwise
(6)

for 1 ≤ k ≤ r. SGD is sometimes referred to as online learning or sequential gradient descent [6].
Batched versions, in which multiple local losses are averaged, are also feasible but often have
inferior performance in practice.

One might wonder why replacing exact gradients (GD) by noisy estimates (SGD) can be beneficial.
The main reason is that exact gradient computation is costly, whereas noisy estimates are quick
and easy to obtain. In a given amount of time, we can perform many quick-and-dirty SGD updates
instead of a few, carefully planned GD steps. The noisy process also helps in escaping local minima
(especially those with a small basin of attraction and more so in the beginning, when the step sizes
are large). Moreover, SGD is able to exploit repetition within the data. Parameter updates based on
data from a certain row or column will also decrease the loss in similar rows and columns. Thus the
more similarity there is, the better SGD performs. Ultimately, the hope is that the increased number
of steps leads to faster convergence. This behavior can be proven for some problems [7], and it has
been observed in the case of large-scale matrix factorization [18].

4. Stratified SGD

In this section we develop a general stratified stochastic gradient descent (SSGD) algorithm, and
give sufficient conditions for convergence. In Sec. 5 we specialize SSGD to obtain an efficient
distributed algorithm (DSGD) for matrix factorization.

4.1. The SSGD Algorithm

In SSGD, the loss function L(θ) is decomposed into a weighted sum of loss functions Ls(θ) as
follows:

L(θ) = w1L1(θ) + w2L2(θ) + . . .+ wqLq(θ), (7)

where we assume without loss of generality that 0 < ws ≤ 1 and
∑
ws = 1. We refer to index s

as a stratum, Ls as the stratum loss for stratum s, and ws as the weight of stratum s. In practice, a
stratum often corresponds to a part or partition of some underlying dataset. In this case, one can
think of Ls as the loss incurred on the respective partition; the overall loss is obtained by summing
up the per-partition losses. In general, however, the decomposition of L can be arbitrary; there may
or may not be an underlying data partitioning. Also note that there is some freedom in the choice of

9



−0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

 1 

 1.5 

 2 

 2.5 

 3 
 4  4.5 

 5 
 5.5  6 

 6.5 
 7 

l

θ0

L'(θ0)

L'1(θ0)

L'2(θ0)θ1
*

θ2
*

θ
*

θn

Figure 2: Example of stratified SGD

the ws; they may be altered to arbitrary values (subject to the constraints above) by appropriately
modifying the stratum loss functions. This freedom gives room for optimization.

SSGD runs standard stochastic gradient descent on a single stratum at a time, but switches strata
in a way that guarantees correctness. The algorithm can be described as follows. Suppose that there
is a (potentially random) stratum sequence { γn }, where each γn takes values in { 1, . . . , q } and
determines the stratum to use in the nth iteration. Using a noisy observation L̂′γn of the gradient
L′γn , we obtain the update rule

θn+1 = ΠH

[
θn − εnL̂′γn(θn)

]
. (8)

The sequence { γn } has to be chosen carefully to establish convergence to the stationary (or chain-
recurrent) points of L. Indeed, because each step of the algorithm proceeds approximately in the
“wrong” direction, i.e., −L′γn(θn) rather than −L′(θn), it is not obvious that the algorithm will
converge at all. We show in Sec. 4.2 and 4.3, however, that SSGD will indeed converge under
appropriate regularity conditions provided that, in essence, the “time” spent on each stratum is
proportional to its weight.

Figure 2 shows an example of SSGD, where the loss (shown in green) has been decomposed into
two strata (blue and red). When γn = red, the iterate is “pulled” towards the red optimum; when
γn = blue, it moves towards the blue optimum. In the long run, the process converges to the overall
optimum.

4.2. Convergence of SSGD

Appropriate sufficient conditions for the convergence of SSGD can be obtained from general results
on stochastic approximation in Kushner and Yin [19, Sec. 5.6]. These conditions are satisfied in most

10



matrix factorization problems. We distinguish step-size conditions, loss conditions, stratification
conditions, and stratum-sequence conditions.

The two step-size conditions involve the sequence { εn }.

Condition 1. The step sizes slowly approach zero in that εn → 0 and
∑
εn =∞.

Condition 2. The step sizes decrease “quickly enough” in that
∑
ε2i <∞

Clearly, the step sizes must decrease to 0 in order for the algorithm to converge (as specified in
Condition 1). However, this convergence must occur at the correct rate. Condition 1 ensures that the
SGD algorithm can move across arbitrarily large distances and thus cannot get stuck halfway to a
stationary point; Condition 2 (“square summability”) ensures that the step sizes decrease to 0 fast
enough so that converge occurs. The simplest valid choice is εn = 1/n.

The next pair of conditions involve the loss function.

Condition 3. The constraint set H on which L is defined is a hyperrectangle.

Condition 4. L′(θ) is continuous on H .

Note that non-differentiable points may arise in matrix factorization, e.g., when L1 regularization
is used. SSGD is powerful enough to deal with such points under appropriate regularity conditions,
using “subgradients”; see [19] for details.

With respect to stratification, we require that estimates of the gradient defined with respect to a
given stratum are unbiased, have bounded second moment for θ ∈ H , and do not depend on the
past. DSGD satisfies these conditions by design. More precisely, the conditions are as given below.
Denote by L̂′γn,n(θn) the gradient estimate used in the nth step.

Condition 5. The gradient estimates have bounded second moment, i.e.,

sup
n

E
[
|L̂′γn,n(θn)|2

]
<∞

for all θ ∈ H .

This condition ensures that the noise in the gradient estimates is small enough to eventually be
averaged out, and is often fulfilled by choosing the constraint set H appropriately (so that L′s(θ) is
bounded for all s ∈ { 1, . . . , q } and θ ∈ H).

Condition 6. The noise in the gradient estimates is a martingale difference, i.e.,

E
[
L̂′γn,n(θn) | Fn

]
= L′γn(θn),

where L̂′γn,n is the gradient estimate in the nth step and Fn = σ({ εi, θi, γi, i ≤ n }) is the σ-field
that represents what is known at step n.

Thus, accounting for the entire history, the gradient estimate is required to be unbiased for the
gradient.

Finally, we give a sufficient condition on the stratum sequence.

11



Condition 7. The step sizes satisfy (εn − εn+1)/εn = O(εn) and the γn are chosen such that the
directions “average out correctly” in the sense that, for any θ ∈ H ,

lim
n→∞

εn

n−1∑
i=0

[
L′γi(θ)− L

′(θ)
]

= 0

almost surely.

For example, if εn were equal to 1/n, then the nth term would represent the empirical average
deviation from the true gradient over the first n steps.

We can now state our correctness result, which asserts that, under the foregoing conditions, the θn
sequence converges almost surely to the set of limit points of an ODE that is a smoothed version of
the basic SGD recursion. As shown in [19], these limit points comprise the set of stationary points
of L in H , as well as a set of chain-recurrent points on the boundary of H . In our setting, the limit
point to which SSGD converges is typically a good local minimum.

Theorem 1. Suppose that Conditions 1–7 hold. Then the sequence { θn } converges almost surely
to the set of limit points of the projected ODE

θ̇ = −L′(θ) + z

in H , taken over all initial conditions. Here, z is the “minimum force” to keep the solution in H [19,
Sec. 4.3].

The conditions used in Theorem 1 can be weakened considerably, but suffice for our purposes.
The theorem follows directly from results in [19]. Indeed, as a special case of [19, Th. 6.1.1],
the desired result follows from Conditions 1, 3, 4, and 5, and two “asymptotic rate of change”
(ARC) assumptions: one on the gradient-estimation noise, given by (6.1.4) in [19], and one on the
differences {L′γn(θ)− L′(θ)}∞n=0, given by (A6.1.3) in [19]. As discussed on pp. 137–138 of [19],
the first ARC assumption is implied by Conditions 2, 5, and 6. The second ARC assumption is
implied by Condition 7; see [19, p. 171].

All but the last of the sufficient conditions for convergence hold by design. Therefore, the crux of
showing that SSGD converges is showing that Condition 7 holds. We address this issue next.

4.3. Conditions for Stratum Selection

The following result gives sufficient conditions on L(θ), the step sizes { εn }, and the stratum
sequence { γn } such that Condition 7 holds. Our key assumption is that the sequence { γn }
is regenerative [3, Ch. VI], in that there exists an increasing sequence of almost-surely finite
random indices 0 = β(0) < β(1) < β(2) < · · · that serves to decompose { γn } into consecutive,
independent and identically distributed (i.i.d.) cycles {Ck },2 with Ck = { γβ(k−1), γβ(k−1)+1,

2The cycles need not directly correspond to strata. Indeed, we make use of strategies in which a cycle comprises multiple
strata.

12



. . . , γβ(k)−1 } for k ≥ 1. I.e., at each β(i), the stratum is selected according to a probability
distribution that is independent of past selections, and the future sequence of selections after step
β(i) looks probabilistically identical to the sequence of selections after step β(0). The length τk
of the kth cycle is given by τk = β(k)− β(k − 1). Letting Iγn=s be the indicator variable for the
event that stratum s is chosen in the nth step, set

Xk(s) =

β(k)−1∑
n=β(k−1)

(Iγn=s − ws)

for 1 ≤ s ≤ q. It follows from the regenerative property that the pairs
{ (
Xk(s), τk

) }
are i.i.d.

for each s. The following theorem asserts that, under regularity conditions, we may pick any
regenerative sequence γn such that E [X1(s) ] = 0 for all strata.

Theorem 2. Suppose that L(θ) is differentiable on H and supθ∈H |L′s(θ)| <∞ for 1 ≤ s ≤ q and
θ ∈ H . Also suppose that εn = O(n−α) for some α ∈ (0.5, 1] and that (εn − εn+1)/εn = O(εn).
Finally, suppose that { γn } is regenerative with E [ τ

1/α
1 ] <∞ and E [X1(s) ] = 0 for 1 ≤ s ≤ q.

Then Condition 7 holds.

The condition E [X1(s) ] = 0 essentially requires that, for each stratum s, the expected fraction
of visits to s in a cycle equals ws. By the strong law of large numbers for regenerative processes [3,
Sec. VI.3], this condition—in the presence of the finite-moment condition on τ1—also implies that
the long-term fraction of visits to s equals ws. The finite-moment condition is typically satisfied
whenever the number of successive steps taken within a stratum is bounded with probability 1.

Proof. Fix θ ∈ H and observe that

εn

n−1∑
i=0

(
L′γi(θ)− L

′(θ)
)

= εn

n−1∑
i=0

q∑
s=1

(
L′s(θ)Iγi=s − L′s(θ)ws

)
=

q∑
s=1

L′s(θ)εn

n−1∑
i=0

(
Iγi=s − ws

)
.

Since |L′s(θ)| <∞ for each s, it suffices to show that n−α
∑n−1

i=0

(
Iγi=s−ws

) a.s.−−→ 0 for 1 ≤ s ≤ q.
To this end, fix s and denote by c(n) the (random) number of complete cycles up to step n. We have

n∑
i=0

(Iγi=s − ws) =

c(n)∑
k=1

Xk(s) +R1,n,

where R1,n =
∑n

i=β(c(n))(Iγi=s − ws). I.e., the sum can be broken up into sums over complete
cycles plus a remainder term corresponding to a sum over a partially completed cycle. Similar

13



calculations let us write n =
∑c(n)

k=1 τk +R2,n, where R2,n = n− β
(
c(n)

)
+ 1. Thus∑n

i=0(Iγi=s − ws)
nα

=

∑c(n)
k=1Xk(s) +R1,n(∑c(n)
k=1 τk +R2,n

)α
=

∑c(n)
k=1Xk(s)

c(n)α

(∑c(n)
k=1 τk
c(n)

+
R2,n

c(n)

)−α
+

R1,n/c(n)α(∑c(n)
k=1 τk/c(n) +R2,n/c(n)

)α .
(9)

By assumption, the random variables {Xk(s) } are i.i.d. with common mean 0. Moreover, |Xk(s)| ≤
(1 +ws)τk, which implies that E [ |X1(s)|1/α ] ≤ (1 +ws)

1/α E [ τ
1/α
1 ] <∞. It then follows from

the Marcinkiewicz-Zygmund strong law [9, Th. 5.2.2] that n−α
∑n

k=1Xk(s)
a.s.−−→ 0. Because each

regeneration point, and hence each cycle length, is assumed to be almost surely finite, it follows that
c(n)

a.s.−−→∞, so that
∑c(n)

k=1Xk(s)/c(n)α
a.s.−−→ 0 as n→∞. Similarly, an application of the ordinary

strong law of large numbers shows that
∑c(n)

k=1 τk/c(n)
a.s.−−→ E [ τ1 ] > 0. Next, note that |R1,n| ≤

(1 + ws)τc(n)+1, so that R1,n/c(n)α
a.s.−−→ 0 provided that τk/kα

a.s.−−→ 0. To establish this latter limit
result, observe that for any ε > 0, the assumed finiteness of E [ (τk/ε)

1/α ] implies [10, Th. 3.2.1]
that

∑∞
k=1 Pr[ (τk/ε)

1/α ≥ k ] <∞, and hence
∑∞

k=1 Pr[ τk/k
α ≥ ε ] <∞. It then follows from

the first Borel-Cantelli Lemma (see [10, Th. 4.2.1]) that Pr[ τk/k
α ≥ ε infinitely often ] = 0, which

in turn implies [10, Th. 4.2.2] that τk/kα
a.s.−−→ 0. A similar argument shows that R2,n/c(n)

a.s.−−→ 0,
and the desired result follows after letting n→∞ in the rightmost expression in (9).

The conditions on { εn } in Theorem 2 are often satisfied in practice, e.g., when εn = 1/n or
when εn = 1/dn/ke for some k > 1 with dxe denoting the smallest integer greater than or equal to
x (so that the step size remains constant for some fixed number of steps, as in Algorithm 2 below).
See Sec. 6 for further discussion.

Similarly, a wide variety of strata-selection schemes satisfy the conditions of Theorem 2. Some
simple examples include (1) running precisely cws steps on stratum s in every “chunk” of c steps, and
(2) repeatedly picking a stratum according to some fixed distribution { ps > 0 } and running cws/ps
steps on the selected stratum s. (E.g., we can set ps = ws so that strata are chosen proportional
to their weight and a constant number of steps is run on the selected stratum, or ps = 1/q so that
strata are chosen uniformly and at random but the number of steps run on the selected stratum is
proportional to its weight.) For example (1), assume initially that the order of stratum visits within
any two chunks is the same. Then, in the notation of Theorem 2, we have τk = c and Xk(s) = 0
with probability 1 for all k, so the conditions of the theorem hold trivially, with the chunks playing
the role of regenerative cycles. In fact, the order within each chunk is irrelevant, since for any
ordering the pairs

{ (
Yk(s), τk

) }
are trivially i.i.d., so that the proof of the theorem goes through

essentially unchanged. For example (2), the steps at which a stratum is randomly selected clearly

14



form a sequence of regeneration points for { γn }. We have

E [ τ1 ] =

q∑
s=1

ps
cws
ps

= c

q∑
s=1

ws = c

The sum of the random variables Iγn=s over a cycle is cws/ps if stratum s is selected and 0 otherwise,
so that the expected sum is ps(cws/ps) + (1− ps)0 = cws and hence

E [X1(s) ] = E

[ ∑
γn∈cycle 1

(Iγn=s − ws)
]

= E

[ ∑
γn∈cycle 1

Iγn=s

]
− E [wsτk ] = cws − cws = 0.

Moreover, τ1 is bounded above by maxs cws/ps <∞, and hence has finite moments of all orders.
To give a better idea of the scope of stratum-selection schemes covered by Theorem 2, we

conclude by discussing a randomized procedure in which, after visiting a stratum s, we visit the
same stratum at the next step with probability ps = 1 − (cws)

−1, and with probability 1 − ps
we select a new stratum randomly and uniformly from the q strata. (Thus the new stratum may
correspond to the old stratum.) Here c is a constant that is large enough to ensure that cws > 1
for each s. Denote by s0 ∈ { 1, 2, . . . , q } the initial stratum to be visited; we fix s0 a priori. Then
{ γn } is regenerative, with the regeneration points corresponding to the successive steps at which
a new stratum is selected and the new stratum is s0. We can write τ1 =

∑N
i=1 Vi, where N is the

total number of new-stratum selections, and Vi is the number of successive visits to the ith selected
stratum. The random variable N has a geometric distribution with mean q and, given that stratum s
is selected at the ith selection epoch, Vi has a geometric distribution with mean cws. Moreover, the
Vi’s are mutually independent and independent of N , and V2, . . . , VN are i.i.d., specifically, each Vi
(i > 1) is distributed as an average of q − 1 independent geometric random variables with means
{ws : s 6= s0 }. It follows that

E [ τ1 ] = E [V1 ] + E

[ N∑
i=2

Vi

]
= cws0 + E [N − 1 ]

(
(q − 1)−1

∑
s 6=s0

cws

)
=
∑
s

cws = c.

Let Ns denote the number of new-stratum selections equal to s in the first cycle. It is not hard to see
that Ns0 = 1 with probability 1 and that E [Ns ] = 1 for s 6= s0. Thus, for each s,

E

[ ∑
γn∈cycle 1

Iγn=s

]
= cws E [Ns ] = cws,

so that E [X1(s) ] = 0. Finally, we show that τ1 has finite moments of all orders. Using the simple
bound (

∑n
i=1 xi)

β ≤ (nmax1≤i≤n xi)
β ≤ nβ

∑n
i=1 x

β
i for x1, x2, . . . , xn ≥ 0 and β ≥ 0, we

have E [ τβ1 ] ≤ E
[
Nβ

]
m(β, s0)+E [Nβ(N − 1) ]

∑
s 6=s0 m(β, s)/(q−1). Herem(β, s) denotes

15



the (finite) βth moment of a geometric random variable with mean cws. The desired result then
follows from the fact that N also has a geometric distribution, and hence has finite moments of all
orders.

The above examples are primarily of theoretical interest. In Sec. 6, we focus on some schemes
that are particularly suitable for practical implementation in the context of DSGD.

5. The DSGD Algorithm

We can exploit the structure of the matrix factorization problem to derive a distributed algorithm
for rank-r matrix factorization via SGD. The idea is to specialize the SSGD algorithm, choosing
the strata such that SGD can be run on each stratum in a distributed manner. We first discuss the
“interchangeability” structure that we will exploit for distributed processing within a stratum.

5.1. Interchangeability

In general, distributing SGD is hard because the individual steps depend on each other: from (4),
we see that θn has to be known before θn+1 can be computed. However, in the case of matrix
factorization, the SGD process has some structure that we can exploit.

We focus on loss-minimization problems of the form minimizeθ∈H L(θ) where the loss function
L has summation form: L(θ) =

∑
z∈Z Lz(θ).

Definition 1. Two training points z1, z2 ∈ Z are interchangeable if for all loss functions L having
summation form, all θ ∈ H , and ε > 0,

L′z1(θ) = L′z1(θ − εL′z2(θ))

and L′z2(θ) = L′z2(θ − εL′z1(θ)).
(10)

Two disjoint sets of training points Z1, Z2 ⊂ Z are interchangeable if z1 and z2 are interchangeable
for every z1 ∈ Z1 and z2 ∈ Z2.

As described in Sec. 5.2 below, we can swap the order of consecutive SGD steps that involve
interchangeable training points without affecting the final outcome.

Now we return to the setting of matrix factorization, where the loss function has the form
L(W ,H) =

∑
(i,j)∈Z Lij(W ,H) with Lij(W ,H) = l(V ij ,W i∗,H∗j). The following theo-

rem gives a simple criterion for interchangeability.

Theorem 3. Two training points z1 = (i1, j1) ∈ Z and z2 = (i2, j2) ∈ Z are interchangeable if
they share neither row nor column, i.e., i1 6= i2 and j1 6= j2.

Proof. The result is a direct consequence of the decomposition of the global loss into a sum of local
losses. Specifically, it follows from (5) and (5) that the partial derivatives of Lij (1) depend only
on V ij , W i∗, and H∗j , and (2) are nonzero only with respect to W i1, . . . ,W ir,H1j , . . . ,Hrj .
When i1 6= i2 and j1 6= j2, both (W ,H) and (W ,H) − εL′z1(W ,H) agree on the values of
W i2∗ and H∗j2 for any choice of (W ,H), which establishes the second part of (10). Analogous
arguments hold for the first part.

16



It follows that if two blocks of V share neither rows or columns, then the sets of training points
contained in these blocks are interchangeable.

5.2. A Simple Case

We introduce the DSGD algorithm by considering a simple case that essentially corresponds to
running DSGD using a single “d-monomial” stratum (see Sec. 5.3). The goal is to highlight the
technique by which DSGD runs the SGD algorithm in a distributed manner within a stratum. For a
given training set Z, denote by Z the corresponding training matrix, which is obtained by zeroing
out the elements in V that are not in Z; these elements usually represent missing data or held-out
data for validation. In our simple scenario, Z corresponds to our single stratum of interest, and the
corresponding training matrix Z is block-diagonal:


H1 H2 · · · Hd

W 1 Z1 0 · · · 0

W 2 0 Z2 · · ·
...

...
...

...
. . . 0

W d 0 · · · 0 Zd

, (11)

where W and H are blocked conformingly. Denote by Zb the set of training points in block Zb.
We exploit the key property that, by Theorem 3, sets Zi and Zj are interchangeable for i 6= j.
For some T ∈ [1,∞), suppose that we run T steps of SGD on Z, starting from some initial point
θ0 = (W 0,H0) and using a fixed step size ε. We can describe an instance of the SGD process by a
training sequence ω = (z0, z1, . . . , zT−1) of T training points. Figure 1 shows an example of such
a training sequence. Define θ0(ω) = θ0 and

θn+1(ω) = θn(ω) + εYn(ω),

where the update term Yn(ω) = −NL′ωn
(θn(ω)) is the scaled negative gradient estimate as in

standard SGD. We can write

θT (ω) = θ0 + ε

T−1∑
n=0

Yn(ω). (12)

To see how to exploit the interchangeability structure, consider the subsequence σb(ω) = ω ∩ Zb
of training points from block Zb; the subsequence has length Tb(ω) = |σb(ω)|. The following
theorem asserts that we can run SGD on each block independently, and then sum up the results.

Theorem 4. Using the definitions above,

θT (ω) = θ0 + ε
d∑
b=1

Tb(ω)−1∑
k=0

Yk(σb(ω)). (13)

17



Proof. We establish a one-to-one correspondence between the update terms Yn(ω) in (12) and
Yk(σb(ω)) in (13). Denote by zb,k the (k + 1)st element in σb(ω), i.e., the (k + 1)st element from
block Zb in ω. Denote by π(zb,k) the 0-based position of this element in ω. We have ωπ(zb,k) = zb,k.
Now consider the first element zb,0 from block b. We have zn /∈ Zb for all previous elements
n < π(zb,0). Since the training matrix is block-diagonal, blocks have pairwise disjoint rows and
pairwise disjoint columns. Thus by Theorem 3, zb,0 is interchangeable with each of the zn for
n < π(zb,0). We can therefore eliminate the zn one by one:

Yπ(zb,0)(ω) = −NL′zb,0(θπ(zb,0)(ω)) = −NL′zb,0(θπ(zb,0)−1(ω))

= · · · = −NL′zb,0(θ0) = Y0(σb(ω)).

Using the same argument, we can safely remove all update terms from elements not in block Zb.
By induction on k, we obtain

Yπ(zb,k)(ω) = −NL′zb,k

θ0 + ε

π(zb,k)−1∑
n=0

Yn(ω)


= −NL′zb,k

(
θ0 + ε

k−1∑
l=0

Yπ(zb,l)(σb(ω))

)
= Yk(σb(ω)). (14)

The assertion of the theorem now follows from

θT (ω) = θ0 + ε
T−1∑
n=0

Yn(ω) = θ0 + ε
d∑
b=1

Tb(ω)−1∑
k=0

Yπ(zb,k)(ω)

= θ0 + ε

d∑
b=1

Tb(ω)−1∑
k=0

Yk(σb(ω)),

where we first reordered the update terms and then used (14).

We used the fact that Z is block-diagonal only to establish interchangeability between blocks.
This means that Theorem 4 also applies when the matrix is not block-diagonal, but can be divided
into a set of interchangeable submatrices in some other way.

We now describe how to exploit Theorem 4 for distributed processing on MapReduce. We block
W and H conformingly to Z—as in (11)—and divide processing into d independent map tasks
Γ1, . . . ,Γd as follows. Task Γb is responsible for subsequence σb(ω): It takes Zb, W b, and Hb

as input, performs the block-local updates σb(ω), and outputs updated factor matrices W b
new and

18



Hb
new.3 By Theorem 4, we have

W ′ =

W 1
new
...

W d
new

 and H ′ =
(
H1

new · · · Hd
new
)
,

where W ′ and H ′ are the matrices that one would obtain by running sequential SGD on ω. Since
each task accesses different parts of both training data and factor matrices, the data can be distributed
across multiple nodes and the tasks can run simultaneously. In Sec. 6, we describe how to efficiently
implement the above idea.

5.3. The General Case

We now present the complete DSGD matrix-factorization algorithm. The key idea is to stratify the
training set Z into a set S = {Z1, . . . , Zq } of q strata so that each individual stratum Zs ⊆ Z can
be processed in a distributed fashion. We do this by ensuring that each stratum is “d-monomial” as
defined below. The d-monomial property generalizes the block-diagonal structure of the example in
Sec. 5.2, while still permitting the techniques of that section to be applied. The strata must cover the
training set in that

⋃q
s=1 Zs = Z, but overlapping strata are allowed. The parallelism parameter d is

chosen to be greater than or equal to the number of available processing tasks.

Definition 2. A stratum Zs is d-monomial if it can be partitioned into d nonempty subsets
Z1
s , Z

2
s , . . . , Z

d
s such that i 6= i′ and j 6= j′ whenever (i, j) ∈ Zb1s and (i′, j′) ∈ Zb2s with

b1 6= b2. A training matrix Zs is d-monomial if it is constructed from a d-monomial stratum Zs.

There are many ways to stratify the training set according to Def. 2. In our current work, we
perform data-independent blocking; more advanced strategies may improve the speed of convergence
further. We first randomly permute the rows and column of Z, and then create d × d blocks
of size (m/d) × (n/d) each; the factor matrices W and H are blocked conformingly. This
procedure ensures that the expected number of training points in each of the blocks is the same,
namely, N/d2. Then, for a permutation j1, j2, . . . , jd of 1, 2, . . . , d, we can define a stratum as
Zs = Z1j1 ∪ Z2j2 ∪ · · · ∪ Zdjd , where the substratum Zij denotes the set of training points that fall
within block Zij . We can represent a stratum Zs by a template Z̃s that displays each block Zij

corresponding to a substratum Zij of Zs, with all other blocks represented by zero matrices. When
d = 2, for example, we obtain two strata represented by the templates

Z̃1 =

(
Z11 0
0 Z22

)
and Z̃2 =

(
0 Z12

Z21 0

)
.

The set S of possible strata contains d! elements, one for each possible permutation of 1, 2, . . . , d.
Note that different strata may overlap when d > 2. Also note that there is no need to materialize
these strata: They are constructed on-the-fly by processing only the respective blocks of Z.

3Since training data is sparse, a block Zb may contain no training points; in this case we cannot execute SGD on the
block, so the corresponding factors simply remain at their initial values.

19



Given a set of strata and associated weights {ws }, we decompose the loss into a weighted sum
of per-stratum losses as in (7): L(W ,H) =

∑q
s=1wsLs(W ,H). (As in Sec. 3.2, we suppress the

fixed matrix V in our notation for loss functions.) We use per-stratum losses of form

Ls(W ,H) = cs
∑

(i,j)∈Zs

Lij(W ,H), (15)

where cs is a stratum-specific constant; see the discussion below. When running SGD on a stratum,
we use the gradient estimate

L̂′s(W ,H) = NscsL
′
ij(W ,H) (16)

of L′s(W ,H) in each step, i.e., we scale up the local loss of an individual training point by the size
Ns = |Zs| of the stratum. For example, from the d! strata described previously, we can select d
disjoint strata Z1, Z2, . . . , Zd such that they cover Z. Then any given loss function L of the form (2)
can be represented as a weighted sum over these strata by choosing ws and cs subject to wscs = 1.
Recall that ws can be interpreted as the “time” spent on each stratum in the long run. A natural
choice is to set ws = Ns/N , i.e., proportional to the stratum size. This particular choice leads to
cs = N/Ns and we obtain the standard SGD gradient estimator L̂′s(W ,H) = NL′ij(W ,H). As
another example, we can represent L as a weighted sum in terms of all d! strata; in light of the fact
that each substratum Zij lies in exactly (d− 1)! of these strata, we choose ws = Ns/

(
(d− 1)!N

)
and use the value of cs = N/Ns as before.

The individual steps in DSGD are grouped into subepochs, each of which amounts to processing
one of the strata. In more detail, DSGD makes use of a sequence { (ξk, Tk) }, where ξk denotes the
stratum selector used in the kth subepoch, and Tk the number of steps to run on the selected stratum.
Note that this sequence of pairs uniquely determines an SSGD stratum sequence as in Sec. 4.1:
γ1 = · · · = γT1 = ξ1, γT1+1 = · · · = γT1+T2 = ξ2, and so forth. The { (ξk, Tk) } sequence is
chosen such that the underlying SSGD algorithm, and hence the DSGD factorization algorithm, is
guaranteed to converge; see Sec. 4.3. Once a stratum ξk has been selected, we perform Tk SGD
steps on Zξk ; this is done in a parallel and distributed way using the technique of Sec. 5.2. DSGD is
shown as Algorithm 2, where we define an epoch as a sequence of d subepochs. As will become
evident in Sec. 6 below, an epoch roughly corresponds to processing the entire training set once.

When executing Algorithm 2 on d nodes in a shared-nothing environment such as MapReduce, the
input matrix need only be distributed once. Then the only data that are transmitted between nodes
during subsequent processing are (small) blocks of factor matrices. Indeed, if node i stores blocks
W i,Zi1,Zi2, . . . ,Zid for 1 ≤ i ≤ d, then only matrices H1,H2, . . . ,Hd need be transmitted.

Since, by construction, parallel processing within the kth selected stratum leads to the same update
terms as for the corresponding sequential SGD algorithm on Zξk , we have established the connection
between DSGD and SSGD. Thus the convergence of DSGD is implied by the convergence of the
underlying SSGD algorithm; see Sec. 4.2.

20



Algorithm 2 DSGD for Matrix Factorization
Require: Z, W 0, H0, cluster size d
W ←W 0

H ←H0

Block Z / W / H into d× d / d× 1 / 1× d blocks
while not converged do /* epoch */

Pick step size ε
for s = 1, . . . , d do /* subepoch */

Pick d blocks {Z1j1 , . . . ,Zdjd} to form a stratum
for b = 1, . . . , d do /* in parallel */

Run SGD on the training points in Zbjb (step size = ε)
end for

end for
end while

6. DSGD Implementation

In this section, we discuss some practical issues around DSGD, including initialization considerations
and practical methods for choosing the training sequence for the parallel SGD step, selecting strata,
and picking the step size ε. As above, a “subepoch” corresponds to processing a stratum and
an “epoch”—roughly equivalent to a complete pass through the training data—corresponds to
processing a sequence of d strata.

Initialization. Some care must be taken when choosing initial factor values W 0 and H0. In
the case of nonzero squared loss LNZSL, for example, choosing W 0 = 0 and H0 = 0 results
in the factors remaining equal to zero at all future DSGD iterations. For GKL loss, we cannot
have W i∗ = 0 for any i or H∗j for any j, since then the loss function is ill defined. In our
implementation, we generate initial factor values using a pseudorandom number generator, which
ensures that all initial values are nonzero.

Training sequence. When processing a subepoch (i.e., a stratum), we do not generate a global
training sequence and then distribute it among blocks. Instead, each task generates a local training
sequence directly for its corresponding block. This reduces communication cost and avoids the
bottleneck of centralized computation. Practical experience suggests that good results are achieved
when (1) the local training sequence covers a large part of the local block, and (2) the training
sequence is randomized. We consider the following strategies for processing block Zij :
• Sequential selection (SEQ). Scan Zij in the order it is stored.
• With-replacement selection (WR). Randomly select training points from Zij ; each point may

be selected multiple times.
• Without-replacement selection (WOR). Randomly select training points from Zij ; each point

is selected precisely once.
The first two strategies are extremes: SEQ satisfies (1) but not (2), whereas WR satisfies (2) but not
(1). A compromise—which worked best in our experiments—is WOR; it ensures that many different

21



training points are selected while at the same time maximizing randomness. Note that Theorem 2
implicitly assumes WR but can be extended to cover SEQ and WOR as well. (In brief, redefine a
stratum to consist of a single training point and redefine the stratum weights ws accordingly.)

Update terms. When processing a training point (i, j) during an SGD step on stratum s, we
use the gradient estimate L̂′s(θ) = NL′ij(θ) as in standard SGD; this corresponds to a choice of
cs = N/Ns in (16). For (i, j) picked uniformly and at random from Zs, the estimate is unbiased for
the gradient of the stratum loss Ls(θ) given in (15).

Stratum selection. Recall that the stratum sequence (ξk, Tk) determines which of the strata is
chosen in each subepoch and how many steps are run on that stratum. We choose training sequences
such that Tk = Nξk = |Zξk |; this ensures that we can make use of all the training points in the
stratum. For the data-independent blocking scheme given in Sec. 5.3, each block Zij occurs in
(d − 1)! of the d! strata. Thus we do not need to process all strata to cover the entire training set.
As above, we want to process a large part of the training set in each epoch, while at the same time
maximizing randomization. To select a set of d strata to visit during an epoch, we use strategies
similar to those for intra-block training point selection:
• Sequential selection (SEQ). Pick a sequence of d strata that jointly cover the entire training

matrix. Then cycle through this sequence and ignore all other strata.
• With replacement selection (WR). Repeatedly pick a stratum uniformly and at random from

the set of all strata until d strata have been processed.
• Without replacement selection (WOR). Pick a sequence of d strata such that the d strata jointly

cover the entire training set; the sequence is picked uniformly and at random from all such
sequences of d strata.4

Taking the scaling constant cs in (15) as N/Ns, we can see that all three strategies are covered by
Theorem 2, where each epoch corresponds to a regenerative cycle. We argue informally as follows.
Recall that if Theorem 2 is to apply, then ws must correspond to the long-term fraction of steps run
on stratum Zs. For SEQ, this means that all but d of the weights are zero, and the remaining weights
satisfy ws = Ns/N . For WR and WOR, we have ws = Ns/((d − 1)!N), since we select each
stratum s equally often in the long run, and always perform Ns steps on stratum s. The question is
then whether these choices of ws lead to a legitimate representation of L as in (7). One can show
that {ws } satisfies (7) for all Z and L of form (2) if and only if∑

s:Zs⊇Zij

wscs = 1 (17)

for each substratum Zij . Direct verification shows that (17) holds for the above choices of ws when
cs = N/Ns.

4This can be performed efficiently by randomly permuting the rows and columns of a matrix of form
1 2 · · · d
2 3 · · · 1
...

...
. . .

...
d 1 · · · d− 1

 .

The (k, i)-entry then contains the column index of the block to pick from row i in the kth subepoch.

22



Step sizes. The stochastic approximation literature often works with step size sequences roughly
of form εn = 1/nα with α ∈ (0.5, 1]; and Theorem 2 guarantees asymptotic convergence for such
choices. In practice, one may want to deviate from these choices to achieve faster convergence over
the finite number of steps that are actually executed. We use an adaptive method for choosing the
step size sequence. We exploit the fact that—in contrast to SGD in general—we can determine the
current loss after every epoch. Thus we can check whether an epoch decreased or increased the
loss. With this observation in mind, we employ a heuristic called bold driver, which is often used
for gradient descent. Starting from an initial step size ε0, we (1) increase the step size by a small
percentage (say, 5%) whenever we see a decrease of loss, and (2) we drastically decrease the step
size (say, by 50%) if we observe an increase of loss. Within each epoch, the step size remains fixed.
Given a reasonable choice of ε0, the bold driver method worked extremely well in our experiments.
To pick ε0, we leverage the fact that we have many compute nodes available. We replicate a small
sample of Z (say, 0.1%) to each node. We then try different step sizes in parallel. Initially, we make
a pass over the sample for step sizes 1, 1/2, 1/4, . . . , 1/2d−1; this is done in parallel at all d nodes.
The step size that gives the best result is selected as ε0. As long as our loss decreases, we repeat a
variation of this process after every epoch, where we try step sizes within a factor of [1/2, 2] of the
current step size. Eventually, the so-chosen step size will become too large and the value of the loss
will increase. Intuitively, this happens when the iterate has moved closer to the global solution than
to the local solution of the sample. As soon as we observe an increase of loss, we switch to the bold
driver method for the rest of the process.

7. Experiments

We compared various matrix factorization algorithms with respect to their convergence properties,
runtime efficiency, and scalability. We found that the convergence speed of DSGD is on par or better
than alternative methods, even when these methods are specialized to the loss function. In terms of
overall performance, we found that DSGD is significantly faster, produces more stable results, and
has better scalability properties.

7.1. Setup

We implemented our new DSGD method on top of MapReduce, along with the PSGD, ISGD, DGD,
ALS, and MULT methods discussed in Sec. 2. The DGD algorithm uses the L-BFGS quasi-Newton
method as in [13]. DSGD, PSGD, and L-BFGS are generic methods that work with a wide variety
of loss functions, whereas ALS and MULT are restricted to quadratic loss functions and GKL,
respectively. We used two different implementations and compute clusters; one for in-memory
experiments and one for large scale-out experiments on very large datasets.

The in-memory implementation is based on R and C, and uses R’s snowfall package to
implement MapReduce. It targets datasets that are small enough to fit in aggregate memory, i.e.,
with up to a few billion nonzero entries. We block and distribute the input matrix across the cluster
before running each experiment. The factor matrices are communicated via Samba mount points.

23



The R cluster consists of 16 nodes, each running two Intel Xeon E5530 processors with 8 cores at
2.4GHz. Every node has 48GB of memory.

The second implementation is based on Hadoop [2], an open-source MapReduce implementation.
The Hadoop cluster is equipped with 40 nodes, each with two Intel Xeon E5440 processors and
4 cores at 2.8GHz and 32 GB of memory. A straightforward DSGD implementation on Hadoop
achieves scalability and fault-tolerance, but suffers from some of Hadoop’s internal overheads.
We expect that some of these overheads will diminish as Hadoop matures. For the time being,
we employ the following optimizations. First, we store the data in primitive arrays rather than
Java objects; this avoids the performance bottleneck caused by “immutable record decoders” [17].
Second, we use block-wise I/O to read entire matrix blocks at once; this avoids expensive per-record
processing costs. Finally, we submit a single MapReduce job per epoch (complete data-matrix scan)
rather than per subepoch (stratum scan); this reduces Hadoop’s high overhead in spawning jobs. To
do this, we make use of a custom locking scheme that preserves fault-tolerance.

For our experiments with all SGD-based approaches, we used adaptive step size computation
based on a sample of roughly 1M data points, switching to the bold driver as soon as an increase in
loss was observed. The time for step size selection is included in all of our performance plots. For
ISGD, we performed (parallel) step size computation using the parameters of only the first partition;
this step size worked well for all partitions. Unless stated otherwise, we used WOR selection for
both training sequences (all approaches) and stratum sequences (DSGD only).

We used the Netflix competition dataset [5] for our experiments on real data. The dataset contains
a small subset of movie ratings given by Netflix users, specifically, 100M anonymized, time-stamped
ratings from roughly 480k customers on roughly 18k movies. For larger-scale experiments on
the in-memory implementation, we used a synthetic dataset with 10M rows, 1M columns, and 1B
nonzero entries. We first generated matrices W ∗ and H∗ by repeatedly sampling values from the
Gaussian(0,10) distribution. We then sampled 1B entries from the product W ∗H∗, and added
Gaussian(0,1) noise to each sample; this procedure ensured the existence of a reasonable low-rank
factorization. For all experiments, we centered the input matrix around its mean. The starting points
W 0 and H0 were chosen by sampling entries uniformly and at random from [−0.5, 0.5]; we used
the same starting point for each algorithm to ensure fair comparison. Unless stated otherwise, we
used rank r = 50.

We used four well-known loss functions in our experiments: plain nonzero squared loss (LNZSL),
nonzero squared loss with an L2 regularization term (LL2), nonzero squared loss with a nonzero-
weighted L2 term (LNZL2), and generalized KL divergence (LGKL):

LNZSL =
∑

(i,j)∈Z

(V ij − [WH]ij)
2 (18)

LL2 = LNZSL + λ
(
‖W ‖2F + ‖H‖2F

)
LNZL2 = LNZSL + λ

(
‖N1W ‖2F + ‖HN2‖2F

)
LGKL =

∑
(i,j)∈Z

(V ij logV ij/[WH]ij − V ij) +
∑
i,j

[WH]ij ,

where N1 (N2) is a diagonal matrix that rescales each row (column) of W (H) by the number of

24



0.0 0.5 1.0 1.5 2.0

40
60

80
10

0
12

0
14

0

Wall clock time (hours)

L
os

s 
(m

ill
io

ns
)

l

l

l
ll

l
lll

lllll

llllllll
lllllll

llllllllllllllllllllllllllllllllllllllllll

DSGD
ALS
LBFGS
PSGD
ISGD

l

(a) Netflix, NZSL

0.0 0.5 1.0 1.5 2.0

10
0

15
0

20
0

25
0

Wall clock time (hours)

L
os

s 
(m

ill
io

ns
)

l

l

lll
ll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

DSGD
ALS
LBFGS
PSGD
ISGD

l

(b) Netflix, L2, λ = 50

0.0 0.5 1.0 1.5 2.0

80
10

0
12

0
14

0
16

0
18

0
20

0

Wall clock time (hours)

L
os

s 
(m

ill
io

ns
)

l

l

l
lllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

DSGD
ALS
LBFGS
PSGD
ISGD

l

(c) Netflix, NZL2, λ = 0.05

Wall clock time (hours)

L
os

s 
(b

ill
io

ns
)

0 5 10 15 20

1
10

10
0

10
00

10
00

0

l

lll
l

l

l

l

l

l

l

l

l

l

l
l

l
l
l
l
l
l
lllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllll

DSGD
ALS
PSGD

l

(d) Synthetic data, L2, λ = 0.1

Figure 3: Performance in terms of wall-clock time

nonzero entries of Z in that row (column), and ‖A‖F denotes the Frobenius norm of a matrix A
(see App. C). LNZL2 has been used successfully on the Netflix data [18], and LGKL has applications
in text indexing [15]. We used “principled” values of λ throughout. E.g., we used values of λ = 50
and λ = 0.05 for LL2 and LNZL2 on Netflix data, respectively, and λ = 0.1 for LL2 on synthetic
data, the former values because they yielded the best movie recommendations on held-out data,
and the latter because it is “natural” in that the resulting minimum-loss factors correspond to the
“maximum a posteriori” Bayesian estimator of W and H under the Gaussian-based procedure used
to generate the synthetic data.

25



0 20 40 60 80 100

40
60

80
10

0
12

0
14

0

Epoch

L
os

s 
(m

ill
io

ns
)

l

l

l
ll

l
lll

lllll

llllllll
lllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

DSGD
ALS
LBFGS
PSGD
ISGD

l

(a) Netflix, NZSL

0 20 40 60 80 100

10
0

15
0

20
0

25
0

Epoch
L

os
s 

(m
ill

io
ns

)

l

l

lll
ll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

DSGD
ALS
LBFGS
PSGD
ISGD

l

(b) Netflix, L2, λ = 50

0 20 40 60 80 100

80
10

0
12

0
14

0
16

0
18

0
20

0

Epoch

L
os

s 
(m

ill
io

ns
)

l

l

l
lllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

DSGD
ALS
LBFGS
PSGD
ISGD

l

(c) Netflix, NZL2, λ = 0.05

Epoch

L
os

s 
(b

ill
io

ns
)

0 20 40 60 80 100

1
10

10
0

10
00

10
00

0

l

lll
l

l

l

l

l

l

l

l

l

l

l
l

l
l
l
l
l
l
lllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

DSGD
ALS
PSGD

l

(d) Synthetic data, L2, λ = 0.1

Figure 4: Performance in terms of epochs

26



7.2. Relative Performance

We first evaluated the relative performance of the matrix factorization algorithms. For various loss
functions and datasets, we ran 100 epochs—i.e, scans of the data matrix—with each algorithm and
measured the elapsed wall-clock time, as well as the value of the loss after every epoch. We used
64-way distributed processing on 8 nodes (with 8 concurrent map tasks per node).5

Representative results are given in Figure 3, which displays the achieved loss as a function of
wall clock time, and in Figure 4, which displays the loss as a function of the number of epochs.

As can be seen from Figure 3, DSGD converges about as fast as—or faster than—alternative
methods, with the DSGD performing markedly better for LNZSL loss over the Netflix data and
for LL2 loss over both the Netflix dataset and the large synthetic dataset. Comparing the various
SGD-based approaches, we observe that ISGD and PSGD exhibit consistently inferior performance,
and offer the following explanation. The matrix-factorization problem is “non-identifiable” in that
the loss function has many global minima that correspond to widely different values of (W ,H).
Averages of (W ,H) values from different partitions, as computed by ISGD and PSGD, do not
correspond to good overall solutions, and the algorithms may not converge to a local minimum of
the global loss, or may converge very slowly. E.g., in the example of Figure 2, ISGD would converge
to a point on the line between the red and blue minima. Of the ISGD and PSGD algorithms, it is
not surprising that ISGD has the worst convergence behavior; recall that ISGD computes a local
optimum of each partition of the dataset via SGD, and averages only once after all 100 epochs.6

PSGD improves on ISGD by averaging parameters after every epoch, but it is still outperformed
by most other approaches. DSGD performs best; its usage of stratification instead of averaging
significantly improves convergence speed. For the remainder of our discussion, we focus on DSGD
as the best SGD-based algorithm and compare it with L-BFGS and ALS. L-BFGS is clearly inferior
to the other two algorithms. Indeed, we do not give results for L-BFGS in Figures 3d or 4d because
its centralized parameter-update step ran out of memory when faced with very large data. In the
other three experiments, L-BFGS is able to execute more epochs per unit time than the other
algorithms—e.g., for the LNZSL experiment, DSGD ran 43 epochs, ALS ran 10 epochs, and L-BFGS
ran 61 epochs in the first hour—but the per-epoch decrease in loss is relatively small. In general, the
foregoing differences in runtime are explained by different computational costs (highest for ALS,
which has to solve m+ n least-squares problems per epoch) and synchronization costs (highest for
PSGD, which has to average all parameters in each epoch).

ALS achieves performance roughly comparable to DSGD for LNZL2 loss over Netflix data, taking
about 15 more minutes to get within the vicinity of the minimal loss but ultimately yielding a slightly
lower loss (about 1% less than that of DSGD) after two hours. ALS is clearly inferior to DSGD,
however, in the other three experiments. The differences are more noticeable in Figure 3 than in
Figure 4, since they reflect the larger execution time per epoch for ALS as indicated above; see

5Note that for all approaches but ISGD and ALS, 64-way distributed processing is excessive for the Netflix data; the
execution time is dominated by latencies. We nonetheless used 64-way processing to get a consistent view over
datasets of various sizes.

6The intermediate points shown in Figure 3 have been obtained by pausing ISGD after every epoch in order to average
parameters and compute the loss. The time to do so is not included in the wall-clock time of ISGD.

27



also Figure 5a. For the first experiment—LNZSL loss over Netflix data—the lack of a regularization
term makes the factorization difficult for ALS because the search space is relatively large and there
are many equivalent solutions. Specifically, we observed that ALS conducted large moves through
the parameter space; the factors grew without bound. On the synthetic data with LL2, ALS is very
effective in the first epoch, but then converges slowly. We have observed similar behavior on very
small matrices, with ALS getting stuck when moving along “valleys” of small loss in which both
W and H change simultaneously. DSGD does not suffer from these problems and has superior
convergence properties.

In summary, the overall performance of DSGD was consistently more stable than that of alternative
algorithms. The speed of convergence was comparable or faster.

7.3. Scalability

Next, we studied various scalability issues in our shared-nothing MapReduce environment. We
examined the effect of scaling up the approximation rank r, and then explored the scalability of
DSGD on a Hadoop cluster by scaling up the dataset size, the number of cores, and then both the
dataset size and number of cores. Overall, the gradient descent methods scale better with increasing
rank than ALS, and DSGD has good scalability properties on Hadoop, provided that the amount of
data processed per core does not become so small that system overheads start to dominate.

To explore the effect of increasing the approximation rank, we used the Netflix data with LNZL2
loss and the same R-cluster setup as before (64 cores, 8 nodes); note that the value r = 50
corresponds to our relative-performance experiments. The results are displayed in Figure 5a. As
observed previously, ALS is significantly slower than DSGD and L-BFGS. ALS spends most
of its time on constructing and solving (in the least-squares sense) systems of linear equations.
Since the number of both equations and variables increases with rank—construction is O(Nr2),
solving is O((m+n)r3)—the performance degrades significantly as r increases. L-BFGS performs
centralized updates of the factors; these centralized updates become a bottleneck as the rank (and
thus factor size) increases. The impact of increased rank on DSGD appears rather mild, mainly
because factors are fully distributed. As the rank increases further and gradient estimation becomes
the major bottleneck, we expect to see a more pronounced increase in runtime.

Our remaining experiments focus on the performance of DSGD on the Hadoop cluster. Figure 5b
depicts scale-up results as we repeatedly double the number of cores while keeping the data size
constant at 6.4B entries. Figure 5c plots the runtime per epoch as we repeatedly quadruple the data
(while keeping the number of cores constant at 32), and Figure 5d shows scale-out results, in which
we scale both data and cores simultaneously.

As can be seen in Figure 5b, DSGD initially achieves roughly linear speed-up as the number
of cores is repeatedly doubled, up to 32 cores. After this point, speed-up performance starts to
degrade. The reason for this behavior is that, when the number of cores becomes large, the amount
of data processed per core becomes small—e.g., 64-way DSGD requires 642 blocks, so that the
amount of data per block is only ≈ 25MB. The actual time to execute DSGD on the data becomes
negligible, and the overall processing times become dominated by Hadoop overheads, especially
the time required to spawn a task. (Hadoop is designed for tasks that run at least on the order of

28



50 100 200

Rank r

W
al

l c
lo

ck
 t

im
e 

pe
r 

ep
oc

h 
(s

ec
on

ds
)

0
20

0
60

0
10

00
14

00

2168s

DSGD
ALS
LBFGS

(a) Effect of r (R@64)

8 16 32 64

#cores
W

al
l c

lo
ck

 t
im

e 
pe

r 
ep

oc
h 

(s
ec

on
ds

)

0
50

0
10

00
15

00
20

00

1x

0.48x

0.25x 0.28x

DSGD

(b) Increasing cores (Hadoop, 6.4B entries)

100M 400M 1.6B 6.4B 25.6B

Data size (# nonzero entries)

W
al

l c
lo

ck
 t

im
e 

pe
r 

ep
oc

h 
(s

ec
on

ds
)

0
50

0
10

00
15

00
20

00

1x 1.3x 2.3x

6.6x

23.8x
DSGD

(c) Increasing data (Hadoop @ 32)

1.6B @ 5 6.4B @ 20 25.6B @ 80

Data size @ cores

W
al

l c
lo

ck
 t

im
e 

pe
r 

ep
oc

h 
(s

ec
on

ds
)

0
20

0
40

0
60

0
80

0
10

00

1x 1x

1.3xDSGD

(d) Increasing data and cores (Hadoop)

Figure 5: Scalability

29



0 20 40 60 80 100
79

80
81

82
83

84
85

Epoch

L
os

s 
(i

n 
m

ill
io

ns
)

SEQ
WR
WOR

SEQ
WR
WOR

WOR/WOR

SEQ/SEQ

Figure 6: Effect of stratum selection (line color) and training sequence (line type)

minutes.) A similar phenomenon can be seen in Figure 5c, where the elapsed time is sublinear
in the data size for small datasets (≤ 1.6B entries); for larger datasets, overheads no longer mask
performance, and the runtime increases linearly with dataset size. In our scale-out experiments
(Figure 5d), the impact of Hadoop overheads is more muted, since scaling up the data size offsets
the overhead effect caused by increasing the number of cores. E.g., the processing time initially
remains constant as the dataset size and number of cores are each scaled up by a factor of 4, with
the overall runtime increasing by a modest 30% as we scale to very large datasets on large clusters.
The foregoing overhead effects can potentially be ameliorated by improving scheduling in Hadoop
or using an alternative parallel runtime system such as Spark [26].

7.4. Selection Schemes

Finally, we evaluated the impact of different strategies for selecting both strata and training sequences.
The runtime cost for the various alternatives are comparable, but the speed of convergence differs
significantly. Figure 6 shows exemplary results for 64-way SGD on the Netflix data with LNZL2,
where we plot all combinations of options for training-point and stratum selection. Sequential
stratum selection performed worst: the curves corresponding to this scheme cluster at the upper
right of the plot, whereas the curves for the randomized strategies cluster at the lower left; i.e., any
form of randomized stratum selection helped significantly. For randomized selection schemes, the
WOR strategy for selecting training points yielded the best results. Overall, WOR selection for
both training points and strata ensures a good balance between randomization and processing many
different data points.

7.5. Other Loss Functions

To show that DSGD can be applied to a variety of loss functions, we implemented LGKL—a loss
function that is used for nonnegative matrix factorization and that does not ignore zeros in the V
matrix—and ran the resulting factorization algorithm on the Netflix data, along with the loss-specific

30



0 10 20 30 40 50
0.

6
0.

8
1.

0
1.

2
1.

4
1.

6
Epoch

L
os

s 
(b

ill
io

ns
)

l

l

l
l

lllllllllllllllllllllllllllllllllllllllllllllll

DSGD
MULT

l

Figure 7: GKL on Netflix data (R@64)

MULT algorithm of Das et al. [12]. DSGD performs respectably compared to MULT (Figure 7),
reaching the vicinity of the minimum loss more rapidly—roughly 7 epochs for DSGD versus 27
epochs for MULT—and achieving an ultimate loss that is only modestly greater than that of MULT.
Our implementation is a first cut; we are currently refining it further.

8. Conclusions

We introduced DSGD, a novel algorithm for large-scale matrix factorization. DSGD is fully
distributed and can handle matrices with millions of rows, millions of columns, and billions of
nonzero entries. In contrast to most alternative algorithms, DSGD is generic in that it supports a
wide variety of loss functions that arise in practice. Our experiments indicate that DSGD is on
par or faster than specialized algorithms in terms of runtime, convergence properties, and memory
requirements.

References

[1] R. Albright, J. Cox, D. Duling, A. Langville, and C. Meyer. Algorithms, initializations, and
convergence for the nonnegative matrix factorization. Technical Report Math 81706, NCSU,
2006.

[2] Apache Hadoop. https://hadoop.apache.org.

[3] S. Asmussen. Applied Probability and Queues. Springer, 2nd edition, 2003.

[4] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis. Springer,
2007.

[5] J. Bennett and S. Lanning. The Netflix prize. In KDD Cup and Workshop, 2007.

31

https://hadoop.apache.org


[6] C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics.
Springer, 2007.

[7] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NIPS, volume 20, pages
161–168. 2008.

[8] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput., 16(5):1190–1208, 1995.

[9] Y. S. Chow and H. Teicher. Probability Theory: Independence, Interchangeability, Martingales.
Springer, 2nd edition, 1988.

[10] K. L. Chung. A Course in Probability Theory. Elsevier, third edition, 2001.

[11] A. Cichocki and R. Zdunek. Regularized alternating least squares algorithms for non-negative
matrix/tensor factorization. In ISNN ’07: Proc. of the 4th international symposium on Neural
Networks, pages 793–802, 2007.

[12] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online
collaborative filtering. In WWW, pages 271–280, 2007.

[13] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and J. McPherson. Ricardo:
Integrating R and Hadoop. In SIGMOD, pages 987–998, 2010.

[14] K. B. Hall, S. Gilpin, and G. Mann. MapReduce/Bigtable for distributed optimization. In
NIPS LCCC Workshop, 2010.

[15] T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, pages 50–57, 1999.

[16] T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst.,
22(1):89–115, 2004.

[17] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance of MapReduce: An in-depth study.
PVLDB, 3(1):472–483, 2010.

[18] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.
IEEE Computer, 42(8):30–37, 2009.

[19] H. J. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and Applica-
tions. Springer, 2nd edition, 2003.

[20] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, 1999.

[21] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, pages
556–562, 2000.

32



[22] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang. Distributed nonnegative matrix
factorization for web-scale dyadic data analysis on mapreduce. In WWW, pages 681–690,
2010.

[23] G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-scale
distributed training of conditional maximum entropy models. In NIPC, pages 1231–1239.
2009.

[24] R. McDonald, K. Hall, and G. Mann. Distributed training strategies for the structured percep-
tron. In HLT, pages 456–464, 2010.

[25] A. P. Singh and G. J. Gordon. A unified view of matrix factorization models. In ECML PKDD,
pages 358–373, 2008.

[26] M. Zaharia, N. M. M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. Technical Report UCB/EECS-2010-53, EECS Department,
University of California, Berkeley, May 2010.

[27] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering
for the Netflix Prize. In AAIM, pages 337–348, 2008.

[28] M. A. Zinkevich, M. Weimer, A. J. Smola, and L. Li. Parallelized stochastic gradient descent.
In NIPS, pages 2595–2603, 2010.

A. MapReduce Algorithms for Matrix Factorization

We review some algorithms for finding an m × r matrix W and an r × n matrix H such that
V ≈WH for a given m× n input matrix V , in the sense of minimizing a specified loss function
L(V ,WH) computed over N training points. We focus on algorithms that have been shown to
work in a distributed setting—in which d tasks can perform computations in parallel—on very large
matrices. All algorithms are of an iterative nature. They start with some initial factors W 0 and
H0, which are repeatedly updated until some convergence criteria is met. Interesting properties
of such algorithms include supported loss functions, convergence properties, whether they support
non-negativity or box constraints, time and space complexity, and how distribution is achieved. An
overview of the algorithms is given in Table 1.

A.1. Specialized Algorithms

The specialized algorithms below are each designed for a certain class of loss functions. In all cases,
distributed processing is achieved by partitioning the input matrix and splitting up linear algebra
computations across nodes.

33



Ta
bl

e
1:

M
ap

R
ed

uc
e

A
lg

or
ith

m
s

fo
rM

at
ri

x
Fa

ct
or

iz
at

io
n∗

A
lg

or
ith

m
L

os
s

R
eg

ul
ar

iz
er

Pa
rt

iti
on

in
g

[S
ca

ns
M

R
Ti

m
e]

pe
r

It
er

at
io

n

A
L

S
[2

7]
SL

,N
Z

SL
L

2,
N

Z
L

2
V

&
W

by
ro

w
s,

V
&

H
by

co
lu

m
ns

2
2

0
O

(d
−
1
[N
r2

+
(m

+
n

)r
3
])

SL
L

2
(a

s
ab

ov
e)

2
2

0
O

(d
−
1
[N
r

+
(m

+
n

)r
2
]+

r3
)

E
M

[1
2]

G
K

L
-

V
bl

oc
ke

d
re

ct
.,

W
&

H
co

nf
or

m
in

gl
y

1
1

1
O

(d
−
1
N
r)

M
U

LT
[2

2]
G

K
L

-
V

bl
oc

ke
d

re
ct

.,
W

&
H

co
nf

or
m

in
gl

y
2

2
2

O
(d
−
1
N
r)

SL
-

(a
s

ab
ov

e)
2

2
2

O
(d
−
1
[N
r

+
(m

+
n

)r
2
])

G
D

[1
3]

di
ff

.
di

ff
.

V
bl

oc
ke

d
re

ct
.,

W
&

H
co

nf
or

m
in

gl
y

1
1

1
O

(d
−
1
N

)T
L
′
+
T

U
PD

PS
G

D
di

ff
.

di
ff

.
V

pa
rt

iti
on

ed
ar

bi
tr

ar
y,

W
&

H
re

pl
ic

at
ed

1
1

1
O

(d
−
1
N

)T
L
′
+
O

((
m

+
n

)r
)

D
SG

D
di

ff
.

di
ff

.
V

bl
oc

ke
d

sq
ua

re
,

W
&

H
co

nf
or

m
in

gl
y

1
d
∗∗

0
O

(d
−
1
N

)T
L
′

N
Z

SL
L

2,
N

Z
L

2
(a

s
ab

ov
e)

1
d
∗∗

0
O

(d
−
1
N
r)

∗
Th

e
Sc

an
s,

M
,a

nd
R

co
lu

m
ns

re
fe

rt
o

th
e

nu
m

be
ro

fd
at

a
sc

an
s,

m
ap

jo
bs

,a
nd

re
du

ce
jo

bs
pe

ri
te

ra
tio

n
of

th
e

al
go

rit
hm

,r
es

pe
ct

iv
el

y.
“d

iff
.”

m
ea

ns
th

at
th

e
al

go
ri

th
m

ca
n

ha
nd

le
ar

bi
tr

ar
y

di
ff

er
en

tia
bl

e
lo

ss
fu

nc
tio

ns
.T

L
′

an
d
T

U
PD

de
no

te
th

e
tim

e
re

qu
ir

ed
by

gr
ad

ie
nt

-b
as

ed
m

et
ho

ds
to

co
m

pu
te

a
lo

ca
lg

ra
di

en
t

L
′ ij

an
d

th
e

tim
e

to
up

da
te

al
lp

ar
am

et
er

s
on

ce
gr

ad
ie

nt
s

ha
ve

be
en

co
m

pu
te

d,
re

sp
ec

tiv
el

y.
So

m
e

al
go

rit
hm

s
ha

ve
m

ul
tip

le
en

tri
es

;t
he

se
en

tri
es

m
ay

re
fe

rt
o

di
ff

er
en

tl
os

se
s

or
re

gu
la

riz
er

s
(M

U
LT

),
to

sp
ec

ifi
c

lo
ss

or
re

gu
la

riz
er

s
on

w
hi

ch
im

pr
ov

ed
ru

nt
im

e
pr

op
er

tie
s

ar
e

ac
hi

ev
ed

(A
LS

),
or

to
an

ex
am

pl
e

(D
SG

D
).

∗∗
O

ne
M

ap
jo

b
pe

rs
ub

ep
oc

h,
ea

ch
pr

oc
es

si
ng
d

bl
oc

ks
.I

n
ou

rH
ad

oo
p

im
pl

em
en

ta
tio

n,
w

e
us

e
cu

st
om

iz
ed

lo
ck

in
g

st
ra

te
gi

es
to

ru
n

ju
st

on
e

M
ap

jo
b

pe
r

ite
ra

tio
n.

34



Alternating Least Squares. In its standard form, the method of alternating least squares
optimizes

LSL =
∑
i,j

(V ij − [WH]ij)
2.

The method alternates between finding the best value for W given H , and finding the best value of
H given W . This amounts to computing the least squares solutions to the following systems of
linear equations

V i∗ −W i∗Hn = 0,

V ∗j −W n+1H∗j = 0,

where the unknown variable is underlined. This specific form suggests that each row of W can be
updated by accessing only the corresponding row in the data matrix V , while each column in H
can be updated by accessing the corresponding column in V . This facilitates distributed processing;
see below. The equations can be solved using a method of choice. We obtain

W T
n+1 ← (HnH

T
n)−1HnV

T,

Hn+1 ← (W T
n+1W n+1)

−1W TV .

for the unregularized loss shown above. When an additional L2 regularization term of form
λ(‖W ‖2F + ‖H‖2F) is added, we obtain

W T
n+1 ← (HnH

T
n + λI)−1HnV

T, (19a)

Hn+1 ← (W T
n+1W n+1 + λI)−1W TV . (19b)

Since the update term of Hn+1 depends on W n+1, the input matrix has to be processed twice to
update both factor matrices.

In contrast to SVD, ALS does not produce an orthogonal factorization and it might get stuck in
local minima. However, ALS can handle a wide range of variations for which SVD is not applicable,
but which are important in practice. Examples include non-negativity constraints [1], sparsity
constraints [1, 11], weights [11], regularization [11, 27], or the restriction to nonzero entries [27].
In general, ALS is applicable when the loss function is quadratic in both W and H .

Zhou et al. [27] proposed a distributed version of ALS for LNZSL, see Eq. (1). We first describe a
variation for LSL, and then outline how to optimize LNZSL. In both cases, the algorithm runs two
Map-only jobs per iteration, one to compute W n+1 and one to compute Hn+1. Each of the jobs
uses a different partitioning of V , either by rows or by columns. For example, we use the row
partitioning to compute W n+1: Each mapper reads a set of rows of V , the corresponding rows of
W n, and the entire matrix Hn. The ith mapper then solves the part of equation (19a) that concerns
its rows:

W T
n+1,i∗ ← (HnH

T
n + λI)︸ ︷︷ ︸

coefficient matrix

−1
HnV

T
i∗︸ ︷︷ ︸

right-hand side

,

35



where W n+1,i∗ denotes the rows of W n+1 read by the ith mapper, and similarly for V i∗. For
LSL, the coefficient matrix is shared across rows, which allows us to reuse computation (e.g., a QR
factorization of the coefficient matrix). The matrix Hn+1 is computed analogously. The overall time
complexity is O(d−1[Nr + (m+ n)r2] + r3) time.7 For LNZSL, we modify the algorithm so that it
uses a different coefficient matrix for each system of equations, i.e., for each mapper. Intuitively,
we remove equations that correspond to zero entries of V from the least-squares problem. This is
achieved by using

W T
n+1,i∗ ← (H(i)

n [H(i)
n ]T + λI)︸ ︷︷ ︸

coefficient matrix

−1
HnV

T
i∗︸ ︷︷ ︸

right-hand side

,

where H
(i)
n consists of just the columns of Hn that have non-zero entries in the respective column

of V i∗. The computation of Hn+1 is analogous. The time complexity increases to O(d−1[Nr2 +
(m+ n)r3]).8

Expectation Maximization (EM). Hofmann et al. [15, 16] proposed an EM algorithm to
minimize the KL divergence LKL in the context of “probabilistic latent semantic analysis” (pLSA).
As we discuss below, the algorithm can be seen as a matrix factorization algorithm. Let V be
non-negative and

∑
i,j V ij = 1.9 Then, V corresponds to a probability distribution over pairs (i, j).

pLSA factors this probability distribution as follows

Pr [ i, j ] ≈
∑
z

Pr [ z ] Pr [ i | z ] Pr [ j | z ] , (20)

where z ∈ { z1, . . . , zr } is a latent variable and follows a multinomial distribution over r topics. If
we identify Pr [ i, j ] = V ij , Pr [ z ] = Zzz (where Z is a diagonal r× r matrix), Pr [ i | z ] = W ′

iz ,
and Pr [ j | z ] = H ′zj , we obtain the following equivalent matrix factorization

V ≈W ′ZH ′.

Note that W ′ (H ′) describes a conditional probability distribution; thus each of its columns (rows)
sums to 1.

Model fitting is performed as follows. In the E-step, we compute the probability Pr [ z | i, j ] that
entry (i, j) is explained by topic z:

Pr [ z | i, j ] =
Pr [ z ] Pr [ i | z ] Pr [ j | z ]∑
z′ Pr [ z′ ] Pr [ i | z′ ] Pr [ j | z′ ]

. (21)

7The right-hand sides can be constructed in O(Nr) time. The coefficient matrix can be constructed in O((m+ n)r2)
time, and reduced to an upper-triangular form in O(r3) time (not parallel). For each of the m+ n equation systems,
back-substitution takes O(r2) time.

8We can construct all coefficient matrices in O(Nr2) time. Solving each system takes O(r3) time.
9If R =

∑
i,j V ij 6= 1, we normalize V by dividing each element by R.

36



In the M-step, the parameters are updated. Using normalization constantsKz =
∑

i,j V ij Pr [ z | i, j ],
we set

Pr [ j | z ] =
1

Kz

∑
i

V ij Pr [ z | i, j ] (22a)

Pr [ i | z ] =
1

Kz

∑
j

V ij Pr [ z | i, j ] (22b)

Pr [ z ] = Kz (22c)

It can be shown that the KL divergence between the distribution V and the fitted distribution (20) is
non-increasing in every EM iteration. The EM algorithm converges to a stationary point of LKL.

We now transform the EM algorithm into the language of linear algebra. This will allow us to
uncover similarities between the EM algorithm and the multiplicative update rules described later,
and also facilitates exposition of distributed EM. In what follows, we set W = W ′ and H = ZH ′,
i.e., we factor Z into the parameter matrix H . Z can be readily factored out after convergence, if
desired. The E-step (21) becomes

Pr [ z | i, j ] =

[
W ∗zHz∗
WH

]
ij

, (23)

where division is performed element-wise. Let Kn = diag(Kn,1, . . . ,Kn,r) be the matrix of the
normalization constants used in the (n+ 1)st M-step. Inserting (23) directly into the equations (22),
we obtain the following update rules:

W ′
n+1 ←

[
W n ◦ (V /W nHn)HT

n

]
K−1n (24a)

H ′n+1 ← K−1n
[
W T

n(V /W nHn) ◦Hn

]
(24b)

Zn+1 = Kn, (24c)

where ◦ denotes element-wise multiplication. Note that K−1n is easy to compute as Kn is a
diagonal matrix. Since all resulting matrices describe (conditional) probability distributions, they
are normalized appropriately. By construction, we have

Kn = diag(colSums
[
W n ◦ (V /W nHn)HT

n

]
)

= diag(rowSums
[
W T

n(V /W nHn) ◦Hn

]
),

where colSums[A]j =
∑

iAij and rowSums[A]i =
∑

j Aij for a matrix A. is the If we compute
W n+1 and Hn+1 directly, we arrive at the following final update rules

W̃ n+1 ← W n ◦ (V /W nHn)HT
n (25a)

W n+1 ← W̃ n+1 diag(1/ colSums[W̃ n+1]) (25b)

Hn+1 ← W T
n(V /W nHn) ◦Hn, (25c)

where W̃ n+1 is an intermediate variable that is normalized to obtain W n+1.

37



Das et al. [12] show how to distribute the EM algorithm using MapReduce. The idea is to partition
matrix V into d1 × d2 blocks, W into d1 conforming blocks, and H into d2 conforming blocks.
Only one MapReduce job is needed to perform one EM iteration. To make this work, we first push
the normalization of W̃ n+1 in equations (25) into the (n+ 2)nd iteration:

W̃ n+1 ← W̃ nK
−1
n ◦ (V /W̃ nK

−1
n Hn)HT

n (26a)

Kn+1 ← diag(colSums[W̃ n+1]) (26b)

Hn+1 ← [W̃ nK
−1
n ]T(V /W̃ nK

−1
n Hn) ◦Hn. (26c)

where W̃ 0 = W 0 and K0 = diag(colSumsW 0). Each mapper reads a block of V , the corre-
sponding blocks of W̃ n and Hn, and the entire matrix Kn. For each nonzero element of V , the
mapper computes the quantity

pz|ij = Pr [ z | i, j ] = W n,izK
−1
n,zz(V ij/W n,i∗K

−1
n Hn,∗j)H

T
n,zj ,

and outputs pairs (i, pz|ij), (j, pz|ij), (z, pz|ij). Thus there is one group per row, one per column,
and one per topic. The reducer for row i computes W̃ n+1,i∗ using the transformation:

W̃ n+1,iz ← W̃ n,izK
−1
n,zz ◦ (V i∗/W̃ n,i∗K

−1
n Hn)HT

n,z∗

=
∑
j

W̃ n,izK
−1
n,zz ◦ (V ij/W̃ n,i∗K

−1
n Hn,∗j)H

T
n,zj

=
∑
j

pz|ij .

Similarly,

Hn+1,zj ←
∑
i

pz|ij

Kn+1,zz ←
∑
i,j

pz|ij

Thus reducers simply sum up the entries within each group. Since summation is distributive,
preaggregation can be performed in a combine step at each mapper. To output the result in blocked
form, groups are assigned to reducers according to the blocking—e.g., a single reducer processes all
rows (groups) of the first block of W̃ n+1. Assuming m,n = O(N), the overall time complexity
per iteration is O(d−1Nr).

Multiplicative updates (MULT). Lee et.al [20] proposed multiplicative update rules for non-
negative matrix factorization under LGKL. Later [21], they refined the LGKL rules and developed
rules for LSL. The refined update rules can be seen as a rescaled version of gradient descent, where
the step sizes are computed individually for each parameter. In all cases, the rules are multiplicative
in that each factor gets multiplied by some update term, which varies from method to method. Each

38



iteration is non-increasing in the loss, and the factor matrices converge to a stationary point of the
loss function.

We first consider the rules for GKL given in [20]:

W̃ n+1 ← W n ◦ (V /W nHn)HT
n (27a)

W n+1 ← W̃ n+1 diag(1/ colSums[W̃ n+1]) (27b)

Hn+1 ← W T
n+1(V /W n+1Hn) ◦Hn, (27c)

These are almost the update rules (25) of EM, but W n+1 is used instead of W n when computing
Hn+1. As a consequence, updates of W and H cannot be performed simultaneously anymore, and
two scans of V are required. The refined rules for GKL are

W n+1 ←W n ◦ (V /W nHn)HT
n diag(1/ rowSums[Hn]),

Hn+1 ←Hn ◦ diag(1/ colSums[W n+1])W
T
n+1(V /W n+1Hn).

These update rules can be seen as symmetric versions of (27); they work better in practice. Thus,
when we refer to MULT for LGKL, we refer to the refined rules above. The time complexity remains
O(Nr). The rules for LSL are given by:

Hn+1 ←Hn ◦
W T

nV

W T
nW nHn

,

W n+1 ←W n ◦
V HT

n+1

W nHn+1H
T
n+1

.

Sparsity of V is readily exploited: W TV and V HT
n+1 each can be computed in a single scan of

the nonzero elements of V . The overall time complexity is O(Nr + (m+ n)r2).
Liu et al. [22] give MapReduce versions of MULT; the underlying ideas are the same as for

distributed EM [12]. Minor modifications are needed to match the refined rules or the LSL rules.

A.2. Generic Algorithms

Generic algorithms can be used to solve our generalized problem statement. We first discuss gradient
descent, which has been applied successfully to large-scale matrix factorization. We then summarize
some recent work in the area of distributed SGD.

Gradient descent (GD). Gradient descent is a well-known optimization technique. The idea is
to compute the direction of steepest descent at the current value of the parameters, and then take a
small step in this direction. We describe the algorithm in terms of the local loss functions Lij . The
gradients are given by:

∂

∂W i∗
L(W ,H) =

∂

∂W i∗

∑
(i′,j)∈Z

Li′j(W i′∗,H∗j) =
∑
j∈Zi∗

∂

∂W i∗
Lij(W i∗,H∗j),

39



where Zi∗ = { j : (i, j) ∈ Z }. This means that the gradient w.r.t. W i∗ depends on H and row i of
both the loss matrix L and W . Similarly, we have

∂

∂H∗j
L(W ,H) =

∑
i∈Z∗j

∂

∂W ∗j
Lij(W i∗,H∗j),

where Z∗j = { i : (i, j) ∈ Z }. The gradient w.r.t. to W is given by the matrix of first-order partial
derivatives

W∇
n =

∂

∂W
L(W n,Hn) =


∂

∂W 1∗
L(W n,Hn)

∂
∂W 2∗

L(W n,Hn)
...

∂
∂Wm∗

L(W n,Hn)

 .

Similarly,

H∇n =
∂

∂H
L(W n,Hn) =

(
∂

∂H∗1
L(W n,Hn) · · · ∂

∂H∗n
L(W n,Hn)

)
.

Then, GD performs the following iteration

W n+1 = W n − εnW∇
n

Hn+1 = Hn − εnH∇n .

If the conditions on { εn } and L given in Sec. 4.2 hold, and a projection term is added to the above
equations, the algorithm converges asymptotically to the set of limit points of the projected ODE
θ̇ = −L′(θ) + z, where θ = (W ,H) and, as before, z is the minimum force to keep the solution in
the constraint region.

GD converges very slowly and many iterations may be required to approach a stationary point.
To get reasonable convergence speed, Newton or quasi-Newton methods replace the step sizes by
(estimates of) the inverse Hessian of L at the current parameter estimate. A scalable and memory-
efficient method is L-BFGS-B [8]. If L is non-convex, GD may get stuck in a local optimum.
Especially in its standard form, GD is thus not well suited for loss functions that have many “small
bumps”, i.e., many bad local minima.

Both first-order and second-order GD methods can be distributed using MapReduce [23, 13]. The
key idea of this approach to arbitrarily partition the loss matrix across a cluster of nodes. Each node
sums up the partial gradients of its part of the data, the partial gradients are then summed up at the
reducers. The authors argue that this can be done conveniently by using a query language on top of
MapReduce. Once the gradient has been computed, a master node will perform the update of the
parameter values using, for example, the L-BFGS-B method.

Partitioned stochastic gradient descent (PSGD, ISGD). PSGD and ISGD both are recent
approaches to distribute SGD without using stratification; see Algorithm 3. The idea is to partition
the data randomly into d partitions, and run SGD independently and in parallel on each partition.

40



Algorithm 3 PSGD/ISGD for Matrix Factorization
Require: Z, W 0, H0, degree of parallelism d
W ←W 0

H ←H0

Randomly divide Z into d partitions Z1, . . . , Zd
while not converged do /* epoch */

Pick step size ε
Distribute W and H /* ISGD: only in first iteration */
for b = 1, . . . , d do /* in parallel */

Run SGD on the training points in Zb (step size = ε)
end for
Collect W and H from all nodes and average /* ISGD: only in last iteration */

end while

Results are averaged in a parameter mixing step after either each epoch (PSGD [14, 24]) or once
after convergence on each partition (ISGD [23, 24, 28]); observe that PSGD requires periodic syn-
chronization between the partition-processing tasks whereas, for ISGD, processing on the different
partitions can proceed in a mutually independent fashion. Both approaches can be implemented
naturally on MapReduce. Compared to DSGD, ISGD is slightly more efficient (since there is no
synchronization) whereas PSGD is slightly less efficient (since there are additional averaging steps).
In the setting of matrix factorization, it is possible to reorder a set of rows of W and corresponding
columns of H without affecting the value of the loss function. It follows that the loss function has
many global minima that correspond to many different values of the factor matrices. In ISGD, the
SGD processes on different partitions tend to converge to different solutions; the average of these
local solutions is usually not a global loss minimizer. PSGD performs better and does converge, but
it is outperformed by DSGD and, in some cases, even L-BFGS; see Sec. 7.

B. Parallelization Techniques for Stochastic Approximation

For completeness, we summarize standard approaches for parallel stochastic approximation [19,
Ch. 12]. These approaches do not map naturally to MapReduce, and are designed for the case in
which the computation of the update term is expensive (e.g., requires a simulation) and communica-
tion is rather cheap (e.g., few parameters). Neither assumption holds for matrix factorization, but
our approaches are inspired by the techniques below.

Pipelined stochastic gradient descent. The pipelined computation model is based on a
“delayed update” scheme in which the gradient estimate used in the nth step is based on the
parameter value from the (n− d)th step, where d is the number of available processors, e.g.,

θn+1 = θn − εYn−d,

41



0 1 2 3 4 5 6 7 8 9 10

1

3

4

2

x x

x

x

x

x

x

Time

P
ro

c
e

s
s
o

r

Y0 Y4

Y1

Y10

Y9

Y8

Y2

Y5

Y6

Y3 Y7

�4 �8

�5 �9

�6 �10

�7 �11

Figure 8: Pipelined SGD (d = 3, tg = 3, tu = 1)

where Yk = L̂′(θk) for k ≥ 0. (We fix the step size ε for ease of notation.) This permits a scheme
in which d+ 1 processors compute gradient estimates and parameter values in a pipelined fashion.
Figure 8 illustrates the technique for the case d = 3, assuming that it takes tg = 3 time units to
compute a gradient and tu = 1 time unit to update a parameter value. The scheme is initiated
by choosing θ0 and setting θ3 = θ2 = θ1 = θ0. At time n = 0, processor 1 begins to compute
the update term Y0. This computation completes at time n = 3 (marked with a “|”), at which
point processor 1 begins to compute θ4 = θ3 − εY0, finishing at time n = 4 (marked with an
“x”). Similarly, processor 2 begins to compute the update term Y1 at time n = 1. At time n = 4,
this computation completes, and processor 2 uses the value of θ4 that has just been computed
by processor 1 to compute θ5 = θ4 − εY1, finishing this computation at time n = 5. The other
processors behave similarly. This scheme can be extended to handle variable updating delays.

Decentralized stochastic gradient descent In the distributed and decentralized network
model, both parameter updates and computation of update terms take place in a distributed and
decentralized fashion. This powerful model is a generalization of the pipelined computation model.
Both the components of the parameter vector and the loss function are distributed across the set of d
processors. Processor p is responsible for component θp and partial loss Lp(θ) such that:

θ =


θ1

θ2

...
θd

 and L(θ) =
d∑
p=1

Lp(θ).

The processors operate in parallel and (potentially) at different speeds; communication is asyn-
chronous. Thus at any given point in “real time” (wall clock time), each processor resides at a
different time point in “iterate time” (step number). More specifically, the (n + 1)st iteration at
processor p involves the following steps:

42



1. Estimate θ̂n,p. Obtain an estimate θ̂n,p of the entire parameter vector by using θpn for the pth
component (the current value of the component managed by p) and the most recently received
value for all other components (from step 5).

2. Compute update terms. For each processor q (including p), compute (or estimate) update term

Y q
n,p = −∂Lp(θ̂n,p)

∂θq
.

3. Communicate update terms. For each processor q, send Y q
n,p to q.

4. Compute θpn+1. Add all unprocessed update terms Y p
∗ to θpn. This includes update terms

received from other nodes as well as the update term Y p
n,p computed in the previous step. Do

not wait for any “missing” update terms, and if multiple update terms have been received
from a single processor q, process them all.

θpn+1 = θpn + ε
∑
{ unprocessed update terms Y p

∗ } .

5. Broadcast θpn+1. Broadcast the new parameter component to all other nodes.

Weak convergence results for this process model are discussed in [19, Ch. 12]. The proofs proceed
by a careful treatment of “iterate time”, and then use appropriate time scale changes to obtain “real
time” results.

C. Example Loss Functions and Derivatives

Table 2 displays the definitions of several commonly used loss functions as mentioned in Section 7:
nonzero squared loss (LNZSL), non-zero squared loss with L2 regularization (LL2), nonzero squared
loss with a nonzero-weightedL2 term (LNZL2), KL divergence (LKL), and generalized KL divergence
(LGKL). In the table, ‖A‖F denotes the Frobenius norm of a matrix A: ‖A‖F =

(∑
i

∑
j a

2
ij

)1/2.
Our methods for obtaining a rank-r approximate factorization V ≈ WH of an m × n input

matrix V require that we represent each loss function L as a sum of local losses over points in the
training set Z, i.e., L(W ,H) =

∑
(i,j)∈Z Lij(W ,H), where Lij(W ,H) = l(V ij ,W i∗,H∗j)

for an appropriate function l, so that the gradient of L can be decomposed as a sum of local-loss
gradients: L′(W ,H) =

∑
(i,j)∈Z L

′
ij(W ,H). For each loss function L considered, Table 2

gives formulas for the components of the local-loss gradient L′ij . In these formulas, Ni∗ and
N∗j denote the number of nonzero elements in row i and column j of the matrix V . Moreover,
J = { 1, . . . ,m } × { 1, . . . , n } and B = { 1, . . . , d } × { 1, . . . , d }. Finally, for a u × v matrix
A, the quantities rowSums(A) and colSums(A) denote the u × 1 column vector containing the
row sums of A and the 1 × v row vector containing the column sums of A; thus, for example,
colSums(W ) and rowSums(H) are each vectors of length r.

As can be seen, special care has to be taken with regularization terms when representing L as a
sum of local losses. In the case of LL2, for example, we proceed as follows. Recall from Sec. 2 our

43



running assumption that there is at least one training point in every row and in every column of V .
Since Z = { (i, j) : V ij > 0 }, this means that Ni∗ > 0 and N∗j > 0 for all i and j. Then we have

‖W ‖2F =
m∑
i=1

‖W i∗‖2F =
m∑
i=1

Ni∗
‖W i∗‖2F
Ni∗

=
m∑
i=1

n∑
j=1

I[(i, j) ∈ Z]
‖W i∗‖2F
Ni∗

=
∑

(i,j)∈Z

‖W i∗‖2F
Ni∗

(28)

and, similarly, ‖H‖2F =
∑

(i,j)∈Z‖H∗j‖2F/N∗j . (Here I[A] denotes the indicator function of A.)
These results lead directly to the representation of LL2 in Table 2. A similar algebraic manipulation
is used to represent LNZL2.

The case of LGKL merits additional discussion. First recall that, after randomly permuting the
rows and column of the training matrix Z, we partition Z into d2 blocks, and partition each of the
factor matrices conformingly into d blocks as W = (W 1, . . . ,W d)T and H = (H1, . . . ,Hd).
As before, we denote by Zb the set of training points that lie in block b ∈ B. A stratum comprises d
blocks, selected such that each pair of blocks has no row or column indices in common. We originally
required that the local loss at a point (i, j) ∈ Z be of the form l(V ij ,W i∗,H∗j) mentioned above,
which ensures that SGD can be run independently within each block in the stratum. Observe,
however, that we need only require that the local losses be of the form l(V ij ,W

b(i∗),Hb(∗j)),
where b(i∗) denotes the block of W that contains W i∗ and b(∗j) denotes the block of H that
contains H∗j . This looser definition preserves the interchangeability structure, so that updates to
parameter values for a given block will not affect parameter values corresponding to other blocks,
and SGD can still be executed in a distributed manner within the stratum. We represent LGKL as a
sum of losses in this looser sense. In addition to allowing a more general representation of each local
loss, we also use two different decompositions of LGKL. The first (resp., second) representation is
more amenable to calculating derivatives with respect to the W ik (resp., Hkj) factors.

Denote by N b
i∗ (resp., N b

∗j) the number of training points in substratum Zb that appear in row i
(resp., column j) of the training matrix Z:

N b
i∗ =

∣∣{ j : (i, j) ∈ Zb }
∣∣ and N b

∗j =
∣∣{ i : (i, j) ∈ Zb }

∣∣.
We assume that N b

i∗ > 0 for each row i that intersects block Zb and that N b
∗j > 0 for each column j

that intersects Zb; otherwise, we can always add additional (zero-valued) training points to the
training set Z.10 For b ∈ B, denote by Jb1 =

{
i : (i, j) ∈ Zb

}
and Jb2 =

{
j : (i, j) ∈ Zb

}
the sets of first indices and second indices of points—both zero and nonzero—in block b. Set
Qb =

∑
i∈Jb

1

∑
j∈Jb

2
[WH]ij and note that

Qb =
∑
i∈Jb

1

∑
j∈Jb

2

W i∗H∗j =
∑
i∈Jb

1

W i∗ · rowSums(Hb) =
∑

(i,j)∈Zb

W i∗

N b
i∗
· rowSums(Hb),

10For each such added point (i, j), we define the quantity V ij log
(
V ij/[WH]ij

)
that appears in the definitions of

LW
ij and LH

ij below—as well as the quantity V ij/[WH]ij that appears in the definitions of ∂LW
ij /∂W ik and

∂LH
ij/∂Hkj—to be equal to 0 for all W and H .

44



where the final equality follows from a manipulation as in (28). We then have

LGKL =
∑

(i,j)∈Z

(V ij log
V ij

[WH]ij
− V ij) +

∑
(i,j)∈J

[WH]ij

=
∑
b∈B

( ∑
(i,j)∈Zb

(V ij log
V ij

[WH]ij
− V ij) +Qb

)

=
∑
b∈B

∑
(i,j)∈Zb

(
V ij log

V ij

[WH]ij
− V ij +

W i∗

N b
i∗
· rowSums(Hb)

)
.

Thus we obtain the representation LGKL =
∑

(i,j)∈Z L
W
ij , where

LWij = V ij log
V ij

[WH]ij
− V ij +

W i∗

N b
i∗
· rowSums(Hb(∗j)).

This is a local loss of the “loose” form discussed above. This representation of LGKL is convenient
for computing derivatives with respect to the W factors. Observe that for each (i, j) ∈ Z, we have
∂LWij /∂W i′k = 0 for i′ 6= i, so that—if we are running SGD on a block Zb and are estimating
the gradient based on a sampled training point (i, j) ∈ Zb—only the elements of W i∗ need to be
updated, and we retain computational efficiency as in Algorithm 1. In a similar manner, we can
derive an alternate representation LGKL =

∑
(i,j)∈Z L

H
ij , where

LHij = V ij log
V ij

[WH]ij
− V ij +

H∗j

N b
∗j
· colSums(W b(i∗)).

This decomposition is useful for computing derivatives with respect to the H factors. With an abuse
of notation, we write ∂Lij/∂W ik for ∂LWij /∂W ik and ∂Lij/∂Hkj for ∂LHij /∂Hkj . Although the
“gradient” L′ij that we have just defined is not actually the gradient of some well defined local loss
function Lij , it nonetheless holds that

∑
(i,j)∈Zb L′ij is equal to the gradient of LGKL on Zb, which

is all that we need for DSGD. The final derivative formulas are given in Table 2.

Table 2: Examples of loss functions and derivatives

Loss Function Definition and Derivatives

LNZSL LNZSL =
∑

(i,j)∈Z

(V ij − [WH]ij)
2

∂

∂W ik
Lij = −2(V ij − [WH]ij)Hkj

∂

∂Hkj
Lij = −2(V ij − [WH]ij)W ik

45



Table 2: Examples of loss functions and derivatives (continued)

Loss Function Definition and Derivatives

LL2 LL2 = LNZSL + λ
(
‖W ‖2F + ‖H‖2F

)
=
∑

(i,j)∈Z

[
(V ij − [WH]ij)

2 + λ
(
‖W i∗‖2F
Ni∗

+
‖H∗j‖2F
N∗j

)]
∂

∂W ik
Lij = −2(V ij − [WH]ij)Hkj + 2λ

W ik

Ni∗
∂

∂Hkj
Lij = −2(V ij − [WH]ij)W ik + 2λ

Hkj

N∗j

LNZL2 LNZL2 = LNZSL + λ
(
‖N1W ‖2F + ‖HN2‖2F

)
=
∑

(i,j)∈Z
[
(V ij − [WH]ij)

2 + λ
(
‖W i∗‖2F + ‖H∗j‖2F

)]
∂

∂W ik
Lij = −2(V ij − [WH]ij)Hkj + 2λW ik

∂

∂Hkj
Lij = −2(V ij − [WH]ij)W ik + 2λHkj

LKL LKL =
∑

(i,j)∈Z

(V ij log
V ij

[WH]ij
)

∂

∂W ik
Lij = −Hkj

V ij

[WH]ij
∂

∂Hkj
Lij = −W ik

V ij

[WH]ij

46



Table 2: Examples of loss functions and derivatives (continued)

Loss Function Definition and Derivatives

LGKL LGKL =
∑

(i,j)∈Z

(V ij log
V ij

[WH]ij
− V ij) +

∑
(i,j)∈J

[WH]ij

=
∑
b∈B

∑
(i,j)∈Zb

(
V ij log

V ij

[WH]ij
− V ij +

Wi∗

N b
i∗
· rowSums(Hb)

)
=
∑
b∈B

∑
(i,j)∈Zb

(
V ij log

V ij

[WH]ij
− V ij +

H∗j

N b
∗j
· colSums(W b)

)

∂

∂W ik
Lij

def
=

∂

∂W ik
LWij = −Hkj

V ij

[WH]ij
+

rowSums(Hb(∗j))k

N b
i∗

∂

∂Hkj
Lij

def
=

∂

∂Hkj
LHij = −W ik

V ij

[WH]ij
+

colSums(W b(i∗))k

N b
∗j

47


	1 Introduction
	2 Example and Prior Work
	3 Stochastic Gradient Descent
	3.1 Preliminaries
	3.2 SGD for Matrix Factorization

	4 Stratified SGD
	4.1 The SSGD Algorithm
	4.2 Convergence of SSGD
	4.3 Conditions for Stratum Selection

	5 The DSGD Algorithm
	5.1 Interchangeability
	5.2 A Simple Case
	5.3 The General Case

	6 DSGD Implementation
	7 Experiments
	7.1 Setup
	7.2 Relative Performance
	7.3 Scalability
	7.4 Selection Schemes
	7.5 Other Loss Functions

	8 Conclusions
	A MapReduce Algorithms for Matrix Factorization
	A.1 Specialized Algorithms
	A.2 Generic Algorithms

	B Parallelization Techniques for Stochastic Approximation
	C Example Loss Functions and Derivatives

