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Abstract 

In many business and engineering situations, we are interested in the impact of a single 

factor on the outcome or performance of a system.  Ideally, we can conduct a controlled 

experiment to investigate.  However, experimentation is often too expensive or even impossible 

and we have to resort to an observational approach in which data about the system is collected 

and subsequently analyzed in the hope of being able to isolate the effect of the factor of interest.  

We consider a naïve approach in which we perform a simple comparison of the observed system 

performance at different, known settings of the single factor of interest.  Despite the fact that we 

ignore all the other factors which could be at any number of unknown settings when the 

observations were taken, this procedure turns out to be more reasonable than it might appear.  We 

analyze this simple comparison procedure in general as well as under the assumption of several 

different forms of the underlying model of the system performance. 

 

Keywords:  performance estimation, single factor impact, Constant Elasticity of Substitution 

function, randomized experiments 

 



1.  INTRODUCTION AND PROBLEM DESCRIPTION 

In empirical analyses arising in many different subjects, a common goal is to discern the 

effect, if any, of a single factor on an end result of interest which we shall call the performance 

function.  In business analysis, a frequently encountered scenario is to investigate the impact of a 

single factor on business performance.  A specific example is that a company investigating the 

prospect of deploying a customer relationship management (CRM) system would want to 

examine the difference in selling costs between companies who employ a CRM system and those 

who do not.  In manufacturing engineering, often our goal is to investigate whether a 

manufacturing process parameter is responsible for a certain aspect of product quality.  For 

example, in plastic parts manufacturing we may be interested in knowing whether the presence of 

an air draft in the room affects the number of surface defects of a molded plastic part.  In 

engineering design, we might be interested in the effect of a design feature on the performance of 

the system.  For instance, in automobiles we are interested in the effect of an increase in tire size 

on the stability of a vehicle as measured by the National Highway Transportation Safety 

Administration’s star rating system. 

 In order to accurately estimate the effect of a single factor, other factors that potentially 

have an effect on the performance function have to be carefully controlled or accounted for.  If it 

is determined to perform an experiment, the strategy of control can be used.  (For factors we 

cannot control, we can employ the strategies of randomization and blocking.  We shall return to 

randomized experiments in Section 4.)  Such is the case for laboratory studies of manufacturing 

processes or in laboratory tests of automobiles.  Here the extensive literature of statistical 

experimental design can be used to help design an effective set of experiments to simultaneously 

study the effects of several factors while minimizing the number of experiments needed (see, e.g., 

Box et al. 2005).  In some cases, a controlled experiment is not practical.  To illustrate, it will be 

too expensive to do an experiment on changing the business strategy of a company.  In some 



other cases, to supplement the results of a controlled experiment, the performance of the system 

of interest as used in real life has to be analyzed.  In both types of scenarios, one has to resort to 

using existing data or to making observations of a working system that will not be intervened.  

Here we can use the strategy of accounting for the effects of all possible factors, in addition to the 

one being investigated, so that our conclusion is free of confounding effects.  A proper way is to 

develop a mathematical model of the performance function of all factors involved, estimate the 

parameters of the model using observed data, and then use the estimated model to conclude 

whether the effect of a selected factor is significant.  For example, in a linear model this can be 

done by testing whether the model coefficient corresponding to the factor is significantly different 

from zero.  If so, we also know the estimated magnitude of the effect of that factor.  In business 

research, such an approach is commonly used in organizational performance or organizational 

behavior studies where we are interested in the effect of one or few factors (such as the presence 

of a CRM system) on the performance of a company.  Indeed, one may argue that we have no 

other choice there, since only results from a real life setting are relevant in the world of business. 

This approach of utilizing a model, however, is technically non-trivial.  First, the list of 

factors that have an impact on performance is generally difficult to obtain precisely.  In business 

research in particular, often there are so many factors that affect the performance of a business, 

some of which may be difficult to find a simple measure to characterize.  Missing a factor could 

completely change the conclusion.  Even if all the factors and their measurements have been 

identified, collecting sufficient data for each of the measurements may not be easy in practice.  

Further, when all data have been collected, developing an adequate model that fits the data 

reasonably well is a task that requires specialized expertise.  Each class of models has its own set 

of technical assumptions and methodologies for fitting; typically an entire book of significant 

technical complexity is dedicated to the basics of one class of models.  For instance, for linear 

models we have, among many others, Draper and Smith (1998), generalized linear models 

McCullagh and Nelder (1989), structural equation models Bollen (1989). 



At the other extreme, a naïve approach is to use a straightforward comparison procedure 

in which data on business performance are directly compared between cases of different levels of 

the factor of interest.  For example, we may have a database of historical data on a measure of 

business performance together with the corresponding data on a set of factors potentially 

affecting the business performance.  We are interested in the impact of one of the factors.  For 

simplicity of argument we assume that this factor of interest has two levels, high and low.  The 

database will have two subsets of records, depending on whether the factor of interest is at high or 

low.  We take the average of the performance in each subset, calculate the difference of the two 

averages, and call this the effect of the factor of interest.  That is, we assume that any difference 

in business performance observed is attributed entirely to the effect of this factor.   

The latter, straightforward approach is much more attractive in terms of ease of execution, 

in view of the complexity of the proper modeling approach discussed earlier.  The problem is that 

the results will seem to be obviously in doubt, since we are ignoring the effect of many other 

factors and are effectively assuming that they remain constant while only our factor of interest 

changes.  Even in a controlled experiment, the levels of the controlled factors may in fact vary a 

little due to variations in the physical environment, imperfect instruments, limited precision of 

human actions, etc.  But how bad will the result be?  Will the results be somewhat salvageable so 

that it can at least be used as a first approximation?  Will we be so lucky to encounter some 

conditions under which the effects of other factors will “average out” to be a constant quantity so 

that the differencing operation will eliminate them?  We attempt to provide some insights in this 

paper. 

In Section 2, we develop a general model to precisely describe the problem mentioned.  

Without specific assumptions, it seems that only limited results can be obtained from the general 

model.  So we resort to analyzing some specific model forms for the performance function in 

Section 3.  Section 4 reviews a thread of research in randomized experiments that is related to our 

study.  Section 5 discusses practical implications and provides some concluding remarks. 



2.  ANALYSIS OF A SIMPLE COMPARISON PROCEDURE 

We are interested in estimating the effect of a selected vector of factors, denoted by 
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In a real-life application, f is typically not known exactly and we can only observe some 

noisy version of it, denoted by f̂ .  A common assumption is that the n-th observation of f̂ , 

denoted by nf̂ , satisfies the following set of conditions: 
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where Ni is the number of observations of f̂  at ),( 0yxi

rr
.  This is the ideal case where we can, for 

example, choose two subsets of records in a database corresponding to ),( 01 yx
rr

 or ),( 02 yx
rr

, then 

for each set take the average and then the difference between the two averages.   

We assume that  

Ni > 0 is either fixed or an integer-valued random 

variable that is independent of nf̂  for n = 1, 2, 3, …           (2.4) 

Under assumptions (2.2) and (2.4), ĝ  is unbiased, i.e., 
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where the expectation is taken w.r.t. nf̂  and Ni, if applicable. 

Due to the circumstances discussed above, the settings of y
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 in the two scenarios of 1x
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and 2x
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 may possibly be different from each other and as well different from 0y
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.  We model this 

situation with y
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 being a random variable and let  iny
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 be the (random) level of y
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observation of f̂ when ixx
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= .  (For this reason we refer to y
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variable and x
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 the measured or known variable.)  Similar to (2.3), we obtain an estimate for g as 
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We assume that  

Ni is either fixed or a random variable that is 

   independent of nf̂  and iny
r

for i = 1, 2         (2.7)  

   and n = 1, 2, 3, …          

   For i = 1 or 2, given ix
r

,  
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 are i.i.d. for n = 1, 2, 3, …, and                   (2.8)   
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Effectively we assume that y
r

 follow a single, fixed distribution, the mean of which is the correct 

value 0y
r

, that is independent of the factor of interest x
r

.  If we have absolutely no knowledge of 

the missing values of y
r

 or even what factor is missing, this does not seem unreasonable.  This is 

also the most basic scenario to analyze. 

2.1.  Bias of the Estimator 

The estimator g~  as defined in (2.6) is representative of the output of a naïve comparison 

procedure introduced in Section 1.  We now study this estimator more closely.   

Under assumptions (2.2), (2.7), and (2.8), taking advantage of the fact that each of N1 and 

N2 is independent of everything else, we have, for i=1 or 2, 

( )[ ]
),(E

|),(ˆEE

),(ˆE

),(ˆE
1

E

|),(ˆ1
EE

),(ˆ1
E

1

111

11

11

1

1

ii

iii

ii

iii

i

i

N

n

inin

i

N

n

inin

i

yxf

yyxf

yxf

yxfN
N

Nyxf
N

yxf
N

i

i

rr

rrr

rr

rr

rr

rr

=

=

=









=




















=










∑

∑

=

=

 

Therefore, we obtain 
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From (2.1) and (2.10), we have 
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Hence, a necessary and sufficient condition for g~  to be unbiased is that 
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Under assumption (2.9), a sufficient condition for g~  to be unbiased, i.e., (2.12) to be true, is that, 
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It is well known that (2.13) does not hold in general (e.g., Young 2010).  However, (2.13) is still 

true if 
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Hence, an alternative sufficient condition for g~  to be unbiased is that 
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We use these conditions to investigate some specific forms of f in Section 3. 

From the RHS of (2.11), we know that the relationship between ),(E 1ii yxf
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iy
r

 are assumed to be bounded by constants, each of the two summands in the RHS of (2.11), i.e., 
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Madansky upper bound and from below using Jensen’s inequality.  In fact, tighter bounds than 

the abovementioned have been developed (Dokov and Morton 2002, 2005).  Using these bounds 

we can derive a bound for (2.11) in a straightforward way.  For example, in the simplest case 

when ii xx =
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 are scalar, using the classic Edmundson-Madansky and Jensen’s 

bounds, we obtain 
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where a and b are respectively the lower and upper bounds of yin.  This yields an interesting 

insight that g~ always overestimates g (in expectation) when f is convex. 

2.2. Variance of the Estimator 

 Now we calculate the variance of ),,(~
021 yxxg
rvr

.  From (2.6), we have 
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Taking expectation on both sides and again using a conditional expectation on N1 and N2 and their 

independence of everything else, we have, after some algebra,     
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Noting (2.10), we have 
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 The above shows that the estimator g~ behaves similarly to the simple average sample 

mean estimator; for example, if N1 = N2 = N which is fixed, then the variance of the estimator 

decreases at the rate of 1/N.  This is as expected from the fact that the estimator is of the form of 

the difference of two sample averages. 

3.  BIAS PROPERTY FOR SOME COMMON MODEL FORMS 

 In this section we examine several model forms of the performance function f.  These 

model forms are commonly encountered in different technical areas. 

3.1.  Separable Models 

We consider the case when f is separable in x
r

 and y
r

, in the form of  
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where A, B, C are non-zero constants. Then 
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A sufficient condition for the above to be true is that 
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while a necessary and sufficient condition is that 
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Condition (3.4) represents the case that x
r

 has no impact on the cross x-y term. 

Clearly, (3.3) is satisfied when )(4 yf
r

is linear w.r.t. y1,…, yn.  In other words, for ĝ  to be 

an unbiased estimator for g, we require that the cross x-y terms of the performance function be 

linear with respect to factors that are not under investigation.  The separable part of the cross x-y 

terms that involves x
r

, the factors of interest, the terms that involve only x
r

 or y
r

 alone, can still 

be general (e.g., nonlinear). 

3.2.  Polynomial Models 

 Polynomial models need no introduction; suffice it to say they are among the most 

popular classes of empirical models used to fit data.  A polynomial model can be viewed as a 

special class of separable models.  Because of its specific structure we are able to draw a stronger 

conclusion about them.  A polynomial in z
r

 of degree d can be written as 
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 Using our notation of x
r

 being the variables of interest and y
r

 the other factors that 

influence performance, we split z
r

 in the above accordingly so that our polynomial model is as 

follows. 
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When d = 1, the model is a simple linear model in x
r

 and y
r

 (with no cross terms), so that 

condition (2.13) applies and g~  is unbiased. 

When d = 2, to calculate the LHS of (2.14), we have 
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We proceed by calculating the summand for each γ  based on the values of the exponents α and β, 

as shown in Table 3.1.  Combining the results in Table 3.1, we see that the RHS of (3.7) is a 

constant.  Therefore condition (2.14) applies and g~  is unbiased. 

 It turns out that d = 2 is the highest degree for which g~  is unbiased.   



 

Table 3.1.  Calculation of RHS of Equation (3.7) 
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This is not a bad result since linear and quadratic models are among the most commonly 

used to fit observed data and the fitted model is then used to estimate the effect of a particular 

factor, or to judge whether the impact of a particular factor is significant (i.e., different from zero).   

3.3.  The Cobb-Douglas Production Function 

A production function is a mathematical function used to represent the output of an 

economic system as a function of its inputs.  Production functions are used frequently in the 

subject of economics, at both the microeconomic (i.e., individual firm) and macroeconomic (i.e., 

an economic sector or an entire economy) levels.  Production functions are often closed form 

mathematical expressions discovered over time and shown to adequately represent the actual 

behavior of some economic systems. 

One of the oldest production functions which is still in use today is the Cobb-Douglas 

production function (Cobb and Douglas 1928).   It models production output f  (the performance 

function in our terminology) as a simple function of capital x1 and labor x2 as follows.  
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where αi, i = 0, 1, 2, are constants (the model parameters).  In its more general form of more than 

two input factors, we have 
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where f is the production output, xi are the input factors, including labor or capital, and αi,, i = 

1, …, p, and p > 0 are constants. 

 We may be interested in the effect of changing say x
r

 = (x1,…,xk-1) on f at a given value 

of y
r

 = (xk+1, …, xp), 1 < k < p.  Similar to Zellner et al. (1966) and Goldberger (1968), assume 

that the n-th estimate of f takes on the following form: 
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where nε is an i.i.d. random variable with K3,2,1,0)(E == nnε , and a finite variance.  Then the 

logarithmic form of (3.9) satisfies our previous assumption (2.2) and is linear in ln(xi), i = 1, …, p.  

Condition (2.13) is true in the log transformed variables.  (One has to be careful in estimation 

using the log transform as it will shift the mean; see Goldberger 1968.) 

 If we assume that the n-th estimate of f takes on an alternative form with additive noise: 
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f does not satisfy any of the conditions discussed.  We shall examine this case as the limiting case 

of the Constant Elasticity of Substitution function in the next section. 

3.4.  The Constant Elasticity of Substitution Production Function 

Another well-known production function in econometric studies is the Constant Elasticity 

of Substitution (CES) production function.  The first version, which models production output as 

a function of capital and labor, was introduced by Arrow et al. (1961).  It was subsequently 

generalized by many authors.  For example, Uzawa (1962) and McFadden (1963) extended it to 



include more than two factors under different definitions of elasticity of substitution between 

factors; Sato (1967) introduced a two-level version, in which an input variable in a CES function 

is in turn modeled by another CES function.  The Cobb-Douglas function is a limiting case of 

CES and so sometimes the CES function is seen as a theoretical evolution of the Cobb-Douglas 

function.  In practical use, however, both have found their own place in empirical models in 

economics.  Miller (2008) presents a comparison of these two models in a macroeconomic 

application.  The CES function has been shown in Christensen et al. (1973) to be part of a larger 

class of production functions. 

Many variations of the basic form of the CES function (of the original two-factor and 

multi-factor variety) have been developed; we chose to use a fairly compact but general form as 

in Dhrymes (1967): 
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where αi > 0, i =1, 2, …, p, β ∈ (-∞, 1), Q is the production output, and xi are the input factors, 

such as labor or capital. 

 The CES model, when used as our performance function f, does not satisfy any of 

the above conditions for unbiasedness.  In this section we study this model to see how biased 

the estimator g~  is, for a range of realistic β, and with different distribution functions for the 

unknown or unmeasured variable.  

3.4.1.  Fundamentals   

 The production function can be re-expressed in a way which makes the difference 

between random and measured variables clearer.  As in the previous parts of this paper, we call 

the measured variables x
r

, and the random, unmeasured variable y
r

.  For simplicity we assume 

that ),...,( 11 −= pxxx
r

 and pxyy ==
v

 in the CES model (3.11).  Then for the case of β less than 

zero, the production function can be written as: 
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We multiply numerator and denominator by y to get: 
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Now we define a variable, Γ, which is the ratio of the contribution of the unmeasured 

variable to the measured ones, that is, the ratio of the average of the y term to the sum of the x 

terms. Writing the average of y as y , we get for Γ: 
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 Expressed in terms of Γ, the equation for Q can be written: 
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Where Q( 0=yα ) is the value of the CES function evaluated as if the unknown variable 

y does not exist., or does not contribute to the production function, i.e., 

β

β

β

β ααα

/1
1

1

||/1
1

1

||//1)0( 







=








≡= ∑∑

−

=

−

=

p

i

ii

p

i

iiy xxQ             (3.16) 

We now assume the variable y to be positive definite and to have a fixed distribution. We 

call this probability density function ρ(y), i.e., 
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Now, taking the expectation of both sides of equation (3.15), we obtain: 
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 For the given class of CES function defined by β, the quantity on the right hand side of 

(3.18) is a function of only a single parameter Γ, for a fixed distribution ρ.  

 Since for all but a few values of β the integral on the right hand side of (3.18) cannot be 

evaluated in analytic form, we calculate the integral numerically. For the range of β and 

distribution functions we chose, the integral ceases to have signification contribution for y larger 

than 100, and so the upper limit itself was not a problem. The challenge in evaluating integral 

(3.18) comes in careful multiple-precision evaluation of the integrand, especially at moderate 

values of the argument. There, the nonlinear nature of the quantity in the denominator, combined 

with rapidly falling values of the distribution function, mean that a good integration routine must 

be used. If these precautions are taken, the quantity in (3.18) can be evaluated as a function of Γ. 

 Notice from the form of Q in (3.13) that for β < 0, including additional terms to the 

production function, for fixed values of the previous terms, results in a smaller value of the 

production function. Therefore Q is less than )( ∞=yQ , and their ratio is less than one. This 

range of zero to one is also consistent with the form of the integrand in (3.18). For all 

values of β and all distributions of y, the quantity in (3.18) is a monotonically decreasing 

function of Γ.  

For β > 0, the equations are expressed differently. Keeping the same definition of Γ as the 

ratio of the average contribution of the unmeasured variable to the measured ones, we get  
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and  
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where as before )0( =yQ α  is the value of the production function with the y-term removed.  

This gives the expectation of Q as 
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 To understand the effects of not precisely knowing or measuring y, from (2.13) we are 

interested in the difference  

))(,(),(E 11 iiii yxQyxQ
rrrr

Ε− .     (3.22) 

We have the expectation of Q with the results of evaluating (3.18) for β < 0 and (3.21) for β > 0. 

To determine the second term in (3.22), we go back to (3.15) and (3.20) and substitute 

yyi =Ε )( 1

r
 for y. As can be easily shown, this gives the same form for both β < 0 and β > 0: 
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We think it is more useful to express the difference (3.22) in terms of the quantities EQ 

and Q(E(y)), rather than keeping the quantity )0( =yQ α  in the equations, which assumes it is 

possible to evaluate the production function with the quantity y entirely absent. 

Accordingly we calculate the quantity  
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which is related to equation (2.13), and which would be zero if equation (2.11) would hold. 

Because like (3.15) and (3.20) it is dimensionless, it can be expressed as a calculated percentage. 

To the degree that this quantity deviates from zero, it gives an indication of how poor the 

approximation of using the estimator g~  is. 



3.4.2.  Numerical Results  

To gain some insights on the extent of the deviation of ∆Q from zero in a practical 

situation, we calculate ∆Q numerically for some selected parameter values.  Since β is a key 

parameter that impacts ∆Q, we chose its values carefully so that they are representative of 

estimates that would be obtained in a typical application of the CES function.  To this end, we 

surveyed a number of studies fitting a CES function to real data.  Not all applications are directly 

usable due to the usage of different forms of the CES function; nonetheless we were able to 

obtain a practical range of β values from a reasonable number of fitted CES functions (Berndt 

1976, Chirinko 2008, Salem 2004, Soda and Vichi 1976). 

We evaluated difference quantity (3.24) for 5 values of β (β = 1/2, -1/2, -1, -2, and -5), 

and 5 types of distribution functions for y: Gamma distribution with three parameter values of Α 

(upper case alpha; Α= 2, 1, and ½);  and normal distribution peaked at zero, and peaked at a finite 

value of y. For each of these, quantity (3.24) was calculated at a full range of Γ (defined in (3.19)).  

Details of these results follow. 

The Gamma distribution function is defined for y > 0 as: 
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where )(AΓ is the gamma function, required for normalization. We kept the Gamma 

distribution parameter Β  = 1 (upper case beta). For our three choices of Α, the 

distribution functions have the specific forms: 
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The mean of each function, y , is just equal to Α. The distribution for Α = 2 is a gently peaked 

function with a maximum at y = 1. For Α = 1, the familiar exponential has a maximum at 0 and 

falls monotonically; and for Α = 1/2, the distribution diverges at the origin before falling more 

sharply than the other two. For these distributions, the quantity in (3.24) can be evaluated in 

closed form for the case of β = 1/2. For the other values of β, Ε(Q) was calculated numerically. 

The results of evaluating (3.24) are shown in figures 1, 2, and 3, for the three Gamma 

distributions, and in figure 4 there is a comparison of the three distributions on one plot, for the 

case of β = -2. 

 The first thing to notice is that in no case does the deviation of (3.22) from zero, as a ratio 

with the value of ΕQ, even reach unity. In many cases, the value is quite small indeed. Some 

trends can be seen. For the fixed distribution of y, equation (3.24) is nearest to zero, for all values 

of Γ, the closer that β is to its upper range value of 1. (At the point at which β = 1, the model 

becomes linear, and reduces to case 3.1.) It becomes increasingly worse as β becomes more 

negative. The value of the expression (3.24) at −∞=β  can be derived analytically for each 

distribution. In this limit, there is no dependence on Γ; (3.24) becomes a step function, zero at  

Γ = 0 and a finite constant everywhere else. In this limiting case the CES function becomes the 

Leontief function. We show this maximum limit as a dashed line on the plots. The −∞=β  

values are: for Gamma distribution Α = 2, -37%; for Α = 1, -58%; and for Α = 0.5, -94%. 

Secondly, as the distribution of y becomes sharper (going from Gamma function with 

Α = 2 to 1 and then 1/2), for any β, the percentage deviation from zero increased, reaching nearly 

80% with Α = 1/2 for β = -5 at its maximum. 



 

Figure 1: Calculation of Q∆ , Eq (3.24), as a function of the scaling variable Γ (Eq. 3.14), 

for a range of values of the CES exponent β. A Gamma distribution with Α = 2 was used 

to model the variable y. The limit of negative-infinite β is marked as a dashed line. The 

closer Q∆  is to zero, the better the approximation of the estimator g~ . Large negative β 

give more inaccurate results with this approximation than small β do. Even 5−=β  is 

still less than 25%.   

 

 

 



 

Figure 2: Calculation of Q∆ , Eq (3.24), as a function of the scaling variable Γ (Eq. 3.l4), 

for a range of values of the CES exponent β. The limit of negative-infinite β is marked as 

a dashed line. A Gamma distribution with Α = 1 was used to model the variable y. The 

closer Q∆  is to zero, t the better the approximation of the estimator g~ . Larger negative β 

give more inaccurate results than small β. 

 

 
 



 

Figure 3: Calculation of Q∆ , Eq (3.24), as a function of the scaling variable Γ (Eq. 3.l4), 

for a range of values of the CES exponent β. The limit of negative-infinite β is marked as 

a dashed line. A Gamma distribution with Α = 0.5 (which diverges at y = 0) was used to 

approximate the variable y. The smaller Q∆ , the better the approximation of the estimator 

g~ . Larger negative β are seen to give rising inaccurate results for this sharp distribution, 

with nearly 100% variance at β = -∞. 
 



 

Figure 4: Calculation of Q∆ , Eq (3.24), as a function of the scaling variable Γ (Eq. 3.l4), 

for a fixed value of the CES exponent β = 2, for a range of sharpness of the distribution 

of y. A Gamma distribution was used (Eq. 3.26), with values of parameter Α = 2, 1, and 

0.5. As Α decreases, the distribution sharpens, with Α = 0.5 divergent at y = 0. The closer 

Q∆  is to zero, the better the approximation of the estimator g~ . Smoother distributions 

clearly give more accurate results than sharper ones. 

 
 

Finally, keeping the distribution and β fixed, and studying the deviation as a function of 

the ratio Γ, we found unexpected scaling behavior. With this choice of the independent variable, 

all the calculations of ∆Q , for all values of β and distributions of y considered, have a maximum 

at the nearly the same spot. This location is the value Γ = 1, at which point the sum of the x terms 

is equal to the average value of the y. 

We therefore find that the approximation of neglecting the variable(s) y is worst when the 

measured and unmeasured variables have equal weight in the CES function. For cases when the 

average of the unmeasured quantities is smaller than the measured, the approximation is a very 



good one, and (3.24) rapidly goes to zero as the average of y decreases, as expected. However, 

(3.24) also decreases for cases in which the average of y is much larger than the contribution of 

the x. This result can be explained as the limiting case in which the contributing variables are 

essentially random, with a known distribution and average, and the measured quantities have very 

little effect. 

To see whether these results are specific to the Gamma distribution, we also tried another 

distribution, a Normal distribution defined for only positive values, and hence peaked at the 

origin, but with a zero slope, and then a rapid fall-off. Hence in shape, the distribution falls 

between Α = 1 and  Α = 2 of the Gamma distribution. Because of the dimensionless value of the 

integrand, one can show that width of the distribution cancels out, and that the results are 

independent of the standard deviation of the distribution. The results for the normal distribution 

are shown in figure 5, including a dashed line for −∞=β . 

One can see a considerable similarity with the Α = 1 and  Α = 2 Gamma distributions, 

with the maximum for the normal distribution reaching a value about midway between the two, 

and even the falloff for large Γ at the same rate. The value at −∞=β  reaches -43%, again 

midway between the limiting values for Α = 1 and  Α = 2.  This gives some confidence to our 

conclusion that the smoother the distribution of y, the more accurate it is to use the estimator g~ . 

Moreover, similar distributions can give similar results, and so outside cases with distributions 

similar to ours may be able to fairly accurately use our figures to extract values for (3.24). 

To give some numerical values, for a normal distribution of y, (3.24) has a peak value for 

β = +0.5 of only 5%; for β = −0.5 it is 13%, increasing with decreasing β  until it reaches a value 

of 30% for β = −5. Similar results are obtained for a Gamma function distribution with parameter 

Α = 2, a similarly smooth function as a normal distribution. For a more sharply peaked 

distribution, such as a Gamma function with parameter Α = 1/2, (3.22) has a maximum value for 

β = +0.5 of 10%, increasing with decreasing β  until it reaches a value of 75% for β = −5.  



 

 

Figure 5: Calculation of Q∆ , Eq (3.24), as a function of the scaling variable Γ (Eq. 3.l4), 

for a range of values of the CES exponent β. A Normal distribution centered at the origin 

(with 0≥y ) was used to model the variable y. The limit of negative-infinite β is marked 

as a dashed line. The smaller Q∆ , the better the approximation of the estimator g~ . 

Larger negative β give more inaccurate results with this approximation than small β do.  
 

 

Our final set of distributions has a normal distribution with a nonzero offset from the 

origin. This is the more general form of the normal distribution, and has the form: 
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Here K is the normalization constant, which has to be calculated numerically using:  
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Making the change of variables σ/yz = , we can express K as: 
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We also need the average of y, y : 
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Again making the change of variables z = y/σ in the upper integral, y  can be expressed:  
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We then obtain for the expectation of Q from (3.18) for β < 0, 
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Making the change of variables z = y/σ finally gives for ΕQ 
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So that ΕQ is seen to only depend on the ratio µ/σ, not on either separately. In similar manner 

from (3.21) the same conclusion can be reached for β > 0. From the equation (3.23), it is clear 

that )(yQ  is independent of either µ or σ. Hence the quantity of interest, (3.24), depends only on 

the ratio µ/σ.  

The case of µ/σ = 0 was covered above for the (half) Normal distribution centered at zero. 

Here we choose µ/σ = 1 and 5 to give examples of distributions which are peaked just one sigma 

away from the origin, versus ones which have essentially the entire normal distribution contained 



on the positive side. To calculate (3.24), for each ratio of µ/σ we first numerically calculate I(µ/σ) 

and h(µ/σ) from equations (3.29) and (3.31), respectively. For interest, σ11.1=y  for µ/σ = 1, 

and σ0.5=y  for µ/σ = 5, showing how nearly the latter case is to a complete Normal 

distribution. For the zero-offset Normal distribution above, σπσ 56.0/ ==y . 

The results of calculating quantity (3.24) for the two cases of µ/σ are shown in figures 6 

and 7. We only show a few representative values of β, since by now the trends are clear. 

 

Figure 6: Calculation of Q∆ , Eq (3.24), as a function of the scaling variable Γ (Eq. 3.l4), 

for a range of values of the CES exponent β. The limit of negative-infinite β is marked as 

a dashed line. A Normal distribution (with 0≥y ) with a center-to-width ratio of 1 was 

used to model the variable y.  The smaller Q∆ , the better the approximation of the 

estimator g~ . Larger negative β give more inaccurate results than small β. 

 



 

Figure 7: Calculation of Q∆ , Eq (3.24), as a function of the scaling variable Γ (Eq. 3.l4), 

for a few representative values of the CES exponent β. The limit of negative-infinite β is 

marked as a dashed line. A Normal distribution (with 0≥y ) with a center-to-width ratio 

of 5 was used to model the variable y.  The very small values of Q∆ , even at negative 

infinite β, show this distribution to give very accurate estimator g~ . 

 

 

What is particularly surprising is the rate at which our quantity of merit (3.24) improves 

as the peak of the Normal distribution shifts away from the origin. At only µ/σ = 1, already the 

percent deviation has fallen from a maximum of roughly 30% for β = -5 at µ/σ = 0, to a 

maximum of 17.5% for µ/σ = 1, and then down to a negligible 1.5% at µ/σ = 5. For less negative 

β, as previous trends showed, the deviation is even smaller. We do not even show the β = +0.5 

case for µ/σ = 5, because it is so small. The limiting case of −∞=β , again shown as a dashed 

line on each plot, is at 29% for µ/σ = 1, and an amazingly small 6% for µ/σ =5. 



 These results imply that if the distribution of the unknown variable can be found to be 

Normal, the larger the ratio of center to width in the distribution, the better will be the 

approximation of the estimator g~ . In the limit that the distribution is centered sufficiently far 

from the origin that it is essentially completely contained on the positive side of the axis, then the 

deviations from the exact answer approach zero.  

 One further point to note is that in every case, the deviation from zero of Q∆ is negative. 

This is true for all distributions and values of the exponent β considered. Referring to our earlier 

equation 2.16, we see this is consistent with the fact that the CES function is concave for all β in 

the allowed range of 1< . 

3.4.3.  The Limit of ββββ at Zero 

There is an important issue which appears to be rarely addressed when discussing 

the CES function, especially general forms such as (3.11) we are using. This issue is 

whether this function is continuous and well-defined at all values of β in its range 1≤β , 

and in particular at 0=β .  

Examination of equation (3.11) defining the CES function will readily reveal that 

unless 1
1

=∑
=

p

i

iα  the general CES function will be divergent and discontinuous as a 

function of the exponent β as it passes through zero. If the sum is less than one, the CES 

function will diverge as β approaches zero from below, and will approach zero as β 

approaches zero from above. The reverse is true when the sum greater than one. Only if 

the sum is unity will the CES function be defined at 0=β , and in that case it can be 

mapped to the Cobb-Douglass function. Therefore in many applications of the CES 

function this is indeed an assumption. 



 Setting the sum of α’s to be one, even after the fact as we have done here, does 

not affect the results we have presented so far. It could be thought that such a restriction 

would eliminate variables, and cause simplifications. However, this is not the case. The 

CES function is still a function of all the other (p – 1) α’s, plus β. The variable Γ (3.14, 

3.19) which works so well as a scaling variable for this problem is seen from its 

definition to be a complex function of all the α’s and x’s, plus the average of y. In general, 

Γ is a function of (2p – 1) variables (all (p – 1) x's and their α’s, plus αy). If we eliminate 

one variable due to a sum rule on the α’s, then Γis still a function of (2p – 2) variables; it 

doesn't help much. Even if we go down to just two variables x and y, with a single α 

between them, Γ is still a nontrivial function:   ββ
αα xy )1/( −=Γ . All the plots in 

section 3.4.2 still hold; pick α and pick x, and you can get Γ and, finding that value on the 

x-axis, pick the value of Q∆ off the plot. All expressions for Q∆ continue to be very 

general, depending on the sharpness of the distribution of y. 

3.4.4.  Other Issues of Interest 

In addition to the criterion for being able to use the estimator g~ , Eq(3.24), we also 

examined the behavior of the CES function with regard to constancy of x, an alternative test (Eq. 

2.16). We did not find any regions in which the CES function met this criterion. As a function of 

x, ∆Q is zero at x = 0, and then rises with increasing x. For β greater than zero, it continues to rise 

with x, and for β less than zero, it reaches a maximum at an x around unity, and then decreases 

toward zero for very large x. We thus note that (2.14) is a more stringent criterion than (2.11). 

A second question of note is the use of relative error in looking at Q∆ , (3.24), as we 

have been doing in the previous sections of numerical results. Relative error can become less 

useful in the range where the size of the data itself is small. Accordingly, we have directly 



calculated the value of EQ for the case of the smallest relative Q∆ , namely β = +0.5. The main 

question we want to answer is, is the value of (3.24) small for β = +0.5 because it really does 

have small deviations, or because we are inadvertently dividing by a large EQ?          

  To address this question and calculate the value of EQ, we direct our attention to 

equations (3.18) and (3.21), which are expressions for EQ for β less than zero and greater 

than zero, respectively, which can be calculated numerically as a function of the single 

parameter Γ. There however is the factor )0( =yQ α  in the denominator, which prevents 

this from being a completely separate calculation of EQ. This factor is actually 

discontinuous as β approaches zero from above and below, depending on whether the 

sum of αx is less than or greater than one. This is of course related to the point made in 

the previous section 3.4.3. If the sum of all the α’s is taken to be one, then removing αy 

will necessarily make the remaining sum less than one for positive αy, meaning that 

)0( =yQ α  will go to infinity as β approaches zero from below, and become zero as β 

approaches zero from above. Of course, )0( =yQ α  appears in all three terms of (3.24), 

and so cancels out, which is why our results for Q∆  are smooth and finite. However, to 

calculate EQ directly, we must leave off )0( =yQ α .  

 Without the factor of )0( =yQ α in the denominator, EQ becomes a function of 

many variables. To simplify matters and get a numerical answer, we focused on the case 

of only two variables, y and x, with coefficients α and )1( α− . Then EQ is just a function 

of x andα , and we performed a matrix of calculations of EQ, spread over reasonable 

values of x andα , with α ranging from zero to 1 and x from zero to 10. (We used the 

Gamma distribution with Α equal to two (3.26) for a well-behaved distribution of y’s.) 



We found that EQ takes a maximum value equal to x, in the limiting case that α tends to 

zero (as one would expect, since the CES function reduces to x if all the other coefficients 

are zero). However, in this limit the numerator of (3.24) is identically zero – there is no 

variance in the value of Q if all variables are known. For all other values of α and x, EQ 

is always a moderate value in the neighborhood of 0.5 to 3.0. We find Q∆ calculated in 

the same way thus retains its very small values, with or without being divided by EQ.  

In general for all values of β, not just for β equals 0.5, in the simple case of just 

two variables, we find that EQ scales with x for smallα , the limit when the numerator is 

always small. Also EQ becomes uniformly the average of y for α near one. For the more 

realistic case of a multiple of x’s, finding all coefficients ix,α  at one or the other limit 

becomes increasingly more unlikely, and EQ is even more limited to range of values of 

order unity. We conclude that dividing by EQ is in no way a misleading way to normalize 

our quantities.  

4.  RELATED RESULTS IN RANDOMIZED EXPERIMENTS 

4.1.  Relationship to an Estimation Problem 

 To the best of our knowledge, we are not aware of any other study investigating the 

specific issue at hand.  However, there is a related thread of work in statistical analysis of 

randomized experiments.  A prominent application of randomized experiments is clinical trials in 

health care.  In clinical trials for a treatment, a standard procedure is to select a sample of patients, 

assign a patient the treatment A or B (e.g., B can be a control, i.e., no treatment A) using some 

randomization method, then analyze what effect the treatment has on the sampled patients.  There 

are a number of ways to analyze the treatment effect; see Lachin (1988) for an overview.  One 

approach of our interest is the utilization of a regression model.  Following the set-up of Gail et al. 



(1984) but using our notation used throughout the present paper, let ),(ˆ yxf n  be the response of 

a patient, x = +1 or -1 be treatment A or B, y be a factor (usually called covariates in the clinical 

trial literature) that impacts the response, n = 1, …, N be the index of the patient in the sample.  

Gail et al. (1984) assumes that the response of the patient follows the model: 

)(),(),(ˆE yxhyxfyxf n βαµ ++== ,              (4.1) 

where h is the link function in generalized linear models.  Our interest is to estimate the 

parameters µ, α, and β, and in particular α which represents the effect of the treatments.  Denote 

the estimator of α by α̂ . 

 Now assume that the covariate was not measured or ignored in the model.  Then the 

analysis is based on the wrong model 

)(),(ˆE **
xhyxf n αµ += ,     (4.2) 

Let 
*µ̂  and 

*α̂  denote estimators of  µ* 
and α*

 respectively.  The important issue then is under 

what conditions will 
*µ̂  and 

*α̂ be consistent with or unbiased with respect to the correct values 

of µ and α?  Using the method of moments for estimation and due to the randomized assignment 

of treatments to patients in clinical trials, the sample average responses of the two groups of 

patients with treatments A or B converge, respectively, to  

( ) )(E1|),(ˆE yhxyxf yn βαµ ++==               (4.3) 

( ) )(E1|),(ˆE yhxyxf yn βαµ +−=−= ,    (4.4) 

where y is assumed to be i.i.d. with E(y) = 0 and E(y
2
) < ∝, and Ey denotes expectation with 

respect to y, even though we think mistakenly that the sample average response is converging to 

(4.2).  We can see that this problem is equivalent to the problem studied in the present paper, with 

y0 = Ey = 0, x1 = -1, x2 = 1, except that the present paper is interested in the difference in the 

responses: 
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corresponding to (2.1) above, while Gail et al. (1984) is interested in the parameter values of the 

model h.   

 In the special case of h being linear, i.e.,  

bah += ηη)( ,          (4.6) 

*α̂ , using the method of moments say, converges to the difference in the responses g(-1,1,0) as 

defined in (4.5).  Our results for linear models (under separable functions above) are consistent 

with Theorem 3 in Gail et al. (1984) which states that 
*µ̂  and 

*α̂  converge to µ and α correctly 

in this case. 

 In the case of h being exponential, i.e., 

bach += )exp()( ηη ,                   (4.7) 

Theorem 5 in Gail et al. (1984) states that only 
*α̂  but not 

*µ̂  converges correctly.  This means 

that the quantity of interest in the present paper, 

[ ]))(exp())(exp()0,1,1( αµαµ −−+=− aacg ,         (4.8) 

will not be estimated correctly.  To verify this using our results, we check that condition (2.12) is 

not true. 

Noting Ey = 0, we have  

[ ]))(exp())(exp(E

)E,(),(E
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−
.        (4.9) 

For condition (2.12) to apply at x1 = -1, x2 = 1, and y0 = 0, we need 
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            (4.10) 



This is not true unless we have the trivial cases of β = 0 or α = 0 or 00 =≡ yy , which are 

precisely the conditions of Corollary 1 in Gail et al. (1984).  In non-trivial cases (4.10) is not true 

and condition (2.12) is not satisfied. 

Subsequent to Gail et al. (1984), other forms of f were studied using a similar set-up, for 

example, by Begg and Lagakos (1990) when f is a logistic regression model, and by Hauck et al. 

(1991) for estimating odds ratios.  A recent review is in Fergusson et al. (2009).  

4.2.  Discussion 

Comparing our study to the results in this thread of work in randomized experiments, we 

make the following observations. 

1. Although the motivation of our work is quite different from those in randomized 

experiments, the spirit of both is the same and the conclusions are similarly positive.   

2. The results of the present paper and the papers in randomized experiments are of course 

subject to the usual assumption of independent random samples.  One can argue that in 

randomized experiments such as clinical trials the i.i.d. sample assumption is inherently 

easier to be satisfied, due to our own action of randomization and the fact that human 

subjects can relatively easily be chosen so that they are independent.  In business analysis, 

independence is less straightforward but is still possible with careful selection of 

observation targets.  In addition, if even such a basic scenario were not favorable, 

chances for more complicated situations would not have been good.  

3. The results of the present paper overlap with the results in Gail et al. (1984) when f is 

linear. 

4. We are able to derive a set of more general sufficient conditions (2.13-2.14), intuitively 

because we limit ourselves to the difference in f at two values of x, rather than estimating 

the model parameters. 



5. For the same reason, we are able to obtain positive results for a wide class of functions 

(separable functions and polynomials of second degree), significantly extending the result 

for linear, separable functions. 

6. We make no assumptions about the values of the measured variable or the distribution of 

the unmeasured variable, while Gail et al use a measured variable with values of +/- 1 

(due to their focus on treatment analysis) and an average of zero for the unmeasured 

variable.  Given their generalized linear model, all their results would still be valid with a 

finite value of the average, since this could be folded into the constant term. Their 

method is limited, however, to a limited number of values of the measured variable, in 

order that a solution for the coefficients can be found. 

7. Similar to the literature in randomized experiments, we analyze some specific forms of f, 

but focus on functions that are commonly seen in business or economics (Cobb-Douglas 

and CES functions). 

8. Gail et al, using their measure, find the biases are small for generalized linear models if: 

a) the coefficient of the unmeasured variable is small, or 

b) if the unmeasured variable does not vary much. 

We address (a) in much detail in the analysis of the CES model. If the coefficient 

of the unmeasured variable is small, this means our Γ (defined in 3.19) is small. From our 

plots we can see that of course at Γ equals zero, the bias is zero, but as that coefficient 

increases, the bias can increase rapidly, and in fact we measure the effect of the size of 

this coefficient over the entire range, from small to large. We show it is a function of the 

smoothness of the potential whether the bias stays small over the whole range, or whether 

it increases sharply for a sharp distribution. 

Similarly, we address (b) in more detail. If the unmeasured variable does not vary 

much, then it can be represented by its average plus small deviations – in other words a 



very smooth distribution of y. For the CES model, we show specifically how the bias can 

vary with the amount that the unmeasured variable varies. We find that even if the 

unmeasured variable varies, then there are ways in which the bias can still be small. 

5.  CONCLUDING REMARKS 

 We analyze the situation where we are interested in the difference in a performance 

function f at two different values of a variable of interest, x, while keeping other variables, y, 

constant, but in fact the y are randomly varying in our observations of the performance function.  

To compensate for the latter, we know that one way is to build a model that takes into account all 

the varying factors.  We ask the question, if we were to assume that the y had remained constant 

(effectively ignoring them) and calculate the simple average difference of f at different values of x, 

would this be of any value?  We find that the answer to this is yes, in a surprisingly broad range 

of circumstances.   

Specifically, we show, for a general performance function, conditions under which the 

estimated difference is unbiased with respect to the correct difference at the average of y.  Using 

these results we derive the particular conditions under which the above is true for certain forms of 

the performance function commonly seen in business and economic analysis, including separable 

functions, polynomial functions, Cobb-Douglas functions, and Constant Elasticity of Substitution 

functions.  For the first three families of functions, the conditions do not seem very restrictive in 

practice: 

1. For separable functions we require that either x has no impact on the cross x-y term, or 

that the y-part in the cross x-y term is linear. 

2. For polynomial functions we require that the polynomial is second order or below. 

3. For Cobb-Douglas functions we require the assumption of exponential noise. 

 For CES functions, the estimated difference is always biased and we study the relative 

magnitude of this bias numerically.  Using a gamma distribution for y, we find that, under a wide 



range of parameter values for the y distribution and the CES function, the relative magnitude of 

the bias is reasonably small, so that the simple difference can be used as an approximation to the 

correct value.  In particular, we find that the approximation is likely to be worse the more sharply 

peaked or divergent the distribution for y is, and the more nonlinear the model (large β for the 

CES case).  Moreover, the approximation is worse when the contributions to the quantity of 

interest from both x and y (on average) are roughly the same.  For most reasonably smooth 

distributions of y, the relative error do not much go beyond 40%, even for relatively large values 

of β.  For data which are better fit by β in the range from -1 to 1, the deviations never get really 

large, and the assumption of ignoring the fact that y was not constant is a surprisingly good one.  

Calculation of the deviation of the model, in the way in which we provide, can be used 

not only to provide a qualitative measure of the accuracy of the approximation, but to give even 

more quantitative valuation of the expectation of the quantity of interest, if the specific 

distribution of the unmeasured variable y is known. 

 In practice, our situation is not all that uncommon.  For example, it happens when 

variables are not completely under our control, or some variables are very difficult or expensive 

to measure and so we do not have data on them, or we are using a set of historical data collected 

previously for some other purposes, and data on some variables that could impact our 

performance function were simply not collected, or we simply do not have the time or technical 

resources to develop a proper model taking into account all factors,  but rather use the simplest 

approach of before-and-after differencing to do our analysis, assuming  all other variables remain 

constant.   

 Our results are also useful in the following situation.  Say we want to make use of an 

existing set of historical data to do an analysis that comes up after the data were collected.  Our 

new analysis requires a variable that the existing data set does not provide and it may be difficult 

to go back to collect the detailed data of the variable.  However, an average of the missing 



variable can be obtained or estimated without much effort.  The results in this paper indicate that 

the average difference in the performance function at two levels of a variable measured is not a 

bad estimate for the correct difference at the average value of the variable unmeasured.  While it 

is impossible to obtain the difference as a function of the unmeasured variable from such a data 

set, we can at least get an estimate at a single point of the unmeasured variable. 

APPENDIX A.  POLYNOMIAL MODELS OF HIGHER DEGREES 

In this section we calculate the LHS of equation (4.6) when a polynomial model is of 

degree 3 or higher.  The main result is stated as follows. 

Proposition A.1.  Let )(dhx
r  denote a polynomial in x

r
 of degree d. Using the same notations as 

in equation (4.5) and assuming that y
r

 is a random vector with finite moment of all orders ≤ d, 

)2()E,(),(E −=− dhyxfyxf x
r

rrrr
, for d ≥ 3. 

Proof. 

We prove by induction on d. 

Case of d = 3: 

From the definition of f in (4.5), we have 
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We calculate the summand for each γ based on the values of the exponents α and β, as shown in 

Table A.1.  Combining the results in Table A.1, we see that the RHS of (A.1) is a polynomial in 

x
r

 of degree 1.   

Case of d = D: 

We now assume that the result is true for d = D and show that the result is true for d = D + 1.  Let 
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From the definition of f, when d = D + 1, 
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Then, 
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     (A.3) 

The first sum on the RHS of (A.3) is the case of d = D and so is a polynomial of degree (D – 2) 

by our induction assumption.  We calculate the summand in the second sum of (A.3) in Table A.2.  

Combining the results in Table A.2, we see that the second sum in (A.3) is a polynomial of 

degree (D – 1).  Therefore (A.3) is a polynomial of degree (D – 1). 

 

Table A.1.  Calculation of RHS of Equation (A.1) for d = 3 

α  β  Summand in equation (A.1) 
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2≤+ βα  Constant (see Table 4.1) 

 



Table A.2.  Calculation of Second Sum in RHS of Equation (A.3) 

α  β  Summand in second sum in equation (A.3) 

D + 1 0 0 

D 1 0 

D – 1 2 Polynomial in x
r

 of degree (D – 1) 

D – 2 3 Polynomial in x
r

 of degree (D – 2) 

… … … 

1 D Polynomial in x
r

 of degree 1 

0 D + 1 Constant 
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