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Abstract

The axioms of von-Neumann and Morgenstern’s utility theory are not contradicted by experiments
if the domain of outcomes is constructed properly. Preferences over outcomes take into account issues of
regret with respect to alternative outcomes, and surprise with respect to prior probabilities of outcomes.
Utilities can be derived as fixed points of a relations between the intrinsic value of an outcome and the
money-equivalent value of a probability distribution over outcomes.

1 Introduction

Allais’ Paradox [1, 2] is an empirical finding, which is often used for questioning the validity of von Neumann
- Morgenstern’s utility theory [6], as well as for justifying the so-called prospect theory [2]. Kahneman and
Tversky [2] describe empirical results of preferences reported by humans, which seem to violate the expected-
utility property of von Neumann and Morgenstern’s utility functions. However, as we demonstrate in this
paper, because in every decision problem, an “outcome” entails more than the mere amounts of money
awarded to the players, a careful application of utility theory requires more than just associating utility
values with amounts of money. Our long-term goal is not necessarily to refute Kahneman and Tversky’s
assertions about human behavior. We rather seek to distinguish elements of human preferences that persist
even after attempts to coach individuals to follow more sound methodologies, from ones that can be modified
by careful analysis or introspection.

2 Outcomes of decision problems

Because preferences of human beings are complex and involve emotions and feelings, the notion of an “out-
come” of a decision problem has to be analyzed with care. In particular, the satisfaction of an individual
from a certain outcome may depend not only on the amount of money he receives but also on the prior
probability of the outcome, the alternative outcomes, and their respective prior probabilities. The outcomes
also include the rewards to the other players. Hence, the satisfaction of a player from an outcome depends
also on the rewards to other players, not only in the considered outcome but also in alternative outcomes.

Consider, for example, the decision problem depicted in Figure 1. In this problem, the decision maker
decides whether or not to quit with zero payoff, or to let a coin be tossed. However, the result of the coin toss
not revealed to the decision maker until after he has made a second decision. After the coin has been tossed,
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Figure 1: Multiple utility values for zero

the decision maker then has a second chance to quit with a zero payoff. If, again, he does not quit, then his
gain is $100 if the toss came out Heads, or $-100 if the toss came out Tails. A näıve look at this problem
suggests that there are only three outcomes, namely, $0, $100 and $-100. From this näıve point of view, the
question is essentially whether the decision maker prefers to quit rather gamble on $100 versus $-100. In
particular, it implies that the decision maker is indifferent between quitting at the first chance and quitting
at the second chance. A more careful look, however, suggests that the three outcomes with the same zero
payoff are quite different from the point of view of emotions. Suppose the player first chooses to have the
coin tossed, but then quits the game. If he later finds that the toss came out Heads, then he regrets that he
did not gamble. On the other hand, if he later finds that toss came out Tails, then he is content that he did
not gamble. If the player quits at the first chance, he never knows exactly what would have happened had
he not quit. Thus, it seems that, at least for some players, the zero payoff after Tails is the most preferred,
followed by zero payoff after a quit at the first chance, and least preferred zero payoff is the one after Heads.

The conclusion is that every leaf of a decision tree should be considered as a different outcome, so that the
set of leaves, rather than the set of possible monetary payoffs, should be the domain of the utility function.

3 Allais’ examples and prospect theory

Kahneman and Tversky [2] presented a pair of choice problems as a variation on Allais’ example, where the
extremely large gains in Allais’ original example were replaced by moderate ones. Problems 1 and 2 are
depicted in Figures 2 and 3 Kahneman and Tversky reported that 82% of the people preferred a sure pay of
$2400 over the gamble at the left branch in Problem 1, and 83% of the people preferred the bet on $2500 with
probability 0.33 to the bet on $2400 with probability 0.34. They concluded that people’s utility functions did
not have the expected utility property, because there is no utility function u : {0, 2400, 2500} :→ < consistent
with such preferences that uses expected utilities to describe preferences over probability distributions.

One issue with the above argument against expected utility is that the two problems are presented in
two very different situations. The standard utility theory has to be applied to the whole decision problem,
where all the outcomes are enumerated. There can be several ways to resolve this issue, but they may have
different consequences. For example, a random device may decide which problem to present to the player, or
problem 2 may be presented after problem 1 (before or after the lottery has taken place), and so on. Figure
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Figure 2: Problem 1
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Figure 3: Problem 2

4 depicts a situation, where Player 2 decides which problem to present to Player 1, but the latter can form
his preferences in advance.

Once the two problems are placed within the same decision tree, there is no justification to assume that
the decision maker is indifferent between two outcomes with the same monetary payoff. This observation
invalidates the proof of nonexistence of an expected-utility function. Moreover, the particular way in which
the two problems are placed within one decision situation may affect the preferences. Suppose, for the
moment, that the combined problem is the one depicted in Figure 4. Consider the outcome of zero payment
that can happen with probability 0.01 if the Problem 1 is presented and the decision maker chooses to
gamble. Compare it to the outcomes of zero payment that can happen with probabilities 0.67 and 0.66,
respectively, if Problem 2 is presented. In problem 1, the player is very disappointed with the zero outcome
because it was not anticipated to actually happen, whereas in Problem 2 it is much more likely to happen,
so the disappointment is lesser. Similarly, the sure outcome of $2400 in Problem 1 is not as pleasing as the
outcome of $2400 in Problem 2, whose prior probability is only 0.34, so the player may have a higher utility
for the same dollar payoff of $2400 in Problem 2.

Kahneman and Tversky [2] also presented another pair of choice problems as follows. Problems 3 and 4
are depicted in Figures 5 and 6. Like in Problems 1 and 2, there are only three different monetary rewards
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Figure 4: Another player decides which problem to present
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Figure 5: Problem 3

in Problems 3 and 4, namely, zero, $3000 and $4000. People who prefer in Problem 3 a sure payment of
$3000 and in Problem 4 the bet on $4000 are claimed by Kahneman and Tversky not to have a vNM utility
function. However, as we pointed out above, outcomes with the same monetary payoffs may have different
utility values. For example, getting zero in problem 3 my be more disappointing than getting zero in Problem
4 because the prior probability of zero in Problem 3 is 0.2, and in Problem 4 it is 0.75 or 0.8, depending on
the choice. Also, the payment of $3000 in Problem 4 is more pleasing than the sure payment of $3000 in
Problem 3, and the payment of $4000 in Problem 4 is more pleasing than the payment of $4000 in problem
3.

The setting in which Kahneman and Tversky’s theory was developed is that a subject is asked to choose
between two alternatives, and then asked again to choose between two other alternatives. We do not
address here the effect of the order in which these two pairs of alternatives are presented. To formulate
the preferences of a decision maker, we simply consider a setting in which a disinterested Player 2 picks a
probability distribution over rewards, and then Chance picks a reward for Player 1 according to that chosen
distribution. Thus, such a setting with only possible distributions is depicted in Figure 7, where the payoffs
are to Player 1. There are four possible outcomes in this process. Denote the set of these outcomes by D. If
the preferences over probability distributions over D satisfy the axioms of von Neumann and Morgenstern,
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Figure 6: Problem 4
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Figure 7: A simple setting

then they can be represented by a utility function u : D → [0, 1] that has the expected utility property. Note
that the player may strictly prefer the outcome of zero payment in the left subtree over the zero payment in
the right subtree. However, these two outcomes have the same value under the Kahneman - Tversky theory.

It is possible to assume that the four utilities u($1000, 0.1), u($100, 0.9), u($0, 0.9) and u($0, 0.1) are de-
rived from a “pure” utility from money u0(m) and a weighting function w(p), so that u(m, p) = u0(m)/w(p).
Under this approach, if Player 2 picks the left subtree with probability p and the right subtree with proba-
bility 1− p, then the final distribution of rewards is $1000 with probability 0.1 p, zero with probability 0.9 p,
another zero with probability 0.1(1− p) and $100 with probability 0.1(1− p). Thus, the expected utility of
Player 1 in this case is equal to

U = 0.1 p u(1000)/w(0.1) + 0.9 p u(0)/w(0.9) + 0.9(1− p)u(100)/w(0.9) + 0.1(1− p)u(0)/w(0.1) .

However, once the probability p has been fixed, the utilities of the outcomes become u(1000)/w(0.1 p),
u(0)/w(0.9 p), u(100)/w(0.9(1− p)) and ,u(0)/w(0.1(1− p)), respectively, so we must have

U = 0.1 p u(1000)/w(0.1 p)+0.9 p u(0)/w(0.9 p)+0.9(1−p) u(100)/w(0.9(1−p))+0.1(1−p)u(0)/w(0.1(1−p)) .

We could consider a possibility between these two theories, namely, preferences over probability dis-
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tributions over the distinct pairs (mi, pi) that occur in the decision tree for any strategy of the decision
maker. Kahneman and Tversky propose a utility function based on values V (mi) and a weighting function
π : [0, 1] → < so that the utility from a lottery that yields mi with probability pi is equal to

∑
i π(pi) ·V (mi).

Now, if we adopt that view that the “value” of a monetary reward mi whose prior probability is pi is of
the form V (mi)/σ(pi), where σ(·) is another weighting function, then it is possible that the expected value∑

i piV (mi)/σ(pi) is the same as the Kahneman and Tversky value. This happen if pσ(p) = π(p), i.e.,
σ(p) = p/π(p). However, as we demonstrate later, there could be two outcomes i, j with (mi, pi) = (mj , pj)
but with different utilities and therefore different contributions to the utility from the distribution, so terms
of the form π(pi) · V (mi) are insufficient.

4 Accounting for prior probabilities

The discussion above suggests that human decision makers may enjoy realized gains, when the gains have
small prior probabilities, more than the same gains when they have larger prior probabilities. Similarly,
humans may be disappointed with realized losses, when the losses have small prior probabilities, more than
from the same losses when they have larger prior probabilities. In a decision tree with monetary payoffs, for
a fixed strategy of the decision maker, distinct outcomes are represented by distinct leaves of the tree. For a
fixed strategy, for each leaf i there is a monetary reward mi and a probability pi that the leaf will realize as the
outcome. The von Neumann–Morgenstern theory applies to preferences over probability distributions over
all possible outcomes. The Kahneman–Tversky theory applies to preferences over probability distributions
over the set of distinct rewards. We now compare the two approaches through some examples, starting from
very simple ones.

Example 1. Consider the very simple situation depicted in Figure 8. The choice is made by a random

0

0.490.01 0.5

$-550 $ -500 $ 1000

Figure 8: A simple lottery with no decisions

device, and the payoff is made to a passive player. The player may view this situation as very close to a
50:50 bet on gaining $1000 or losing $500. Thus, if the outcome turns out to be the less anticipated loss of
$550, the utility of losing $550 in this circumstance may be lower than the utility of such a loss if it were
more anticipated, for example, as in the situation depicted in Figure 9. However, with a normalized utility
function u(·), we will have in the situation of Figure 8, 0 = u($− 550) < u($− 500) < u($1000) = 1, and in
the situation of Figure 9, 0 = u($− 550) < u($− 450) < u($1000) = 1, but the value of u($− 450) could be
smaller than that of u($− 500) due to the normalization. If the simple tree, as in the two situations above,
reflects the entire set of outcomes, then there is no need to consider preferences over all possible probability
distributions of outcomes other than the one built into the tree.

The above examples are quite simple because they require no decisions, so the preferences of the player
do not have operational consequences. In particular, the issue of regret over one’s own choice is not present.

6



0

0.250.25 0.5

$-550 $ -450 $ 1000

Figure 9: Another simple lottery with no decisions

However, if we ask the player to choose one of two distributions, then we obtain a more complicated situation
as we explain below.

Example 2. Consider the situation depicted in Figure 10. To determine which subtree is preferred in

0 0

0.490.01 0.5 0.250.25 0.5

1

$-550 $ -500 $ 1000 $-550 $ -450 $ 1000

Figure 10: A simple decision problem

this situation, the player may wish to start the analysis by considering the particular possible outcomes.
Note that two of the outcomes have both the same monetary payoff of $1000 and the same probability
0.5, given that the respective subtree is chosen. Yet, in general, such outcomes may have different utility
values as we mentioned above. For example, in the situation depicted in Figure 11, the prize of $1000 is
given with probability 0.1 in either subtree. However, in the right subtree it comes as a disappointment,
whereas in the left subtree it comes as a nice surprise. Returning to Figure 10, denote the utilities by u(m, s)
where m is the amount of money and s ∈ {L,R} is the side of the subtree. The normalized utility u of
the player may be as follows. u(−550, L) = 0, u(−550, R) = 0.1, u(−500, L) = 0.5, u(−450, R) = 0.55,
u(1000, R) = 0.9, u(1000, L) = 1. If so, then the utility value of the left subtree before the outcome is
determined is equal to 0.49(0.5) + 0.5(1) = 0.745, and the utility value of the right subtree is equal to
0.25(0.1)+0.25(0.55)+0.5(0.9) = 0.6125. It follows that the player prefers the left subtree. The utility value
of a randomized choice that picks the left subtree with probability p and the right one with probability 1− p
should be monotone increasing with p. Note that the set of probability distributions that may arise in this
situation consists only of those that are generated by such a randomized choice between the left subtree and
the right subtree.
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Figure 11: Preferences with regret

Example 3. Consider the situation depicted in Figure 12.
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Figure 12: A two-stage lottery

The player may first be surprised if the first lottery picks the right subtree. The left subtree is not as
exciting as the right one. In the second stage the player anticipates winning the big prize but may be very
disappointed if the loses because the probability of a loss is small. Below we examine one possible way to
form utilities in such a situation.

5 Incorporating surprise and regret into utility

Suppose a player receives a prize of m dollars as a result of some random choice. The question is whether the
player’s utility depends only on the amount m or also on the probability with which the prize was picked,
as well as the other prizes and their probabilities. We think that the utility does depend on such factors.
For example, if the probability of getting m is only 1%, then the player is pleasantly surprised to get m
if the alternative is getting, for example, m/2 with probability 99%. Similarly, the player would be very
disappointed if the alternative was getting 2m with probability 99%. On the other hand, if the probability
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of getting m is 99%, then there is no big surprise or disappointment if the outcome turns out to be m.
However, the actual reaction to an outcome can be more complicated. See Figure 13. Consider, for example,

0

$0 $ 1000

98% 1%

$ 2000

1%

0

$0 $ 1000

98.9% 1%

$ 2000

0.1%

Figure 13: Two similar lotteries with different emotions

a lottery with three outcomes: a prize of $2000 with probability 1%, a prize of $1000 with probability 1%,
and no prize otherwise. If the outcome is $1000, then on the one hand the player is quite happy because
the prior probability is only 1% and there is an overwhelming probability of no prize. On the other hand,
given that an event of probability 1% did occur, the player may be disappointed that he did not get the
$2000. However, if the probability of winning $2000 was only 0.1% (and zero with probability 98.9%) then
the player would not be disappointed with the $1000 prize, even though there is no significant difference in
the distribution and the actual outcome is the same.

Consider first a situation, where there are two possible dollar prizes, m1 and m2, with probabilities p1

and p2 (p1 +p2 = 1), respectively. Because there are only two outcomes, a normalized utility function would
give one of them the value 1 and the other one the value 0 (unless the player is indifferent between them),
so the issues of surprise and disappointment are not reflected by the utility function. However, once a third
outcome is present, these issues do get reflected. For simplicity, assume for the moment that there exist two
other possible outcomes that are clearly the best possible and the worst possible, respectively, in the whole
tree. Thus, these two outcomes have the utility values of 1 and 0, respectively. See Figure 14 Under these

m2

0

m1

p 1-p

Worst

0

Best

0.1 0.9

1

u1 u2 1 0

Figure 14: With best and worst

assumptions, with regard to the prizes of m1 and m2, we argue that if the outcome m2 with probability 1−p
has utility u2, then the outcome of m2 with probability p has utility u1, which depends on u2, that is given
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by some function U , i.e.,
u1 = U(u2) = U(u2;m1, p) .

Similarly, we have u2 depending on u1 through the same function U ,

u2 = U(u1; m2, 1− p) .

Thus,
u1 = U [U(u1;m2, 1− p); m1, p]

and
u2 = U [U(u2; m1, p); m2, 1− p] ,

which means that u1 is a fixed point of the function

f(x) = f(x; m1,m2, p) = U [U(x;m2, 1− p); m1, p] .

Similarly, u2 is a fixed point of the function

g(x) = g(x; m1,m2, p) = U [U(x;m1, p); m2, 1− p] .

One possible function U can be developed as follows. First, map amounts of money x to [0, 1] by a logistic
function

σ(x) =
1

1 + exp{−(x− α)/β} .

Next, use the ratio σ(m1)−u2
p to measure the satisfaction from m1 relative to the alternative utility u2,

weighted by the probability of the surprise. Finally, map the ratio back to [0, 1] with the function σ. In
summary,

U(u2; m1, p) = σ

[
σ(m1)− u2

p

]

and

U(u1; m2, 1− p) = σ

[
σ(m2)− u1

1− p

]
.

The mapping indicated above is just an example. The actual preferences may require another construction,
which we discuss later.

Remark 1. The above idea can extended to more than two outcomes as follows. Suppose the possible
outcomes are mi with probability pi, i = 1, . . . , n. Suppose the utility from outcome i reflects the enjoyment
from mi with respect to the overall anticipation a priori. Denote the utility from the lottery by u and
the utilities from the individual outcomes by ui. Let us first choose the units so that min{mi} = 0 and
max{mi} = 1. On one hand, we may have ui = σ[(mi − u)/pi], and on the other hand,

∑
i piui = u. Thus,

u can be obtained as the solution of the following equation:

f(u) ≡
n∑

i=1

piσ[(mi − u)/pi] = u . (1)

Note that the f(u) is monotone decreasing in terms of u, and for every u, 0 < f(u) < 1, so the equation (1)
has a unique solution in (0, 1).

Remark 2. Suppose a decision maker has to choose one lottery from a set of ` possible lotteries. Denote
by mij the dollar amount of the jth prize in the ith lottery (ki ≥ 1, j = 1, . . . , ki, i = 1, . . . , `). Denote by
pij the probability with which the jth outcome occurs in the ith lottery (

∑ki

j=1 pij = 1; see Figure 15). Note
that the prizes are not assumed to be distinct, and there may even be identical pairs (mij , pij) = (mhk, phk).
Assuming the vNM axioms of utility theory hold, denote by uij the normalized utility value of the jth
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Figure 15: Choosing a lottery

outcome in the ith lottery. In principle, uij could be a function of all the prizes and all the probabilities in
the tree,

uij = uij((mij , pij) : j = 1, . . . , ki, i = 1, . . . , `) .

This means that the utility from the ith lottery is equal to
∑ki

j=1 pij uij . Note, however, that the theory
also gives utility values to every hypothetical lottery over outcomes, but a lottery over the same outcomes
of the ith lottery but with different probabilities is counterfactual, because the specification of the outcome
includes the probability with which the outcome occurs. If the axioms are relaxed required to hold only over
lotteries that are not counterfactual, then uniqueness of utility may not hold.

6 Money-equivalent values

Representing preferences with utility functions may be possible theoretically, but in practice is not easy for
a decision maker to implement. However, people may find it easier to think in more practical terms and
measure their utilities in terms of money. More concretely, one possibility to represent preferences over
probability distributions over outcomes is to estimate the “money-equivalent” value. Given an option to
participate in a certain lottery, the decision maker can ask himself what a sure monetary prize should be so
that he would accept it instead of the lottery. For example, suppose the decision maker holds a lottery ticket
that gives $1000 with probability p and zero otherwise. Taking into account all factors, such as surprise and
regret, the decision maker should be able to specify a minimum amount of money m = m(p) for which he
would be wiling to sell the ticket. Among other factors, the value m(p) may also depend on whether or not
the decision maker would later be able to find out the outcome of the lottery, regret selling the ticket if he
would have won, or be happy that he sold the ticket in case it would have lost. The function m(p) would
likely be monotone in p, but we do not make any assumptions about it at this point.

The function m(p) could be related to vNM utility as follows. Assume for a moment that the preferences
of the decision maker (over probability distribution over monetary prizes) satisfy the utility axioms of von
Neumann and Morgenstern. In this case, the player has a utility function u(·) over monetary prizes, which
extends by expectation to probability distributions. If the utility satisfies u($1000) = 1 and u(0) = 0, then
u[p · $1000 + (1 − p) · $0] = p. If the decision maker is indifferent between receiving for sure an amount M
of money and holding the lottery ticket, then u(M) = p. Thus, u(M) = u(m(p)) = p, hence m(p) = u−1(p),
i.e., as functions u = m−1. However, in general, assigning monetary values to outcomes is not equivalent to
having a vNM utility for money, because an outcome entails more than just the amount of money received,
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as we discussed above. The money-equivalent value reflects all the circumstances related to the point at
which it is applied.

With regard to the prospect theory, if the decision maker has a value function of the form v(p) =
π(p)V ($1000) + π(1 − p)V (0) and V (0) = 0, then v(p) = π(p)V ($1000). If the function V (·) extends
monotonically and continuously to all sure monetary prizes, then by definition V (m(p)) = π(p)V ($1000),
hence m(p) = V −1[π(p)V ($1000].

The question now arises whether or not there is any methodology for deriving money-equivalent values.
We propose one example below.

As we discussed above, the satisfaction from an outcome in which the player receives a certain amount
of money may depend may depend on the prior probability of the outcome, as well as on the anticipation of
the player from the lottery or the whole situation. Consider a lottery that gives mi dollars with probability
pi, i = 1, . . . , k. Denote by u the money-equivalent value of the lottery. We use u as a reference level
for determining the money-equivalent values of the individual outcomes. Thus, we rely on some function
v(m,u, p), so that ui = v(mi, u, pi), where

(i) v(m,m, p) = m,

(ii) v(m,u, p) > m if u < m and v(m,u, p) < m if m < u,

(iii) v(m,u, p) decreases with p if m > u and increases with p if m < u, and

(iv) v(m,u, p) is monotone decreasing in terms of u.

One possibility is the following:

v(m,u, p) = m ·
[
1 +

α(m− u)
(1 + p)max{m,u}

]
.

Note that if m > u, then

v(m, u, p) = m ·
[
1 +

α(m− u)
(1 + p)m

]
,

and if m < u) then

v(m,u, p) = m ·
[
1 +

α(m− u)
(1 + p)u

]
= m ·

[
1 +

α(m/u− 1)
1 + p

]
.

Thus, v(m,u, p) is monotone decreasing in terms of u. Next, let U(m) be a vNM utility function in terms
of a sure monetary prize. We assume U(0) = 0. By definition, the following equation must hold:

U(u) =
k∑

i=1

piU [v(mi, u, pi)] . (2)

The value of u is therefore determined from the latter. Note that the left-hand side is monotone increasing
in terms of u and the right-hand side is monotone decreasing in terms of u. Once u has been determined,
the money-equivalent of the ith outcome can be evaluated as v(mi, u, pi).

The fixed-point property of u can be explained as follows. Consider any tentative value x for the money-
equivalent value of the lottery. If indeed this is correct money-equivalent value of the lottery, then the
money-equivalent value of outcome i should be equal to v(mi, x, pi). The utility from it should be equal to
U [v(mi, x, pi)], hence the expected utility from the lottery should be equal to

∑k
i=1 piU [v(mi, x, pi)]. Hence,

the money-equivalent value of the lottery should be equally to x′ = U−1
(∑k

i=1 piU [v(mi, x, pi)]
)
. Thus,

only at a fixed point defined in (2) this money-equivalent derived value x′ is equal to the value x it was
assumed to have.
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In principle, the money-equivalent value ui of an outcome may depend on money than just on mi, pi and
the money-equivalent value of the whole lottery. It may of the form

ui = Vi(mi, pi;uj : j 6= i) .

so, the fixed point is in a higher dimension.

7 Conditional utilities

The situation can be much more complicated if instead of a lottery built into a game tree, the choices are made
by a random device that implements a mixed strategy of the player himself or of another player. Thus, no
prior probabilities are associated with the outcomes. The player for his preferences while considering choosing
a mixed strategy or imagining mixed strategies of other players. In equilibrium, the players must have
analyzed the situation and formed their preferences with respect to each other’s choice of mixed strategies.
When Player 1 considers possible outcomes, he may fix in his mind probabilities with which Player 2 picks
the outcomes. The probabilities can constitute Player 1’s beliefs, but they can also form a specific mixed
strategy of some other player, which can be part of an equilibrium. If, indeed, the preferences of Player 1
over outcomes depend on the probabilities with which they occur, then a utility function cannot be fixed
a priori, unless we assume a particular function that related the utility to such probabilities. Thus, in the
situation depicted in Figure 15, the player can consider any strategy that picks lottery i with probability xi,
i = 1, . . . , `. Such a mixed strategy induces a probability distribution on the final outcomes, where the jth
outcome of lottery i occurs with probability xi pij , but we do not wish to assume that the player is indifferent
between that distribution and playing the mixed strategy (x1, . . . , xn). Instead, we wish to develop values uij

as conditional utilities of outcome j, given that the ith lottery has been chosen. This purpose of this notion
of conditional utility is to separate the surprise of the ith lottery having been chosen from the values of the
various outcomes it entails. Furthermore, the value ui derived above as a fixed point, can also be interpreted
as a conditional utility of the lottery i, given that it was chosen. Again, the purpose of this concept is to
separate the surprise or regret of the ith lottery having been chosen from the aggregate anticipation of the
values of the various outcomes it entails. Given these values, we may derive the unconditional utility Ui

of reaching the point where the ith lottery is about to be performed as follows. Given the mixed strategy
(x1, . . . , xn), we seek a fixed point u∗ of the equation

U(u∗) =
∑̀

i=1

xiU [v(ui, u
∗, xi)] ,

and set
Ui = U [v(ui, u

∗, xi)] .

Thus,
u∗ =

∑

i

xi Ui .

We believe that the concepts of conditional utility and money-equivalent value may be the right ones
for analyzing a in extensive form. Conditional utility isolates a subtree from the rest of the game so that
players are not concerned with comparisons to what could have been the outcome if that subtree was not
chosen. However, this concept still does not address the problem utility that depends on attitudes toward
other players in view of their past choices as discussed in [5]. This issue still presents a challenge to the
theory as we demonstrate in the example below.

In the game depicted in Figure 16 there is one prize of $1M. The probability with which the prize is
awarded to one of the players depends on the choices the player make. With high probability, the prize is
not awarded at all. If Player I choose Left in the first step, then he gets the prize with probability 0.01%. If
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he chooses Right, the player has can choose Left and get the prize with probability 0.1%. The probability
of winning the prize grows exponentially if a player decides not to terminate the game, each time the other
player has the chance to win. In the last move, Player II choosing between taking the full 10% to himself or
sharing it with Player I. A deterministic version of this game was first proposed in [4] and experiments on it
were reported in [3]. The prospect-theory approach proposed by Kahneman and Tversky assigns values V0

and V1 to losing and winning the prize, respectively, and uses a monotone increasing weighting function π(p)
so that the value of a lottery in which a player wins the prize with probability p is equal to π(p)V1+π(1−p)V0.
It follows that both players have such utilities in this game, then the only equilibrium point is where Player
1 chooses Left and terminates the game. The same problem arises with any approach that uses only the
monetary values and monotone increasing functions of the probability of winning the prize.

1
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0

0

0

0

0 0
90%

$1M
0
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0
0
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0
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0
0
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$1M
0

1%

0
0

99.9%

0
$1M

0.1%

0
0

99.99%

$1M
0

0.01%

0
$1M

5%

Figure 16: An example with two monetary prizes

The main problem here is that a money-equivalent value of a subgame has to be determined with respect
to the past decisions that have led into the subtree. The subgame itself does not have that information.
Possible guilt feelings of the player who terminates the game have to be taken into account.

8 Games in normal form

When a game is played normal form there are only two relevant time points: decision time and reward time.
In view of our discussion above, the normal of a game given in extensive (tree) form cannot be equivalent
to the extensive form. We are still concerned though with the dependence of utility of outcomes on surprise
and regret. The latter can be the result of coin tosses implementing mixed strategies.

Consider the two-person zero sum game in normal form in Figure 17. One representation of this game
in extensive form is shown in Figure 18. Suppose the row player plays the mixed strategy (x, 1 − x) and
the column player plays the mixed strategy (y, 1− y). There are various ways to interpret the normal form
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Figure 17: A two-Person zero-Sum game with small probabilities in equilibrium
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Figure 18: A two-Person zero-Sum game with small probabilities in equilibrium

of a game. Suppose the players themselves implement their own mixed strategies rather than tell a referee
to toss their coins themselves. Thus, each player knows the outcome of his own toss before he knows the
outcome of the his opponents’ coin toss. In this setting, the two player may have quite different experiences.
Suppose the players consider using the monetary amount as vNM utilities. The optimal strategies in this
case are x = 1/2 and y = 1/1000. Thus, the row player is not surprised with any outcome of his coin. The
column player though believes a priori that he will have to play R, and is very surprised if he has to play L,
which is more risky for him. It is interesting to mention in this regard that the outcome of one’s own coin
toss is not likely to be a nice surprise because he had the option to act according to that outcome anyway.
However, is prepared play a certain mixed strategy and then the coin tells him to play some strategy that
has only a small probability a priori, then he may be afraid to follow the coin if the strategy seems too risky.

If a pair (x, y) of mixed strategies is in equilibrium with respect to the true utilities, then nothing changes
if the players reveal their mixed strategies to each other. Now, suppose the row player believes the column
player plays (y, 1 − y). Then, his own choice is between a bet T in which he loses $999 with probability y
and wins $1 with probability 1− y, and a bet B in which he wins $999 with probability y and loses $1 with
probability 1− y. See Figure 19. If y = 0, then the row player wins $1 if he chooses T and loses one dollar
if he choose B, so he prefers T . If y = 1, then by a similar argument he prefers B. The vNM axioms imply
that there exists a y at which the row player is indifferent between T an B, and therefore also between them
and any lottery between them. It follows, that in equilibrium, a player should not have any strong feelings
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Figure 19: The bet with resect to opponent’s coin toss

or emotions after he has learned the outcome of his own coin toss but before he has learned the outcome of
his opponent’s coin toss, because he is indifferent between the alternatives, i.e., the two bets induced by y.
However, once the outcome of opponent’s coin toss is disclosed, the row player may have very strong feelings
about the choice he made after his own coin toss.
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