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Abstract
Modern primary storage systems are increasingly sup-

porting real time compression, often based on the LZ77
and/or Huffman algorithm. There is a tension in such
systems between achieving compression effectiveness
along with performance and scalability; best compres-
sion effectiveness is thought to require more data to be
compressed in a unit, but decompressing those large units
to extract small blocks cause higher latencies and con-
sume much more system resource. We show that, starting
from the zlib base, both goals can be achieved, result-
ing in zlib -compatible highly compressed code streams
that support low latency extraction of small blocks.

1 Introduction and Related Work

In today’s compression-enabled primary storage sys-
tems, the compression unit of raw data compressed as
a group is generally tens or hundreds of kilobytes (KB).
This helps achieve good compression and high through-
put for sequential or large random reads. However, the
need to decompress a full compression unit to obtain a
small piece of it degrades latency and I/O rate for small
random reads (such as 4 KB pages). The goal in this
work was to improve zlib (which combines LZ77 and
Huffman coding) latency and CPU utilization for extract-
ing arbitrary parts of files or storage blocks while re-
taining compression effectiveness and memory footprint,
and while also retaining zlib codestream compatibility.

One option is to manage the overhead by using smaller
compression units. That choice, however, entails impact
on other system attributes, for example the amount of
metadata needed to manage the compression units. A
second approach is to devise an efficient method of ex-
tracting small sections of a compression unit. Kreft’s and
Navaro’s work on LZ-end [4] provides for extraction of
sections, but their specific encoding cannot be built from
the results of zlib parsing, and requires significantly

more resources (memory and processing). We must also
concern ourselves with the layer of Huffman coding used
in zlib. Jacobson [2] developed a method for decoding
a Huffman coded stream from a random location. How-
ever, LZ77 decoding must pull in delocalized data from
the code stream anyway, so localized Huffman decoding
is of limited benefit for our objective.

In the rest of the paper, we will describe a series of
explorations we conducted, by which we arrived at a
surprisingly simple zlib-based approach to compres-
sion and decompression that retains compression effec-
tiveness while dramatically improving decompression la-
tency and CPU utilization. In Section 2 we discuss the
implementation and performance of an efficient recur-
sive extraction algorithm. In Section 3 we evaluate the
performance and compression consequences effects of
partitioned extraction which is a means to use smaller,
flexible compression units. Finally in Section 4 we offer
some observations based on these analyses.

2 Recursive Extraction

For our initial explorations, we bypassed the Huffman
coding in zlib and operated on the zlib/LZ77 encoder
output, using zlib [1] code base version 1.2.5. Note that
this technique can be also applied to other LZ77 based al-
gorithms (like LZ4 [5] or Snappy [6] that don’t use Huff-
man coding as a second stage).

2.1 Recursive extraction algorithm
An LZ77 code-stream has all the information needed to
start extracting data from any desired raw byte position
a to byte position b. The LZ77 parsing [8] factors
a string into a sequence of phrases. Each phrase in
the zlib/LZ77 parsing corresponds to a token in the
code stream, either a literal or a (back pointer, length)
tuple representing a match. By preprocessing the code
stream we quickly reconstruct the sequence of phrases



and build auxiliary succinct data structures, along the
lines described in [3, 7], for fast random access into the
phrases. (One can also reduce the preprocessing work
in the decoder by recording additional metadata in the
code stream.) The succinct data structures support two
functions: One maps from the byte domain to the LZ77
phrase domain: phraseID = phraseOf(byte address).
Its inverse maps from phrases to bytes:
phrase start address = startOf(phraseID).

The recursive extraction algorithm to decode from an
arbitrary starting point a (Figure 1) identifies the phrase
containing that a. If that phrase is a literal it is extracted,
and the starting point advances. If the phrase is a match
then its back pointer leads to another starting point in
another phrase. The back pointers are followed until
literals are reached. While this is compactly shown as
a recursion, the implementation we evaluated actually
used iteration instead of recursive calls, and memoized
extracted phrases so that back-tracking to literals is not
repeated each time.

Input: Phrases[], random access metadata, a, b, len = b–a+1
Output: bytes in [a, b]
1. extractSegment(start addr, len)
2. if (len == 0) return;
3. Pa = phraseOf(start addr);
4. if (Phrases[Pa] == literal)
5. output literal; start addr++; len– –; return;
6. offset = start addr – startOf(Pa);
7. back pointer = Phrases[Pa].distance;
8. Pa length = Phrases[Pa].length;
9. leftOver Pa = Pa length – offset;
10. pas = startOf(Pa) – back pointer; /*start addr. of source of Pa */
11. match addr = pas + offset;
12. if(leftOver Pa ≥ len)
13. extractSegment(match addr, len);
14. else
15. extractSegment(match addr, leftOver Pa);
16. extractSegment(start addr + leftOver Pa, len – leftOver Pa);

Figure 1: The Recursive Extraction Algorithm

PHRASES 

b 

back_pointer  

a 

Pa 

offset 
match_addr 

startOf(Pa) 
pas 

Figure 2: Operation of the algorithm. The dashed box shows
the overlap of phrase Pa with prior phrases with the
same content.

2.2 Performance evaluation
With a feasible technique in hand to decompress arbi-
trary sections without an end-to-end decompression, we

need to determine its performance. Each iteration of the
algorithm is simple and quick, but extraction of a seg-
ment [a,b] can be slow if long back pointer chains must
be followed to reach literals. We compare the time to ex-
tract [a,b] recursively with standard, sequential decoding
from the start to point b, denoted [0,b]. While the latter
generally accesses much more of the input compressed
stream, it does so progressively which is well suited to
processor caches and prefetching, whereas recursive ex-
traction touches bytes across scattered cache lines with
additional references to control metadata. When extract-
ing [a,b], the starting offset a and the extraction length
len = b− a + 1 are both strongly correlated to perfor-
mance. The question is for which extraction lengths and
offsets, if any, the recursive approach is generally faster.

In the discussion, LZ77 refers specifically to the LZ77
implementation in zlib, and the times do not include
the very short preprocessing time to build the random
access data structures. Experiments were performed on
a SUSE Linux 10 system with a single-core Intel Xeon
3.2 GHz processor having 3 GB of memory. We evalu-
ated the performance of random extraction methods on
a set of 34 files representative of the data relevant in the
context of a compression-enabled primary storage sys-
tem. The files ranged from very compressible to un-
compressible. In each figure they are placed along the
x-axis in order of increasing compression ratio (CR =
compressedSize/originalSize). The raw size of each file
is 250 KB = 256000 bytes, because this approximates
a typical uncompressed amount of data compressed to-
gether.

We chose a spread of 6 offset values in each file: 32
KB, 64 KB, 100 KB, 140 KB 180 KB and 215 KB. Ex-
traction with a smaller offset is generally faster, since
back pointer chains reach at most to offset 0.

We evaluated against two sets of extraction lengths.
For block-oriented storage systems, the lengths we con-
sider large amounts are most applicable: 4 KB, 8 KB
16 KB and 32 KB. Thus with 6 offsets and 4 extrac-
tion lengths as described, we performed 24 extraction
measurements for each of the 34 files. In Figure 3 we
show the 24 large-amounts extraction times for one sam-
ple file. Some applications like indexing or searching in
compressed data may make smaller extractions, so we
also evaluated with small amounts: 8, 16, 32, 64, 128,
256, and 512 bytes, and 1 KB, 2 KB, and 4 KB. With 6
offsets and 10 lengths we performed 60 extraction mea-
surements for each of the 34 files. In the next sections
when comparing extraction speeds of random extraction
methods we usually aggregate the measurements in two
ways: (1) aggregated per file, so we display 34 time
points, or (2) aggregated per offset (across files and ex-
traction sizes) so we have 6 points, one for each offset.

2



R S R S R S R S R S R S

Extracted 
Length 32K 32K 64K 64K 100K 100K 140K 140K 180K 180K 215K 215K Full 

Decode

4096 32 85 35 148 44 221 56 302 68 383 73 453 564

8192 36 124 35 156 43 227 56 308 67 389 73 459 564

16384 37 106 41 171 49 243 64 324 73 404 78 477 564

32768 50 138 52 203 61 323 73 356 86 439 175 509 564

sum 155 453 163 678 197 1014 249 1290 294 1615 399 1898 2256

Figure 3: The 24 measured extraction times (6 offsets x 4 ex-
traction lengths “large amounts”) for one of the 34
files. Times are in microseconds. Recursive extrac-
tion times [a,b] (tinted columns) are labeled R. Se-
quential extraction [0,b] is labeled S.

For the smaller sizes (from 8 bytes to 4 KB), recursive
extraction of [a,b] was generally faster than sequential
[0,b] decompression (Figure 4). This held true for the
full range of offsets (Figure 5). The algorithm could be
effectively used in applications needing to extract small
fields at random from large compressed datasets. For
general-purpose storage servers, however, the predomi-
nant I/Os will have sizes 4 KB or larger.
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Figure 4: Aggregate extraction times for extracting small
amounts [a,b] (sizes from 8 bytes to 4KB) vs [0,b].
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Figure 5: Extracting small amounts [a,b] vs. [0,b] from vari-
ous offsets: [a,b] gets faster relative to [0,b] as offset
increases.

The results averaged over larger extraction sizes, 4 KB
to 32 KB, were significantly different (Figures 6 to 7).
For most files in Figure 6 it is better to decompress [0,b]
sequentially than to extract [a,b] recursively. The main
exception is nearly uncompressible files (rightmost in the
figure) for which the reference chains are few and short,
but it is not our main goal to improve speed in cases
where bypassing compression entirely might be an even
better choice.

Figure 7 shows that for higher starting offsets, the
aggregate time for extraction across all the data sets is
higher. This highlights the overhead generated by the
recursive backward references; the larger the offset, the
higher the probability that more and longer recursive
backward reference chains will need to be followed.
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Figure 6: Extracting [a,b] vs. [0,b] for 4 KB and larger: [0,b] is
generally faster. Due to the potential for long chains
of back references, the method can be slow when ex-
tracting segments larger than few hundreds bytes.
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Figure 7: Extracting [a,b] vs. [0,b] from various offsets, for
large amounts. Both methods get slower as offset in-
creases, and [0,b] is generally faster.

3 Smaller and Flexible Compression Units

The overhead of [0,b] compression arises from decom-
pressing [0,a− 1] and then discarding it (after possi-
bly using pieces of it to produce the content [a,b]).
With smaller compression units the discarded content is
smaller. We evaluated the benefit of switching from 250
KB compression units to 32 KB by flushing compres-
sor output every 32 KB, thus starting a new compression
unit or partition, and extracting [a,b] with sequential de-
compression starting at the nearest flush point prior to
a. This partition-aware decoding is much faster than de-
coding [0,b]. Figure 8 shows that extraction times for this
method hold relatively constant between 2 and 4 msec.

Using smaller compression units also provides very
significant improvements for the performance of re-
cursive extraction, because it reduces the lengths of
back pointer chains. Figure 9 shows that, recursive ex-
traction from files split into 32 KB compression units
took significantly less time than extracting from the be-
ginning of the file, reversing the result from experiments
without flushing. For the larger extraction sizes we focus
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Figure 8: Reduced compression units (32 KB): sequentially un-
compressing only the 32K partitions containing [a,b]
is much faster than [0,b].

on, though, the better performance comes from decom-
pressing sequentially from the start of a compression unit
to the endpoint b, as shown in Figure 8.
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Figure 9: Recursive extraction with 32k compression units:
Large-amount extraction times for [a,b] are 2× to 5×
better than [0,b].
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Figure 10: Compression ratio variation with partition size.
For each reduced partition size, the CR difference
against the full 250 KB compression unit is shown
at enlarged scale.

The choice of compression unit is coupled to other as-
pects of system design beyond data extraction efficiency,
such as preferred I/O sizes for disk drives, the block sizes
for space management, and the management of place-
ment metadata. The choices can be made independent by
packing multiple compression units as partitions within a
data block generally handled as a unit for placement and
I/O operations. This not only allows compression units to
be smaller, but also permits variable size without align-
ment constraints, so odd lengths of compressed output

need not be padded. But smaller compression units limit
compression effectiveness by narrowing the range over
which repeats may be detected and removed. Is that price
small enough to allow for the performance improvements
of smaller compression units?

For our data set (and for other larger data sets that we
looked at as well), we found the compression ratio degra-
dation caused by reducing compression units from 250
KB to 32 KB to be surprisingly small. Figure 10 shows
that over our data set, for partition sizes between 250
KB and 8 KB, where the FASTEST mode of zlib was
employed, the absolute differences in compression ratio
varied from zero to about 6%, about 2% on average, and
the maximum relative difference was 25%. We chose the
FASTEST mode as being typical for realtime applications,
but found that even with the default zlib mode, the differ-
ence was on average about 5%. This was a surprising but
very encouraging result. We note that the reduced LZ77
effectiveness might have been compensated for by an in-
creased Huffman effectiveness, since Huffman tables for
smaller partitions may better fit each partition’s content.

An important additional benefit of partitioning (using
smaller compression units) is the proportional reduction
in the volume of data that must be Huffman decoded.
Thus for block storage systems our preferred solution
to the random-extraction performance problem is PEX:
partition-aware extraction implemented with the com-
bined LZ77 and Huffman coding as packaged in zlib.
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Figure 11: Aggregated extraction times for PEX: partition-
aware extraction using zlib.
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Figure 12: PEX relative speeds for partitions 8K to 32K

Figure 11 shows the PEX performance benefit, by com-
paring the time to extract the larger-size segments (4 KB
to 32 KB) using PEX partition sizes from 8 KB to 64
KB, compared with decompressing the full 250 KB file
(the starting point for this investigation). Partitioning is
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highly effective for a wide range of partition sizes. Fig-
ure 12 focuses on variation with partition size; smaller
partition sizes generally improve performance but the
performance increase diminishes as the partition size de-
creases.

Finally, given that Huffman decoding is actually a
large percentage of the decoding time, we wondered
whether we could do without it. Figure 13 shows that
removing Huffman coding from zlib results in dramat-
ically better performance relative to partitioned extrac-
tion. However, Figure 14 shows that compression ratio
degradation after removing Huffman is quite large. We
conclude that while Huffman coding is expensive for per-
formance, it contributes too much to the compression ef-
fectiveness to take away.
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Figure 13: PEX decoding is more than 2× slower than the LZ77
decoding without Huffman coding.
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Figure 14: PEX has much better compression than LZ77 with-
out Huffman coding.

4 Conclusions and Future Work

Prior to this work, it was fairly clear that a form of re-
cursive decoding should be feasible, but not whether it
would be competitive in performance. It is intuitively
appealing to decode only the desired range and its an-
tecedent phrases, thereby touching less of the total data
payload. However, the cost per byte touched is much
higher in the recursion than in the mature and stream-
lined zlib code. We found that recursive extraction is
very effective for small extraction sizes. However, it is
not very beneficial in the size range of most importance
to block-oriented storage devices.

The surprising result from our investigations was that
so much performance improvement was achievable from
a simpler change to current techniques, with very little

impact on compression effectiveness. We found parti-
tioned extraction to be the approach of choice for larger
extraction sizes. Another advantage of using smaller,
flexible size partitions as units of compression, is that
they can be re-packaged into other compressed blocks
(at clean-up, for example) without going through uncom-
pression and recompression. These are practical results
which can be leveraged to provide dramatic improve-
ments in realtime processing of compressed data in pri-
mary and archival storage systems along with many other
applications.

Future research building on these investigations may
include hardware implementations of these algorithms
along with explorations into encoding schemes that en-
hance random extraction performance. In addition, there
are significantly faster compression techniques emerging
that will benefit from random extraction techniques.
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