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Abstract

Sector-Disk (SD) codes are erasure codes that address the mixed failure mode of
current RAID systems. Rather than dedicate entire disks to erasure coding, as done
in RAID-5, RAID-6 and Reed-Solomon coding, an SD code dedicates entire disks, plus
individual sectors to erasure coding. The code then tolerates combinations of disk and
sector errors, rather than solely disk errors. It has been an open problem to construct
general codes that have the SD property, and previous work has relied on Montecarlo
searches. In this paper, we present a general construction that addresses the case of
any number of failed disks and in addition, two erased sectors. This result generalizes
previous constructions extending RAID 5 and RAID 6.

Keywords: Error-correcting codes, RAID architectures, MDS codes, array codes,
Reed-Solomon codes, Blaum-Roth codes, PMDS codes, SD codes.

1 Introduction

Consider an m×n array whose entries are elements in a finite field GF (2b) [6] (in general, we
could consider a field GF (pb), p a prime number, but for simplicity, we constrain ourselves
to binary fields). The n columns represent storage devices like SSDs, HDDs or tapes. The
arrays (often called stripes also) are repeated as many times as necessary. In order to protect
against a device failure, a RAID 4 or RAID 5 type of scheme, in which one of the devices is
the XOR of the other ones, can be implemented. During reconstruction, the failed device is
recovered sector by sector. The problem with RAID 5 is, if an additional sector is defective
in addition to the one corresponding to the failed device, data loss will occur. A solution to
this problem is using a second device for parity (RAID 6), allowing for recovery against two
failed devices. However, this scheme may be wasteful, and moreover, it is unable to correct
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Figure 1: A 4× 5 array with different types of failures

the situation in which in addition to the sector corresponding to the failed disk, we have two
extra failed sectors in the row (we always assume that failed sectors can be identified, either
by CRC or by other means, so the correcting scheme is an erasure correcting scheme). In
order to overcome this problem, the so called Partial MDS (PMDS) codes [2] and Sector-Disk
(SD) codes [7] were created. Very similar codes were presented in [5].
We start by giving the definition of PMDS and SD codes.

Definition 1.1 Let C be a linear [rn, r(m−r)−s] code over a field such that when codewords
are taken row-wise as r×n arrays, each row belongs in an [n, n−m,m+1] MDS code. Then,

1. C is an (m; s) partial-MDS (PMDS) code if, for any (s1, s2, . . . , st) such that each sj ≥ 1
and

∑t
j=1 sj = s, and for any i1, i2, . . . , it such that 0 ≤ i1 < i2 < · · · < it ≤ r − 1, C

can correct up to sj +m erasures in each row ij, 1 ≤ j ≤ t, of an array in C.

2. C is an (m; s) sector-disk (SD) code if, for any l1, l2, . . . , lm such that 0 ≤ l1 < l2 <
· · · < lm ≤ n− 1, for any (s1, s2, . . . , st) such that each sj ≥ 1 and

∑t
j=1 sj = s, and for

any i1, i2, . . . , it such that 0 ≤ i1 < i2 < · · · < it ≤ r − 1, C can correct up to sj +m
erasures in each row ij, 1 ≤ j ≤ t, of an array in C provided that locations l1, l2, . . . lm
in each of the rows ij have been erased.

SD codes satisfy a weaker condition than PMDS codes, but they may be sufficient in
most applications. The case of (r; 1) PMDS codes has been solved in [2]. In this paper, we
address the case of (1;2) PMDS and SD codes. Figure 1 illustrates the difference between
(1;2) PMDS and SD codes for a 4× 5 array (i.e., a code of length 20): the array in the left
depicts a situation that can be handled by a (1;2) PMDS but not by a (1;2) SD code; the
second and the fourth rows have two erasures (denoted by E) each and there is no column
containing two of these erasures. The array in the middle illustrates a situation in which
the second and fourth rows have two erasures each, but the second column contains two of
those erasures, which correspond to a total failure of the second device. Individual erasures
in a row can always be handled by single parity (like in the first and the third rows). This
situation can be handled by both (1;2) PMDS and SD codes. Finally, the array in the right
shows the situation of three erasures in a row, and at most one in the remaining ones. This
situation can also be handled by both (1;2) PMDS and SD codes (but not by RAID 6).
In the next section we give the construction of an (m; 2) SD code. Constructions of (1;2)

SD codes were given in [1] and of (2;2) codes in [3], so this result is a generalization of those
constructions.
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From now on, when we say SD codes, we refer to (m; 2) SD codes.

2 Code Construction

Consider the field GF (2w) and let α be an element in GF (2w). The (multiplicative) order of
α, denoted O(α), is the minimum ℓ, 0 < ℓ, such that αℓ =1. If α is a primitive element [6],
then O(α)= 2w − 1. To each element α ∈ GF (2w), there is an associated (irreducible)
minimal polynomial [6] that we denote fα(x).
Let α ∈ GF (2w) and rn ≤ O(α). We want to construct an SD-code consisting of r × n

arrays over GF (2w), such that r of the columns correspond to parity (in RAID 5, r=1, while
in RAID 6, r=2). In addition, two extra symbols also correspond to parity. When read
row-wise, the codewords belong in an [rn, r(n−m)− 2] code over GF (2w). Specifically, let
C(r, n,m, 2; fα(x)) be the [rn, r(n−m)− 2] code whose (mr + 2)× rn parity-check matrix
is given by

H =



H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0

H1 H2 . . . Hr

 (1)

where

H0 =



1 1 1 . . . 1
1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
. . .

...
1 αm−1 α2(m−1) . . . α(m−1)(n−1)

 (2)

and, for 1 ≤ j ≤ r

Hj =

(
1 αm α2m . . . αm(n−1)

α−(j−1)n α−(j−1)n−1 α−(j−1)n−2 . . . α−(j−1)n−(n−1)

)
. (3)

The main result in this paper is proving that code C(r, n,m, 2; fα(x)) is SD. Unless stated
otherwise, for simplicity, let us denote C(r, n,m, 2; fα(x)) by C(r, n,m, 2).
We start by giving some examples.

Example 2.1 Consider the finite fieldGF (16) and let α be a primitive element, i.e., O(α)= 15.
Then, the parity-check matrix of C(3, 5, 1, 2) is given by
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
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 α α2 α3 α4 1 α α2 α3 α4 1 α α2 α3 α4

1 α14 α13 α12 α11 α10 α9 α8 α7 α6 α5 α4 α3 α2 α

 .

Similarly, the parity-check matrix of C(3, 5, 2, 2) is given by

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 α α2 α3 α4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 α α2 α3 α4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 α α2 α3 α4

1 α2 α4 α6 α8 1 α2 α4 α6 α8 1 α2 α4 α6 α8

1 α14 α13 α12 α11 α10 α9 α8 α7 α6 α5 α4 α3 α2 α


.

Let us point out that the construction of this type of codes is valid also over the ring
of polynomials modulo Mp(x)= 1 + x + · · · + xp−1, p a prime number, as done with the
Blaum-Roth (BR) codes [4]. In that case, O(α)= p, where αp−1 =1 + α + · · · + αp−2. The
construction proceeds similarly, and we denote it C(r, n,m, 2;Mp(x)). Utilizing the ring
modulo Mp(x) allows for XOR operations at the encoding and the decoding without look-up
tables in a finite field, which is advantageous in erasure decoding [4]. It is well known that
Mp(x) is irreducible if and only if 2 is primitive in GF (p) [6]. Let us give an example similar
to Example 2.1, but over the polynomials modulo M17(x).

Example 2.2 Consider the ring of polynomials modulo M17(x) and let α be an element in
the ring such that M17(α)= 0, thus, O(α)= 17. Then, the parity-check matrix of
C(3, 5, 1, 2;M17(x)) is given by

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 α α2 α3 α4 1 α α2 α3 α4 1 α α2 α3 α4

1 α16 α15 α14 α13 α12 α11 α10 α9 α8 α7 α6 α5 α4 α3

 .

Similarly, the parity-check matrix of C(3, 5, 2, 2;M17(x)) is given by
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

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 α α2 α3 α4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 α α2 α3 α4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 α α2 α3 α4

1 α2 α4 α6 α8 1 α2 α4 α6 α8 1 α2 α4 α6 α8

1 α16 α15 α14 α13 α12 α11 α10 α9 α8 α7 α6 α5 α4 α3


.

Let us give next a lemma that is key to proving that code C(r, n,m, 2) is SD (we omit the
proof).

Lemma 2.1 Let α ∈ GF (2w), rn ≤ O(α), 1 ≤ ℓ ≤ r − 1 and, if 1 ≤ m ≤ n − 2,
let 0 ≤ i0 < i1 < i2 . . . < im−1 ≤ n − 1 and t, t′ ̸∈ {i0, i1, i2 . . . , im−1}. Consider the
(2m+ 2)× (2m+ 2) matrix M(i0, i1, i2, . . . , im−1; t, t

′; r;n; ℓ) given by



1 1 . . . 1 1 0 0 . . . 0 0
αi0 αi1 . . . αim−1 αt 0 0 . . . 0 0
α2i0 α2i1 . . . α2im−1 α2t 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
α(m−1)i0 α(m−1)i1 . . . α(m−1)im−1 α(m−1)t 0 0 . . . 0 0

0 0 . . . 0 0 1 1 . . . 1 1
0 0 . . . 0 0 αi0 αi1 . . . αim−1 αt′

0 0 . . . 0 0 α2i0 α2i1 . . . α2im−1 α2t′

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 0 0 α(m−1)i0 α(m−1)i1 . . . α(m−1)im−1 α(m−1)t′

αmi0 αmi1 . . . αmim−1 αmt αmi0 αmi1 . . . αmim−1 αmt′

α−i0 α−i1 . . . α−im−1 α−t α−nℓ−i0 α−nℓ−i1 . . . α−nℓ−im−1 α−nℓ−t′


Let ∆(i0, i1, i2, . . . , im−1; t, t

′; r;n; ℓ)= detM(i0, i1, i2, . . . , im−1; t, t
′; r;n; ℓ). Then,

∆(i0, i1, i2, . . . , im−1; t, t
′; r;n; ℓ) = α−

∑m−1

u=0
iu

 ∏
0≤u<v≤m−1

(αiu ⊕αiv)2


(
m−1∏
u=0

(αiu ⊕αt)(αiu ⊕αt′)

)(
α−t⊕α−nℓ−t′

)
(4)

Lemma 2.1 is valid also over the ring of polynomials modulo Mp(x), p prime. We are ready
now to state and prove our main result.
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Theorem 2.1 Codes C(r, n,m, 2; fα(x)) and C(r, n,m, 2;Mp(x)) are SD.

Proof: Assume that m columns have been erased and in addition we have two random
erasures. Assume first that these two random erasures have occurred in the same row ℓ of
the stripe. The rows that are different from ℓ are corrected since each one of them has m
erasures, which are handled by the horizontal code, that is, each horizontal code is given by
the parity-check matrix H0, which is the parity-check matrix of a RS code that can correct
up to m erasures [6]. So, we have to solve a linear system with m+2 unknowns. Without loss
of generality, assume that the erasures in row ℓ have occurred in locations i0, i1, . . . , im, im+1,
where 0 ≤ i0 < i1 < · · · < im < im+1 ≤ n. According to the parity-check matrix of the code
as given by (1), (2) and (3), there will be a unique solution if and only if the (m+2)×(m+2)
matrix



1 1 . . . 1 1
αi0 αi1 . . . αim αim+1

α2i0 α2i1 . . . α2im α2im+1

...
...

. . .
...

...
αmi0 αmi1 . . . αmim αmim+1

α−nℓ−i0 α−nℓ−i1 . . . α−nℓ−im α−nℓ−im+1


is invertible. By taking α−nℓ in the last row as a common factor, and by multiplying each
column j, 0 ≤ j ≤ m + 1, by αij , this matrix is transformed into a Vandermonde matrix,
which is always invertible in a field and also in the ring of polynomials modulo Mp(x) [4].
Consider now the case in which the two random failures occur in different rows. Specifically,

assume that columns i0, i1, . . . , im−1 have been erased, where 0 ≤ i0 < i1 < . . . < im−1 ≤
n− 1, and in addition, entries (ℓ, t) and (ℓ′, t′) are erased, where t, t′ ̸∈ {i0, i1, . . . , im−1} and
0 ≤ ℓ < ℓ′ ≤ r − 1. Again using the parity-check matrix of the code as given by (1), (2)
and (3), there will be a unique solution if and only if the (2m+ 2)× (2m+ 2) matrix



1 1 . . . 1 1 0 0 . . . 0 0
αi0 αi1 . . . αim−1 αt 0 0 . . . 0 0
α2i0 α2i1 . . . α2im−1 α2t 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
α(m−1)i0 α(m−1)i1 . . . α(m−1)im−1 α(m−1)t 0 0 . . . 0 0

0 0 . . . 0 0 1 1 . . . 1 1
0 0 . . . 0 0 αi0 αi1 . . . αim−1 αt′

0 0 . . . 0 0 α2i0 α2i1 . . . α2im−1 α2t′

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 0 0 α(m−1)i0 α(m−1)i1 . . . α(m−1)im−1 α(m−1)t′

αmi0 αmi1 . . . αmim−1 αmt αmi0 αmi1 . . . αmim−1 αmt′

α−nℓ−i0 α−nℓ−i1 . . . α−nℓ−im−1 α−nℓ−t α−nℓ′−i0 α−nℓ′−i1 . . . α−nℓ′−im−1 α−nℓ′−t′


6



is invertible. Taking α−nℓ as a common factor in the last row, we obtain the matrix
M(i0, i1, i2, . . . , im−1; t, t

′; r;n; ℓ′ − ℓ) as defined in Lemma 2.1, which is invertible since its
determinant is a constant times a product of binomials, and each binomial is invertible. 2

Let us point out that Lemma 2.1 and Theorem 2.1 not only prove that codes
C(r, n,m, 2; fα(x)) and C(r, n,m, 2;Mp(x)) are SD, but also provide for efficient encoding
and decoding algorithms. In effect, solving the linear systems corresponding to erasures,
for instance, using Cramer’s rule, involves inverting determinants of either Vandermonde
type of matrices or determinants of the type ∆(i0, i1, i2, . . . , im−1; t, t

′; r;n; ℓ′ − ℓ), as defined
in Lemma 2.1. Both types of determinants involve products of binomials, which are easily
inverted both in GF (q) and in the ring of polynomials modulo Mp(x) [4].
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