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Abstract 

 

Analytical models based on queueing theory have been widely used in analyzing 

the dynamic behavior of manufacturing and service systems.  Such models allow the user 

to easily experiment with different system designs or configurations for a given set of 

input parameters.  However, an input parameter of the model could be inaccurate, due to, 

for example, estimation difficulties.  In some cases a parameter may not be known (e.g., 

the customer order arrival rate for a new product) and we can only provide a good guess.  

In order to determine if the analysis results (and hence the system design) are robust to 

estimation errors, sensitivity analysis can be performed, using an analytical derivation or 

a numerical estimation. 

In this paper we propose an alternative to the traditional approach of sensitivity 

analysis.  We select a subset of the model parameters as the uncertain set and specify a 

tolerance range of a system performance measure, such as within 10% of the nominal 

value resulting from the baseline estimates of the parameters.   We then calculate a 

feasible region of the uncertain parameters for which the performance measure will be 

within the tolerance limits.  This is more convenient in cases where the system 

performance measure is required to be within a target range, or when it is an interface 

parameter to other models.  We illustrate this approach by analyzing the basic 

exponential queues and then apply it to a more realistic model – a queueing model of a 

typical order fulfillment process in a distribution center. 

 

Keywords: queueing; parameter tolerance; sensitivity analysis; exponential queues; 

distribution center operation  



1.  Introduction 
In planning the capacity of a manufacturing or service operation, queueing models 

have long been recognized as a useful tool for decision support (see e.g. Buzacott and 

Shanthikumar 1993, Gans et al. 2003, Suri et al. 1995).  These models can capture critical 

dynamic behavior of the system such as the number of parts or customers waiting in line 

for processing, and are practical in terms of data and computational requirements.  As 

operations are increasingly outsourced to third-party providers, such models are 

correspondingly more useful.  Operation-oriented performance measures estimated using 

these models, e.g., the average waiting/response time, will take an additional role as an 

external measure reported to and monitored by the outsourcing client.  In some cases, the 

attainment or its failure has a direct impact on the financial rewards of a third-party 

provider.  For example, a third-party logistics provider may provide a warehousing and 

customer order fulfillment service to its client who requires an incoming customer order 

for its goods to be shipped within 24 hours of order receipt on the average.  At the end of 

each month, the logistics provider has to report statistics on the customer order handling 

times for all orders received that month, and may have to pay a financial penalty to its 

client if the order handling requirement is not met.  The customer order handling time is 

the system time in a queueing model, making such models indispensable in planning the 

operation when new outsourcing client contracts are signed.  Other similar situations 

arise in service businesses, such as customer service centers which can be walk-in 

facilities, or more commonly nowadays, telephone call centers.  There, a common 

operation-oriented performance measure is how long an incoming customer has to wait 

before he is served by an agent, whether in person or on the phone.  Typically, key 

performance measures of an operation and their target values (like those mentioned 

above) are specified in the service level agreement (SLA) of an outsourcing relationship.   

Given an estimated business volume provided by the customer and the SLA 

specification, the service provider can plan its capacity in terms of the number of people 

and/or machines needed, and in more detail, the work schedule of these people and 

machines.  One important aspect in planning the capacity of the service provider is 

analyzing the conditions under which the planned capacity becomes inadequate to deliver 

the performance required by the SLA.  There are a number of sources of uncertainty that 

lead to an inadequate capacity.  In this paper we focus on the following issues of 

estimation.  First, the “expected” business volume, i.e., the arrival rate in a queueing 

model, provided by the customer is their best guess and may not be very accurate.  For 

example, in information technology (IT) outsourcing it is not uncommon to have a 

customer being unaware of certain existing systems (hardware and software) that need to 

be supported.  These systems will help generate a higher volume of support requests than 

the estimate.  Similarly, the estimated amount of work per request, represented by the 

service time in a queueing model, as provided by the customer or estimated by the service 

provider itself, may not be accurate.  In IT outsourcing, service requests are classified 

into types (e.g., desktops, then operating system) and the service provider may have 

historical statistics on serving requests of this type.  However, each customer has slightly 

different configurations and requirements and the requests of a particular customer may 

not have the same characterization as that of the historical data. 

A related issue not studied in this paper is that even though the estimated total 

business volume (and hence the arrival rate) may be fairly accurate over a long time 



period, e.g. a month, the arrival rate may fluctuate significantly over time, such that the 

peak periods have much higher arrival rates than the long term average.  For example, 

this phenomenon in telephone call centers is well documented, see, e.g. Gans et al. (2003).  

Characterizations of such variations over time may or may not be provided by the 

customer.  Even if they are, estimates of arrival rates will be subject to the same, and 

most often higher, possibility of errors as the overall long term average. 

In this paper, we assume that a queuing model is used to plan the capacity of a 

manufacturing or service operation, and study the conditions under which a specified 

target performance level will not be met with the planned capacity.  Specifically, we ask 

the following question: For a given set of system parameters which include the estimated 

business volume (estimated arrival rate), the planned capacity (planned service rate), and 

a specified SLA, how much more business volume or reduction in planned capacity we 

can tolerate before the SLA is breached?  In other words, what is the feasible region of a 

system parameter such as arrival rate or service rate such that a selected system 

performance measure such as average waiting time is within the SLA specification?   

To gain some insights, we study the above question in two steps.  First, in Section 

3 we select a basic, analytically tractable situation where the ubiquitous M/M/1 and 

M/M/c queues are analyzed.  Then, in Section 4, we study a more realistic example of a 

customer order fulfillment operation at a distribution center.  We develop a simple but 

reasonably accurate queueing model for this operation and use it to answer our question 

above.  These clearly represent basic steps in a subject not thoroughly explored in the 

literature which is reviewed in Section 2.  Ultimately we would like to see such analysis 

as standard features in queueing model based capacity planning tools.  Some additional 

concluding remarks are given in Section 5. 

2.  Related Concepts and Literature 
A closely related concept that can be used to partially answer our research 

question is sensitivity analysis of performance measures.  This typically gives the 

derivative or a derivative-like quantity of the performance with respect to a chosen 

system parameter.  Of course, due to the nonlinearity of practically all queueing systems 

the feasible region cannot be directly deduced from the derivative information.  

Nevertheless the latter yields useful insights such as what parameter has the largest 

impact at the design point and hence represents a high risk area.  Intuitively speaking, 

traditional sensitivity analysis is a forward calculation to obtain the difference in a 

performance measure given a change in a parameter, while the present study is a 

backward calculation of the allowable change in a parameter given a tolerance region of 

performance.  Figure 2.1 summarizes the difference between sensitivity analysis and the 

present study denoted as parameter tolerance analysis. 
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Figure 2.1: Sensitivity Analysis vs. Parameter Tolerance Analysis 

Kleijnen (1997) reviews different types of sensitivity analyses and thus develops a 

general framework to study them systematically.  In that framework our present study 

falls under uncertainty analysis to quantify the effect of uncertain model inputs.  Kleijnen 

commented that “uncertainty analysis has hardly been applied to stochastic models such 

as queueing models…”  To a large extent this remains to be true even today, as seen by 

the sparse existence of such papers in the literature.  Several works in sensitivity analysis 

of queueing models appeared before Kleijnen’s paper, but few did after that. 

Gordon and Dowdy (1980) analyze the effect of errors in relative utilization in a 

closed product-form queueing network on performance measures such as throughput, 

absolute utilization, and mean queue lengths.  A key insight obtained is that for single-

class load-independent networks the resulting errors in throughput and utilization are 

about the same percentage as that in the relative utilization estimates, but this is not true 

in networks with load-dependent servers or multiple customer classes.  Sensitivity of 

more general performance functions in the form of an arbitrary function of the state of a 

BCMP network (open or closed) are obtained in Liu and Nain (1991).  Similar to Gordon 

and Dowdy (1980), Tay and Suri (1985) contains a sensitivity analysis for closed 

queueing networks under the operational analysis framework rather than the classical 

stochastic product-form solution framework.  Specifically they calculate bounds on 

performance measures such as throughput, utilization, queue lengths given errors in input 

parameters such as visit ratios and service time ratios.   

Opdahl (1995) analyzes the performance sensitivity of a combined software-

hardware model of a computer system, modeled as a queueing network under the 

operational analysis framework.  In addition to providing feedback to designers for 

improving the system performance, the author proposes that “sensitivity analysis is useful 

for pointing out where model refinement and parameter capture effort should be 

focused...” 

A more recent paper by Whitt (2006) studies the sensitivity of the performance of 

an M/M/c + M (multi-server exponential queue with abandonment) with respect to the 

arrival rate, service rate, and abandonment rate.  Motivated by call center operations, 

different heavy traffic approximations are utilized to calculate the sensitivity results 

which are compared with results from finite difference methods. 

More complex queueing models do not have analytical solutions and we have to 

resort to simulation to estimate the performance function.  Efficient algorithms have been 

developed to compute the sensitivity, in the form of a gradient, alongside the 

performance function itself.  A review of such techniques is contained in Fu (2006). 

We also note that there is a second type of sensitivity in queueing models – the 

sensitivity of the performance with respect to some of the structural assumptions (rather 

than parameter values).  For example, Suri (1983) studies the impact of some of the basic 

service time assumptions used in the aforementioned operational analysis framework; 

Davis et al. (1995) identifies scenarios in an Erlang loss model where the performance is 

sensitive to the service time distribution beyond its mean. 



3. Parameter Tolerance Analysis for Exponential Queueing 

Models  
In this section we utilize two basic exponential queues, namely, M/M/1 and 

M/M/c to motivate and develop our approach.  Similar to the practical situations 

discussed in Section 1 but at a vastly simplified level, assume that we are planning our 

service capacity to serve a client who is sending their transactions to our server over a 

period of time under contract.  The client informs us of their business volume in terms of 

a (long-run) transaction arrival rate and as well specifies a target average system time or 

target average waiting time of a transaction as part of the SLA.  We can then calculate the 

required transaction service rate in order to meet the target average system or waiting 

time.  (This is in fact the minimum required service rate to meet the SLA.)  We call the 

system at this design point the nominal system. 

To facilitate our discussion, we define the following notations: �  transaction arrival rate. �  transaction service rate. �  average time a transaction spends in the system. �  average waiting time of a transaction in queue. ��, ��, Τ�,��   corresponding parameters to the above in the nominal system.  �  half-width of the tolerance level promised in SLA. 	
  �/�� 	�  �/�� 

3.1 The M/M/1 Case 
For the input parameter tolerance of an M/M/1 queue, the problem can be 

described as follows.  Given a nominal system specification, what is the feasible region 

of arrival rate � and service rate �  such that the resulting average time in system (or 

average waiting time in queue) lies in the interval 
1 � �� Τ� (or 
1 � �� ��). To solve 

this problem, say for the case of the average system time, it is sufficient to solve the 

following inequality system: 

 � � �  �
1 � ���� � 1/
µ � λ� � 
1 � �����, � � 0 �  
Equation 3.1 

The first inequality is to ensure stability of the queueing system and the second is to 

ensure that the average system time is within the tolerance region.  If we are interested in 

characterizing the feasible region of �  and �  in terms of percentages of ��  and �� 

respectively, we can simply replace �  with 	
 � ��  and �  with 	� � ��  in the above 

inequality system. Note that 	
 and 	� are positive scalars.  

Equation 3.1 can be solved numerically and the results plotted using available 

commercial software such as Mathematica® and MATLAB®.  In this paper, we 

specifically used Mathematica® version 8.0 (Wolfram Research 2010) as an inequality 

solver (by utilizing the built-in tool Reduce) and as a results visualization tool (by 

utilizing the built-in tool Plot for two-dimensional graphs and Plot3D for three-

dimensional graphs respectively). For instance, give the nominal system specification 

(�� � 1, �� � 1.25, Τ� � 4,�� � 3.2), the feasible region of � and � is shown in Fig. 3.1. 

 



 
Figure 3.1: 10% Tolerance Region for the Nominal Averge System Time (T0) in the M(1)/M(1.25)/1 System 

The horizontal and vertical lines in Fig 3.1 show the tolerance in � or � if the 

other parameter is held at the nominal value.  The entire shaded region between the two 

parallel lines shows the range of � and � for which the average system time is within the 

10% tolerance zone of the nominal value, Τ� � 4.  This is a partial feasible region of 

arrival rate and service rate satisfying the system of inequalities in Equation 3.1. 

Specifically, the values of points # and $ on a horizontal axis are the lower and upper 

bounds respectively of �, given that service rate � is fixed to be ��. Similarly, the values 

of points % and & on a vertical axis are upper and lower bounds respectively of �, given 

that arrival rate � is fixed to be ��.  As expected from the nonlinearity of queues, points a 

(b) and c (d) are not symmetrical with respect to the nominal point.  Further, � has a 

slightly larger tolerance range (in terms of percentages) than � when the other parameter 

is held constant.  This is good news since transaction arrival rates are usually more 

difficult to estimate than service rates. 

In the following, we will show that the coordinates of points %, #, & and $ are a 

function of nominal system utilization rate and half-width value of the tolerance zone, 

namely, �. 

 

Coordinates of # and $ can be obtained by solving 

 
1 � ���� � 1/
�� � λ� � 
1 � ���� 
which yields 

Equation 3.2 

 ' (� �  �
1 � ��(�  �  	
 � λ�� � (� � �
1 � ��(�  
 

 

 ' )#: 

(� �  �
1 � ��(� , 1�$: 
 (� � �
1 � ��(� , 1�

�  

 
Equation 3.3 

 

Similarly, to get the coordinates of % and & we solve  



 
1 � ���� � 1/
µ � ��� � 
1 � ���� 
which yields 

Equation 3.4 

 ' 1 � (��1 � � � 	� � µ��  �   1 � (��1 � �  

 

 

 ' )%: 
1, 1 � (��1 � � �
&: 
1, 1 � (��1 � � �� 

 

 
Equation 3.5 

 

Numerical results for different system utilizations are given in Table 3.1 

 
Table 3.1: 10% Tolerance Region for the Averge System Time (T) in an M/M/1 queue  (� 	
: 
#, $� 	�: (c, a) � � 0.1 � � 0.1 

0.7 (0.9524, 1.0390) (0.9727, 1.0333) 

0.8 (0.9722, 1.0227) (0.9818, 1.0222) 

0.9 (0.9876, 1.0101) (0.9909, 1.0111) 

 

If average waiting time in queue is the promised target, the following inequality 

system can be solved to get the feasible region: 

 � � �  �
1 � ���� � �/µ
µ � λ� � 
1 � �����, � � 0 �  
Equation 3.6 

Again replacing � with 	
 � �� and � with 	� � �� will give the feasible region in terms 

of percentage of the nominal system parameter values.  Similar to the case of time in 

system, we can solve equation 3.6 numerically using Mathematica or the equivalent.  In 

Figure 3.2, the entire shaded region between the two lines (not straight nor parallel) 

shows the range of �  and �  for which the average waiting time is within the 10% 

tolerance zone of the nominal value, W� � 3.2. Figure 3.2 shows that the tolerance region 

for average waiting time in queue becomes smaller as both � and � decrease.  The plot in 

Figure 3.3, in terms of the percentage of the nominal system parameter values, shows an 

enlarged view of the region of interest in the neighborhood of (��, ���. 
 Similar to Fig. 3.1, Fig. 3.3 shows that the tolerance range of λ is larger than that 

of µ, when both parameters are not near zero.  Comparing the shaded regions in Figures 

3.1 and 3.3, we can also see that the tolerance ranges of λ and µ are smaller (in terms of 

percentages) in the case of W than the case of T.  In other words, specifying SLA in terms 

of system time is less risky for a service provider, assuming that the specified tolerance 

percentages of the final performance measure remain the same.  The latter assumption is 

not unreasonable, as the criteria of 
1 � ��  deviation of the nominal system time or 

waiting time do not appear to be radically different. 

 



 
Figure 3.2: 10% Tolerance Region for the Nominal Averge Waiting Time (W0) in the M(1)/M(1.25)/1 System 

 

 
Figure 3.3: 10% Tolerance Region (enlarged) for the Nominal Averge Waiting Time (W0) in the  

M(1)/M(1.25)/1 System 

 

To get the coordinates of , and -, given 

 
1 � ���� � λ/��
�� � λ� � 
1 � ���� Equation 3.7 

we get    ��. /01 � /20101201345 � λ � ��. /01 � /20101601345 
 ' 1� �1 � (�� �  	
 � λ�� � 1 � �1 � (�� 

 



 ' 78
9,: 
 1 � �1 � (�� , 1�-: 
 1 � �1 � (�� , 1�

� 
 

Equation 3.8 

 

To get the coordinates of e and g, given 

 
1 � ���� � λ�/�
� � λ�� � 
1 � ���� Equation 3.9 

 

we get 

' ��2 .1 � :1 � 4
1 � (��
1 � ��(�;5 � � � ��2 .1 � :1 � 4
1 � (��
1 � ��(�;5 
 

' (�2 .1 � :1 � 4
1 � (��
1 � ��(�;5 � 	� � µ�� � (�2 .1 � :1 � 4
1 � (��
1 � ��(�;5 
 

 

'
7<
8
<9=: 
1, (�2 .1 � :1 � 4
1 � (��
1 � ��(�;5�
>: 
1, (�2 .1 � :1 � 4
1 � (��
1 � ��(�;5�

� 
 

 

Equation 3.10 

 

 

Numerical results for different system utilizations are given in Table 3.2 

 
Table 3.2: 10% Tolerance Region for the Averge Waiting Time (W) in an M/M/1 queue  (� 	
: 
,, -� 	�: 
=, >� � � 0.1 � � 0.1 

0.7 (0.9677, 1.0280) (0.9787, 1.0252) 

0.8 (0.9783, 1.0185) (0.9846, 1.0182) 

0.9 (0.9890, 1.0092) (0.9917, 1.0100) 

 

Finally, we solve equations 3.1 and 3.6 for a range of nominal average times in 

system and average waiting times in queue, and plot the 10% tolerance region in Figures 

3.4 and 3.5 using Mathematica®.  A slice of Fig. 3.4 (3.5) at a fixed T (W) will yield a 

figure similar to Fig. 3.1 (3.2).  An interesting observation is that as the nominal values of 

T or W become smaller, the 10% tolerance region becomes wider because change in the 

average service time dominates, while for larger values of T or W, change in the average 

waiting time dominates as shown by the narrower tolerance region.  A smaller T or W 

implies a lower utilization which usually means a higher operating cost per transaction.  

But in addition to greater customer satisfaction from less waiting, we also have a lower 

risk of not meeting SLA. 



 

 
Figure 3.4: 10% Tolerance Region for Average Time in System  

 

 
Figure 3.5: 10% Tolerance Region for Average Waiting Time in Queue 

 

3.2 The M/M/c Case 
In this section we consider a classic multi-server queueing model, namely, the 

M/M/c system.  We use the notation defined previously, with the addition of c, the 

number of parallel servers or service channels.  For simplicity of exposition, we use an 



approximate expression for the average waiting time in queue for M/M/c, which is based 

on an approximation proposed for a GI/G/c queueing system by Sakasegawa (1977). 

 � � (?;
@6/�λ
1 � (�  

Equation 3.11 

 

where ( � �/&�. 

In a manner similar to the M/M/1 case, to get the feasible region of the arrival rate 

and the service rate given that average time in system varies within an interval of 
1 � ��, 
we need to solve the following inequality system: 

 

7<8
<9 � �  &�

1 � ���� � 1� � (?;
@6/�λ
1 � (� � 
1 � �����, � � 0

� 
 

Equation 3.12 

The feasible region obtained by solving the above inequality system is shown in 

Figure 3.6 for two different utilization levels, 70% (left column) and 90% (right column), 

and five different values of c, 1 (special case of single-server), 2, 7, 17, and the special 

infinite server case.  This allows us to see how the feasible region changes as a function 

of both system load and the number of parallel channels.  

As c increases, the feasible region changes from a narrow band between two steep 

parallel lines to a combination of an initial broader horizontal band transitioning to a 

narrow band between two almost linear boundary lines.  Furthermore, as c increases, the 

horizontal band becomes well defined and longer, while the narrow band tends to become 

less steep. In the limiting case of the infinite-server queue, the entire region is a uniform, 

horizontal band.  As c or the number of parallel servers increases, the growth in the initial 

broader horizontal band of the feasible region can be explained by the increasing 

dominance of the service time component of the time in system measure.  In the limiting 

case, the feasible region is an 
1 � �� interval around the nominal value of the mean 

service time. 

Comparing the plots in the left and right columns allows us to see the effect of the 

utilization level.  By comparing the plots for the same c, one immediate observation is 

that the feasible region becomes tighter as the utilization increases.  Similar to the single 

server case, the cost per transaction is lower with a system at a higher utilization but the 

risk of not meeting SLA is higher.  Also, the growth of the initial horizontal band as c 

increases is slower at the higher utilization level.  This can be explained by the greater 

influence of the waiting time component of the time in system measure as utilization 

increases.   

In all the plots, we have kept the nominal service rate constant (=1.0).  As c 

increases, the arrival rate will have to change to yield the desired utilization level (0.7 or 

0.9).  As the service time component becomes more dominant, the feasible region 

becomes more horizontal and more centered around the nominal service rate.  This means 

that the system can tolerate larger deviations in the arrival rate and can still remain within �� interval around the nominal value of the average time in system.  The feasible region 

becomes tighter either as c decreases (fewer service channels) or utilization level 

increases. 



To get the feasible region of the arrival rate and service rate given that average 

waiting time in queue varies within an 
1 � �� interval, one needs to solve the following 

inequality system: 

 

7<8
<9 � �  &�

1 � ���� � (?;
@6/�λ
1 � (� � 
1 � �����, � � 0

� 
 

Equation 3.13 

 

As before, the feasible region obtained by solving the above inequality system is 

shown in Figure 3.7 for two different utilization levels, 70% (left column) and 90% (right 

column), and four different values of c, 1 (special case of single-server), 2, 7, and 17.  

This allows us to see how the feasible region changes as a function of both system load 

and the number of parallel channels.  In all the plots, we have kept the nominal service 

rate constant (=1.0).  As c increases, the arrival rate will have to change to yield the 

desired utilization level (0.7 or 0.9).   

As c increases, the shape of the feasible region remains essentially the same - a 

narrow band between two boundary lines. Furthermore, as c increases, the narrow band 

tends to become less steep or more horizontal. In the limiting case of the infinite-server 

queue, there is no waiting time and hence, the above exercise of finding a feasible region 

becomes meaningless.  

Comparing the plots in the left and right columns allows us to see the effect of the 

utilization level.  By comparing the plots for the same c, one immediate observation is 

that the feasible region becomes tighter as the utilization increases similar to the time in 

system case. This can be explained by the greater sensitivity of the waiting time to 

changes in either arrival or service rate as utilization increases.   

 From the graphs, for a fixed c > 1, we see that our comments earlier on the single 

server case on higher utilization resulting in higher risk, a larger tolerance in λ than that 

in µ, specification of tolerance in terms of T resulting in a lower risk than that of W, all 

apply.  In addition, as the business volume scales up and the service provider employs 

more people or machine (i.e., increases c) to handle the volume, we see the following. 

(1)  The slope of the tolerance region is less steep.  This means that when λ changes 

or we discover an error in λ, we may not have to change the service rate µ so 

much to compensate.  In particular, a horizontal band means a fixed percentage 

change in µ can handle a relatively large range of λ and the horizontal band gets 

larger with increasing c.  

(2) The area of the tolerance region around the nominal design point increases as c 

increases.  This means that the system can tolerate a wider range of situations. 

These are secondary, risk oriented advantages of economy of scale.  (A primary 

advantage of economy of scale is the fact that we need less than 10x the number of 

servers to handle 10x the arrival rate to maintain the same system or waiting time, for a 

fixed service rate.) 
 



  

  

  

  

 
 

Figure 3.6: 10% Tolerance Region for Average Time in System for an M/M/c queue  



 

  

  

  

  
 

Figure 3.7: 10% Tolerance Region for Average Waiting Time for an M/M/c queue 

 

  



4. Parameter Tolerance Analysis of a Distribution Center 

Operation Model
In this section we study a more realistic example of a customer order fulfillment 

operation at a distribution center (DC).  This example was motivated by the work of 

Duc & de Koster (2002, 2004)

distribution center shown in Figure 4.1.  
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Tolerance Analysis of a Distribution Center 

Model 
In this section we study a more realistic example of a customer order fulfillment 

operation at a distribution center (DC).  This example was motivated by the work of 

2004), who modeled the order fulfillment operations in a 

ution center shown in Figure 4.1.  They assumed that orders arrived according to a 

each order has one order line and that k orders are batched for picking.  

The DC uses a random assignment policy for storing items in the storage racks an

assumed that a picker travels at constant speed.  Under these assumptions, Le

how to calculate the first and second moments of the pick time for 

storage layout configuration with a central aisle shown in Figure 4.1.  Le

Koster (2002) showed that the order picking process can be modeled by a M/G

service.  They used the approach suggested by Tijms (1994) 

ean waiting time in a M/G
k
/1 queue is approximated by

combination of the mean waiting times in a batch-service queue with deterministic 

service queue with exponential processing times as 

M/Dk/1 + cS
2
 WM/Mk/1 , 

is the coefficient of variation of the service time distribution. 

Duc and de Koster (2002) obtain WM/Dk/1 and WM/Mk/1 by solving the respective 

queueing models exactly as described in Gross & Harris (1998).  We use an alternative 

approach to model the order picking process that allows us to still use the more realistic 

example while simplifying the exposition of the tolerance analysis procedure.  The 

conceptual model shown in Figure 4.2 indicates that there are two main components of 

time to pick an order.  The first component involves a batching delay and the 

Pack 

station 

 

Ship 

station

  

 

  

  

Storage Racks 

Figure 4.1: Distribution Center Operations 

.2: Modeling the Order Picking Process 

Tolerance Analysis of a Distribution Center 

In this section we study a more realistic example of a customer order fulfillment 

operation at a distribution center (DC).  This example was motivated by the work of Le-

, who modeled the order fulfillment operations in a 

that orders arrived according to a 

order line and that k orders are batched for picking.  

The DC uses a random assignment policy for storing items in the storage racks and it was 

assumed that a picker travels at constant speed.  Under these assumptions, Le-Duc and de 

how to calculate the first and second moments of the pick time for 

1.  Le-Duc and de 

a M/G
k
/1 queue 

suggested by Tijms (1994) 

is approximated by a convex 

service queue with deterministic 

service queue with exponential processing times as follows: 
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e tolerance analysis procedure.  The 
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time to pick an order.  The first component involves a batching delay and the 
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second is waiting for the order picker and the pick time.  This is shown in Equation 4.1.  

We use a simple approximation for waiting time in a GI/G/1 queue for the waiting time in 

the order picker queue.  As before, to facilitate our discussion, we define the following 

notations: �  order arrival rate. &A; Squared coefficient of variation (SCV) of the inter-arrival time of batches 

of orders. �  order picker service rate (for a batch of k orders). &B;  SCV of the order picking time. C  order picking batch size. �  average time an order spends in the system. ��, ��, Τ�    corresponding system parameters in the nominal system.  �  half-width of the tolerance level promised in SLA. 

 

Average time an order spends in the DC � �DEFGH � 
�IJ
KL�/I
��// � M� 
 

 N.�5  O  1� C � 12 � &A; � &B;2 �P

Q�/P
��// � 1� 
 

Equation 4.1 

 ' N.�5 O  1� C � 12 � &A; � &B;2 �
C� � ��� � 1� 

 

4.1 Feasible Region in 
R, S� for the Order Picking Operation 

To get the feasible region of the order arrival rate and order picker service rate 

such that average system time T is within 
1 � �� Τ� where Τ� is the nominal average 

system time, it suffices to solve the following inequality system: 
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9 � �  C�
1 � ���� � 1� C � 12 � 1/C � &B;2 �
C� � ��� � 1� � 
1 � �����, � � 0

� 
 

Equation 4.2 

 

As the order arrival process is Poisson, the batch arrival process is Erlang-k, where k is 

the batch size.  Hence, the SCV of the inter-arrival time to the order picker queue &A; �  1/C. Figures 4.3 and 4.4 show plots of feasible region of 
�, �� for the following 

two example configurations.  In each plot, the nominal point has been identified by the 

dashed lines. 

Case 1 (70% utilization) - C � 4, �� � 0.4, �� � /T , &A; � 0.25, &B; � 0.2, ( � 0.7  and �� � 14.425. 

Case 2 (90% utilization) - C � 4, �� � 0.4, �� � /V , &A; � 0.25, &B; � 0.2, ( � 0.9  and �� � 30.975. 

 



 
Figure 4.3: 10% Tolerance Region for Average Time in System for an Order in DC (70% uitilization) 

 

 
Figure 4.4: 10% Tolerance Region for Average Time in System for an Order in DC (90% uitilization) 

Based on the two plots, we can make the following observations. When � is small, 

the batching delay component dominates the average time in system measure, so � has to 

be large to keep the waiting time and pick time smaller. When � becomes very small, it is 

not possible to keep the system time within tolerance no matter how small � is.  By 

comparing the plots in figures 4.3 and 4.4, one immediate observation is that the feasible 

region becomes tighter as the utilization increases similar to the time in system case for 

the exponential queues in the previous section, resulting in a higher risk of not meeting 

the SLA.  In a small neighborhood of the nominal design point, we see that the tolerance 

is again not symmetrical in two ways: 

(1) Not symmetrical in �  (or �) – the range of �(or �) is different depending on 

whether �
or �� is smaller or larger than the nominal point.  In particular, the 

range of � is smaller when � is larger than the nominal point than that when � is 



smaller than the nominal point.  This difference is rather small at low utilizations 

but increases when the utilization is higher.  Therefore, at higher utilizations 

(which will be the norm in practice) we have to be more careful in estimating the 

order arrival rate.  This is consistent with the more general observation above that 

the entire feasible region becomes smaller as utilization increases. 

(2) Not symmetrical between � and � – the tolerance range for � is larger for a given � than that for � for a given �.  Again this is advantageous in practice since order 

arrival rates are usually harder to estimate than service rates. 

 

4.2 Feasible Region in 
S,Z[\) for the Order Picking Operation 

To get the feasible region of 
�,&]2 ), we solve the inequality system shown in 

Equation 4.2 by taking � and &]2 as unknowns.  This exercise allows us to develop some 

insight into the role played by the variability in the service (picking) process.  Figures 4.5 

and 4.6 show plots of feasible region of 
�,&]2 ), for the following two example 

configurations.  In each plot, the nominal point has been identified by the dashed lines. 

Case 1 (70% utilization) - C � 4, �� � 0.4, �� � /T , &A; � 0.25, &B; � 0.2, ( � 0.7  and �� � 14.425. 

Case 2 (90% utilization) - C � 4, �� � 0.4, �� � /V , &A; � 0.25, &B; � 0.2, ( � 0.9  and �� � 30.975. 

 

 
Figure 4.5: 10% Tolerance Region for Average Time in System for an Order in DC (70% uitilization) 



 
Figure 4.6: 10% Tolerance Region for Average Time in System for an Order in DC (90% uitilization) 

Based on the two plots in figures 4.5 and 4.6, we can make the following 

observations. The feasible region becomes much tighter as the utilization increases 

similar to previous cases. As the service (picking) rate is increased, the tolerance region 

for &B; becomes wider as indicated by the length of the vertical line within the feasible 

region for a particular �. In both plots, the batching delay component remains fixed as � 

and k are held constant.  So the effect of the variability in the picking time is felt only 

through the waiting time for a batch of orders for the picker.  As a higher service rate 

(�� decreases both the waiting time and picking (service) time components, the system 

can tolerate higher levels of variability and still stay within the SLA. 

5.  Concluding Remarks 
We introduce a form of sensitivity of the performance of a queueing system by 

finding the feasible region of selected model parameters that would result in an 

acceptable range of a given performance measure.  Through basic exponential queues 

and a more complex model of a customer order fulfillment operation we learn some 

interesting properties of these feasible regions.  Such an analysis provides 

complementary information to traditional sensitivity analysis, which usually takes the 

form of gradient estimation.  In contrast to the latter, we call the type of analysis 

performed in this paper tolerance analysis.  In practice, tolerance analysis is useful in 

analyzing the robustness of a system design, providing some concrete information for 

managing the risk of not conforming to performance targets.  For example, the size of 

the feasible region of the most important parameters will give a sense of how likely the 

system will go out of performance specification.  The size of the feasible region can 

hence be used to rank different system designs in terms of performance risk. 

While we believe that tolerance analysis will give important information for 

operational risk management, many challenges remain.  We use some simple examples 

in this first study, which we can compute manually due to the analytically tractability of 

the models and the small number of model parameters.  For models with a large number 



of parameters, visualizing the feasible region is not so straightforward.  We can always 

resort to using a tabular form, but such a form does not convey insights as readily as a 

graphical form.   

For models that are not analytically solvable, finding a feasible region may take 

more effort.  Many queueing models do at least have a numerical solution.  For these 

models, a straightforward way to find the feasible region of a system parameter is to do a 

search using the model.  Since queueing models are often monotonic in a number of 

parameters (see, e.g., Shanthikumar and Yao 1989), we can use an efficient search 

technique such as a binary search in these cases.  For example, to find the feasible region 

of arrival rate in a model that is monotonic with respect to this parameter, we first 

calculate the target average waiting time using the given parameters, then set the average 

waiting time to the maximum allowed based on the SLA and then search for the arrival 

rate that corresponds to the maximum average waiting time.  The literature on 

monotonicity properties of queueing models will be useful to identify whether a specific 

model has the appropriate property. 

For models that are not solvable even numerically, simulation is the only 

practical alternative.  We can still use a search procedure to find a feasible region, but 

the total computational effort required may become prohibitive.  Akin to the 

development of gradient estimation in simulations over two decades ago (e.g., Fu 2006), 

finding feasible regions in a simulation model may become a fruitful area for future 

research. 

 

References 
 

[1] Buzacott, J.A.  and Shanthikumar,  J.G.  (1993), “Stochastic Models of Manufacturing 

Systems,” Prentice Hall, Englewood Cliffs, NJ.  

 

[2] Davis, J.L., Massey, W.A., and Whitt, W. (1995), “Sensitivity to the service-time 

distribution in the nonstationary Erlang loss model,” Management Science, Vol. 41, No. 

6, 1107-1116. 

 

[3] Fu, M.C. (2006),  “Stochastic gradient estimation,” Chapter 19, Handbook on 

Operations Research and Management Science: Simulation, S.G. Henderson and B.L. 

Nelson, editors, Elsevier, 575-616. 

 

[4] Gans,  N.,  Koole,  G.  and  Mandelbaum,  A.  (2003),  ‘Telephone  call  centers:  

tutorial,  review,  and research  prospects’,  Manufacturing  and  Service  Operations  

Management,  Vol.  5,  No.  2, 79-141. 

 

[5] Gordon, K.D. and Dowdy, L.W. (1980), “The impact of certain parameter estimation 

errors in queueing network models,” Proceedings of the 1980 international symposium on 

Computer performance modelling, measurement and evaluation, 3-9. 

 

[6] Gross, D. and Harris, C. M. (1998), “Fundamentals of Queueing Theory,” 3rd Ed., 

Wiley, New York. 



 

[7] Kleijnen, J.P.C. (1997), “Sensitivity analysis & related analyses: A review of some 

statistical techniques,” J. Statist. Comput. Simul., Vol. 57, 111-142. 

 

[8] Le-Duc, T. and De Koster, M.B.M. (2002),  “Determining the Optimal Order Picking 

Batch Size in Single Aisle Warehouses”, ERIM Report Series Reference No. ERS-2002-

64-LIS. Available at SSRN: http://ssrn.com/abstract=1097857 

 

[9] Le-Duc, T. and De Koster, M.B.M. (2007), "Travel time estimation and order 

batching in a 2-block warehouse," European Journal of Operational Research, Elsevier, 

vol. 176(1), pages 374-388, January. 

 

[10] Liu, Z. and Nain, P. (1991), “Sensitivity results in open, closed, and mixed product-

form queueing networks,” Performance Evaluation Vol. 13 No. 4, 237-251. 

 

[11] Opdahl, A.L. (1995), “Sensitivity analysis of combined software and hardware 

performance models: open queueing networks,” Performance Evaluation, Vol. 22, 75-92. 

 

[12] Sakasegawa, H. (1977), “An approximation formula Lq ≃α·ρ^β/(1-ρ)”, Annals of 

the Institute of Statistical Mathematics, Vol. 29, No. 1, 67-75. 

 

[13] Shanthikumar, J.G. and Yao, D.D. (1989), “Stochastic monotonicity in general 

queueing networks,” Journal of Applied Probability, Vol. 26, 413-417. 

 

[14] Suri, R. (1983),  “Robustness of queueing network formulas,” Journal of the ACM, 

Vol. 30, No. 3, 564-594. 

 

[15] Suri, R., Diehl, G.W., de Treville, S., Tomsicek, M. (1995),  “From CAN-Q to 

MPX: Evolution of queueing software for manufacturing,” Interfaces, Vol. 25, No. 5, 

128-150. 

 

[16] Tay, Y.C. and Suri, R. (1985),  “Error bounds for performance prediction in 

queueing networks,” ACM Transactions on Computer Systems, Vol. 3, No. 3, 227-254. 

 

[17] Tijms, H.C. (1994), “Stochastic models: an algorithmic approach,” New York: John 

Wiley & Sons. 

 

[18] Whitt, W. (2006),  “Sensitivity of performance in the Erlang-A queueing model to 

changes in the model parameters,” Operations Research, Vol. 54, No. 2, 247-260. 

 

[19] Wolfram Research (2010), Inc., Mathematica, Version 8.0, Champaign, IL. 


