
RJ10514 (ALM1310-009) October 25, 2013
Computer Science

IBM Research Report

Visualizing Block IO Workloads

Ohad Rodeh, Haim Helman, David Chambliss
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Visualizing Block IO Workloads

Ohad Rodeh, Haim Helman, David Chambliss

October 18, 2013

Abstract

Massive block IO systems are the work horses powering many of
today’s largest applications. Databases, healthcare systems, and vir-
tual machine images, are examples for block-storage applications. The
massive scale of these workloads, and the complexity of the underlying
storage systems, makes it difficult to pinpoint problems when they oc-
cur. This work attempts to shed light on workload patterns through
visualization, aiding our intuition.

We describe our experience in the last three years of analyzing and
visualizing customer traces from XIV, an IBM enterprise block storage
system. We also present results from applying the same visualization
technology to Linux filesystems.

We show how visualization aids our understanding of workloads,
and how it assists in resolving customer performance problems.

1

1 Introduction

Block storage systems are used today by a vast number of applications.
They provide an easy to use block read/write interface, while scaling from
a single disk to multi-rack complexes. A lot of complexity is hidden behind
the simple interface, and when performance problems occur, it is difficult to
understand the root causes.

Our work uses visualization to better understand storage system behav-
ior, and in particular, how applications use storage. We present a novel
technique allowing the viewing of multiple aspects of a workload in time
and space on a two-dimensional grid. This technique is part of a visualiza-
tion toolkit, developed at IBM Research. It has been used for the last three
years by enterprise customers, to gain insight into their workloads, and to
show the results of what-if scenarios.

The data we work with is block traces, containing a short record for
each read or write request that arrives at the storage target from the hosts.
For an enterprise storage system, it is not unusual to see a billion IOs in
a single day. These are large data sets that defy standard summarization
procedures. There are no parametric statistical distributions describing such
data, and it is too much information for a person to manually sift through.
Our initial attempts at finding good statistical methods for summarizing
the data were unsuccessful. Instead, we found that visualization was a good
middle ground. It allowed presenting large amounts of non parametric data
on a screen, in a manner that is easily digestable by non experts.

Through visualization, we show how read/write, sequentiality, and cache
hits rates change in time and space. This is done per volume, per host, or
for an entire rack. We also calculate and present application footprints, IO
histograms, latency graphs, and cache predictions. These all allows users to
drill down, and find the issues that most concern them. Most intriguing, we
find that access patterns in time and space tend to have similar structure
across applications. Studying this is left for future work.

This document is structured as follows: Section 2 describes related work,
and Section 3 describes the XIV controller. Section 4 goes through a quick
tour of the visualization. Section 5 describes issues in the design and im-
plementation. Section 6 compares Linux filesystems in a graphical way, and
Section 7 examines customers issues. Section 8 summarizes, and Section 9
adds acknowledgments. Many commercial products are referenced in this
article, we list all the relevant trademarks at the end of Section 9.

2

2 Related work

As a rough generalization, all storage products have visualization tools.
Plots of IOps, throughput, and latency, as a function of time, are fairly
standard. What is new in the images that we generate, is the ability to
effectively view access patterns in time and space using a two dimensional
display. A major obstacle is that the space axis is very large; the addressable
disk space is enormous. How would one present the space axis effectively?
Here, we describe the solutions used by others for time/space viewing.

On Linux, blktrace [9] is the standard IO trace collection tool, it has
complementary analysis and visualization tools: btt [2] and Seekwatcher [4].
Generally speaking, running blktrace on a Linux machine creates a bi-
nary file with detailed records describing ongoing IOs for the trace duration.
blkparse processes the output, and can present it in human readable form.
Seekwatcher can visualize the trace using a conventional two dimensional
graph, or with an animation. The main focus of Seekwatcher is presenting
the disk head movement. For example, Figure 1 shows a comparison be-
tween two programs, acp and tar, that walk a directory tree. btt creates
an animation of the trace where the X axis is time, the Y axis is the start
LBA, and the Z axis is number of bytes transferred. Solaris has a roughly
similar tool called taztool.

3

Figure 1: A Seekwatcher visualization of the disk seeks involved in packaging
a directory recursively into a tar file. Two tools are compared: acp and tar.

The Sun Storage 7000 series uses an interesting performance visualiza-
tion toolkit [8]. The product line is based on the Solaris operating system,
ZFS filesystem, and DTrace kernel tracing facility. A web server exports
performance data to connected browsers. In particular, a heat map where
the X axis is time, the Y axis is latency, and color codes are used for IOps
intensity ranges is used to present system performance. This heat map
representation does not display a space/time continuum, however, it does
represent three dimensional data in a two-dimensional display.

IBM Redbook [3] provides a good description of XIV version 11.1. It
describes the SSD caching, IO analytics, and visualization.

4

3 XIV

XIV is an enterprise storage system, supporting block level access using
FCP and iSCSI protocols. Externally, it presents a single system image,
with multiple FCP and Ethernet ports, which a customer can connect to
the SAN. Data volumes can be created on the system, allowing a user to
store data. XIV is typically used by higher end customers, for storing VM
images, databases, health care information, ERP, etc.

The system comprises a rack of modules; see Figure 2. Each module
holds a server class CPU, 24GB of RAM, and 12 SAS disks. An Infiniband
network connects the modules, allowing fast low latency communication.
Disks are not shared; each is connected to a single module. Systems with
flash disks also have 512GB of SSD per module, offering a total system flash
capacity of 7.5TB. With 3TB disks, the system has 243TB of usable disk
space.

Figure 2: A XIV system with a full rack comprising 15 modules.

Customer data is striped across modules and disks in a declustered
RAID-1 pattern. This ensures fault tolerance to single disk and module
faults, while allowing fast rebuild. The slice-based data distribution places
the responsibility for different megabyte units on different modules, in a
manner that is rebuilt and rebalanced very rapidly when hardware is added,
removed, or lost to a failure. Writes are replicated to two modules using

5

NVRAM, improving write speed. Small IOs are coalesced in NVRAM, and
written asynchronously to disk in large extents.

3.1 Caching

The controller includes hundreds of gigabytes of read-write RAM cache and
a second, read-only, cache residing in terabytes of SSD. The SSD cache is
located at the lowest level of the IO stack, right above the disks. The cache
for each module operates on its data only, independently from other modules.
The cache is consulted prior to any disk read, and in most cases is populated
immediately after a disk read or write. The cache design is focused on
servicing small, random reads. It is engineered with write shaping and other
flash-aware features to ensure high performance and good device lifetimes,
even with lower-cost SSDs that do not themselves provide sustained high
performance for random writes. Eviction decisions recognize groups of pages
that are likely to reside on the same flash erase blocks. Another feature is
that large and sequential IOs do not get populated into the cache. Several
goals are met by this design:

1. Avoiding early SSD wear out

2. Making good use of high disk throughput

3. Reducing disk seeks

3.2 Trace Collection

The trace collection facility used in this study is built upon circular buffers
of IO operation history to support engineering diagnostics. Trace collection
operates in an external system that repeatedly polls the XIV modules to
efficiently retrieve the new content from the buffers. The collection system
processes the records from multiple nodes into a unified time-coherent log
of all operations. Each operation record has seven fields:

num blocks: number of 512-byte sectors

is read: is this a read or a write request?

LBA: Logical Block Address

time: time when the request completed, in microseconds

latency: latency in microseconds

6

volume: volume ID as a 64-bit number

initiator id: An identifier for the request initiator

The collection facility also gathers configuration metadata which includes
a volume table, an initiator list, and an overall statistics table. The volume
table has per volume information like name, capacity, group, owner, and
snapshot metadata. The initiator list holds the set of initiators connected
to the storage target. The statistics table contains average latency, iops,
and hit-rates, per five minute time slot. This is crucial for cache hit rate
prediction.

The trace collection procedure has no discernible impact on the XIV sys-
tem performance, which was essential for applying this to customers’ pro-
duction systems. It normally succeeds at collecting 100% of the IO records.
Some records might be dropped if the collection process faces serious net-
work congestion or scheduling congestion on its host machine. In early stages
of this work we explored collection-time sampling to reduce data size, for
example by collecting for one minute out of every 5-minute window. Such
sampled data can yield some useful results, but we found in most cases it
cannot provide the accuracy or confidence for cache prediction that we re-
quire. Thus it was necessary to optimize the procedure to achieve 100%
collection without performance impact.

The traces we work with are mostly from enterprise customers, whose
systems can perform a massive amount of IO. In one day, we have seen traces
ranging from hundred million to 2 billion IOs.

3.3 Cache simulation

Based on collected traces, a cache simulator was built. It implements a much
simplified version of the XIV cache, takes traces, and outputs a prediction for
the read cache hit rate. The simulator takes a configuration file specifying
how much RAM and SSD the machine has. This allows running what-if
scenarios for customers that want to purchase flash cache, or additional
modules.

7

4 A quick tour

A good visualization allows the user to quickly make sense of a large amount
of data by presenting it in visual form. The human mind is very good at
making sense of visual patterns. If data is presented correctly, complex
patterns are immediately recognizable.

A key difficulty is that the screen is two dimensional, with a limited
number of pixels. The data is multi-dimensional, with enormous resolution.
Hence, screen real estate must be used sparingly, to present the important
information. Deciding what is important is a key question.

The IO trace was split into time/space cells of size 1GB × 5-minutes.
This was done for each user visible volume. Several features were calculated
for each cell: average IOps, ratio of read vs. write, distribution of IO sizes,
sequentiality, etc. The main feature in the presentation is a heat map based
on these features; see Figure 3 for an example. The heat map occupies a
bit more than the bottom half of the figure. The x-axis is time, the y-axis
is space, i.e., the logical address within the volume. The hot gigabytes are
presented as rows, as much as can fit in a screen. Cold gigabytes, those
with low IOps, are omitted. A light gray vertical line appears on the left
hand side, it connects rows with adjacent addresses. Each circle has two
properies: radius and color. The radius encodes IOps intensity; the larger
the circle, the higher the IOps. The encoding of IOps is non-linear and
data-dependent, based on quantiles to enhance the contrast of variations.
Areas with low-IOps are omitted. In the default view, color encodes read
vs. write ratio. Red circles have a pure write workload, blue circles see only
reads.

8

Figure 3: A database volume, where the dominant patterns are sequential
read and writes scans. These appear as diagonal lines in the map. Total
trace duration is six hours, row granularity is 8GB, and the coverage is 93%.

There are three other panels in Figure 3. The top panel provides overall
information in textual form, the volume name is chambliss4, the size is
roughly 5TB, and the average IO rate is about 4000 IOps. The second
panel depicts the histogram of IO sizes in logarithmic buckets. We can see
that the major component is 4KB IOs. The third panel is a timeline with
separate lines for total, read, write, and sequential IOps rates.

Figure 3 presents a DB2 database workload, where the dominant pat-
terns are sequential read and write. The heat map shows sequential scans
as diagonals, and random access areas as rectangular shapes (5:00 – 6:40).
Each row shows 8GB of disk space, and the coverage is 93%. This means
that we are depicting the hottest 93% of the total space on the volume. Put
another way, 7% of the IO is not presented, because it consists of low density

9

accesses to large volume areas.
The number of rows in the screen might not be sufficient to present all

the hot gigabytes. In that case, a single row presents average values for a
range of contiguous gigabytes. Similarly, the number of columns might be
larger than those available on the screen. In that case, multiple columns
are merged using averaging. Normally, it is not possible to present all the
accessed areas. To give the user an idea for how much of the IO pattern
is presented, the coverage is calculated. This is the ratio between the IOs
presented on the screen, and the total IO performed on the volume.

There are many ways to define sequentiality. Our calculation is based on
examining 64KB regions (called grains) accessed inside a cell. The following
heuristic inferences rules are used:

• If all the grains in a MB are read in 1 minute, then the MB is read
sequentially.

• If all the grains in a MB are written in 1 minute, then the MB is
written sequentially.

If a MB is accessed sequentially, then all the IO in that minute is counted as
sequential. For each cell, the sequentiality score is the percent of sequential
IO, out of the total amount of IO.

Figure 4 shows an Oracle database volume, with a steady OLTP work-
load. There are 100% reads over the whole volume, and access is split into
eight distinct bands. Cold gigabytes are omitted, causing breaks in the ad-
dress space. In interpreting the heat map one must pay attention to the
legend. The scale for IOps is selected to increase contrast and make features
visible. In this case a cell with the smallest circle might represent IOps only
15% lower than another cell with the largest circle. In a live version one can
click on a circle and see a pop up with exact numbers.

10

Figure 4: A randomly accessed database volume. The rows are 1GB, and
coverage is 99%.

Figure 5 presents an Oracle volume that is written sequentially in three
parallel streams, to three separate disk areas. A pure read workload is
applied to two other areas. The IOps graph shows that the workload is
stable, and consists mostly of sequential writes.

11

Figure 5: A sequentially accessed volume, with three sequential streams.
Rows are 1GB, and coverage is 100%.

Figure 6 depicts a complex access pattern for a volume that holds mul-
tiple VM images. VMWare ESX is the hypervisor and manager.

12

Figure 6: A VM volume, hosting multiple operating system images. It has
a complex access patterns. Row granularity is 1GB, with 73% coverage.

In the browser, clicking on a circle presents detailed information about
the IO pattern on that cell.

The visualization also includes more ordinary line graphs. A line graph
is a traditional X-Y plot of a continuous variable. Several variables could
be plotted together. For example, Figure 7 presents IOps during a day in
the life of a storage system for VMs. Note that several kinds of operations
are presented compactly together: reads, writes, and sequential reads and
writes. There are three distinct activity peaks, at 18:00, 20:00, and 1:00.
There are few sequential writes, but about a third of the reads are sequential.

13

Figure 7: IOps graph for one day in the life of a VM system.

A footprint graph plots the disk area that the user applications access
as a cumulative distribution. It gives a quantitative view, over time, of
the heat skew in a workload, which is useful in understanding the effective-
ness of system features such as caching. Grains (64KB) are sorted from
hottest to coldest, and percentiles are calculated. In Figure 8, the Foot-
print 64KB 60min ALL graph below looks at time windows of 60 minutes,
and examines all IO. The application was a commercial database. At Tues-
day/5am, the hottest 60% of the IO covered a 154GB on-disk area, and the
hotest 80% of the IO covered a 240GB area. The entire data set fit inside
a 1TB area. The bottom graph, Footprint 64KB 60min RANDOM ALL
counts only the randomly accessed grains. In the first half of the trace, ran-
dom access accounts for the majority of the footprint, in the second half, it
account for very little.

14

Figure 8: The footprint of a database workload

Footprints are important when trying to estimate how much cache would
benefit an application.

Figure 9 shows six hours of activity on a volume holding a Microsoft
SQL 2005 database. The top graph is a line plot showing IOps. The bottom
graph is heat-map showing an access pattern with two distinct regions. The
area 2GB – 162GB, at the beginning of the volume, is read and written in
mixture of accesses. A much higher region, 600GB – 715GB, is accessed in
a random read-only pattern. We speculate that the high area holds queried
database records. Since we do not have the client application nor data,
there is no way for us to know for certain. Note that having the IOps graph
does not give an indication as to the spatial distribution of IO. For example,
knowing that there are 20 write IOps at 1pm does not inform us that these
IOs are occurring primarily to the region [2-162]GB of the volume.

15

Figure 9: A SQL 2005 database. Row size is 2GB, coverage is 99%.

16

5 Design and implementation

In our setting, customers send us data, and we send back a visualization.
For this to work well, we needed a compact visualization, that would not
require special viewing software on the customer side. We did not want to
create and ship a complimentary client GUI executable, which would have
to work across multiple OSes.

After deliberation, we chose the HTML5 format and the JavaScript pro-
gramming language. From a customer trace, our toolkit creates a directory
of HTML5 and JavaScript that is around 20MB in size. It can be easily
viewed by any HTML5 compliant web-browser, including smart phones. To
work well, the graphs and grids are all constructed with Scalable Vector
Graphics (SVG). Thus, rotating the screen, and zoom in/out works with-
out loss of resolution. The user could interact with the browser, and filter
through the information.

For internal use, we also support a servlet based interface. A server
machine runs a java servlet with a backend database that holds the heat-
maps. A separate front end GUI is written in javascript and runs on a
browser.

Our heat-maps are based on a the idea of a grid of circles. This is a
matrix of circles of varying size and color, that convey an overall impression.
We experimented with many color palettes, and circle sizes. We had also
consulted Edward Tufte’s books [5],[6], [7]. The literature recommends no
more than 20-30 colors, more than that, and the human mind has trouble
distinguishing shades. We found that seven colors were the maximum we
could use. This is a different problem than cartographic map building,
where colors designate height. Height is a continuous metric, and using
many shades is standard practice. In our setting, read cache hit rates,
sequentiality, and read/write ratios are not continuous. Adjacent circles
could have any combination of colors, and the user would like to recognize
this fact with a single glance at the screen.

Choosing the legend of circle sizes presented a different challenge. We
ended up using only three sizes, because using more would have reduced the
number of rows. Seven colors, and three sizes, provide 21 configurations for
a circle in a grid. We found that this was a good choice for the kinds of
workloads we saw in practice. Normally, volume heat maps have a distinct
pattern that is easily distinguishable. In cases where there is no obvious
pattern, many times, this is because the volume is part of a larger stripe
group, or as in VMware ESX, it might be home to tens of virtual machines.

17

6 Linux filesystems

As part of an effort to compare contemporary Linux filesystems [10], we con-
figured a standalone Linux Ubuntu machine with three mainstream filesys-
tems. We ran several benchmarks, and extracted IO traces during run time.
Trace collection was based on the blktrace tool. When run, blktrace has a
discernible impact on a Linux system, up to 5% CPU in our experiments.

The machine used was an Intel Core i7-2600 3.40GHz CPU. It has a
single socket with eight cores, and 16GB of RAM. The memory was limited
to 2GB by setting a Linux boot parameter. The OS was Ubuntu 12.10, with
a 3.6.6 Linux kernel. The flash disk (SSD) was an Intel SSD-320 Series,
300GB capacity, with R/W throughput of 270 MB/s / 205 MB/s, and R/W
IOps of 39.5K/23K.

Default mount options and mkfs programs were used. Per file system,
the following options were employed:

filesystem options

BTRFS relatime,space cache,rw,ssd
Ext4 data=ordered,relatime,rw
XFS attr2,noquota,relatime,rw

The FileBench [1] toolkit was used for benchmarking, with the mail per-
sonality. A FileBench run starts with an empty volume, and preallocates a
filesystem tree. Once that is done, the chosen workload is executed while
carefully measuring performance. This workload mimics an electronic mail
server. It creates a flat directory structure with many small files. It then cre-
ates 100 threads that emulate e-mail operations: reading mail, composing,
and deleting. This translates into many small file and metadata operations.

BTRFS is a copy-on-write filesystem that uses b-trees to represent all
of its on disk metadata. It’s behavior is shown in Figure 10. The test lasts
about an hour, after preallocation completes. We can see side by side heat-
maps showing (a) read/write ratio, (b) sequentiality, and (c) read cache hit
rates. From (a) we can see that BTRFS writes files at the edge of the al-
located area, and then reads previously written areas. There is an area of
mixed access at the beginning of the disk, our guess is that it holds metadata.
The preallocation phase is characterized by pure sequential writes, whereas
steady state involves a mixed read/write workload. Figure (b) shows that
the writes are purely sequential, whereas the reads are random. Finally,
Figure (c) shows that read cache hits slightly improve over time; the cache
starts empty, and fills up, but never reaches more than 80% hits. We es-
timate cache hits from read IO latency, a read that takes less than 3ms is

18

assumed to be a cache hit. The circles are colored with the percent of fast
reads. A circle colored red means zero hits, a circle colored blue has 100%
read cache hits.

(a) read/write (b) sequentiality (c) read cache hits

Figure 10: BTRFS

XFS is a write-in-place filesystem that uses a write-ahead-log. It’s be-
havior is depicted in Figure 11. Panel (a) shows that after a pure write
preallocation phase, we get mixed read/write access to most disk areas.
This is in contrast with BTRFS, where there is good segregation of reads
from writes. From (a) and (b) we can see two areas where writes are mostly
sequential: the edge of the filesystem and at the logs. The log areas are,
most likely, {24GB, 139GB}. This is because they have a consistently write
dominated write workload throughout the test. The rest of the disk absorbs
mostly non sequential read/write IOs. There are areas with a mostly write
sequential workload, {40GB, 58GB, 75GB, 89GB}, we suspect these store
metadata. Figure (c) shows that the cache warms up with time, reaching
70-80% cache hits at the end of the run.

19

(a) read/write (b) sequentiality (c) read cache hits

Figure 11: XFS. The two areas marked with black ellipses have a dominant
write sequential workload.

EXT4 is the standard Linux filesystem. It uses an update in place pol-
icy, with a write-ahead-log for crash recovery. Its disk behavior, shown in
Figure 12, is fairly similar to XFS.

20

(a) read/write (b) sequentiality (c) read cache hits

Figure 12: EXT4

21

7 Customer issues

The most important use of the visualization is to solve customer performance
issues. An example is an enterprise customer that had an Oracle database
with XIV storage, used for OLTP. The read cache hit rates were hovering
around 30%, and he was wondering if SSDs were going to improve this
situation. A trace was conducted on the system. We then visualized it,
and ran our cache simulation. Figure 13 shows the cache hit situation. The
prediction is for 80%, after about six hours. This number was validated
using a replay in the lab, shown in blue.

Figure 13: Read cache hit rates. The current hit rate is around 30%. The
prediction with SSD is around 80%.

To get a better understanding of the workload, we examined the hottest
volumes, see Figure 14. We saw that they all are issued 8KB random reads.
This matched the description of a database workload. Hence, the pertinent
question is whether the footprint fits in the 7.5TB SSD cache.

22

Figure 14: Thumbnails of the hottest five volumes.

Figure 15 shows that the footprint of random reads in a window of four
hours is 1.4TB. This indicates that the working set is going to fit in the SSD
cache.

Figure 15: The footprint of random reads in a four hour window.

Our recommendation to the client was that purchasing SSDs would sig-
nificantly improve performance, and it did.

Another example is a customer, that owned an XIV box with RAM
cache, but no SSD cache. The storage was used by a Microsoft Exchange
e-mail server, and performance was adequate. The question was whether
purchasing SSDs as cache was going to improve performance.

We traced the production workload, visualized it, and ran a cache pre-

23

diction algorithm on it. The prediction was that SSDs were not going to
improve performance, and the customer should forgo the expense. It turned
out, that the customer already knew this, but wanted to see what we could
tell him about the workload.

Figure 16 shows the read cache hit rate in black, and the prediction in
red. The prediction is based on a cache simulation, which takes a few hours
to warm up. Towards the end of the day, the prediction converges to the
current performance, which is around 75-80%.

Figure 16: Read cache hit rates

It is rare that SSDs do not improve performance at all. To shed light
on this mystery, we plotted the histogram of IO sizes, see Figure 17. Most
reads are 256KB, which bypass the XIV SSD cache. This answered half
the question, but we were still wondering what sort of application issues so
many large reads.

24

Figure 17: IO histogram size

Figure 18 shows a Exchange volume typical for this customer, indeed,
typical of all Exchange volumes that we have seen. During the night, a
sequential scan is performed, this scan is done with 256KB read IOs. We
believe this is a virus scan or a backup. This behavior accounts for almost
all of the read IO on the box, and is not cache friendly. Hence, SSDs are
not going to help this workload. The different Exchange volumes stagger
the sequential scans throughout the day, so that they do not overwhelm the
storage rack.

Figure 18: The read/write pattern of a typical Exchange volume

25

8 Summary

This article has described visualization techniques for block storage systems.
They have been used to (1) solve customer performance issues on XIV stor-
age systems, and (2) to gain insight into Linux filesystem behavior. We
believe the techniques are generic and can be applied to other block storage
systems.

This work is based on field experience gained during the last three years,
of looking at traces, and solving customer problems. One of the main uses
of this technology has been giving advice on SSD purchases.

9 Acknowledgments

We would like to thank Anthony Vattathil, Theodore Gregg, and Aviad
Offer, for their help and support.

A number of commercial products are mentioned. XIV and DB2 are
trademarks of IBM. SQL server and Exchange are trademarks of Microsoft.
Sun and Solaris are trademarks of Oracle Corporation. ESX hypervisor is a
trademark of VMWare. Pentium Core is a trademark of Intel.

26

References

[1] FileBench. http://sourceforge.net/projects/filebench.

[2] A. D. Brunelle. btt, 2006.

[3] B. Dufrasne, I. K. Park, F. Perillo, H. Sautter, S. Solewin, and A.
Vattathil. Solid-State Drive Caching in the IBM XIV Storage System.
International Business Machines Corporation, USA, 2012.

[4] C. Mason. Seekwatcher, 2008.

[5] E. R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, Cheshire, CT, USA, 1986.

[6] E. R. Tufte. Envisioning Information. Graphics Press, Cheshire, CT,
USA, 1990.

[7] E. R. Tufte. Visual Explanations: Images and Quantities, Evidence
and Narrative. Graphics Press, Cheshire, CT, USA, 1997.

[8] G. Brendan. Visualizing system latency. Communications of the ACM,
53(7):48–54, July 2010.

[9] J. Axboe, A. D. Brunelle, and N. Scott. blktrace, 2006.

[10] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The Linux B-tree Filesys-
tem. Transactions on Storage, 9(3), August 2013.

27

