
RJ10517 (ALM1312-006) December 12, 2013
Computer Science

IBM Research Report

Cache Prediction for XIV

Ohad Rodeh, David Chambliss, Haim Helman
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Cache Prediction for XIV

Ohad Rodeh, David Chambliss, Haim Helman
IBM Almaden Research Center

May 22, 2014

Abstract

Enterprise block storage systems have been experiencing a revolu-
tion with the introduction of solid-state-disks, and the demise of high
RPM disks. The IBMTM XIV storage system in particular has em-
braced this concept with the introduction of large capacity SSD based
caches. Customers can purchase the additional cache, for a price. The
natural customer question is therefore, “will SSD caching improve the
performance of my workload?”.

To try to answer this question, and others like it, XIV has incor-
porated block-tracing into its platform, with complementary analysis
and prediction tools.

We have constructed an efficient cache prediction tool, that works
for a modern controller two level cache: RAM over SSD. It scales to
terabytes of cache, and massive multi day traces. Given a customer
workload, it can quickly figure out if the addition of SSD cache is likely
to improve cache hit rates.

1 Introduction

Many scientific questions about the behavior of a block storage system can-
not be answered using the succinct information that is normally available
from its performance instrumentation. Timelines of aggregate IOs per sec-
ond (IOps), throughput, latency, etc. are very good indicators of system
health, adequacy of the performance, change in performance and utiliza-
tion over time, and whether there are issues requiring deeper investigation.
When a decision is faced regarding more sophisticated features, such as
SSD caching, however, the statistical aggregates are not of much help. If we
want to do better than applying rules of thumb, we need to capture more
information about specific characteristics of workload patterns.

1

This work focuses on the collection and analysis of block traces. These
are, essentially, very large tables containing a short descriptive record for
each IO received by the storage target. No customer data is included in the
IO record. Using these traces, we set out to solve an important customer
question: “should I upgrade my XIV system with an SSD cache?”

The XIV storage system is an enterprise class storage controller con-
structed from a rack of modules, each holding a standard CPU, memory,
and locally attached disks. It achieves very high throughput and reliability
through its declustered distribution of all volumes across many disk drives.
An important feature made available in the third generation (Gen3) of XIV
is extended caching of read data on solid state disks (SSDs). The additional
SSD cache may be 20× larger than the RAM cache. For workloads with
the right access locality, SSD caching means that most read operations not
already caught in the RAM cache will be SSD cache hits—meaning they
are serviced with very low latency SSD reads instead of higher latency disk
reads.

The XIV product offers a certain amount of SSD per module, for all
modules. This means that, for a rack, a customer can buy a particular
amount of flash cache. This limits customer choice, however, it simplifies
testing and configuration. It also simplifies the prediction question. Instead
of answering what performance is going be with varying amounts of SSD
cache, we only need to answer that question for a particular amount of
flash.

For many customers, adoption of XIV Gen3 has been contingent on the
performance boost from SSD caching. Laboratory evaluations against mean-
ingful benchmarks show large throughput increases and latency reductions
when SSD caching is added to an XIV system [2]. However, some workloads
do not benefit much from caching, and some customers have been reluctant
to invest time and effort into a technology refresh without assurance that
theirs is not one of those unlucky workloads. A primary goal of this work
has been to offer such customers a reliable prediction on which to base their
decisions. With this prediction in hand, a customer can make an informed
choice, if he wants to spend the money and purchase the SSD.

We found that useful projections of cache effectiveness for a particular
workload required more information than was captured routinely in aggre-
gate performance statistics. Our choice was to capture traces of essentially
all IOs to the storage system so that various paths for offline analysis could
be tried. With an IO trace in hand, it is possible in principle to run the
same algorithms as in the product and derive the correct cache results. We
wanted a solution that would be fast, cheap to run, and be deployable with-

2

out making any changes to the XIV boxes in the field. Our solution was
(1) trace the workload, (2) build a coarse cache simulation, and (3) run the
trace through the simulator while sampling the IOs. We concluded that this
was a workable compromise, that provided good accuracy while requiring
little hardware resources.

There is wide existing literature on simulating cache and page re-reference
behavior with LRU. We found that for realistic estimates, approximating
cache behavior with LRU is insufficient, as it does not take into account
optimizations for sequential access: read ahead, and write behind. We con-
tribute:

1. A data structure that estimates re-references as well as sequentiality.

2. A sampling method that maintains memory overhead flat, at the cost
of accuracy.

3. Real world experience with these methods.

We believe our methods are general, and can be applied to other work-
loads and systems.

This document is structured as follows: Section 2 describes related work,
and Section 3 describes the controller. Section 4 describes our cache pre-
diction procedure, Section 5 describes our field experiences, and Section 6
summarizes.

2 Related work

Seminal work [12] on demand paging introduced the key concept of a work-
ing set, and analyzed its theoretical behavior under simplifying statistical
assumptions. The working set of a process W (t, τ), is the set of differ-
ent pages accessed in the time interval (t − τ, t). The size of the working
set, defined as ω(t, τ), is very important for cache management and pro-
cess scheduling. Stated simply, as long as the working set of a program is
memory resident, thrashing will not occur.

Trace based LRU simulation has been extensively studied, for exam-
ple [13] shows how to efficiently simulate multiple cache sizes in one trace
pass.

The ESX server [4] uses a two level paging scheme, with guest OS page
system layered on top of the hypervisor. It uses a combination of RAM
page deduplication, swapping, and ballooning to manage memory. This sup-
ports over committing memory, while allowing efficient sharing, and reacting

3

quickly when memory pressure arises in a particular guest. The notion of
working sets, and working set estimation is used to gauge idle memory.

Article [11] presents a method that, using efficient LRU simulation, al-
lows estimating the Miss Ratio Curve (MRC) for a large number of cache
sizes, in one trace run. Two practical schemes are presented for achieving
this in a running Linux system, one is software only, the other employs hard-
ware. The MRC shows for a process, given X amount of pages, how many
cache misses it would suffer. This information allows splitting the available
page cache between a group of processes, and reducing overall cache misses.
Another use case, is to minimize the amount of RAM chips powered up,
while maintaining good performance. This reduces energy usage.

The main difference between [11] and our work, is that we take into
account not only LRU behavior, but also read-ahead, coalescing of dirty
pages by the NVRAM, and additional XIV cache features. This complicates
cache behavior significantly. It also means that if a page is in cache given
X pages , it might not be in cache given X + 1 pages. Hence, we cannot
calculate the MRC curve for multiple cache sizes in one trace run. In our
use case, the flash size is known in advance, it is not a parameter.

RapidMRC [5] applies the MRC idea to the CPU L2 cache. The approach
is to calculate the MRC online, inside the running machine. The main
difficulties are (1) tracking L2 misses in software is expensive, and (2) the
benefit from reducing L2 misses is not nearly as large as reducing page swaps
to disk.

Synthetic traces have been used to evaluate systems and algorithms. For
example [8] presents algorithms that build address traces that mimic locality
of reference of executables. In the storage realm, the industry standard SPC1
and SPC2 benchmarks generate IO patterns that emulate behavior of real
world applications.

IBM Redbook [2] provides a good description of XIV version 11.1. It
describes the SSD caching, IO analytics, and visualization.

NetAppTM Flash Cache [10] is a software/hardware offering that allows
a customer to add flash cache to a NetAppTM storage controller. A previ-
ous generation of the product was called Performance Accelerated Module
(PAM), and it used DRAM instead of flash cache. At the time of writing, a
single module can hold up to 1TB of SSD cache, and multiple modules can
be connected to single NAS box. The product has a predictive mode where
it simulates file-system cache accesses and returns a prediction for hit rates.
This can be used by a customer considering buying more cache to see if the
additional resources will benefit his workload.

In 2005 a storage simulator [1] was built for the massive storage system

4

used by the National Center for Atmospheric Research (NCAR). At the
time, the total system capacity was 2PB. The simulator was trace based,
it estimated overall system performance given a particular hardware con-
figuration: disk drives, memory, tape systems etc. It worked by running
a month worth of user read/write requests through a discrete-event based
simulation. The goal was to help in capacity planning. For example, es-
timating how much disk cache is needed to offload reads from tapes. The
authors report an accuracy level of approximately 20%.

Guerra et. al [6] describe a tiering algorithm that migrates extents dy-
namically between SAS, SATA, and SSD. Extents are significantly larger
than filesystem pages, to reduce metadata costs. In the experiments, 64MB
extents were used, with 200 bytes/extents bookkeeping overhead. The cost
model takes into account IO density (IOps/GB), bandwidth, and cost per
Gigabyte. Access and usage information is gathered per extent, and period-
ically, extent placement is determined by solving an optimization problem.
By contrast, our work (1) uses caching, not tiering, so extent size is a 4KB
page, (2) pages are moved online, as an immediate response to user re-
quests, and (3) the cost model is fixed: the price of SSD for XIV is known
to customers in advance.

Cache simulation using traces has a long academic tradition starting in
the 1980s [7],[9]. Sampling has been used in combination with estimation
of what would happen if cache was increased since the 1990s [3]. While
the techniques exist, we have found that generic LRU simulation, frequency
analysis, and re-access functions lead to high error rates. We had to simulate
the particular XIV cache in order to achieve low error rates.

In addition, we had a wide body of real world traces to work with. These
are, unfortunately, customer confidential, and cannot be freely shared.

3 XIV

3.1 System Overview

XIV is an enterprise storage system, supporting block level access using
FCP and iSCSI protocols. Externally, it presents a single system image,
with multiple FCP and Ethernet ports, which a customer can connect to
his SAN. Data volumes can be created on the system, allowing a user to
store data. XIV is typically used by higher end customers, for storing VM
images, databases, health care information, ERP, etc.

The system comprises a rack of modules; see Figure 1. In the third
hardware generation (Gen3), each module holds a server class CPU, 24 to

5

48 GB of RAM, and 12 SAS disks. An Infiniband network connects the
modules, allowing fast low latency communication. Disks are not shared;
each is connected to a single module. Systems with flash disks also have 512
to 800 GB of SSD per module, offering a total SSD capacity of 7.5 to 12
TB. The software running on Gen3 machines is XIV version 11. The second
hardware generation (Gen2) used Ethernet for internal connectivity, 8 to
16 GB of RAM per module, and no SSDs. The software running on Gen2
machines is XIV version 10.

Figure 1: A XIV system with a full rack comprising 15 modules.

Customer data is striped across modules and disks in a declustered
RAID-1 pattern. This ensures fault tolerance to single disk and module
faults, while allowing fast rebuild. The slice-based data distribution places
the responsibility for different megabyte units on different modules, in a
manner that is rebuilt and rebalanced very rapidly when hardware is added,
removed, or lost to a failure. Writes are replicated to two modules using
NVRAM, improving write speed. Small IOs are coalesced in NVRAM, and
written asynchronously to disk in large extents.

3.2 Caching

The controller includes hundreds of gigabytes of read-write RAM cache and
a second, read-only, cache residing in terabytes of SSD. The SSD cache is

6

located at the lowest level of the IO stack, right above the disks. The cache
for each module operates on its data only, independently from other modules.
The cache is consulted prior to any disk read, and in most cases is populated
immediately after a disk read or write. The cache design is focused on
servicing small, random reads. It is engineered with write shaping and other
flash-aware features to ensure high performance and good device lifetimes,
even with lower-cost SSDs that do not themselves provide sustained high
performance for random writes. Eviction decisions recognize groups of pages
that are likely to reside on the same flash erase blocks. Another feature is
that large and sequential IOs do not get populated into the cache. Several
goals are met by this design:

1. Avoiding early SSD wear out

2. Making good use of high disk throughput

3. Reducing disk seeks

3.3 Trace Collection

The trace collection facility used in this study is built upon circular buffers
of IO operation history to support engineering diagnostics. Trace collection
operates in an external system that repeatedly polls the XIV modules to
efficiently retrieve the new content from the buffers. The collection system
processes the records from multiple nodes into a unified time-coherent log
of all operations. Each operation record has seven fields:

num blocks number of 512-byte sectors
is read is this a read or a write request?
LBA Logical Block Address
time time when the request completed, in microseconds
latency latency in microseconds
volume volume ID as a 64-bit number
initiator id An identifier for the source of the I/O request

The collection facility also gathers configuration information which in-
cludes a volume table, an initiator list, and an aggregated performance
statistics table. The volume table has per volume information like name,
capacity, group, owner, and snapshot metadata. The initiator list holds the
set of initiators connected to the storage target. The statistics table con-
tains average latency, iops, and hit-rates, per five minute time slot. This is
crucial for cache hit rate prediction.

7

The trace collection procedure has no discernible impact on the XIV sys-
tem performance, which was essential for applying this to customers’ pro-
duction systems. It normally succeeds at collecting 100% of the IO records.
Some records might be dropped if the collection process faces serious net-
work congestion or scheduling congestion on its host machine. In early
stages of this work we explored collection-time sampling to reduce data size,
for example by collecting for two seconds out of every 10-second window.
Such sampled data can yield some useful results, but we found in most cases
it cannot provide the accuracy or confidence for cache prediction that we
require. Thus it was necessary to optimize the procedure to achieve 100%
collection without performance impact.

4 Cache prediction

This section presents the cache prediction method we developed and evalu-
ated. Success in this modeling is a challenge because the hundreds of millions
of IOs may all reference distinct 4KB pages, and a perfect model must po-
tentially detect at each step a re-reference to any prior page. In addition,
the cache sizes we consider have very long residency times, a hit can occur
to data that is a week old. This requires keeping track of long histories.

XIV allows two configurations: all modules are fitted with SSD, or none
of them are. Per module, one SSD chip of fixed size is installed. Our cus-
tomers, those with existing XIV racks, can either buy SSD for all modules
or none. This reduces the prediction question to a simulation for one total
cache amount per rack. On the one hand, this is simpler than [13], where
multiple cache sizes can be simulated in one trace run. On the other hand,
the XIV write coalescing and prefetch algorithms, while providing substan-
tial performance benefits, do not respect the inclusion property:

If a page is in cache with K pages, it will be in a cache with
K + 1 pages.

We suspect this is true for other real world cache implementations. Without
the inclusion property, the stack model [12],[13], [11] breaks. For example, if
an application does a sequential scan of a database, it will incur 100% cache
misses, using the pure LRU stack model. By contrast, the XIV readahead
algorithms will recognize the access pattern, prefetch the data from disk into
RAM, and achieve close to 100% cache hits.

8

4.1 Objectives and requirements

The primary goal of modeling in this work is to provide what-if predictions
of the performance effects from adding SSD cache to an existing XIV system,
on the particular workloads of interest. The results should be fast enough
and accurate enough to support good decisions about those changes. The
modeling should not require unusual or expensive hardware, and preferably
could be run on inexpensive laptops, so that it can be included in tools
readily deployed for use in the field.

The customer’s main concern is with the storage system’s effect on ap-
plication performance, and the critical factor is the IO latency. Since reads
from SSDs are so much faster than disk reads, what matters most is what
fraction of reads are serviced from the SSD cache: the hit rate. In some
cases, it is important to translate the hit-rate change into an estimate of IO
latency improvement.

The scope of prediction requirements is limited. Since decisions are based
on mainstream cases and a normal operating state, the model does not need
to handle complexities such as disk failure and performance during recovery.
For this work, modeling of disk queues and consequent performance, and any
explicitly time-dependent behavior, was not required. The one crucial result
is the hit rate that results from caching, for the system as a whole and for
individual volumes. Accurately identifying whether each individual read
would be a hit or a miss is not required, though there is added value when
hit-miss statistics can be projected to units smaller than entire volumes.
We determined that an accuracy of 5% on system- and volume-level hit
rates with SSDs would be sufficient for decisions. This is small compared to
typical increases in hit rates with addition of SSD cache, which range from
10% (in systems where the RAM cache is already highly effective and there
is little room for improvement) to more than 60%.

Another simplification is that our accuracy requirements for RAM cache
modeling are relaxed. In what-if scenarios with SSDs, it is not very impor-
tant which hits occur in RAM and which in SSD. For actual systems with
RAM only, the hit rates are directly measured so model results need not
be relied on. We would need better accuracy if customers were contemplat-
ing the removal of SSDs already deployed, and we were providing what-if
analysis, but that need has not arisen and seems unlikely.

Approximate methods are required because of the cache sizes and the
number of IOs. A straightforward implementation of a 6TB page-level cache
would require 12GB to 24GB for metadata alone, far beyond our target
footprint. Thus it is important that perfect accuracy is not required.

9

4.2 Overview

The cache prediction model is simulation based. It is written in JavaTM ,
uses one thread of execution and up to 2GB of RAM, and as such is fairly
portable. XIV looks at 1MB on-disk areas, aligned on 1MB boundaries, this
is mimicked by the cache model.

Several simplifying assumptions are made, the major ones are:

1. The cache and SSD are managed as a single global pool. In reality,
these resources are split into 15 modules, spread across the rack. We
implicitly assume an even distribution of IOs across the modules.

2. The caching algorithm is a single LRU list. The reality is that there is
a cache instance per module, and several LRU lists are used to manage
it.

3. Disk and module failures can be ignored.

4. Rebuild overheads can be ignored.

5. Readahead and write coalescing can be simplified.

The simulation makes a single pass on the trace, and performs bookkeep-
ing for each IO. It also does bookkeeping every minute of simulated time.
The running time is determined by the number of IOs in the trace, and the
number of minutes simulated.

The address space is split into 16MB areas, and controller cache behavior
is emulated for each region separately. Each region includes 4096 pages of
size 4KB. Per page, 4 bytes and one bit are used, as follows:

Size Name Usage

2bytes ramAge how recently was this page touched in RAM
1bit dirty was this page written to in the last minute?
2bytes ssdAge how recently was this page touched in SSD

The RAM simulation works as follows. An untouched page has a zero
ramAge counter. The first time page P is accessed, it’s ramAge counter
is set to MAX SHORT (215 − 1). The counter is reduced every minute by
one. Once a minute, all regions are scanned, and the current occupancy
is calculated. If the occupancy goes above the simulated cache size, the
eviction routine is invoked. It discards clean pages by setting their ramAge
to zero. Dirty pages cannot simply be discarded, they must be written to
disk first (more on that below). The eviction routine first discards all pages

10

aged 1, if that is insufficient, it discards all pages aged 2, this continues until
we fit into the amount of simulated cache.

It is theoretically possible for a page to live for MAX SHORT minutes
and then be discarded even if that is not strictly needed. However, this
would require a trace lasting more than eight days, where our longest trace
is a week.

Sampling is used to limit the number of simulated regions, this is ex-
plained in depth in 4.4. The default heap size is 2GB, which allows roughly
20,000 regions.

In theory, about four bytes of metadata are needed to keep track of
a cache page. In practice, due to implementation overheads, and garbage
collection costs, 8 bytes is a more realistic estimate. In order to simulate
a gigabyte of cache, 8bytes × 1GB

4KB = 2MB of RAM are needed. With a
memory budget of 2GB, a total of 1TB of cache can be simulated. Since
we are trying to simulate a 7TB cache size, and a 243TB address space, we
are likely to run out of RAM at some point. Sampling is used to overcome
this problem, however, we need to account for the missing regions. This is
done by inflating the values for the regions that are being simulated. For
example, in order to estimate total IOps, assuming a sampling of 10%, we
need to multiply the observed iops by a factor of 10. A more important
example, is accounting for cache space. If the total amount of simulated
cache is 500GB, then the actual amount is 5TB.

There are two kinds of prefetch: short, and long. The minute-scan looks
for consecutive pages in a region with a maximal counter, these are extents
read in the last minute. Long prefetch reads from disk 6MB, if the previous
3MB were read. Short prefetch works by extending read misses, and sending
longer IOs to disk. Data prefetched in this way is brought into cache with
a short counter, so that it will be evicted sooner, unless actually touched.
The original read request R is extended in proportion to the size of the
contiguous cache resident extent E, where R ⊆ E. The minimal IO sent to
disk is 64KB, the maximal is 1MB, and in between |E| is rounded down to
the nearest power of two. For example, examine 1MB area that has been
untouched so far, and the user is going to read it sequentially with 4KB
IOs. The first IO [0− 4KB) is a miss, causing the range [0− 64KB) to be
fetched from disk. The next 15 IOs are hits. The next IO, [64KB− 68KB)
is a miss, causing an additional 64KB to be fetched from disk ([64KB −
128KB)). Now come 15 page IOs that are hits, followed by a miss, causing
a read of 128KB ([128KB − 256KB)). The next disk IOs are going to be
[256KB−512KB), and [512KB−1024KB). In all, five disk IOs are used to
serve 256 consecutive page read requests. After Three megabytes are read

11

in the way, long prefetch will kick in. In the XIV accounting method, this
counts as five misses, and 251 hits.

To emulate the way XIV write caching works, the minute-scan finds
dirty (written) extents. These are consecutive pages whose dirty bits are
set. Such extents are written to disk and evicted at the minute boundary
with IOs of up to 1MB. There is a limited budget of disk IOps, as a function
of the number of backend disks. If the machine cannot keep up, then RAM
resources will be taken up by dirty data that is waiting for destage. This
causes a reduction in read hits, when there are write spikes.

The SSD cache is a layer situated between the RAM cache and disk.
The SSD cache simulation uses a 2 byte counter for each accessed page,
using an approach similar to RAM. The main interaction channel between
RAM, SSD, and disk layers is through IO requests. All reads that miss
the RAM cache are sent to the layer below it (SSD). All reads longer than
64KB bypass the SSD entirely, and go directly to disk. Short reads (up to
64KB) go to the SSD, if this is a hit, the data is copied from SSD to RAM.
Otherwise, the read request continues to the disk, and populates both SSD
and RAM on the way back. Write IOs are issued by the dirty-scan. All
writes above 64KB invalidate the corresponding SSD area, on the way to
the disk. All short writes update the SSD cache and the disk. Long IOs
bypass the SSD in order to avoid wear out. This is important for workloads
that have a significant sequential component.

For example, a 1MB write will invalidate the SSD cache, whereas a 32KB
write will update it.

It would have been possible to use LRU to implement the cache, instead
of page counters packed into regions. We believe it is much more efficient to
use arrays of packed counters, than deal with an LRU stack, especially when
there is a requirement to detect contiguous extents. There is one significant
drawback to this approach, if data accesses are very sparse, we could end
up, in the worst case, with a single valid page per region. That would be
much less efficient than an LRU representation.

4.3 The traces

Table 4.3 shows summary information for a representative set of traces taken
from our collection. Most workloads are around 24 hours, and represent real
customer workloads. A few traces are shorter or longer, the shortest being
four hours, and the longest 52 hours. There are a few benchmarks, notably
EPIC, which is a health care database application, and SPC1, which is a
storage benchmark. The number of IOs per trace ranges between hundred

12

millions, to several billion.

4.4 Sampling

Sampling is used to process fewer IOs and—more important—to contain the
memory footprint. We use space sampling to reduce the number of tracked
regions. A systematic subset of regions is selected, and all IOs and pages
for those regions are processed, while IOs to regions outside the subset are
ignored. The cache sizes applied to the subset are scaled down from the
sizes in the full system by the sampling factor (i.e., the subset size divided
by the total address space size).

We have also explored time sampling which might, for example, process
only the first ten seconds of every minute of trace. If successful, time sam-
pling would have empowered us to perform more streamlined data collection.
The obvious pitfall is that processing some but not all IOs to a given address
changes the correlations that lead to cache hits and changes the hit fraction,
and there is no clear way to correct the distortion. Even without intentional
time sampling, our procedures must deal with the possibility of occasional
gaps in data collection, which affects accuracy.

Consider a 4KB page that belongs to region R, that is in the sample.
The page was accessed ten times in one minute, with a 0.9 hit rate. Assume
that trace collection missed one of these accesses, as it managed to collect
90% of the IOs. The simulation would count the accesses as one miss, to load
the page from disk, and eight hits. This would mean 8

9 = 0.89 hit rate; a
small error. However, if only 50% of the IOs are collected, the hit rate under
simulation would be 4

5 = 0.8, a much larger error. The conclusion is that
small IO collection losses are acceptable, but large loses cause significant
simulation errors.

In our workloads, sometimes, a few regions account for a significant
portion of the IO stream. Ignoring these hot spots, and sampling the regions
uniformly, causes significant errors. Instead, we make an initial pass on the
log, and count how many IOs land on each region. The regions are sorted
from top to bottom by the number of IOs. The top 100 are chosen, and the
rest are randomly selected, such that we are able to fill the available RAM.
In what follows we call the top 100, hot regions, and the rest cold regions.

A hot region represents itself, while a cold region represents a group of
regions. For example, if 100,000 regions were accessed in the trace, and
20,000 fit in memory, then the sampling factor is 5, and the sample ratio is
1
5 . A cold region in the sample represents 5 regions. An IO to a hot region
is tallied as a single IO, while an IO to a cold region counts as 5.

13

NumIOs runtime hours description

892,421,450 12 SQL Server and VMware workloads
504,228,777 24 Business Intelligence (BI) on a Microsoft SQL cluster
761,785,357 24 VMware and Mysql database

1,937,988,132 24 SAP DB running on Microsoft SQL 2008 R2
714,679,893 24 Federated SQL database
705,010,671 24 Exchange workload
899,818,542 24 DB2 and several SQL servsers and VMware clients
918,274,570 24 Database server doing Oracle ERP (BI) work
693,292,344 48 Exchange email, SQL Server for SAP, fileserver, VMware

1,414,801,905 28 Exchange email, SQL Server for SAP, fileserver, VMware
368,800,504 24 Microsoft Windows 2008 R2 environment, mostly Hyper-V clusters
111,863,736 24 VMware and a handful of physical direct attached Wintel machines

2,673,873,236 24 ESX datastores volumes, SQL servers and, test Oracle databases
1,735,334,707 15 Billing Application
1,807,470,033 48 SAP on IBM system-i (AS400)
1,000,000,000 24 Bank
2,262,834,499 48 SAP R3 database

452,256,690 16 Oracle database, financial application used to manage pension funds
286,133,498 24 VMware environment, SQL servers, and SQL/SAP
793,597,183 12 Application environment is EPIC (Health care)

1,934,444,757 24 EPIC benchmark
791,390,915 24 Database
818,677,441 24 Multiple AIX systems and some Win2k8 R2 SQL servers
538,795,437 16 Hosts AIX and VMware and Oracle database

1,407,151,765 24 Oracle/ZFS
2,279,587,775 52 VMWare ESX

634,121,863 4 SPC1 test
241,452,177 24 ESX vmware and GPFS file system used for analytics
497,588,635 24 VMWare environment

1,623,641,554 24 Windows, AIX, Oracle, SQL, and VMS
407,921,312 24 VMWare
574,777,286 24 SAP R3 database

211,647,690 24 Unknown
2,274,760,000 24
1,083,752,234 24
2,067,512,157 24
1,023,943,436 24

188,536,064 24
1,023,616,635 19

762,257,464 24
331,531,816 24

Table 1: Representative trace list. In some cases, we do not know the
applications accessing the storage.

14

The capture ratio is the fraction of IOs that land on a region that is in
the sample. Figure 2 shows the distribution of the capture ratio vs. sample
ratio. If the ratios are equal then IOs are uniformly distributed. In our
traces, the average sample ratio is 10%, and the average capture ratio is
30%. In extreme cases, 50% of the IOs are concentrated on 10% of the
accessed regions.

●

●

●

●●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

capture vs. sample ratios

sample ratio

IO
 c

ap
tu

re
 r

at
io

Figure 2: Distribution of capture ratio vs. sample ratio.

4.5 Performance

Figure 3 depicts simulation performance. The x-axis is simulation speed
measured in thousands of IO per second, the y-axis is number of traces
in each discrete bucket. The maximal speed is around 800,000 IOps, the
minimal is a bit above 50,000 IOps, and the median is around 400,000 IOps.
The XIV IOps in the field rarely goes above 40,000 IOps, because some
IOs reach the disk, slowing applications down. The time to simulate a
customer 24 hour trace is normally about an hour, even for heavy traces.
Trace length is not the primary factor in simulation speed, rather, it is trace
locality of reference. Our region data structures are allocated in 2GB of
RAM, significantly larger than the processor L2 cache. If a burst of IOs
touch a region, it will be resident in the L2. If IOs are spread across many
regions, they will compete for L2 cache space, slowing everyone down.

15

simulation speed in K/IOps

K/IOps

nu
m

 tr
ac

es

0 200 400 600 800 1000

0
1

2
3

4
5

6

Figure 3: Histogram of simulation speed measured in K/IOps. The maximal
speed we get is 800,000 IOps, the minimal is 50,000 IOps, and the median
is around 400,000 IOps. It is rare for an XIV rack in the field to perform
more than 40,000 IOps. This is because some IOs inevitably miss the cache,
and have to be serviced by the disks.

The computational complexity is O(|trace length| + K|num minutes|).
Where K is a constant determined by the time it takes to perform the
per-minute region scan. The simulation does not get slower as cache size
increases, because the heap size stays constant. The factor that matters
most is the number of live 16MB regions. In addition, accuracy is lost, as
the sampling rate climbs. The read-write ratio does not affect the simulation
significantly, because processing reads and writes costs roughly the same in
terms of CPU cycles. The algorithm is just as accurate during warm up vs.
steady-state.

4.6 Latency modeling

A customer’s goal is generally not the hit rate as such, but the speed of the IO
response, as reflected either in the average latency of the operations (which
is crucial to response time for online applications) or in the IO rate that can
be achieved (which affects the windows needed for batch job completions).
The two are closely related; most batch processes, the IO rate increases
significantly when IO latencies go down. It is therefore very useful to deliver
estimates of IO latencies with and without SSD caching.

16

Our simple approximation is to estimate a new average latency for each
measurement interval, by using the predicted hit ratio to interpolate between
the observed average latency at that time for misses (i.e., disk reads) and a
fixed latency value for SSD hits. This estimate is not precise: It ignores the
reduction of disk queues as disk reads are reduced, and any changes in CPU
operations and internal network transfers. Even if latency of the storage
system were modeled precisely, it would nevertheless not be a precise what-
if result because we do not know how much the arrival rate and timing of
IOs will change as applications respond to shorter average latencies.

4.7 Laboratory validation

We conducted a number of replay experiments to validate model results
against the behavior of the actual product caches against an identical IO
stream.

Figure 4 presents original, prediction, and replay results for a database
workload. The trace covered a 24 hour time frame on a customer storage
rack that serves as the backend for a production database used by an SAP
installation. The rack was a Gen2 machine with 15 modules and 120GB
of RAM cache. The original hit rate was around 60%. The replay and
prediction timelines closely match, during warmup and steady state. They
reach around 90% after a day’s warmup.

17

18:00 23:00 04:00 09:00 14:00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

re
ad

 c
ac

he
 h

it
ra

te

org
replay
prediction

Figure 4: Replay experiment with a database workload. The black line
shows the original read cache hit rate, and the red line shows the prediction.
The blue line shows actual results when the trace was replayed against a
Gen3 machine with an SSD. The original customer machine was a Gen2,
and we can see that moving to a Gen3 with SSD is expected to increase
hit-rates from 60% to 90% after a day’s warmup.

Figure 5 presents results for an additional database workload. The trace
covered a six-hour time, on a Gen2 rack with 14 modules and 112GB of
RAM cache. The original hit-rate (without SSDs) is around 30%. The
overall prediction for a system with SSDs, in red, ends up at the 80% mark
after a four hour warm up period. A replay of the workload on a Gen2
system in the lab with SSDs, in blue, was very close to the prediction.

18

13:00 14:00 15:00 16:00 17:00 18:00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

re
ad

 c
ac

he
 h

it
ra

te

org
replay
prediction

Figure 5: Replay experiment with a database workload. Hit rates improve
from 30% to 80% during a six hour period.

The remarkable thing about this trace, is that it has three regions that
account for 12% of the IOs. Ignoring these hot spots lead to 10% hit-rate
prediction errors.

5 Field experience

The following is a case study of a customer that initially had a Gen2 machine,
replaced it with a Gen3, and finally added SSDs. The application was an
OracleTM database. Figure 6 shows the progression in read cache hit rates.
The top graph show the Gen2 rack, the middle shows the Gen3, and the
bottom depicts Gen3 with SSDs.

Initially, the customer had a Gen2 machine with an average IOps of 7000,
and a read cache hit rate around 50%. The prediction was that, with the
addition of SSD, a 90% cache hit rate would be achieved (this was an early
version of the cache prediction algorithm). The projected improvement was
sufficient to warrant the effort of moving the workload onto a system with
SSDs. After moving to Gen3, performance hadn’t changed much, and cache
read hit rates were still around 50%. The updated SSD prediction was for a
95% cache hit rate. The customer decided to purchase SSDs, this increased
the average IOps to 13000, and achieved the 95% read cache hit rates within
two days of installation. The bulk of the workload was random 8KB reads

19

to a 3TB disk area. Since this fit into the SSD, performance dramatically
improved.

It is instructive to compare, in Figure 7, the measured hit rates before
and after SSDs were installed. Note that the workload with SSDs was sig-
nificantly heavier. The predicted hit rate (solid blue) has a steady warm-up
for about 6 hours in the first day (a), after which the predicted rate is high
(about 92% near 6:00 PM at (b)) but visibly lower than the rate in the real
system at the same time of day (97%). However, the predicted hit rate in
the second day is markedly higher, and closer to the observed rates. This
does not indicate the second day differs from the first, but rather that con-
tent referenced in the second day is left in cache from the first day, so the
warmup was not fully complete when the hit rate first seemed to level off.

In comparing prediction and measurement for the second day, there are
discrepancies labeled (d) and (e) which are associated with overnight batch
processes, whose size and timing may be different in traces taken months
apart. There are also many times where the two are remarkably close (c),
but the apparent precision might arise from compensating errors. In Fig-
ure 6(Gen3 + SSD), where the same measured hit rate is shown with the
predicted hit rate from the same trace, we actually see a greater difference
at the times corresponding to (c), typically of several percent. This is well
within our target for accuracy, and is typical of the achieved accuracy.

20

Gen2

18:00 23:00 04:00 09:00 14:00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

re
ad

 c
ac

he
 h

it
ra

te

org
prediction

Gen3

Wed Thu

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

re
ad

 c
ac

he
 h

it
ra

te

org
prediction

Gen3 + SSD

Wed Thu

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

re
ad

 c
ac

he
 h

it
ra

te

org
prediction

Figure 6: A customer that migrated from Gen2, to Gen3, and then Gen3
with SSDs. The prediction was for a large improvement in read cache hit
rates, and read latency. The graphs show the progression in cache hit rates,
from Gen2 at the top, to Gen3+SSD at the bottom.

21

0

20

40

60

80

100

120

6:00 AM 12:00 PM 6:00 PM 12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM 6:00 AM

Advance prediction

ActualHits

Hits without SSDs

(a)

(b) (c) (d) (e)

Figure 7: Comparison of advance prediction with customer results.

The significance of day-to-day access repetitions is verified in the time
distribution we measured for consecutive accesses of the same page (Fig-
ure 8). About 455 GiB of data is read during the first day and not accessed
again until it is read 24±0.5 hours later. Another conclusion from the curve
in Figure 8 and others like it is that very high accuracy in cache modeling
(better than 1%, say) depends on handling the tail of the re-access distribu-
tion, and thus on modeling well the retention of cache content across many
hours or days. For our users, an error of a few percent does not matter
in the decision to deploy an SSD cache. However, for the related problem
of designing a cache policy, retaining all the right multi-day content might
change 95% hits to consistently more than 99%, and the 5× decrease in miss
rate would dramatically increase performance.

22

0.99

0.992

0.994

0.996

0.998

1

1.002

0.8

0.85

0.9

0.95

1

1.05

0:00:00 12:00:00 24:00:00 36:00:00 48:00:00 60:00:00

Fr
ac

ti
o

n
 o

f
p

ai
rs

Time between consecutive references

Figure 8: Cumulative distribution of time differences between consecutive
reads of the same page. The distribution applies to the workload used for the
prediction in Figure 7. Only reads without intervening writes are counted.
More than 20% of observed re-accesses have spacings greater than 2 hours.
The blue-curve step at 24:00:00 is 455 GiB read and re-read 24 hours later.
Red curve has enlarged scale to show additional, much smaller, re-reference
features near spacings of 25:20, 29:00, and 36:00 (hh:mm).

Table 5 presents the accuracy of the predictions, in a number of cases
where they could be verified. These are customer machines, running pro-
duction workloads, that have SSDs. This allows comparing the simulation
predicted cache hit rate, with the actual hit rate. The duration of the work-
loads varies between 11 hours, and a full week. The columns represent the
following information:

duration duration of trace hh:mm:ss
caHit read cache hit percentage, after warmup
simCaHit predicted read cache hit rate, after warmup
MsqrErr mean squared error
avgReadLtnMS average read latency in milliseconds
seq percent of sequential IO
read percent of read IO
iops average IOs per second
description customer applications and setup

The caHit and simCaHit measurements refer to the second half of the

23

workload, after the simulation has warmed up. The caHit column shows the
median of the actual cache hits. The simCaHit column presents the median
of the simulated cache hits. The error is mostly lower than 5%, although
we have some outliers. The average read latency, IOps, and other workload
characteristics vary between workloads.

duration %caHit %simCaHit MsqrErr avgReadLtnMS %seq %read iops description
12:09:59 70 66 4.53 4.31 13 80 18256 Healthcare
24:00:00 39 42 11.63 10.77 22 72 3276 VMWare, SQL servers supporting SAP
15:00:02 95 95 1.51 2 39 77 32243 Billing application
16:11:18 76 75 6.34 6.1 28 55 9224 AIX, VMware, Oracle database
24:00:03 82 83 4.17 3.79 30 55 3736
48:00:02 96 97 2.14 0.93 40 84 13057 SAP R3 database
24:00:02 80 79 14.97 3.33 56 79 10499 DB2, several SQL servers and VMware clients
52:44:00 94 94 3.62 0.93 25 22 11968 VMWare ESX
11:39:23 96 94 3.98 0.66 10 66 7451 VMWare ESX

169:46:00 97 97 2.28 0.45 37 20 4642 VMWare ESX
24:09:49 97 96 2.24 0.4 17 49 5622
24:10:13 95 97 3.58 0.85 12 64 2691 VMWare ESX, and analytics

Table 2: Result summary for cache prediction, over a group of customer
machines.

There are cases where the prediction is not very good. This can happen
if the RAM cache hit rate is dominant. For example, Figure 9 shows Ex-
change mail workloads. They have a highly sequential component, which is
handled entirely by RAM, bypassing the SSD. The random IO component
mostly fits in RAM. Taken together, this means that RAM is the dominant
cache, and SSD accounts for very little cache hits. Such cases are not very
common, however, they can cause high prediction inaccuracy. In this case,
the prediction with SSD underestimates the hit-rate without SSD by around
10%.

24

19:00 00:00 05:00 10:00 15:00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

re
ad

 c
ac

he
 h

it
ra

te

org
prediction

10:00 15:00 20:00 01:00 06:00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

re
ad

 c
ac

he
 h

it
ra

te

org
prediction

Figure 9: Exchange workloads. The prediction is lower than the current hit
rate. This is because the dominant factor in caching is RAM, and the RAM
simulation is much less accurate than the SSD simulation.

6 Summary

This paper described a study in IO tracing and analysis. The study was
conducted on a large body of block traces collected from IBM XIV enter-
prise storage systems in production use. Our cache prediction method is
simulation based, and has successfully been used by dozens of customers in
the field. It can, on average, predict cache hit rates with 5-10% accuracy.

We contribute methods to:

1. Estimate sequentiality as well as page re-reference.

25

2. Sample the IO stream, and maintain memory overhead flat. This uses
the idea of address-space sampling in regions, and could come at the
cost of reduced accuracy.

We found that real workloads could be difficult to sample, because ac-
cess can be highly skewed. We believe these methods, and our statistical
approach, could prove beneficial for other systems and caching algorithms.

7 Acknowledgments

We would like to thank Theodore Gregg, Anthony Vattathil, and Aviad
Offer for their help and support.

26

References

[1] B. Anderson. Mass storage system performance prediction using a
trace-driven simulator. In 22nd IEEE / 13th NASA Goddard Con-
ference on Mass Storage Systems and Technologies, pages 297 – 306,
2005.

[2] B. Dufrasne, I. K. Park, F. Perillo, H. Sautter, S. Solewin, and A.
Vattathil. Solid-State Drive Caching in the IBM XIV Storage System.
International Business Machines Corporation, USA, 2012.

[3] C. M. Thomas, M. A. Hirsch, and W. M. W. Hwu. Combining Trace
Sampling with Single Pass Methods for Efficient Cache Simulation.
IEEE Transactions on Computers, 47:714 – 720, June 1998.

[4] C.A. Waldspurger. Memory Resource Management in VMware ESX
Server. SIGOPS Operating Systems Review, 36(SI):181–194, December
2002.

[5] D.K. Tam, R. Azimi, L.B. Soares, and M. Stumm. RapidMRC: Ap-
proximating L2 Miss Rate Curves on Commodity Systems for Online
Optimizations. SIGPLAN, 44(3):121–132, March 2009.

[6] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami.
Cost Effective Storage Using Extent Based Dynamic Tiering. In
9th USENIX Conference on File and Stroage Technologies, FAST’11,
Berkeley, CA, USA, 2011. USENIX Association.

[7] J. T. Robinson and M. V. Devarakonda. Data cache management us-
ing frequency-based replacement. SIGMETRICS Perform. Eval. Rev.,
18(1):134–142, April 1990.

[8] J. Wolf, H.S. Stone, and D. Thiébaut. Synthetic Traces for Trace-
Driven Simulation of Cache Memories. IEEE Transactions, 41(4):388–
410, April 1992.

[9] M. D. Hill. Aspects of Cache Memory and Instruction. Technical report,
Berkeley, CA, USA, 1987.

[10] P. Updike and C. Wilson. TR 3832, Network Appliance, Sunnyvale,
CA, USA, September 2011.

27

[11] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and
S. Kumar. Dynamic Tracking of Page Miss Ratio Curve for Memory
Management. SIGOPS Operating Systems Review, 38(5):177–188, Oct
2004.

[12] P.J. Denning. The Working Set Model for Program Behavior. Commu-
nications ACM, 11(5):323–333, May 1968.

[13] Y.H. Kim, M.D. Hill, and D.A. Wood. Implementing Stack Simulation
for Highly-associative Memories. In ACM Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), pages 212–213,
New York, NY, USA, 1991. ACM.

28

