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1. INTRODUCTION  
Data analytics is becoming central to modern society. In the 
business world, financial institutions rely on data analysis to 
detect and prevent fraud; retailers combine transaction data with 
social media and emails to build a better understanding of their 
clients; industrial giants use sensor data to improve their carbon 
footprint. Meanwhile, bioinformatics, astronomy, and particle 
physics are just a few of the sciences that are being transformed 
by the availability of large data sets and new techniques for 
analyzing data. Cities, governments and social agencies are 
leveraging data analytics for important causes such as improving 
public health and planning for (and reacting to) natural disasters. 

But the path from raw data to insight, or better yet, predictive or 
prescriptive capabilities, is still long, error-prone, and expensive. 
First, data must be acquired – not only the pertinent domain data, 
but often reference and/or contextual data, such as data on 
weather, economics, demographics, or maps. An appropriate 
systems infrastructure is needed to store and process the data. 
Once that infrastructure is acquired, the data must be cleansed, 
integrated and transformed before the real analysis even begins.  
Each of these steps requires different tools, and often expertise not 
only in those tools but also in the various data sets, in data 
management, and mathematics. Analysis itself involves more 
tools, deep knowledge of the domain of inquiry, and, if the 
volume or velocity of data to be analyzed is high, substantial 
systems and algorithmic skills may be required as well to achieve 
acceptable performance, with the necessary accuracy. Few people 
have this broad range of knowledge; thus, many experts need to 
collaborate across disciplines to achieve the desired insights.   

The IBM Research Accelerated Discovery Lab is a unique, 
collaborative environment specifically designed to facilitate 
analytic research projects that require multiple participants who 
may be from several disciplines, and even several institutions. 
Discovery, in our context, means the gaining of new insight or 
understanding, often with the intent of attaining predictive or 
prescriptive capability, where the analysis of data plays a central 
role. The Lab’s objective is to accelerate this type of discovery by 
(1) enabling research in and improvements to the tools and 
systems that facilitate discovery, and (2) enabling the business 
person or domain expert who uses the environment to focus on 
their investigation instead of the systems and data challenges. To 
accomplish the first two objectives, we also need (3) to 
understand how discovery occurs, and how it can be accelerated.  

2. LAB OVERVIEW  
To achieve the Accelerated Discovery Lab’s objectives, we focus 
on the discovery platform the Lab provides to support the 

discovery process, the partner projects that leverage the platform, 
and the studies that explore the practice of discovery.  

The discovery platform includes a secure cloud environment that 
supports large-scale data-intensive computations and a software 
system that encourages discovery. The cloud environment 
includes several hundred compute nodes, over 12 petabytes (PBs) 
of online storage, and a high-speed network as the hardware 
infrastructure; it leverages IBM’s Platform Cluster Management 
and supports a wide variety of information management tools and 
analytics platforms. The software system includes data curation 
tools, support for collections of data called data lakes, and a 
library of analytics tools and models. It also provides LabBook, a 
social user experience in which our partner projects pursue their 
research. Both data lakes and the analytics library allow 
contribution of new elements (data sets or analytics, respectively), 
which may be created as a result of projects run in the Lab.  

We are supporting a diverse set of partner projects of two types. 
Analytics projects tackle challenges from multiple domains. They 
range in scale from month-long investigations by a few 
researchers of a narrowly-defined question requiring one or two 
data sets to answer, to multi-year studies by multiple teams that 
require tens of data sets and petabytes of data. Systems projects 
also range from short-term performance studies of new algorithms 
or architectures, to longer-term creation of new analytics tools or 
information integration capabilities. While some projects may be 
done “in residence” in our collaboration space, described below, 
most are done by teams who may not be local and may, in fact, be 
geographically distributed. Hence the discovery platform needs to 
support collaboration across locations and time zones. Partner 
projects vary over time; potential partners are chosen based on the 
alignment of their interests with the Accelerated Discovery Lab’s 
mission, their ability to exploit the Lab’s platform, and their 
tolerance for running in an experimental environment.  

Finally, we are exploring the human and social dimensions of 
large-scale data-intensive research and discovery practices, 
studying how discovery is conducted to identify essential 
technological, informational, and environmental characteristics 
that can encourage and perhaps even accelerate discovery. At 
some level, the discovery process can be seen as a set of analytics 
experiments run over some set of data [1]. But what are the right 
experiments? What tools should be used? What data? Often an 
individual researcher relies on familiar or available tools or the 
advice of colleagues. However, examples such as the discovery of 
the link between fish oil and Renaud’s syndrome [17] show that 
discovery may also happen when previously isolated projects 
collide in new and unanticipated ways, or when individuals with 
different (technical) backgrounds collaborate or exchange ideas. 
Our studies include observations of our partner projects, as well as 
experiments with the software and physical environments to 
understand how to provide the best conditions for discovery, 
including, perhaps, serendipitous interaction that sparks insight. 

One of the affordances of the Accelerated Discovery Lab is a 
7500+ square foot workspace that provides a flexible work 
environment for individuals and groups. The space is outfitted to 
facilitate creativity and collaboration through access to simple, yet 

 

  
 



effective tools such as whiteboards and displays that can be 
moved and configured for the needs of those using the space. 
Also, with our researchers and partners scattered worldwide, we 
need to be sure that all can participate in planned and ad hoc 
engagement. The workspace thus includes standard collaboration 
technologies such as video and web conferencing, along with less 
standard telepresence robots that allow remote wandering through 
the room. The space not only affords our researchers and clients a 
place to work and explore, it also provides a rich environment for 
collecting data to support our discovery practices research, using 
methods such as interview, observation, and log data analysis. 

Each of our three research thrusts, the platform, partner projects 
and discovery practice studies, is driven by researchers from 
different disciplines. The platform research is driven by computer 
scientists; our core team includes database, human-computer 
interaction, and systems researchers. The partner analytics 
projects are typically staffed by domain researchers or analysts; 
some are “data scientists” with strong data or algorithmic skills. 
The systems projects, by contrast, are led by computer science 
researchers, some of whom may have analytic skills. Finally, the 
discovery practice studies are led by teams of social scientists 
from such disciplines as anthropology, sociology and social 
computing. Thus the Lab itself is a multi-disciplinary research 
environment, mirroring the discovery projects it supports. 

Many other groups have or are creating institutes that focus in one 
way or another on data-driven discovery. Physical science labs1 
have built substantial cyber-infrastructure to support sharing data 
and tools for analytics. As interest in data analytics has expanded, 
many universities have formed data science institutes2, typically 
multi-disciplinary endeavors that attempt to bring computer 
scientists, statisticians and domain researchers together to solve 
domain-specific problems. In the commercial realm, data 
marketplaces3 are starting to add computational analytics 
capabilities to the collections of data sets they provide.  
Meanwhile, computer science efforts such as CLDS4 and 
Berkeley’s AMPLab5 bring together several branches of expertise 
to improve the systems for doing analysis, and to prove them on 
real domain-specific challenges. The Accelerated Discovery Lab 
has many elements in common with each of these efforts; 
however, to the best of our knowledge we are unique in our 
emphasis on supporting the overall discovery process (section 4) 
and our focus on understanding, from a social science perspective, 
how discovery happens and how it may be accelerated (section 6). 

This paper is organized as follows. In the next two sections we 
provide more detail on the cloud environment and the software 
systems of the discovery platform, respectively. Section 5 gives a 
few examples of current partner projects, both analytics and 

                                                                 
1 E.g., SLAC: https://www6.slac.stanford.edu/   or CERN: 

http://home.web.cern.ch/about/computing 
2 For example: http://datascience.nyu.edu/ or 

http://vcresearch.berkeley.edu/datascience/overview-berkeley-
institute-for-data-science or the joint Argonne and Univ. of 
Chicago Computation Institute: http://www.ci.anl.gov/data-
computation 

3 E.g., Microsoft Azure, http://datamarket.azure.com/ or Amazon, 
https://aws.amazon.com/datasets   

4 The Center for Large-Scale Data System Research, 
http://clds.sdsc.edu  

5 https://amplab.cs.berkeley.edu/  

systems, while Section 6 addresses our studies of discovery 
practices. We discuss where we are today, the research that is 
currently underway, and where we hope to go in the future. 

3. DISCOVERY CLOUD ENVIRONMENT 
The discovery cloud is the backbone of the discovery platform, 
where data lives, and algorithms are tested. It consists today of 
almost 500 multi-core servers, a high-speed network from our 
partner, Juniper Networks6, and capacious storage. The flexible 
hardware infrastructure provides a rich experimental platform 
tuned to run large-scale data-intensive analytics, and supports the 
key analytics tools our partners need. A key consideration in our 
design is ensuring that data and systems are protected. The 
architecture allows secure access by authorized researchers (IBM 
and external) to both private and open data. Measures taken to 
ensure privacy include restricting access to the systems, secured 
logins (LDAP), role assignments, security scans, and controlling 
internet access.  Projects can be physically isolated from each 
other, or run in a shared pool, depending on their sensitivity. 

The physical machines are of two types. The compute server is 
characterized by a 1:1 ratio between hardware cores (processors) 
and drives (spindles), using physical drives so that seeks may be 
overlapped with other I/O. This configuration is best for physical 
or virtual (VM) systems that need to optimize the parallel I/O or 
to use local storage. Such systems include Hadoop and its various 
implementations, e.g., IBM BigInsights and Cloudera, and IBM 
SPSS Statistics Server. Compute servers have 12 Intel x86 cores, 
12 2TB drives and either 96 or 192 GBs of main memory. 

Used as a physical server, the compute server is dedicated to a 
single purpose – usually a single partner project. When hosting 
VMs, it may be shared by multiple projects. High performance 
computing applications run on physical servers for best network 
utilization. Finally, projects that use sensitive client data would 
have dedicated servers (even if running VMs) so that the data can 
be permanently destroyed by wiping the disks at the project’s end.   

The second type of server, the hypervisor server, is used to host 
multiple VMs, which may be for multiple projects. These would 
be VMs that are either compute or memory bound and do not need 
locally attached drives because of either low I/O bandwidth 
requirements or a small drive footprint. Such servers are used by 
web servers, database, and user interface servers. Hypervisor 
servers are bigger systems, with 32 to 40 Intel x86 cores, 128 to 
512 GBs of memory, and 6 1TB drives that can be configured as 
needed by the applications. 

All servers are connected by a Juniper Networks QFabric Ethernet 
backbone (four 40Gb links to each top-of-rack switch) with two 
10Gb links to each compute server. A separate 1Gb Ethernet 
network is used to support management and monitoring services. 
Shared data services are provided by GPFS-SAN for data sets not 
requiring large bandwidth, while GPFS-FPO (a cluster file system 
utilizing local drives) provides substantially higher, distributed 
bandwidth for larger datasets requiring parallel access.   

Today, we can support a large number of projects with flexible, 
scalable runtime environments for discovery. Each project can 
experiment with configurations and software as needed, providing 
ultimate flexibility. Most of our projects run on Red Hat Linux for 
stability, but a few use Ubuntu or Fedora to gain access to 
particular features or because the analytics packages require it. 
We use IBM’s Platform Cluster Management Advanced Edition 

                                                                 
6 QFabric, from www.juniper.net  



for basic Hadoop clusters, and leverage OpenStack for other 
application images. Over time we are standardizing images for our 
analytics projects, enabling us to relieve them of the demands of 
systems set-up and management, while allowing the systems 
projects to exploit the underlying hardware as needed. 

4. SOFTWARE TO FOSTER DISCOVERY 
The second piece of the discovery platform is software that fosters 
discovery. We focus on enabling two key elements of discovery: 
insight (the aha!) and collaboration. While no one can force 
insight, our software gives researchers new ways to look at a 
problem. The software presents contextual data and analytics to 
enrich core domain data and algorithms; it provides exposure to 
other researchers’ ideas and work, aiming to spark new 
hypotheses. The analytics projects we support represent 
collaborations by individuals and teams, often spanning multiple 
domains of expertise. Our software lowers the barriers to cross-
fertilization and supports collaboration across individuals and 
projects, creating the right conditions for insight and “strategic” 
serendipity. This section elaborates on these themes.  

4.1 Contextual Data and Analytics 
Contextual data and analytics can enrich core domain data and 
algorithms, providing new insights. For example, DNA samples 
from surfaces in a city such as turnstiles, public railings, and 
elevator buttons can be analyzed to identify what microbes are 
present at each location, but it is contextual data and analytics 
such as demographic data and traffic pattern computations that 
bring insight into patterns of microbes across neighborhoods, 
income level and populations. Contextual data and analytics can 
be used and reused across projects and in a variety of domains, 
and access to both are central to the mission of the Accelerated 
Discovery Lab.  For example, data provided by government 
agencies such as the Census Bureau and the Bureaus of Labor 
Statistics and of Economic Analysis can provide location-specific 
population and income data across many domains. Other 
important contextual information includes worldwide patent data, 
medical journals, SEC filings and geo-spatial analytics packages 
such as those offered by Esri7, one of our business partners.  

Finding and preparing the right contextual data for a project are 
crucial to deriving insight, but are difficult tasks, particularly for 
non-technical users. Most data providers supply a simple 
hierarchical catalog of data sets organized by topic or category. 
Browsing the catalog of a large provider such as data.gov, with 
over a hundred thousand data sets, can be daunting, as users rarely 
know exactly what they are looking for. Once found, preparing 
data is a tedious process involving manual downloading and at 
least lightweight data modeling and transformation, skills that 
most non-technical users lack.  For example, a single zip file from 
the Bureau of Economic Analysis containing National Income and 
Product (NIPA) data was found to contain nine spreadsheets, 
which can be transformed ultimately into 116 structured tables.  

The Accelerated Discovery Lab provides data lakes8 that can 
ingest data and analytics from a variety of sources, both open 
sources (e.g., data.gov) and third party providers, making both 
contextual and project-specific data available to our researchers 
(Figure 1). Data lakes store and catalog data, making it easy to 
track, govern, and repurpose, and ensure compliance with 

                                                                 
7 www.esri.com  
8 For simplicity, we will refer to a data lake, although in practice 

the data lake contains both data and analytics. 

individual licensing terms and conditions. Specific projects may 
contribute data or analytics to a common lake (and combine them 
with contextual sources), but data or algorithms need not be 
shared if there are privacy or security concerns. Multiple data 
lakes are supported; this allows, e.g., aggregating data on 
particular themes. A project may also transform data and 
contribute the result back to a lake where it is cataloged and made 
available to others. 

Data lakes include tools to facilitate and automate the data 
acquisition process, including tools to pull from standard 
publishing APIs such as Socrata9 and ckan10, and tools that 
analyze files such as the NIPA zip file. These tools derive and 
store structured tables and record provenance information about 
them, including the source and any additional metadata such as 
semantic tags, publishing organization, etc., that were captured as 
part of the analysis. Such metadata provides valuable governance 
and provenance information. Without governance, the use and re-
use of data can lead to data management and legal challenges.  

As shown on the right of the figure, a data lake provides a set of 
services to search for and provision data and analytics for use with 
multiple runtimes. These include direct access services, Extract, 
Transform, Load (ETL) platforms such as IBM InfoSphere 
Information Server11, and multiple Hadoop distributions. Data 
lakes store the licensing terms and conditions associated with the 
data and analytics, automatically record use, and ensure 
compliance. Data lake services are provided via APIs and 
surfaced through a user experience that encourages discovery. 

 
Figure 1. A data lake enables governed reuse of data sets. 

4.2 A Socially-Inspired User Experience 
While access to a rich set of data, analytic tools and runtimes are 
critical for a data analytics project, so are the experts who do the 
work. These may include domain experts, e.g., the microbiologists 
or meteorologists, as well as “general purpose” analysts, e.g., 
statisticians and experts in data mining. Our software, therefore, 
needs to support interactions across such multi-disciplinary teams. 
Each team member may use their own tools consistent with their 
area of expertise, but also need to exchange ideas with others in 
the group, or with other experts they consult. 

We believe that the ‘in-between’ knowledge generated as these 
experts work together or separately can be critical to the discovery 
process, as it supports both insight and collaboration. LabBook, 
our user experience [11], places both data lake services and 
analytics work in a social context. Our system supports social 
actions such as following and tagging not only other users, but 

                                                                 
9 http://www.socrata.com/ 
10 The open source data portal platform, http://ckan.org/  
11 http://www-01.ibm.com/software/data/integration/info_server/ 



also data, analytics and associated metadata, such as the publisher 
of the data. In effect, we think of data, analytics and metadata 
along with users as first-class social entities.  The user experience 
facilitates a meaningful conversation among these entities to guide 
discovery, suggesting additional or alternative pathways for new 
insights, and explicating provenance and process. 

Accelerated Discovery Lab users have a home page with their 
profile and access to a set of applications and services appropriate 
for their role (Figure 2). Users interact with services in the context 
of a notebook, which captures and persistently stores the users’ 
activities – e.g. data sets accessed, analytics run, and comments 
made. Notebooks can be private, shared, or made public, allowing 
one or more users to exchange ideas, knowledge and expertise to 
facilitate collaboration between team members and among a 
community of individuals with similar interests, with both the 
flow and dialog of the exchange captured in the notebook.  Thus, 
notebooks themselves constitute collaborative metadata that 
capture relationships between individuals, data and applications.  
This allows the system to provide governance and track 
provenance of data and analytics assets used within the 
Accelerated Discovery Lab naturally and seamlessly.  

Further, this collaborative metadata supports new models of 
exploration, which may lead to new insights. We have seen that a 
search for the right data or analytic often relies on a combination 
of clues from a user’s social network, technical knowledge and 
semantic understanding of the problem. For example, a user might 
be looking for data from a particular government agency they had 
heard was used by a colleague of a friend on a different project.  
This is exactly the type of association captured in notebooks. To 
facilitate this more wandering notion of search, notebooks and the 
implicit and explicit relationships within them are captured as a 
large federated graph that connects social metadata with semantic 
tags and schema metadata such as data types. The graph enables 
powerful new contextual search and recommendation services. As 
shown in Figure 2, a search by the topic “area code” leads not 
only to data and analytics related to that topic, but to notebooks in 
which data related to the topic were referenced, as well as people 
who have worked with relevant data on other projects. Users may 
find previous explorations that might be related to their current 
project, giving them immediate insight into that discovery process 
by means of the captured dialog and tags, and allowing them to 
quickly find, use, or extend existing data or analytics from the 
previous exploration in the new project. The context of the new 
project is likewise saved and indexed, making it available for 
search and to serve as a reference for future projects.  

 

 
Figure 2. The user experience fosters discovery by combining 
and leveraging social, technical and semantic metadata.  

5. PARTNER RESEARCH PROJECTS 
We started hosting our first partner research projects in late 2012, 
and have over a dozen projects underway. Here we describe a few 
of both the analytics and the systems projects.  

5.1 Analytics Projects 
We look for analytics projects for the Accelerated Discovery Lab 
that have cross-disciplinary interactions and the need for our 
infrastructure and tools. We try to balance diverse projects (to 
study discovery patterns across domains and technologies) with 
projects that have some commonality in either domain or tools (to 
explore how serendipitous interactions and cross-project 
collaboration may aid in the discovery process). Our goal is that 
the output of these projects will enrich the Lab’s portfolios of data 
assets and analytic building blocks to further speed discovery for 
future projects, ensuring that the more the Lab is used, the better it 
gets.  To illustrate how these considerations work, we look at 
examples of two subclasses of analytics projects.  

5.1.1 Projects that leverage text analytics 
Text analytics is one of IBM Research’s strengths [3, 4], so many 
of our research partners are finding novel ways to exploit this 
technology in a range of fields, from medicine to finance to 
marketing. Here we sketch three representative projects, and 
discuss the assets they use and those they produce. 

Knowledge Integration Toolkit (KnIT). The scientific literature 
is vast, and increasing exponentially [13].  In the field of cancer 
biology, over 70,000 papers have been written on a single critical 
tumor protein, p53 [7]. Since no researcher can read all of the 
relevant literature, most work from only a fraction of the available 
knowledge. A joint research team from Baylor College of 
Medicine and IBM Research is using text analytics, knowledge 
representation, and machine learning to build a model of what is 
known about p53, and then to suggest opportunities for 
experiments that could increase our knowledge.  Such a tool could 
spark new discovery by oncology researchers. KnIT extends 
previous work [18] on a platform for chemical literature search, 
creating new information extraction and entity resolution rules for 
the biology domain, then mining the literature and analyzing the 
results. Since the rate of certain types of discovery in this field is 
known, we can measure the acceleration of discovery we achieve. 
For example, the rate of discovery of kinases that phosphorylate 
p5312 has averaged one a year for the last decade; the KnIT team 
has already predicted several previously unknown p53 kinases, 
with two showing promise in experimental (wet lab) validation. 

Waterfund. This project uses the same underlying text analytics 
in a different domain, finance, along with entity resolution and 
integration technology [2] and creates new text extraction rules, 
entity integration rules and data sets. IBM researchers worked 
with Waterfund13 analysts to produce a financial index, the Water 
Cost Index, to track the cost of water in different geographies 
around the world. The goal is to encourage investments in water 
treatment facilities by giving a clearer view to lenders, insurers, 
and governments of the value, costs and associated risks of these 
projects. The information needed to understand these elements, 
however, is scattered across many different documents, including 
reports from public utilities, newspaper articles, and so on. The 
team defined a Normalized Production Cost Statement to compare 

                                                                 
12 Kinases are enzymes; phosphorylation adds phosphates to a 

protein (p53), changing the cell’s behavior. 
13 http://Worldswaterfund.com  



the costs of different agencies and populated these statements 
through scalable text analysis and integration of company filings. 
The index has been published regularly since Oct. 2013 and we 
expect the resulting index stream data to be of interest to other 
finance projects. 

System U. Social media data can teach companies a lot about 
their clients [8] and their brand image [14]. The System U project 
is using analytics that derive an individual's personality portrait 
from his/her social media stream to help companies gain a deeper 
understanding of their customers, employees, and partners. Such 
people insights can then be used to help a company to optimize its 
business outcome, including delivering more individualized 
products and services to their customers by better matching 
between their brand and their patrons. With as few as 200 Twitter 
tweets, System U can derive a personality portrait of an individual 
or a “company” (as expressed through its social media posts) 
based on the words used and their frequency of use [6]. The 
researchers are working with multiple companies to understand if 
this type of analysis can improve business results.  Leveraging the 
same entity resolution tool as described above, System U helps 
companies combine existing enterprise customer data (e.g., 
transaction records) with the personality portraits derived from 
social media to create enriched, actionable customer portraits.  

This sampling of text analytics projects shows both their diversity 
and their underlying commonality.  While these projects involve 
different researchers, in different domains, they have each 
benefited from and contributed to the expertise, data and assets 
available through the Accelerated Discovery Lab.  As we enhance 
our discovery software, we expect to stimulate further 
interactions, and measure their impact on projects. 

5.1.2 Prescriptive analytics projects 
Another important subclass of projects leverages a combination of 
sensor and contextual data, and makes heavy use of machine 
learning and statistical packages. Here we highlight two such 
projects, reflecting on their commonalities and differences. 

Equipment Condition Monitoring. A key challenge for the 
mining industry is equipment maintenance. Servicing equipment 
too soon costs millions in lost revenue; running it too long may 
result in damage that costs even more to repair.  Today, most 
companies use time in service to decide when to pull a machine in 
for maintenance, since, in practice, it can be difficult to find good 
predictors of failure. Using DB2, SPSS, and R, the first phase of 
this project [9] analyzed data from monitoring 39 components of 
50 mining haul trucks over six years, to build a predictive model 
of part failures, and to create a tool that provides an easy way for 
field foremen to see when a given machine needs service. The 
next phase of this project is looking at more data for more types of 
equipment, and at contextual data on terrain and weather.  

Bioinformatics. Several projects have leveraged the Lab to 
develop or test new parallel algorithms for genome-wide 
association studies (GWAS). As an example, the BlueSNP R 
package [10] implements GWAS statistical tests in the R 
language. These calculations are then executed on Hadoop, using 
the MapReduce formalism. BlueSNP14 makes computationally 
intensive analyses feasible for large genotype-phenotype datasets. 
The team is currently focusing on metagenomics, with a goal of 
creating a new system that will allow routinely testing many 
thousands of samples against thousands of reference genomes. 

                                                                 
14 Implementation: http://github.com/ibm-bioinformatics/bluesnp  

This work may someday allow sequencing whole ecosystems, 
with potential to improve food safety and public health.  

Although in unrelated domains, these projects benefit from 
common tools, such as R and Hadoop. Further, both projects are 
interested in adding weather and geo-spatial data as context to 
their analyses. They even have similar challenges in dealing with 
high-dimensional low sample size data in both fields. Hence there 
is potential for more synergies and interactions going forward. 

5.2 Systems Projects 
As with the analytics projects, our partner systems projects cover 
a broad range of topics. We rely on the work of some of these 
projects, for example, the scalable storage architecture (GPFS-
FPO) that provides a robust alternative to HDFS, or the 
declarative machine learning platform that our analytics projects 
are starting to exploit. Other projects will likewise become part of 
our infrastructure as they mature. We give two examples here. 

5.2.1 Benchmarking 
A number of our systems partners use the environment for testing 
or benchmarking. For example, our IBM development colleagues 
used the Lab to benchmark and certify the performance of IBM 
BigInsights against that of Apache Hadoop. They used the 
Statistical Workload Injector for MapReduce (SWIM) developed 
by the University of California at Berkeley, and had their results 
certified by the Securities Technology Analysis Center (STAC). 
SWIM provides a large set of diverse MapReduce jobs based on 
production Hadoop traces obtained from Facebook, along with 
information to enable characterization of each job. The STAC 
report [16] showed that BigInsights completed the jobs four times 
faster than Apache Hadoop running on the same 18-node 
environment. BigInsights was about eleven times faster using the 
“sleep” test of scheduling speed. These types of experiments help 
us tune the configurations we offer the Lab’s analytics users, by 
providing insight into what works best for particular workloads. 

5.2.2 Novel Analytics Platforms 
The Accelerated Discovery Lab provides a diverse set of 
applications that both inspire and test new analytic platform ideas. 
Some platforms, such as SystemT [3], become indispensable to a 
set of projects. These projects provide proof points for the 
technology and speed its adoption into products, and the products 
are then brought into the Lab to accelerate future analytics 
projects.  In this way, the environment is continually improved by 
the projects within it. 

One systems project being brought into the environment for use 
by our analytics projects is SystemML [5]. Expressing and 
running analytics for complex data at scale is challenging for 
mathematicians and systems researchers alike. SystemML raises 
the level of abstraction and lessens the burden of programming 
these algorithms by providing a declarative, high-level language 
using an R-like syntax extended with machine-learning-specific 
constructs. This language is compiled to a MapReduce runtime 
and automatically optimized to the specific data set and cluster 
configuration the analytics need to run against. We expect 
providing this system to the analytics projects in the Lab will 
drive further innovations and improvements to the technology.  

6. DISCOVERY IN PRACTICE 
As described in the previous sections, we have created an 
environment and a discovery platform that facilitate the exchange 
of ideas, technology sharing, and collaboration. Within the 
Accelerated Discovery Lab, we see an opportunity to better 
understand individual and team customs, actions, and processes 



(a.k.a., practices) in the context of a large-scale data-intensive 
discovery paradigm. Our discovery practices research focuses on 
addressing questions such as ‘can discovery be identified as it is 
being enacted or only in hindsight?’, ‘how is discovery organized 
over time?’, and ‘how do different ways of organizing work affect 
discovery?’ We examine discovery across the many domains of 
our partner projects, looking at how the practice varies, and across 
differently-constituted teams to see the role collaborations play. In 
short, we are investigating the human and social dimensions of 
what it means to accelerate the ability to ‘discover’.  

Business and scientific efforts exist in a complex ecosystem 
composed of many relationships. Thus, we view the Accelerated 
Discovery Lab as a system-of-systems in which work and 
discovery is enabled and performed through an arrangement of 
technical, social, and spatial elements that form into identifiable 
patterns [12] that can be studied for the purpose of understanding, 
augmenting, enhancing, or hastening discovery. Each system 
brings with it a set of resources, whether the resource is an 
algorithmic tool or data set (technical), an expert or specialist 
(social), or a particular place (spatial). For example, our 
metagenomics project entails genomic data, spectral data analysis, 
bioinformaticians and a locale whence the microbiome is 
sampled. Captured and examined, these elements could lead to a 
better understanding of how discovery organically occurs. 

Through both field and lab studies, we are investigating how these 
systems are configured by participants and teams over time and 
analyzing the key characteristics of the discovery process. Central 
to our research is the identification of system relationships, 
patterns of work and interaction, and typologies of discovery that 
will lead to a fuller understanding of how to represent, measure, 
and better enable discovery.  

7. SUMMARY 
In this paper we sketched the design and activities of the IBM 
Research Accelerated Discovery Lab. The lab is built on an 
analytics cloud environment with a unique software system that 
supports the process of discovery, facilitating collaboration and 
fostering insight. It facilitates a diversity of analytic and systems 
research projects that span disciplines and institutions. We are 
studying the practice of discovery, and using our findings to better 
enable and accelerate it. 
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