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Abstract

Generalized Concatenated (GC), also known as Integrated Interleaved (II) Codes,
are studied from an erasure correction point of view making them useful for Redundant
Arrays of Independent Disks (RAID) types of architectures combining global and local
properties. The fundamental erasure-correcting properties of the codes are proven and
efficient encoding and decoding algorithms are provided. Although less powerful than
the recently developed PMDS codes, this implementation has the advantage of allowing
generalization to any range of parameters while the size of the field is much smaller
than the one required for PMDS codes.

Keywords: Error-correcting codes, Reed-Solomon codes, Generalized Concatenated
codes, Integrated Interleaved Codes, Maximally Recoverable codes, MDS codes, PMDS
codes, Redundant Arrays of Independent Disks (RAID), local and global parities, heavy
parities.

1 Introduction

Considerable interest has arisen lately in coding schemes that combine local and global
properties. Applications like Redundant Arrays of Independent Disks (RAID) architec-
tures [2][11][12][15] are an example of this interest. In effect, given an array of disks, a
regular RAID architecture like, say, RAID 5, protects against a catastrophic disk (or, more
in general, a storage device) failure. This is simply done by XORing the data devices in
order to obtain a parity device (in this paper, we do not distinguish between RAID 4 and
RAID 5, since this distinction is not relevant to our discussion). Then, if a storage device
fails, its contents can be recovered by XORing the surviving devices.
A problem with this approach is that there may be individual sectors in the surviving

devices that have failed (what is known as silent failures), a problem that is common in
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Solid State Devices (SSDs), that decline as a function of time and of usage. In that case,
one individual sector that has failed will cause data loss in the presence of a catastrophic
device failure.
A method around this situation is using RAID 6: adding a second parity device allows for

correction of most individual sector failures in the presence of a catastrophic device failure.
The drawback of this approach is that it is wasteful: if for example a few extra sectors need
to be recovered in addition to all the sectors corresponding to the failed device, it is desirable
to optimize the redundancy necessary for doing so.
Codes dealing with this problem are the Partial MDS (PMDS) codes [1][2][4][5][8][11]

(in [8][11], PMDS codes are called Maximally Recoverable codes), sector-disk (SD) codes
[14][15], Locally Recoverable Codes (LRC) [17] and STAIR codes [12].
In general, we consider an m×n array. The parameter n represents the number of devices

and m represents the size of a stripe: m is repeated a number of times throughout the array
and each m× n stripe is decoded independently of the others.
The codes to be described in this paper are weaker than those in [2][8][11], in the sense that

there are some erasure patterns that they cannot correct for the same amount of redundancy.
However, they can be generalized to any set of parameters and, more importantly, they are
simpler to implement, since they require a finite field GF (2b) of size 2b > n, the length of
the rows, while the codes in [11] require size 2b ≥ mn, the total length of the array (and the
known constructions require much larger fields [2][8][11]). Similar considerations inspired the
recent STAIR codes [12]. In [16], different combinations of local and global failures, involving
either erasures and errors, are corrected using probabilistic methods by exploiting the rank
of the error arrays. In [17], the data is encoded using a global RS code, and it is divided into
parity groups that are independently encoded from the RS symbols. The Zigzag codes [18]
keep the MDS property and optimize the minimum number of updates in the presence of
one failure, but the parameter m is exponential on the number of devices n. In [7], a new
probabilistic method is studied for decoding arrays using two-dimensional LDPC codes.
In order to illustrate our discussion, consider a (1,2) PMDS code over 4 × 5 arrays [1].

The code can correct an erasure in each row, and in addition two extra erasures anywhere.
Below are two examples of erasure-patterns that can be corrected, where the erasures are
indicated by X:

X
X X

X
X X

X
X X X

X
X

The array on the left has two rows with two erasures each, while the array on the right
has a row with three erasures. The remaining rows have one erasure each, that is corrected
by a horizontal parity-check code. The PMDS codes dealing with these type of errors, as
presented in [1], require a field of size at least 2mn (these codes were extended in [5]). The
codes to be presented will require a field of size at least n+1 only, one more than the length
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of the rows, but will correct, in this example, either the arrays on the left, or those on the
right, but not both simultaneously (or, they can correct both simultaneously by using more
redundancy). However, the codes can be extended to any set of parameters.
Actually, codes having the desired characteristics were created for a different application.

Those are the so called Generalized Concatenated (GC) codes [6][21]. GC codes were pre-
sented in a form more suitable for implementation by the so called Integrated Interleaved
(II) codes [10][19]. Here we want to adapt an II type of approach as an erasure-correcting
code to deal with the problem of local and global parities. Some of the uses of GC codes for
erasure-correction in RAID type of architectures were presented in [3]. Our description of
the codes is based on their parity-check matrices.
In the next section we give the formal definition of the codes, we illustrate them with

several examples and then we prove their basic property in Theorem 2.1. In Section 3 we
present efficient encoding and decoding algorithms that are based on a divide and conquer
approach: at each step an individual Reed-Solomon (RS) code [13] of length n is decoded for
erasures, starting by the rows of the array having the less erasures. The procedure is much
faster than by solving at once all the erasures using a linear system of equations based on
the parity-check matrix. In Section 4 we discuss extending the codes presented in order to
adapt them to different applications. We end the paper by drawing some conclusions.

2 Generalized Concatenated (GC) Codes as Erasure-

Correcting Codes

The GC codes that we describe in this section are m × n array codes with symbols in a
finite field GF(2b), where 2b > n. In fact, the codes can be described over any finite field
of characteristic p, p a prime number, but we keep p=2 for simplicity and because it is the
case more relevant in applications. Reading the symbols horizontally in a row-wise manner
gives a code of length mn. We will describe the GC codes by providing their parity-check
matrices. We will then give the erasure-correcting capability of the codes by referring to
erasures per row. We will use interchangeably the array and the row-wise vector structure
of the code throughout the paper.
Denote by Im the m × m identity matrix and by A ⊗ B the Kronecker product [20] of

matrices A and B. Next we give a formal definition of t-level GC codes.

Definition 2.1 Let m ≤ n be integers, and α ∈ GF (2b) an element of order O(α) ≥ n (if
α is primitive, O(α)= 2b − 1). Consider the matrices

H(u, n; ℓ) =


α(n−1)ℓ α(n−2)ℓ . . . α2ℓ αℓ 1

α(n−1)(ℓ+1) α(n−2)(ℓ+1) . . . α2(ℓ+1) αℓ+1 1
...

...
. . .

...
...

α(n−1)(ℓ+u−1) α(n−2)(ℓ+u−1) . . . α2(ℓ+u−1) αℓ+u−1 1

 (1)
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and

Ĥ(s,m; ℓ) =


1 α−ℓ α−2ℓ . . . α−(m−2)ℓ α−(m−1)ℓ

1 α−(ℓ+1) α−2(ℓ+1) . . . α−(m−2)(ℓ+1) α−(m−1)(ℓ+1)

...
...

...
. . .

...
...

1 α−(ℓ+s−1) α−2(ℓ+s−1) . . . α−(m−2)(ℓ+s−1) α−(m−1)(ℓ+s−1)

 . (2)

Let u be a vector of non-decreasing integers and length m= s0 + s1 + · · ·+ st−1 as follows:

u =

(
s0︷ ︸︸ ︷

u0, u0, . . . , u0,

s1︷ ︸︸ ︷
u1, u1, . . . , u1, . . . ,

st−1︷ ︸︸ ︷
ut−1, ut−1, . . . , ut−1

)
, (3)

where t ≥ 1, si ≥ 1 for 0 ≤ i ≤ t−1 and 1 ≤ u0 < u1 < . . . < ut−1 ≤ n−1. Let ŝi=
∑t−1

j=i sj,

0 ≤ i ≤ t−1 (notice that m= ŝ0). We say that the [mn,mn−
∑t−1

i=0 uisi] code C(n;u) whose
parity-check matrix is given by the

(∑t−1
i=0 uisi

)
×mn matrix

H(n;u) =



Im ⊗ H(u0, n; 0)

Ĥ(st−1,m; 0) ⊗ H(ut−1 − u0, n;u0)

Ĥ(st−2,m; ŝt−1) ⊗ H(ut−2 − u0, n;u0)

Ĥ(st−3,m; ŝt−2) ⊗ H(ut−3 − u0, n;u0)
...

Ĥ(s1,m; ŝ2) ⊗ H(u1 − u0, n;u0)


(4)

is a t-level GC code.

It would remain to be proven that the
∑t−1

i=0 uisi rows of matrix H(n;u) are linearly inde-
pendent, but this will arise as a consequence of Theorem 2.1 to be stated below.
Although (4) provides for a compact description of the parity-check matrix H(n;u), it is

not easy to visualize. Below we give a more explicit form of (4). Let H0=H(u0, n; 0) and

4



Hj =H(uj − u0, n;u0) as given by (1) for 1 ≤ j ≤ t− 1. Then,

H(n;u) =



H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0

Ht−1 Ht−1 . . . Ht−1

Ht−1 α−1Ht−1 . . . α−(m−1)Ht−1
...

...
. . .

...

Ht−1 α−(ŝt−1−1)Ht−1 . . . α−(m−1)(ŝt−1−1)Ht−1

Ht−2 α−ŝt−1Ht−2 . . . α−(m−1)ŝt−1Ht−2

Ht−2 α−(ŝt−1+1)Ht−2 . . . α−(m−1)(ŝt−1+1)Ht−2
...

...
. . .

...

Ht−2 α−(ŝt−2−1)Ht−2 . . . α−(m−1)(ŝt−2−1)Ht−2

...
...

. . .
...

Hi α−ŝi+1Hi . . . α−(m−1)ŝi+1Hi

Hi α−(ŝi+1+1)Hi . . . α−(m−1)(ŝi+1+1)Hi
...

...
. . .

...

Hi α−(ŝi−1)Hi . . . α−(m−1)(ŝi−1)Hi

...
...

. . .
...

H1 α−ŝ2H1 . . . α−(m−1)ŝ2H1

H1 α−(ŝ2+1)H1 . . . α−(m−1)(ŝ2+1)H1
...

...
. . .

...

H1 α−(ŝ1−1)H1 . . . α−(m−1)(ŝ1−1)H1



(5)

Let us illustrate the construction of H(n;u) with some examples.

Example 2.1 Assume t=1, i.e., u=

(
s0︷ ︸︸ ︷

u0, u0, . . . , u0

)
and C(n;u) is a 1-level GC code.

Then, according to (4) and (5),

H(n;u) =
(
Is0 ⊗H(u0, n; 0)

)
=


H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0

 .
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This is a trivial case, since it corresponds to s0 RS codewords of length n one after the other,
each codeword having u0 parity symbols.

Example 2.2 Assume t=2, i.e., u=

(
s0︷ ︸︸ ︷

u0, u0, . . . , u0,

s1︷ ︸︸ ︷
u1, u1, . . . , u1

)
and C(n;u) is a 2-level

GC code. Then, according to (4) and (5),

H(n;u) =

(
Is0+s1 ⊗ H(u0, n; 0)

Ĥ(s1,m; 0) ⊗ H(u1 − u0, n;u0)

)

=



H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0

H1 H1 . . . H1

H1 α−1H1 . . . α−(m−1)H1

H1 α−2H1 . . . α−2(m−1)H1
...

...
. . .

...
H1 α−(s1−1)H1 . . . α−(m−1)(s1−1)H1


(6)

The parity-check matrix of a 2-level GC code was also presented in [9].
Let us take now some concrete examples of a 2-level GC code. Take u=(1, 1, 3, 3), i.e.,

u0 =1, u1=3, s0= s1=2. Then, according to (6), the parity-check matrix H(5; (1, 1, 3, 3))
of the 2-level code C(5; (1, 1, 3, 3)) is given by

H(5; (1, 1, 3, 3)) =

(
I4 ⊗ H(1, 5; 0)

Ĥ(2, 4; 0) ⊗ H(2, 5; 1)

)
.

Notice that

H(1, 5; 0) = H0 =
(
1 1 1 1 1

)
,

H(2, 5; 1) = H1 =

(
α4 α3 α2 α 1
α8 α6 α4 α2 1

)
and

Ĥ(2, 4; 0) =

(
1 1 1 1
1 α−1 α−2 α−3

)
.

Explicitly, according to (6),
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H(5; (1, 1, 3, 3)) =


H0 0 0 0
0 H0 0 0
0 0 H0 0
0 0 0 H0

H1 H1 H1 H1

H1 α−1H1 α−2H1 α−3H1

 ,

thus, H(5; (1, 1, 3, 3)) is the matrix

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
α4 α3 α2 α 1 α4 α3 α2 α 1 α4 α3 α2 α 1 α4 α3 α2 α 1
α8 α6 α4 α2 1 α8 α6 α4 α2 1 α8 α6 α4 α2 1 α8 α6 α4 α2 1
α4 α3 α2 α 1 α3 α2 α 1 α−1 α2 α 1 α−1 α−2 α 1 α−1 α−2 α−3

α8 α6 α4 α2 1 α7 α5 α3 α α−1 α6 α4 α2 1 α−2 α5 α3 α α−1 α−3


assuming that α is an element in a finite field of order at least 5. For instance, we may take
the finite field GF(8) and α a primitive root in GF(8), which has order 7.
Similarly,

H(5; (2, 2, 3, 3)) =

(
I4 ⊗ H(2, 5; 0)

Ĥ(2, 4; 0) ⊗ H(1, 5; 1)

)
,

which explicitly is given by

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
α4 α3 α2 α 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 α4 α3 α2 α 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 α4 α3 α2 α 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α4 α3 α2 α 1
α8 α6 α4 α2 1 α8 α6 α4 α2 1 α8 α6 α4 α2 1 α8 α6 α4 α2 1
α8 α6 α4 α2 1 α7 α5 α3 α α−1 α6 α4 α2 1 α−2 α5 α3 α α−1 α−3


.

As another example, take

H(5; (2, 2, 4, 4)) =

(
I4 ⊗ H(2, 5; 0)

Ĥ(2, 4; 0) ⊗ H(2, 5; 1)

)
,

7



which gives the following explicit value for H(5; (2, 2, 4, 4)):

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
α4 α3 α2 α 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 α4 α3 α2 α 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 α4 α3 α2 α 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α4 α3 α2 α 1
α8 α6 α4 α2 1 α8 α6 α4 α2 1 α8 α6 α4 α2 1 α8 α6 α4 α2 1
α12 α9 α6 α3 1 α12 α9 α6 α3 1 α12 α9 α6 α3 1 α12 α9 α6 α3 1
α8 α6 α4 α2 1 α7 α5 α3 α α−1 α6 α4 α2 1 α−2 α5 α3 α α−1 α−3

α12 α9 α6 α3 1 α11 α8 α5 α2 α−1 α10 α7 α4 α α−2 α9 α6 α3 1 α−3


.

Example 2.3 Assume now t=3, i.e., u=

(
s0︷ ︸︸ ︷

u0, u0, . . . , u0,

s1︷ ︸︸ ︷
u1, u1, . . . , u1,

s2︷ ︸︸ ︷
u2, u2, . . . , u2

)
and

C(n;u) is a 3-level GC code.. Then, according to (4) and (5),

H(n;u) =

 Is0+s1+s2 ⊗ H(u0, n; 0)

Ĥ(s2,m; 0) ⊗ H(u2 − u0, n;u0)

Ĥ(s1,m; s2) ⊗ H(u1 − u0, n;u0)



=



H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0

H2 H2 . . . H2

H2 α−1H2 . . . α−(m−1)H2
...

...
. . .

...
H2 α−(s1−1)H2 . . . α−(m−1)(s1−1)H2

H1 α−s1H1 . . . α−(m−1)s1H1

H1 α−(s1+1)H1 . . . α−(m−1)(s1+1)H1
...

...
. . .

...
H1 α−(s1+s2−1)H1 . . . α−(m−1)(s1+s2−1)H1



. (7)

If we take u=(1, 1, 2, 3), then the parity-check matrix of the 3-level code C(5; (1, 1, 2, 3)),
is given by

H(5; (1, 1, 2, 3)) =

 I4 ⊗ H(1, 5; 0)

Ĥ(1, 4; 0) ⊗ H(2, 5; 1)

Ĥ(1, 4; 1) ⊗ H(1, 5; 1)

 ,
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which explicitly gives

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
α4 α3 α2 α 1 α4 α3 α2 α 1 α4 α3 α2 α 1 α4 α3 α2 α 1
α8 α6 α4 α2 1 α8 α6 α4 α2 1 α8 α6 α4 α2 1 α8 α6 α4 α2 1
α4 α3 α2 α 1 α3 α2 α 1 α−1 α2 α 1 α−1 α−2 α 1 α−1 α−2 α−3


,

while if we take u=(1, 2, 2, 3), then the parity-check matrix H(5; (1, 2, 2, 3)) of the 3-level
code C(5; (1, 2, 2, 3)), is given by

H(5; (1, 2, 2, 3)) =

 I4 ⊗ H(1, 5; 0)

Ĥ(1, 4; 0) ⊗ H(2, 5; 1)

Ĥ(2, 4; 1) ⊗ H(1, 5; 1)

 ,

which explicitly gives

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
α4 α3 α2 α 1 α4 α3 α2 α 1 α4 α3 α2 α 1 α4 α3 α2 α 1
α8 α6 α4 α2 1 α8 α6 α4 α2 1 α8 α6 α4 α2 1 α8 α6 α4 α2 1
α4 α3 α2 α 1 α3 α2 α 1 α−1 α2 α 1 α−1 α−2 α 1 α−1 α−2 α−3

α4 α3 α2 α 1 α2 α 1 α−1 α−2 1 α−1 α−2 α−3 α−4 α−2 α−3 α−4 α−5 α−6


,

again assuming that α is an element in a finite field with order at least 5.

We give next the main property of t-level GC codes.

Theorem 2.1 Consider the integers n ≤ 2b − 1, t ≥ 1, si ≥ 1 for 0 ≤ i ≤ t − 1 and
1 ≤ u0 < u1 < . . . < ut−1 ≤ n− 1. Let m= s0 + s1 + · · ·+ st−1 and u be given by (3). Then
the t-level GC code C(n;u) whose parity-check matrix H(n;u) is given by (4) can correct up
to ui erasures in any si rows, 0 ≤ i ≤ t− 1, of an m× n array corresponding to a codeword
in C(n;u).

Theorem 2.1 will be proved in Section 3, where we will show that there is a decoding
algorithm correcting the erasure instances described in the theorem. Next we illustrate it
with an example.

Example 2.4 Consider code C(5; (1, 1, 3, 3)) given in Example 2.2 corresponding to 4 × 5
arrays. According to Theorem 2.1, up to three erasures will be corrected in any pair of rows,
while the remaining rows can correct up to one erasure. For example, denoting erasures by
X, the following arrays are correctable in C(5; (1, 1, 3, 3)):
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X
X X X

X
X X X

X X X
X

X
X X X

A way to correct the erasures above is by using the parity-check matrix H(5; (1, 1, 3, 3)) of
the code given in Example 2.2: syndromes are computed, and first the rows that experienced
one erasure are corrected (using single parity). Once they are corrected, the syndromes are
updated. To correct the two rows with 3 erasures each, it is needed to solve a linear system of
6 equations with 6 unknowns, which can be easily done, for instance, by Gaussian elimination
(we will present a much more efficient decoding algorithm in Section 3).
As is the case in general with erasure decoding, encoding is a special case of decoding. For

example, for C(5; (1, 1, 3, 3)), we may choose to place the parities at the end of each row,
like below, in either increasing or decreasing order on the number of erasures (the STAIR
codes [12] use such an encoding ordering):

X
X

X X X
X X X

X X X
X X X

X
X

Knowing a priori the erased entries allows for shortcuts in the processing time by precom-
puting certain operations. We will give some details in Section 3.
Similarly, C(5; (1, 1, 2, 3)) corresponds to a 4 × 5 array such that one row can correct up

to three erasures, one of the remaining three rows can correct up to two erasures, and
the remaining rows can correct up to one erasure. For example, the following arrays are
correctable in C(5; (1, 1, 2, 3)):

X
X X X

X
X X

X X
X

X
X X X

Let us examine more closely the array in the left above. Consider its parity-check matrix
H(5; (1, 1, 2, 3)) as given in Example 2.3. The rows with only one erasure are corrected using
single parity, so we are left with the array

X X X

X X

By writing the array as a vector row-wise, the erased entries correspond to locations 5, 8,
9, 16 and 18. The 5× 5 matrix from H(5; (1, 1, 2, 3)) corresponding to these locations is
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H̃ =


1 1 1 0 0
0 0 0 1 1
α4 α 1 α3 α
α8 α2 1 α6 α2

α3 1 α−1 1 α−2

 ,

which we must prove is invertible. To see this, letH0(3)= (1 1 1),H0(2)= (1 1),H1(3)= (α4 α 1),
H1(2)= (α3 α), H ′

2(3)= (α8 α2 1) and H ′
2(2)= (α6 α2). Then, we can write H̃ as

H̃ =


H0(3) 0
0 H0(2)

H1(3) H1(2)
H ′

2(3) H ′
2(2)

α−1H1(3) α−3H1(3)

 .

Since (
1 1

α−1 α−3

)
is a Vandermonde matrix, in particular it is invertible and there is a linear combination of
its rows that transforms it into an upper triangular matrix with 1s in the diagonal, i.e.,(

1 γ
0 1

)
(we are not interested in the value γ at this point). Applying this linear combination to the
rows of H̃ corresponding to H1(3) and H1(2), we obtain

H̃
′

=


H0(3) 0
0 H0(2)

H1(3) γH1(2)
H ′

2(3) H ′
2(2)

0 H1(2)

 .

Permuting the rows of H̃
′
, we have

H̃
′′

=


H0(3) 0
H1(3) γH1(2)
H ′

2(3) H ′
2(2)

0 H0(2)
0 H1(2)

 .
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By properties of determinants, the determinant of H̃
′′
is the product of the determinants

of  H0(3)
H1(3)
H ′

2(3)

 =

 1 1 1
α4 α 1
α8 α2 1


and (

H0(2)
H1(2)

)
=

(
1 1
α3 α

)
.

Since these determinants are both Vandermonde determinants they are non-zero, thus, their
product is non-zero.

The decoding algorithm proving Theorem 2.1 to be presented in the next section develops
the idea presented in Example 2.4.
The following result was given without proof in [19]:

Corollary 2.1 Consider the t-level GC code C(n;u) of Theorem 2.1. Then, if ŝt =0 and
ŝi =

∑t
j=i sj for 0 ≤ i ≤ t− 1, the minimum distance of C(n;u) is given by

d = min {(ŝi+1 + 1) (ui + 1) , 0 ≤ i ≤ t− 1} .

Proof: Assume that there is a codeword that has exactly ŝi+1 rows of weight ui+1 and one
row of weight ui, while all the other rows are zero (notice that when i= t − 1, this simply
means that there is a codeword consisting of a row of weight ut−1, while all the other rows
are zero). By Theorem 2.1, such a codeword would be corrected by the code as the zero
codeword, thus

d > min {(ŝi+1) (ui + 1) + ui , 0 ≤ i ≤ t− 1} ,

or,

d ≥ min {(ŝi+1 + 1) (ui + 1) , 0 ≤ i ≤ t− 1} .

In order to show equality, we need to prove that for each i, 1 ≤ i ≤ t − 1, there is a
codeword in C(n;u) of weight (ŝi+1 + 1) (ui + 1).
Consider first the case i= t− 1, thus, we have to prove that there is a codeword of weight

ut−1 + 1. Let u be a codeword of weight ut−1 + 1 in the [n, n − ut−1, ut−1 + 1] RS code
whose parity-check matrix is given by H(ut−1, n; 0), and 0n a zero vector of length n. Then,
according to (4) and (5), vector

(u,

m−1︷ ︸︸ ︷
0n, 0n, . . . , 0n)
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is a codeword in C(n;u) of weight ut−1 + 1.
Next consider 0 ≤ i ≤ t− 2. Let u be a codeword of weight ui + 1 in the [n, n− ui, ui + 1]

RS code whose parity-check matrix is given by H(ui, n; 0). Let v be a codeword of weight
ŝi+1+1 in the RS code whose parity-check matrix is given by Ĥ(ŝi+1, ŝi+1+1; 0). Explicitly,
let v=(v0, v1, . . . , vŝi+1

). Consider the following vector of length mn:

w =
(
v0u, v1u, . . . , vŝi+1

u, 0
)
,

where 0 is a vector of length n
(∑i

j=0 sj

)
. According to (4) and (5), we have to show that

vector w is a codeword in C(n;u). Certainly, since H(ui, n; 0)u
T =0, we have that, accord-

ing to (5), the inner product of the first mu0 and the last
∑i

j=1 ujsj rows of H(n;u) with
w are zero. Now, take any of the rows corresponding to Ht−1, Ht−2, . . . , Hi+1 in (5). The
inner product of such a row with w is also zero, since it is a constant times the inner product
of v with a row of the parity-check matrix Ĥ(ŝi+1, ŝi+1+1; 0), which is zero by construction. 2

The following example illustrates Corollary 2.1.

Example 2.5 Consider code C(5; (1, 2, 2, 3)) as given in Example 2.3. Corollary 2.1 states
that the minimum distance of C(5; (1, 2, 2, 3)) is given by

d = min {(4)(2) , (2)(3) , 4} = 4.

Certainly there are no codewords of weight 3. According to (5), the parity-check matrix
H(5; (1, 2, 2, 3)) is given by

H(5; (1, 2, 2, 3)) =



H0 0 0 0
0 H0 0 0
0 0 H0 0
0 0 0 H0

H2 H2 H2 H2

H1 α−1H1 α−2H1 α−3H1

H1 α−2H1 α−4H1 α−6H1


,

where
H0 =

(
1 1 1 1 1

)
,

H1=
(
α4 α3 α2 α 1

)
and

H2=

(
α4 α3 α2 α 1
α8 α6 α4 α2 1

)
.
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Consider the [5,2,4] RS code whose parity-check matrix is
(

H0

H2

)
. Let u be a codeword of

weight 4 in such a code. Then, (u , 0 , 0 , 0) is a codeword of weight 4 in C(5; (1, 2, 2, 3)),
since we easily see that its inner product with the rows of H(5; (1, 2, 2, 3)) is zero.
Let us show next the existence of a codeword of weight (2)(3)= 6 with two non-zero rows

of weight 3. Take a codeword u of weight 3 in the [5, 3, 3] code whose parity-check matrix

is given by
(

H0

H1

)
. Consider a codeword of weight 2 in the [5, 4, 2] code whose parity-check

matrix is
(
1 1 1 1

)
, say, (1,1,0,0). Then, we can see that w=(u, u, 0, 0) is a codeword

of weight (2)(3) in C(5; (1, 2, 2, 3)). In effect, the inner product of w with the first 5 and the
last 2 rows of H(5; (1, 2, 2, 3)) is zero, since the inner product of the rows of H0 and of H1

with u are zero by construction. Now, if the inner product of u with the second row of H2

is, say, γ, then the inner product of w with the sixth row of H(5; (1, 2, 2, 3)) is γ⊕ γ=0.
Finally, let us show that there is a codeword of weight (4)(2)= 8, with four non-zero

rows of weight 2. Take a codeword u of weight 2 in the [5, 4, 2] code whose parity-check
matrix is given by H0, for instance, u=(1, 1, 0, 0, 0) is such a codeword. Take a codeword
v=(v0, v1, v2, v3) of weight 4 in the [4, 1, 4] code whose parity-check matrix is

Ĥ(3, 4; 0) =

 1 1 1 1
1 α−1 α−2 α−3

1 α−2 α−4 α−6

 .

Take w= (v0u, v1u, v2u, v3u). Then, w is a codeword of weight (4)(2) in C(5; (1, 2, 2, 3)). In
effect, the inner product of w with any of the first four rows of H(5; (1, 2, 2, 3)) is zero, since
the inner product of u with the row of H0 is zero. Next take any of the remaining rows, and
assume that the inner product of u with the first 5 coordinates of such row is γ. Then the
inner product of w with the row is given by γ times the inner product of v with a row of
Ĥ(3, 4; 0), which is zero by construction.

3 Encoding and Decoding

In erasure decoding, encoding is a special case of the decoding. The decoding algorithm to
be presented next also proves Theorem 2.1.
Assume that we have a t-level GC-code C(n;u) as given by Definition 2.1. The codewords

are m×n arrays. As before, let u be given by (3), v be a received m×n array with erasures,
and without loss of generality, assume that there are st−1 rows of v with ut−1 erasures each,
st−2 rows of v with ut−2 erasures each, and so on, until finally there are s0 rows of v with u0

erasures each. Let σ : {0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1} be a permutation of the rows of
v and vσ the array v with the rows permuted according to σ, such that the first st−1 rows
of vσ have ut−1 erasures each, the next st−2 rows of vσ have ut−2 erasures each, and so on,
until finally the last s0 rows of vσ have s0 erasures each.
We permute accordingly the columns of the parity-check matrix H(n;u) of C(n;u) to

give the permuted parity-check matrix Hσ(n;u) corresponding to a permuted code Cσ(n;u).
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Specifically, if we write the
(∑t−1

i=0 uisi
)
×mn matrix H(n;u) as

H(n;u) =
(
H0 H1 . . . Hm−1

)
, (8)

where each Hi is a
(∑t−1

i=0 uisi
)
× n matrix, and let i0, i1, . . . , im−1 be such that σ(ij)= j for

0 ≤ j ≤ m− 1, then

Hσ(n;u) =
(
Hi0 Hi1 . . . Him−1

)
(9)

and Cσ(n;u) is the permuted code given by the parity-check matrix Hσ(n;u). We will see
how to use this permuted parity-check matrix to implement an efficient decoding algorithm.
Based on H(n;u) as given by (5), Hσ(n;u) is given by

Hσ(n;u) =



H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0

Ht−1 Ht−1 . . . Ht−1

α−i0Ht−1 α−i1Ht−1 . . . α−im−1Ht−1
...

...
. . .

...

α−i0(ŝt−1−1)Ht−1 α−i1(ŝt−1−1)Ht−1 . . . α−im−1(ŝt−1−1)Ht−1

α−i0ŝt−1Ht−2 α−i1ŝt−1Ht−2 . . . α−im−1ŝt−1Ht−2

α−i0(ŝt−1+1)Ht−2 α−i1(ŝt−1+1)Ht−2 . . . α−im−1(ŝt−1+1)Ht−2
...

...
. . .

...

α−i0(ŝt−2−1)Ht−2 α−i1(ŝt−2−1)Ht−2 . . . α−im−1(ŝt−2−1)Ht−2

...
...

. . .
...

α−i0ŝi+1Hi α−i1ŝi+1Hi . . . α−im−1ŝi+1Hi

α−i0(ŝi+1+1)Hi α−i1(ŝi+1+1)Hi . . . α−im−1(ŝi+1+1)Hi
...

...
. . .

...

α−i0(ŝi−1)Hi α−i1(ŝi−1)Hi . . . α−im−1(ŝi−1)Hi

...
...

. . .
...

α−i0ŝ2H1 α−i1ŝ2H1 . . . α−im−1ŝ2H1

α−i0(ŝ2+1)H1 α−i1(ŝ2+1)H1 . . . α−im−1(ŝ2+1)H1
...

...
. . .

...

α−i0(ŝ1−1)H1 α−i1(ŝ1−1)H1 . . . α−im−1(ŝ1−1)H1



(10)

Consider next the ŝ1 ×m matrix
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1 1 . . . 1
α−i0 α−i1 . . . α−im−1

...
...

. . .
...

α−i0(ŝt−1−1) α−i1(ŝt−1−1) . . . α−im−1(ŝt−1−1)

α−i0ŝt−1 α−i1ŝt−1 . . . α−im−1ŝt−1

α−i0(ŝt−1+1) α−i1(ŝt−1+1) . . . α−im−1(ŝt−1+1)

...
...

. . .
...

α−i0(ŝt−2−1) α−i1(ŝt−2−1) . . . α−im−1(ŝt−2−1)

...
...

. . .
...

α−i0ŝi+1 α−i1ŝi+1 . . . α−im−1ŝi+1

α−i0(ŝi+1+1) α−i1(ŝi+1+1) . . . α−im−1(ŝi+1+1)

...
...

. . .
...

α−i0(ŝi−1) α−i1(ŝi−1) . . . α−im−1(ŝi−1)

...
...

. . .
...

α−i0ŝ2 α−i1ŝ2 . . . α−im−1ŝ2

α−i0(ŝ2+1) α−i1(ŝ2+1) . . . α−im−1(ŝ2+1)

...
...

. . .
...

α−i0(ŝ1−1) α−i1(ŝ1−1) . . . α−im−1(ŝ1−1)



(11)

Since this one is a (rectangular) Vandermonde matrix and ŝ1 < ŝ0=m, there is a linear
combination that transforms the matrix above into an upper triangular form (for instance,
by doing Gaussian elimination). Specifically, let the upper triangular form be



1 1 1 . . . 1 1 . . . 1 1
0 1 γ1,2 . . . γ1,s1−2 γ1,s1−1 . . . γ1,m−2 γ1,m−1

0 0 1 . . . γ2,s1−2 γ2,s1−1 . . . γ2,m−2 γ2,m−1

...
...

...
. . .

...
...

. . .
...

...
0 0 0 . . . 1 γs1−2,s1−1 . . . γs1−2,m−2 γs1−2,m−1

0 0 0 . . . 0 1 . . . γs1−1,m−2 γs1−1,m−1


(12)

Since the rows of Hi are contained in the rows of Hj for i < j, this means that the parity-
check matrix Hσ(n;u) as given by (10), by row operations and after some rearrangement of

the rows, can be transformed into the pseudo upper-triangular matrix
△

Hσ(n;u) given by (13)
below using (12):
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H0 0 . . . 0 0 . . . 0 0
Ht−1 Ht−1 . . . Ht−1 Ht−1 . . . Ht−1 Ht−1

0 H0 . . . 0 0 . . . 0 0
0 Ht−1 . . . γ1,s1−1Ht−1 γ1,s1

Ht−1 . . . γ1,m−2Ht−1 γ1,m−1Ht−1

...
...

. . .
...

...
. . .

...
...

0 0 . . . H0 0 . . . 0 0
0 0 . . . H1 γs1−1,s1

H1 . . . γs1−1,m−2H1 γs1−1,m−1H1

0 0 . . . 0 H0 . . . 0 0
...

...
. . .

...
...

. . .
...

...
0 0 . . . 0 0 . . . H0 0
0 0 . . . 0 0 . . . 0 H0



(13)

Using the pseudo upper-triangular parity-check matrix
△

Hσ(n;u) given by (13), we can
decode the (permuted) received array vσ by successive decoding of individual RS codes.
Notice that H0 is the parity-check matrix of a RS code that can correct up to u0 erasures,

and each
(

H0

Hi

)
, 1 ≤ i ≤ t − 1, is the parity-check matrix of a RS code that can correct up

to ui erasures. The first step is computing the
∑t−1

i=0 uisi syndromes of vσ (the permuted

version of the received array v) with respect to
△

Hσ(n;u) (erasures are assumed to be zero
in syndrome computation). Since the number of erasures of vσ is in non-increasing order,
the up to u0 erasures in the last row of vσ are corrected by using the parity-check matrix
H0. Once this has been done, the remaining (

∑t−1
i=0 uisi)− u0 syndromes are updated using

the corrected information. The process is repeated with each of the last s0 rows of vσ,
which contain up to u0 erasures each. Once finished with correction of the last s0 rows, the

next row, containing up to u1 erasures, is corrected using the parity-check matrix
(

H0

H1

)
.

The process continues by induction, until the first row, which contains up to ut−1 erasures,
is corrected. Finally, the inverse permutation σ−1 is applied to the rows of the corrected
version of vσ to obtain the corrected version of v.
Let us write formally the algorithm arising from the discussion above.

Algorithm 3.1 (Decoding Algorithm) Consider a t-level GC-code C(n;u) as given by
Definition 2.1. Let v be a received m× n array with erasures.
Let σ : {0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1} be a permutation of the rows of v and vσ the

array v with the rows permuted according to σ, such that the number of erasures in each
row of vσ is in non-increasing order.
If the parity-check matrix of H(n;u) of C(n;u) is given by (8), consider the permuted

parity-check matrix Hσ(n;u) given by (9), or, more in detail, by (10), which corresponds to
a permuted code Cσ(n;u).
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Let σ−1(j)= ij for 0 ≤ j ≤ m−1. Take the rectangular Vandermonde matrix given by (11)
and, by row operations, transform it into the upper triangular form given by (12). Use this
upper triangular matrix to transform the parity-check matrix Hσ(n;u) as given by (10) into

the pseudo upper triangular parity-check matrix
△

Hσ(n;u) given by (13). Then proceed as
follows:

1. Compute the
∑m−1

i=0 uisi syndromes of vσ with respect to the parity-check matrix
△

Hσ(n;u).

2. Correct the erasures in the last row of vσ using the RS parity-check matrix H0 and the
last u0 syndromes. Then the next to last row of vσ using the RS parity-check matrix
H0 and the next to last u0 syndromes, and so on until correcting the last s0 rows. If
any of these last rows had more than u0 erasures, then declare an uncorrectable error.

3. Using the corrected locations and values in the last s0 rows of vσ, update the first∑m−1
i=1 uisi syndromes of vσ with respect to

△

Hσ(n;u).

4. Next, consider the last of the first
∑m−1

i=1 si rows of vσ. If there are more than u1

erasures in such row, declare an uncorrectable error. Otherwise, correct up to u1

erasures in the last of these
∑m−1

i=1 si rows using the last u1 of the
∑m−1

i=1 uisi syndromes

with respect to the RS code whose parity-check matrix is given by
(

H0

H1

)
. Update then

the first
(∑m−1

i=1 uisi
)
− u1 syndromes.

5. Repeat the process until the first row, which contains up to um−1 erasures, is corrected
using the first um−1 syndromes with respect to the RS code whose parity-check matrix

is given by
(

H0

Hm−1

)
.

6. Obtain the corrected array v by applying the permutation σ−1 to the rows of the
corrected array vσ.

The next example illustrates the decoding algorithm.

Example 3.1 Let n=5 and u=(1, 2, 2, 4). Take the code C(5; (1, 2, 2, 4)) over the finite field
GF (8) given by the primitive polynomial 1+x+x3. According to (4) and (5), H(5; (1, 2, 2, 4))
is given by the 9× 20 matrix



H0 0 0 0
0 H0 0 0
0 0 H0 0
0 0 0 H0

H2 H2 H2 H2

H1 α−1H1 α−2H1 α−3H1

H1 α−2H1 α−4H1 α−6H1


,
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where

H0 =
(
1 1 1 1 1

)
,

H2 =

 α4 α3 α2 α 1
α8 α6 α4 α2 1
α12 α9 α6 α3 1

 .

and H1 corresponds to the first row of H2. Notice that α8=α, α9=α2 and α12 =α5 since
α7 =1.
The codewords in the code are 4 × 5 arrays. Assume that the following array has been

received:

v =

E α3 1 E 0
α6 E E E E
α6 E α5 E 1
α4 0 α E α3

where E denotes an erasure. We can see that there are 2 erasures in the first row, 4 in the
second, 2 in the third and one in the fourth. If we take the permutation

σ : {0, 1, 2, 3} → {0, 1, 2, 3}

such that σ(0)= 1, σ(1)= 0, σ(2)= 2 and σ(3)= 3, the permuted array is given by

vσ =

α6 E E E E
E α3 1 E 0
α6 E α5 E 1
α4 0 α E α3

.

We can see that the number of erasures in vσ appears now in non-increasing order: the first
row has 4 erasures, the next two have two, and the last row has one erasure. The parity-check
matrix Hσ(5; (1, 2, 2, 4)) corresponding to the permuted code Cσ(5; (1, 2, 2, 4)) is given by



H0 0 0 0
0 H0 0 0
0 0 H0 0
0 0 0 H0

H2 H2 H2 H2

α−1H1 H1 α−2H1 α−3H1

α−2H1 H1 α−4H1 α−6H1
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and the matrix given by (11) is in this example

 1 1 1 1
α−1 1 α−2 α−3

α−2 1 α−4 α−6

 =

 1 1 1 1
α6 1 α5 α4

α5 1 α3 α

 .

Triangulating this last matrix, for instance, by Gaussian elimination, we obtain the matrix
given by (12)

 1 1 1 1
0 1 α6 α
0 0 1 α3

 .

Now, with this matrix, we can obtain
△

Hσ(5; (1, 2, 2, 4)) given by (13) as follows:

△

Hσ(5; (1, 2, 2, 4)) =



H0 0 0 0
H2 H2 H2 H2

0 H0 0 0
0 H1 α6H1 αH1

0 0 H0 0
0 0 H1 α3H1

0 0 0 H0


.

Next we compute the 9 syndromes of vσ with respect to
△

Hσ(5; (1, 2, 2, 4)). Explicitly, these
9 syndromes are

S0 = α6

S1 = α3

S2 = α2

S3 = α3

S4 = α

S5 = 1

S6 = α3

S7 = α6

S8 = α5
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The first step is decoding one erasure in the fourth coordinate of vσ, which corresponds
to coordinate 18 of vσ when written as a vector. Since there is only one erased coordinate,
such erased coordinate has to equal the syndrome S8 =α5. Thus, the last row of vσ becomes

(
α4 0 α α5 α3.

)
The next step is updating the first 8 syndromes. Notice that S0, S4 and S6 remain the

same since coordinate 18 of the corresponding rows in
△

Hσ(5; (1, 2, 2, 4)) are zero. As for the

rest, using
△

Hσ(5; (1, 2, 2, 4)), we have

S1 = S1 ⊕ (α)(α5) = α3⊕α6 = α4

S2 = S2 ⊕ (α2)(α5) = α2⊕ 1 = α6

S3 = S3 ⊕ (α3)(α5) = α3⊕α = 1
S5 = S5 ⊕ (α2)(α5) = 1⊕ 1 = 0
S7 = S7 ⊕ (α4)(α5) = α6⊕α2 = 1

Next we have to decode the two erasures corresponding to the third row of vσ using the

parity-check matrix
(

H0

H1

)
and the two syndromes S6 and S7. Specifically, since erasures

have occurred in locations 1 and 3 of the third row, we have to solve the following system of
two linear equations with two unknowns:

X ⊕Y = S6 = α3

α3X ⊕αY = S7 = 1.

Solving this system, for instance by triangulation, gives X =α5 and Y =α2. Replacing in
the third row of vσ gives

(
α6 α5 α5 α2 1

)
.

Next we need to update the first 6 syndromes, but as before, syndromes S0 and S4 do not
need to be updated. The corrected erased coordinates correspond to coordinates 11 and 13

of vσ when regarded as a vector. Again using
△

Hσ(5; (1, 2, 2, 4)), we have

S1 = S1 ⊕ (α3)(α5)⊕ (α)(α2) = α4⊕α⊕α3 = α5

S2 = S2 ⊕ (α6)(α5)⊕ (α2)(α2) = α6⊕α4⊕α4 = α6

S3 = S3 ⊕ (α2)(α5)⊕ (α3)(α2) = 1⊕ 1⊕α5 = α5

S5 = S5 ⊕ (α2)(α5)⊕ (1)(α2) = 0⊕ 1⊕α2 = α6
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Now we have to decode the two erasures corresponding to the second row of vσ using the

parity-check matrix
(

H0

H1

)
and the two syndromes S4 and S5. Since erasures have occurred

in locations 0 and 3 of the second row, we have to solve the following system of two linear
equations with two unknowns:

X ⊕Y = S4 = α

α4X ⊕αY = S5 = α6.

Solving this system gives X =α5 and Y =α6. Replacing in the second row of vσ gives

(
α5 α3 1 α6 0

)
.

Next we need to update the first 4 syndromes, but syndrome S0 does not need to be
updated. The corrected erased coordinates correspond to coordinates 5 and 8 of vσ when

regarded as a vector. Using
△

Hσ(5; (1, 2, 2, 4)), we have

S1 = S1⊕ (α4)(α5)⊕ (α)(α6) = α5 ⊕α2 ⊕ 1 = α
S2 = S2⊕ (α)(α5)⊕ (α2)(α6) = α6 ⊕α6 ⊕α = α
S3 = S3⊕ (α5)(α5)⊕ (α3)(α6) = α5 ⊕α3 ⊕α2 = 0

Finally we have to decode the four erasures corresponding to the first row of vσ using the

parity-check matrix
(

H0

H2

)
and the four syndromes S0, S1, S2 and S3. Since erasures have

occurred in locations 1, 2, 3 and 4 of the first row, we have to solve the following system of
four linear equations with four unknowns:

X ⊕Y ⊕Z ⊕W = S0 = α6

α3X ⊕α2Y ⊕αZ ⊕W = S1 = α

α6X ⊕α4Y ⊕α2Z ⊕W = S2 = α

α9X ⊕α6Y ⊕α3Z ⊕W = S3 = 0

Solving this system, we obtain X =0, Y =α3, Z =1 and W =α5. Replacing in the first
row of vσ gives

(
α6 0 α3 1 α5

)
.
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Finally, we apply σ−1 (which in this particular case coincides with σ) to the rows of the
decoded version of vσ to obtain the decoded version of v, giving the decoded array

v =

α5 α3 1 α6 0
α6 0 α3 1 α5

α6 α5 α5 α2 1
α4 0 α α5 α3

It can be verified that the syndromes of this array with respect to the parity-check matrix
H(5; (1, 2, 2, 4)) are zero, otherwise an uncorrectable error would be declared.

Let us point out that the decoding algorithm can be adapted to correct errors as well as
erasures (or combinations of both), but in this paper we concentrate on the erasure problem
only.

3.1 Encoding

The encoding is a special case of the decoding, where the parities correspond to erasures.
We can place the parities wherever we want as long as the erasure-correcting capability of
the code is not exceeded. A natural choice is to put the parities in non-increasing order with
respect to their number in the last entries of each row. For example, if u=(1, 2, 2, 4) like in
Example 3.1, the parities may be placed as follows (assuming n=5 as in the example):

D P P P P
D D D P P
D D D P P
D D D D P

,

where D denotes data and P parity. In this case, the permutation σ is the identity. Knowing
a priori where the parities are allows for precomputing the pseudo-triangular parity-check

matrix
△

Hσ(n;u) given by (13). Then the encoding follows the steps of the decoding to
compute the parities. Let us retake the case of Example 3.1 to illustrate the encoding.

Example 3.2 Assume that we want to encode the following array in C(5; (1, 2, 2, 4)) over
the finite field GF (8), where the entries denoted by P are the parities and are considered as
erasures.

v =

α5 P P P P
α6 0 α3 P P
α6 α5 α5 P P
α4 0 α α5 P
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Following the decoding algorithm, as in Example 3.1, we need to find the pseudo-triangular

parity-check matrix
△

Hσ(5; (1, 2, 2, 4), where in this case σ is the identity (the number of era-
sures in each row are already in non-increasing order). Thus,Hσ(5; (1, 2, 2, 4))=H(5; (1, 2, 2, 4))
and the matrix given by (11) is

 1 1 1 1
1 α−1 α−2 α−3

1 α−2 α−4 α−6

 =

 1 1 1 1
1 α6 α5 α4

1 α5 α3 α


Triangulating this last matrix, for instance, by Gaussian elimination, we obtain the matrix

of (12)

 1 1 1 1
0 1 α2 α3

0 0 1 α3

 .

Now, with this matrix, we can obtain
△

Hσ(5; (1, 2, 2, 4)) given by (13) as follows:

△

Hσ(5; (1, 2, 2, 4)) =



H0 0 0 0
H2 H2 H2 H2

0 H0 0 0
0 H1 α2H1 α3H1

0 0 H0 0
0 0 H1 α3H1

0 0 0 H0


.

The encoding now proceeds like the decoding using this parity-check matrix
△

Hσ(5; (1, 2, 2, 4)).
Doing so, it can be verified that the encoded array coincides with the decoded array of Ex-

ample 3.1. Since
△

Hσ(5; (1, 2, 2, 4)) is precomputed, the encoding starts at this point, saving
the time necessary to produce this matrix, as in the general decoding algorithm.

4 Extending the codes

Next we discuss extending the length of the rows of the codes discussed in Section 2. Consider
a t-level GC code C(n;u) as given by Definition 2.1. The codewords are m × n arrays over
a field GF (2b), where n < 2b. However, we can relax this requirement to n− 1 < 2b and to
n− 2 < 2b, by using extended and doubly extended RS codes. Specifically,
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Definition 4.1 Let m ≤ n be integers, and α ∈ GF (2b) an element of order O(α) ≥ n (if
α is primitive, O(α)= 2b − 1). Consider the u× (n+ 1) and u× (n+ 2) matrices

H(1)(u, n) =

 H(u, n; 0)

1
0
0
...
0

 , (14)

H(2)(u, n) =

 H(u, n; 0)

1 0
0 1
0 0
...
0 0

 , (15)

H(1)(u, n; ℓ) =

 H(u, n; ℓ)

0
0
...
0

 (16)

and

H(2)(u, n; ℓ) =

 H(u, n; ℓ)

0 0
0 0
...
0 0

 , (17)

whereH(u, n; ℓ) is given by (1). Notice thatH(1)(u, n) andH(2)(u, n) correspond to extended
and doubly extended RS codes respectively.
Let u be a vector of non-decreasing integers and length m= s0 + s1 + · · · + st−1 as given

by (3). We say that, for 1 ≤ j ≤ 2, the [m(n+j),m(n+j)−
∑t−1

i=0 uisi] code C(j)(n;u) whose
parity-check matrix is given by the

(∑t−1
i=0 uisi

)
×m(n+ j) matrix

H(j)(n;u) =



Im ⊗ H(j)(u0, n)

Ĥ(st−1,m; 0) ⊗ H(j)(ut−1 − u0, n;u0)

Ĥ(st−2,m; ŝt−1) ⊗ H(j)(ut−2 − u0, n;u0)

Ĥ(st−3,m; ŝt−2) ⊗ H(j)(ut−3 − u0, n;u0)
...

Ĥ(s1,m; ŝ2) ⊗ H(j)(u1 − u0, n;u0)


(18)

is a t-level extended GC code for j=1 and a doubly extended GC code for j=2.
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The extended and doubly extended codes C(j)(n;u), 1 ≤ j ≤ 2, have the same erasure-
correcting as code C(n;u), since the decoding algorithm in this case involves repeated erasure-
correction of extended and doubly extended RS codes, using an upper triangular matrix
similar to (13).
Let us illustrate the extension with an example.

Example 4.1 Consider the case of Example 2.3, that is, assume that t=3, i.e.,

u=

(
s0︷ ︸︸ ︷

u0, u0, . . . , u0,

s1︷ ︸︸ ︷
u1, u1, . . . , u1,

s2︷ ︸︸ ︷
u2, u2, . . . , u2

)

and C(n;u) is a 3-level GC code.. Then, according to (18),

H(j)(n;u) =

 Is0+s1+s2 ⊗ H(j)(u0, n)

Ĥ(s2,m; 0) ⊗ H(j)(u2 − u0, n;u0)

Ĥ(s1,m; s2) ⊗ H(j)(u1 − u0, n;u0)

 ,

whereH(j)(u0, n) andH(j)(ui−u0, n;u0) are given by (14), (15), (16) and (17), and Ĥ(s1,m; s2)
and Ĥ(s2,m; 0) are given by (2).
If we take u=(1, 1, 2, 3), then the parity-check matrix of the 3-level extended GC code

C(1)(5; (1, 1, 2, 3)) is given by

H(1)(5; (1, 1, 2, 3)) =

 I4 ⊗ H(1)(1, 5)

Ĥ(1, 4; 0) ⊗ H(1)(2, 5; 1)

Ĥ(1, 4; 1) ⊗ H(1)(1, 5; 1)

 ,

which explicitly gives
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
α4 α3 α2 α 1 0 α4 α3 α2 α 1 0 α4 α3 α2 α 1 0 α4 α3 α2 α 1 0
α8 α6 α4 α2 1 0 α8 α6 α4 α2 1 0 α8 α6 α4 α2 1 0 α8 α6 α4 α2 1 0
α4 α3 α2 α 1 0 α3 α2 α 1 α−1 0 α2 α 1 α−1 α−2 0 α 1 α−1 α−2 α−3 0

 .

The extension gives more versatility in the choice of codes, and in some cases the advantages
are crucial, as seen in the next example.

Example 4.2 Consider the situation of the LRC codes described in [17]. There, a [16,10,5]
code over GF (16) is presented. The data is divided into two sets of 5 symbols each. To
each of these set of symbols a parity symbol is added, so that in each group, whenever a
symbol is erased, it can be recovered using the remaining 5 symbols (in [17], this is called
locality 5). In addition, independently of these two parity symbols, the 10 data symbols are
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encoded into a [14,10] RS code. It is not difficult to see that the [16,10] code so obtained
has minimum distance 5 (Theorem 3 in [17]).
Now, consider code C(2)(6; (2, 4)) over GF (8) as given by Definition 4.1. According to

Corollary 2.1, the minimum distance of this code is 5 also. By (18), its parity-check matrix
is given by

H(2)(8; (2, 4)) =

(
I2 ⊗ H(2)(2, 6)

Ĥ(1, 2; 0) ⊗ H(2)(2, 6; 2)

)

=


1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
α5 α4 α3 α2 α 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 α5 α4 α3 α2 α 1 0 1
α10 α8 α6 α4 α2 1 0 0 α10 α8 α6 α4 α2 1 0 0
α15 α12 α9 α6 α3 1 0 0 α15 α12 α9 α6 α3 1 0 0


This code has locality 6 as opposed to 5 with respect to the LRC code. But it operates over

GF (8) as opposed to GF (16), and the smaller field translates into faster and less complex
operations. Also, the LRC code has locality with respect to only one erasure in the data,
while the code presented has locality with respect to two erasures, without distinguishing
between data and parity. In addition, although both codes have the same minimum distance
d=5, the LRC cannot correct most combinations of 5 erasures, mainly, when the 5 erasures
affect the data and the RS symbols, while C(2)(6; (2, 4)) can correct most: the only case that
it cannot handle occurs when the 5 erasures occur in the same half of the array, as illustrated
below:

E E E E E

Then, given 5 erasures, the probability that the LRC cannot correct them is (14
5
)/(16

5
)= .46,

while the probability that C(2)(6; (2, 4)) cannot correct 5 erasures is given by (2)(8
5
)/(16

5
)= .026.

Similarly, C(2)(6; (2, 4)) can correct 6 erasures when there are 4 erasures in one row and
two in the other.

5 Conclusions

We have presented a method of implementing Generalized Concatenated Codes as erasure-
correcting codes over m× n arrays. We proved the fundamental properties of the codes and
gave efficient encoding and decoding algorithms.
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