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1 Introduction

The so-called support vector machines (SVM) have become a very important tool for the
classification problem. Computing an SVM amounts to solving a certain optimization
problem. The SVM optimization problem is posed with respect to a set of labeled ex-
amples given explicitly. In real-life databases, the data is often distributed over various
tables. Even if the data is given in a single table, there are often external sources of data
that can improve the accuracy of a classifier if incorporated in the classifier. For example,
a given table providing attributes of individuals that have to be classified may include
the town where the individual resides but no attributes of that town. An external source
may provide various attributes of towns or transaction that took place in various towns,
which may be relevant to the classification of individuals. Thus, it is desirable to build a
classifier that takes some of these attributes or transactions into account. This hypothesis
calls for joining the tables on the town column.

To apply a standard SVM algorithm when attributes are distributed over tables, one
has to first to join the tables. However, joining tables explicitly may not be possible due
to the size of the product. Thus, the question is whether it is possible to obtain an SVM
for the join without generating the table explicitly. Here, we show how this can be done
for the join of two tables. In general, the size of the join of two tables can be quadratic
in the terms of the sizes of the joined tables.

1.1 The standard SVM

We first review the standard SVM problem. The input table consists of m “examples”
given as feature vectors xi ∈ <d and corresponding class labels yi ∈ {−1, 1}, i = 1, . . . ,m.

The primal problem

The primal SVM optimization problem is the following:

Minimizew ,b,ξ
1
2
‖w‖2 + C ·

m∑
i=1

ξi

subject to yix
>
i w − yib+ ξi ≥ 1 (i = 1, . . . ,m)

ξi ≥ 0 (i = 1, . . . ,m).

(1)
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The dual problem

The Lagrangian function of the problem in (1) is the following:

L(w, b, ξ;α) = 1
2
‖w‖2 + C ·

m∑
i=1

ξi −
m∑
i=1

αi

(
yix

>
i w − yib+ ξi − 1

)
= 1

2
‖w‖2 −

m∑
i=1

αiyix
>
i w + b

m∑
i=1

yiαi +
m∑
i=1

ξi(C − αi) +
m∑
i=1

αi .

(2)

In the following problem, an optimal solution must satisfy the constraints of (1) and also
αi = 0 for every i such that yix

>
i w − yib+ ξi > 1:

Minimizew ,b,ξ {max α{L(w, b, ξ;α) : α ≥ 0} : ξ ≥ 0}} . (3)

It follows that (3) is equivalent to (1). Due to the convexity in terms of (w, b, ξ) and
linearity in terms of α, the optimal value of (3) is equal to the optimal value of the
following:

Maximize α
{

minw ,b,ξ{L(w, b, ξ;α) : ξ ≥ 0} : α ≥ 0}
}
. (4)

Let α ≥ 0 be fixed for a moment. If
∑m

i=1 yiαi 6= 0, then b
∑m

i=1 yiαi is not bounded from
below. Similarly, if αi > C, then ξi(C − αi) is not bounded from below when ξi > 0.
Therefore, an optimal α for (4) must satisfy

m∑
i=1

αiyi = 0 and αi ≤ C (i = 1, . . . ,m) .

Next, the unique w that minimizes L(w, b, ξ;α) is

w =
m∑
i=1

αiyixi . (5)

Finally, if ξ ≥ 0 minimizes L(w, b, ξ;α), then for every i such that αi < C, necessarily
ξi = 0, and hence

m∑
i=1

ξi(C − αi) = 0 . (6)

Thus, the problem in(4) is equivalent to the following, which can be viewed as the dual
problem:

Minimize α
1
2

∑
ij

yiyjx
>
i xjαiαj −

∑
i

αi

subject to
m∑
i=1

yiαi = 0

0 ≤ αi ≤ C .

(7)
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2 SVM on a join of two tables

2.1 Formulation

We now consider a problem with two tables, T1 and T2. The table T1 has m rows (p>i ,u
>
i ),

i = 1, . . . ,m, and the table T2 has n rows (q>j ,v
>
j ), j = 1, . . . , n, with columns as follows.

The attributes that are represented by the columns of these tables are of three types
described below. Denote by P the set of attributes represented by the pis, and by Q
the set of attributes represented by the qjs. The set U of attributes represented by the
uis is the same as the set V of attributes represented by the vjs (these are the common
attributes of the two tables). The class labels yi are associated with the rows of T1. The
(universal) join of T1 and T2 is a new table J , consisting of |P |+ |U |+ |Q| columns, defined
as follows. For each i, i = 1, . . . ,m, if there is no j such that u>

i = v>j , then J has a row

x>
i0 = (p>i ,u

>
i ,0

>); otherwise, J has rows of the form x>
ij = (p>i ,u

>
i , q

>
j ) for every pair

(i, j) such that u>
i = v>j . Denote by wP , wU and wQ the projections of the (unknown)

vector w on the sets P , U and Q, respectively. Also, denote

I0 = {(i, 0) : (∀j)(ui 6= vj)}

and
IJ = I0 ∪ {(i, j) : ui = vj} .

Thus, the explicit form of the primal problem over the join is:

Minimizew ,b,ξ
1
2
‖w‖2 + C ·

∑
(i,j)∈IJ

ξij

subject to yix
>
ijw − yib+ ξij ≥ 1 ((i, j) ∈ IJ)

ξij ≥ 0 ((i, j) ∈ IJ).

(8)

The size of the latter may be too large, depending on the size of the set IJ. Our goal is
to solve the SVM problem on J without explicitly generating all the rows of J . We can
reformulate this problem by first observing that

x>
ijw = p>i wP + u>

i wU + q>j wQ (9)

where, for convenience, we denote q0 = 0.
As a first step, we reduce the number of penalty variables as follows. Instead of using

a penalty variable ξij for each (i, j) ∈ IJ, we generate those penalties in the form

ξij = ηi + ζj (10)

which makes sense in view of (9) because in an optimal solution

ξij = max{0, 1− yix>
i w + yib} . (11)

Thus, we obtain the following modified optimization problem:

Minimizew ,b,η ,ζ
1
2
‖w‖2 + C ·

m∑
i=1

J(i) · ηi + C ·
n∑

j=1

I(j) · ζj

subject to yix
>
ijw − yib+ ηi + ζj ≥ 1 ((i, j) ∈ IJ)

ηi, ζj ≥ 0 ,

(12)
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where J(i) = |{j : (i, j) ∈ IJ}| and I(j) = |{i : (i, j) ∈ IJ}|.
Note that the number of constraints in problem (12) may still be too large for solving

the problem in practice (depending on the size of IJ), so we need to simplify the problem
further.

2.2 A linear-size formulation

Denote by z1, . . . ,z` all the distinct values that appear as ui. For each k, k = 1, . . . , `,
denote

Ik = {i : ui = zk}

and
Jk = {j : vi = zk} .

Some sets Jk may be empty. Note that the sets I1, . . . , I` partition the set {1, . . . ,m} and
also the sets J1, . . . , J` are pairwise disjoint. We introduce auxiliary variables σ1, . . . , σ`
and τk for k = 1, . . . ` such that Jk 6= ∅. Consider the following system of constraints:

yip
>
i wP − yib+ ηi ≥ σk (i ∈ Ik, k = 1, . . . `)

q>j wQ + ζj ≥ τk (j ∈ Jk, k = 1, . . . `)

σk + z>kwU + τk ≥ 1 (for k = 1, . . . ` such that Jk 6= ∅)
σk + z>kwU ≥ 1 (for k = 1, . . . ` such that Jk = ∅) .

(13)

Proposition 2.1 A vector w satisfies the system

yix
>
ijw − yib+ ηi + ζj ≥ 1 ((i, j) ∈ IJ) (14)

if and only if there exist σ1, . . . , σ` and τ1, . . . , τ` that together with w satisfy the system
(13).

Thus, we obtain the following compact form:

Minimizew ,b,η ,ζ ,σ ,τ
1
2
‖wP‖2 + 1

2
‖wU‖2 + 1

2
‖wQ‖2 + C ·

m∑
i=1

J(i) · ηi + C ·
m∑
i=1

I(j) · ζi

subject to yip
>
i wP − yib+ ξi − σk ≥ 0 (i ∈ Ik, k = 1, . . . `)

q>j wQ − τk ≥ 0 (j ∈ Jk, k = 1, . . . `)

σk + z>kwU + τk ≥ 1 (for k = 1, . . . ` such that Jk 6= ∅)
σk + z>kwU ≥ 1 ( for k = 1, . . . ` such that Jk = ∅)
ξi ≥ 0 (i = 1, . . . ,m).

(15)
At an optimal solution,

σk = min
i∈Ik

{
yip

>
i wP − yib+ ηi

}
and

τk = min
j∈Jk

{
q>j wQ + ζj

}
.
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The Lagrangian function of the latter is derived as follows. Let αi ≥ 0 be multipliers
associated with the constraints:

yip
>
i wP − yib+ ηi − σk ≥ 0 (i ∈ Ik, k = 1, . . . `) (16)

and recall that the Iks are pairwise disjoint. Let βj ≥ 0 be multipliers associated with the
constraints:

q>j wQ + ζj − τk ≥ 0 (j ∈ Jk, k = 1, . . . `) , (17)

and let γk ≥ 0 be multipliers associated with the constraints

σk + z>kwU + τk ≥ 1 (for k = 1, . . . ` such that Jk 6= ∅)
σk + z>kwU ≥ 1 ( for k = 1, . . . ` such that Jk = ∅) .

(18)

The Lagrangian function is:

L(wP ,wU ,wQ,η, ζ,σ, τ ;α,β,γ) = 1
2
‖wP‖2 + 1

2
‖wU‖2 + 1

2
‖wQ‖2

+ C ·
m∑
i=1

J(i)ηi + C ·
n∑

j=1

I(j)ζj

−
∑̀
k=1

∑
i∈Ik

αi

(
yip

>
i wP − yib+ ηi − σk

)
−
∑̀
k=1

∑
j∈Jk

βj
(
q>j wQ + ζj − τk

)
−
∑

k:Jk 6=∅

γk
(
σk + z>kwU + τk − 1

)
−
∑

k:Jk=∅

γk
(
σk + z>kwU − 1

)
(19)

Rearranging terms, we obtain

L(wP ,wU ,wQ,η, ζ,σ, τ ;α,β,γ) = (1
2
‖wP‖2 −

∑
i

αiyip
>
i wP )

+ (1
2
‖wU‖2 −

∑
k

γkz
>
kwU) + (1

2
‖wQ‖2 −

∑
j

βjq
>
j wQ)

+
∑̀
k=1

γk − b
∑
i

yiαi

+
∑
i

ηi(C J(i)− αi) +
∑
j

ζj(C I(j)− βj)

+
∑̀
k=1

σk

(∑
i∈Ik

αi − γk
)

+
∑̀
Jk 6=∅

τk

(∑
j∈Jk

βj − γk
)
.

(20)

The dual problem is:

Maximize α,β ,γ

{
minw ,b,η ,ζ ,σ ,τ{L(w, b,η, ζ,σ, τ ;α,β,γ) : ξ ≥ 0} : α,β,γ ≥ 0}

}
.

(21)
Let α,β and γ be fixed for the moment. We must have

wP =
∑
i

αiyipi (22)
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wQ =
∑
j

βjqj (23)

and
wU =

∑
k

γkzk . (24)

The following are necessary conditions for α, β and γ to be optimal for (21)

m∑
i=1

yiαi = 0

αi ≤ C J(i) (i = 1, . . . ,m)

βi ≤ C I(j) (i = 1, . . . ,m)

γk ≤ αi (k = 1, . . . , `, i ∈ Ik)

γk ≤ βj (k = 1, . . . , `, j ∈ Jk)

(25)

If the latter hold, then the optimal values of η, ζ, σ and τ yield the following:

∑
i

ηi(C J(i)−αi) =
∑
j

ζi(C I(j)−βi) =
∑̀
k=1

σk

(∑
i∈Ik

αi−γk
)

=
∑
Jk 6=∅

τk

(∑
j∈Jk

βj−γk
)

= 0 .

(26)
It follows that the problem (21) is equivalent to the following dual problem:

Minimize 1
2

∑
i,i′

yiyi′p
>
i pi′αiαi′ + 1

2

∑
j,j′

q>j qj′βjβj′ + 1
2

∑
k,k′

z>k zk′γkγk′ −
m∑
i=1

γi

subject to
m∑
i=1

yiαi = 0

0 ≤ αi ≤ C J(i) (i = 1, . . . ,m)

0 ≤ βi ≤ C I(j) (j = 1, . . . , n)

0 ≤ γk ≤ αi (k = 1, . . . , `, i ∈ Ik)

0 ≤ γk ≤ βj (k = 1, . . . , `, j ∈ Jk)

(27)

Note that the size of the latter is linear.

3 Extension to nonlinear classification

In the standard formulation of the nonlinear SVM problem, the vectors xi are lifted to a
higher-dimensional space <M by a nonlinear transformation Φ, and the problem is then
handled as a linear SVM with examples Φ(xi). The dual problem is:

Minimize α
1
2

∑
ij

yiyjΦ(xi)
>Φ(xj)αiαj −

∑
i

αi

subject to
m∑
i=1

yiαi = 0

0 ≤ αi ≤ C .

(28)
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and the primal solution vector w ∈ <M must satisfy

w =
m∑
i=1

αiyiΦ(xi) . (29)

The products Φ(xi)
>Φ(xj) can be generated by kernels K(x,x′):

ψ(xi)
>Φ(xj) = K(xi,xj) . (30)

For example, the so-called quadratic kernel

K(x,x′) ≡ (x>x′ + 1)2

= (x>x′)2 + 2x>x′ + 1

=

(∑
i

xix
′
i

)2

+ 2
∑
i

xix
′
i + 1

=
∑
i

x2i (x
′
i)
2 +

∑
i 6=j

xixjx
′
ix

′
j + 2

∑
i

xix
′
i + 1

implements the transformation

Φ(x) = (1,
√

2x1, . . . ,
√

2xd, x
2
1, . . . , x

2
d, x1x2, . . . , x1xd, x2x1, . . . , x2x3, . . . , x2xd, . . .) (31)

so that the product Φ(xi)
>Φ(xj) can be calculated without calculating the individual

values Φ(xi) and Φ(xj).

3.1 The kernel trick in a join of two tables

In the case of a join of two tables, the examples

x>
ij = (p>i ,u

>
i , q

>
j )

give rise to the following objective function:

1
2

∑
i,i′

yiyi′p
>
i pi′αiαi′ + 1

2

∑
j,j′

q>j qj′βjβj′ + 1
2

∑
k,k′

z>k zk′γkγk′ −
m∑
i=1

γi . (32)

It follows that the linear model can be extended into a (separable) nonlinear one as follows.
We consider lifting transformations Φ that preserve the column structure of the table in
the sense that for x = (p,u, q),

Φ(x) = (ΦP (p),ΦU(u),ΦQ(q)) .

Thus,

Φ(xij)
>Φ(xi′j′) = ΦP (pi)

>ΦP (pi′) + ΦU(ui)
>ΦU(ui′) + ΦQ(qi)

>ΦQ(qi′) .

It follows that our problem 27 can be solved in the higher-dimensional space by modifying
the objective function into the following:

1
2

∑
i,i′

yiyi′ΦP (pi)
>ΦP (pi′)αiαi′+

1
2

∑
j,j′

ΦQ(qj)
>ΦQ(qj′)βjβj′+

1
2

∑
k,k′

ΦU(zk)>ΦU(zk′)γkγk′−
m∑
i=1

γi .

(33)
and the ”kernel trick” can be applied if we use transformations that are consistent
with conventional kernels, KP (p,p′) = ΦP (p)>ΦP (p′), KU(u,u′) = ΦU(u)>ΦU(u′) and
KQ(q, q′) = ΦQ(q)>ΦQ(q′), so the objective can be evaluated in the original space.
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