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Abstract

Generalized Product (GPC) Codes, a new construction unifying Product Codes
and Integrated Interleaved (II) Codes, are presented. Product Codes and II Codes are
special cases of GPC codes. Applications for approaches requiring local and global
parities are described, like in the case of Locally Recoverable (LRC) Codes. The
more general problem of extending product codes by adding global parities is studied
and optimal solutions for one, two and three global parities are presented. Tradeoffs
between the small field size required for GPC codes and optimality of more general
EPC codes are discussed.

Keywords: Erasure-correcting codes, product codes, Reed-Solomon (RS) codes, gen-
eralized concatenated codes, integrated interleaving, MDS codes, PMDS codes, maxi-
mally recoverable codes, local and global parities, locally recoverable (LRC) codes.

1 Introduction

There has been considerable research lately on codes with local and global properties for
erasure correction (see for instance [1][2][3][7][10][12][18][19][20][21][22][23][24][26] and refer-
ences within). In general, data symbols are divided into sets and parity symbols (i.e., local
parities) are added to each set (often, using an MDS code). This way, when a number of
erasures not exceeding the number of parity symbols occurs in a set, such erasures are rapidly
recovered. In addition to the local parities, a number of global parities are also added. Those
global parities involve all of the data symbols and may include the local parity symbols as
well. The global parities can correct situations in which the erasure-correcting power of the
local parities has been exceeded.
The interest in erasure correcting codes with local and global properties arises mainly

from two applications. One of them is the cloud. A cloud configuration may consist of many
storage devices, of which some of them may even be in different geographical locations and
the data is distributed across them. In the case that one or more of those devices fails, it
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is desirable to recover its contents “locally,” that is, using a few parity devices within a set
of limited size in order to affect performance as little as possible. However, the local parity
may not be enough. In case the erasure-correcting capability of a local set is exceeded, extra
protection is needed. In order to handle this situation, some devices containing global parities
are incorporated, and when the local correction power is exceeded, the global parities are
invoked and correction is attempted. If such a situation occurs, there will be an impact on
performance, but data loss may be averted. It is expected that the cases in which the local
parity is exceeded are relatively rare events, so the aforementioned impact on performance
does not occur frequently. As an example of this type of application, we refer the reader to
the description of the Azure system [11] or to the Xorbas code presented in [22].
A second application occurs in the context of Redundant Arrays of Independent Disk

(RAID) architectures [5]. In this case, a RAID architecture protects against one or more
storage device failures. For example, RAID 5 adds one extra parity device, allowing for
the recovery of the contents of one failed device, while RAID 6 protects against up to
two device failures. In particular, if those devices are Solid State Drives (SSDs), like flash
memories, their reliability decays with time and with the number of writes and reads [15].
The information in SSDs is generally divided into pages, each page containing its own internal
Error-Correction Code (ECC). It may happen that a particular page degrades and its ECC
is exceeded. However, this situation may not be known to the user until the page is accessed
(what is known as a silent failure). Assuming an SSD has failed in a RAID 5 scheme,
if during reconstruction a silent page failure is encountered in one of the surviving SSDs,
then data loss will occur. A method around this situation is using RAID 6. However, this
method is costly, since it requires two whole SSDs as parity. It is more desirable to divide
the information in a RAID type of architecture into m× n stripes: m represents the size of
a stripe, and n is the number of SSDs. The RAID architecture can be viewed as consisting
of a large number of stripes, each stripe encoded and decoded independently. Certainly,
codes like the ones used in cloud applications can be used as well for RAID applications.
In practice, the choice of code depends on the statistics of errors and on the frequency of
silent page failures. RAID systems, however, may behave differently than a cloud array of
devices, in the sense that each column represents a whole storage device. When a device
fails, then the whole column is lost, a correlation that may not occur in cloud applications.
For that reason, RAID architectures may benefit from a special class of codes with local
and global properties, the so called Sector-Disk (SD) codes, which take into account such
correlations [16][17].
From now on, we call symbols the entries of a code with local and global properties. Such

symbols can be whole devices (for example, in the case of cloud applications) or pages (in
the case of RAID applications for SSDs). We assume that each symbol is protected by one
local group, but a natural extension is to consider multiple localities [21][24][28]. A special
case of multiple localities is given by product codes [14]: any symbol is protected by either
horizontal or vertical parities.
Product codes by themselves may also be used in RAID type of architectures: the hori-

zontal parities protect a number of devices from failure. The vertical parities allow for rapid
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recovery of a page or sector within a device (a first responder type of approach). However,
if the number of silent failures exceeds the correcting capability of the vertical code, and the
horizontal code is unusable due to device failure, data loss will occur. For that reason, it
may be convenient to incorporate a number of global parities to the product code.
In effect, assume that we have a product code consisting of m × n arrays such that each

column has v parity symbols and each row has h parity symbols. If in addition to the
horizontal and vertical parities we have g extra parities, we say that the code is an Extended
Product (EPC) code and we denote it by EP (m, v;n, h; g). Notice that if g=0, we have a
regular product code. Similarly, if v=0, we have a Locally Recoverable (LRC) code.
Constructions of LRC codes involve different issues and tradeoffs, like the size of the field

and optimality criteria. The same is true for EPC codes, of which, as we have seen above,
LRC codes are a special case. In particular, one goal is to keep the size of the finite field
required small, since operations over a small field have less complexity than over a larger
field due to the smaller look-up tables required. For example, Integrated Interleaved (II)
codes [9][25] over GF (q), where q ≥ max{m,n}, were proposed in [2] as LRC codes (II
codes are closely related to Generalized Concatenated Codes [4][29]). Let us mention the
construction in [13], which also reduces field size when failures are correlated. Similarly, we
will propose a new family of codes that we call Generalized Product (GPC) codes, of which
both product codes and II codes are special cases.
As LRC codes, EPC codes also have optimality issues. For example, LRC codes optimizing

the minimum distance were presented in [24], and except for special cases, in general II codes
are not optimal as LRC codes, but the codes in [24] require a field of size at least mn, so
there is a tradeoff. The same happens with GPC codes: except for the special case of one
global parity, they do not optimize the minimum distance. We examine some cases of EPC
codes that do optimize the minimum distance for two and three global parities, but a larger
field is required.
There are stronger criteria for optimization than the minimum distance in LRC codes. For

example, PMDS codes [1][3][6][11] satisfy the Maximally Recoverable (MR) property[6][8].
The definition of the MR property is extended for EPC codes in [8], but it turns out that
EPC codes with the MR property are difficult to obtain. For example, in [8] it was proven
that an EPC code EP (m, 1;n, 1; 1) (i.e., one vertical and one horizontal parity per column
and row and one global parity) with the MR property requires a field that is superlinear on
the size of the array (and no explicit construction is given). We will not address EPC codes
with the MR property here.
Although the constructions can be extended to finite fields of any characteristic, for sim-

plicity, in this paper we assume that the finite fields have characteristic 2.
The paper is structured as follows: in Section 2 we present the definition of GPC codes

and prove its properties, like the erasure-correcting capability, the minimum distance and
encoding and decoding algorithms. In Section 3, we present constructions of EPC codes with
two and three parities and discuss optimality issues. We end the paper by drawing some
conclusions.
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2 Generalized Product (GPC) Codes

We start by defining Generalized Product Codes, which unify product codes with II codes.
These codes also consist of m × n arrays whose elements are in a finite field GF (q) and it
has similar characteristics to a t-level II code, except that the last m − k rows are devoted
to parity in such a way that each column in the code belongs in an [m,m − k] MDS code.
Explicitly,

Definition 2.1 Take t integers 1 ≤ u0 < u1 < . . . < ut−1 ≤ n− 1 and let u be the following
vector of length m= s0 + s1 + · · ·+ st−1, where si ≥ 1 for 0 ≤ i ≤ t− 1:

u =

 s0︷ ︸︸ ︷
u0, u0, . . . , u0,

s1︷ ︸︸ ︷
u1, u1, . . . , u1, . . . ,

st−1︷ ︸︸ ︷
ut−1, ut−1, . . . , ut−1

 . (1)

Consider a set {Ci} of t nested [n, n − ui, ui + 1], 0 ≤ i ≤ t − 1, Reed-Solomon [14] (RS)
codes with elements in a finite field GF (q), q > max{m,n}, such that a parity-check matrix
for Ci is given by

Hi =



1 1 1 . . . 1
1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
. . .

...
1 αui−1 α2(ui−1) . . . α(ui−1)(n−1)

 , (2)

where α is an element of order O(α) ≥ n in GF (q).
For 0 ≤ m − k < st−1, let C(n; k, u) be the code consisting of m × n arrays over GF (q)

such that, for each array in the code with rows c0, c1, . . . , cm−1, cj ∈ C0 for 0 ≤ j ≤ m − 1
and, if

ŝi =
t−1∑
j=i

sj for 0 ≤ i ≤ t− 1, (3)

then

m−1⊕
j=0

αrjcj ∈ Ci for 1 ≤ i ≤ t− 1 and 0 ≤ r ≤ ŝi − 1 (4)

m−1⊕
j=0

αrjcj = 0 for 0 ≤ r ≤ m− k − 1. (5)

Then we say that C(n; k, u) is a t-level Generalized Product (GPC) code. 2
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In reality, it is not necessary that the codes Ci in Definition 2.1 are RS with a parity-check
matrix as given by (2), or not even MDS, but we make the assumption for simplicity. The
codes may even be binary [27].
Before giving the properties of t-level GPC codes, we present some examples.

Example 2.1 Assume that k=m in Definition 2.1, then, there are no conditions (5) and
C(n;m,u) is a t-level Integrated Interleaved (II) [2][25] code.
So, t-level II codes can be viewed as a special case of t-level GPC codes. 2

Example 2.2 Assume that t=1, then (1) gives u=(
m︷ ︸︸ ︷

u0, u0, . . . , u0) and, if k < m,

C(n; k,
m︷ ︸︸ ︷

u0, u0, . . . , u0) is a regular product code [14] such that each row is in an [n, n − u0]
code and each column in an [m, k] code.
So, product codes can be viewed as a special case of t-level GPC codes. 2

Example 2.3 Assume that t=2. Then, C1 ⊂ C0, u=(
s0︷ ︸︸ ︷

u0, u0, . . . , u0,
s1︷ ︸︸ ︷

u1, u1, . . . , u1),
s0 + s1 =m, and consider the 2-level GPC code C(n; k, u) with 0 ≤ m − k < s1. Let
c=(c0, c1, . . . , cm−1) be an m× n array in C(n; k, u). Then, cj ∈ C0 for each 0 ≤ j ≤ m− 1,
and (4) and (5) give

m−1⊕
j=0

αrjcj ∈ C1 for 0 ≤ r ≤ s1 − 1 (6)

m−1⊕
j=0

αrjcj = 0 for 0 ≤ r ≤ m− k − 1. (7)

The 2-level II codes presented in [9] correspond to C(n;m,u) in this example, i.e., only
equations (6) are taken into account since k=m.

As another special case, take k=m− 1 and u=(

m−2︷ ︸︸ ︷
1, 1, . . . , 1, 2, 2). The rows c0, c1, . . . , cm−1

of C(n;m−1, (
m−2︷ ︸︸ ︷

1, 1, . . . , 1, 2, 2)) constitute a 2-level II code. Each column is in an [m,m−1, 2]
code, each row is in an [n, n− 1, 2] code (single parity). The C0 code is the [n, n− 1, 2] code,
and the C1 code is an [n, n− 2, 3] code given by the parity-check matrix

H2 =

(
1 1 1 . . . 1
1 α α2 . . . αn−1

)
.

Moreover, (6) and (7) give
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m−1⊕
i=0

αici ∈ C1

m−1⊕
i=0

ci = 0.

It is not hard to prove directly that this code can correct any 5 erasures, but this will be
a consequence of Corollary 2.2 below. It consists of a product code (which has minimum
distance 4) plus one extra (global) parity. This extra parity brings the minimum distance
up from 4 to 6. For instance, if m=4 and n=5, erasure patterns like the following (vertices
of a rectangle)

X X

X X

are uncorrectable by the product code but not by C(5; 3, (1, 1, 2, 2)). An extra erasure in
addition to the four depicted above can be corrected by either the horizontal or the vertical
code. 2

Example 2.4 Assume that t=3. Then, C2 ⊂ C1 ⊂ C0,

u=

( s0︷ ︸︸ ︷
u0, u0, . . . , u0,

s1︷ ︸︸ ︷
u1, u1, . . . , u1,

s2︷ ︸︸ ︷
u1, u1, . . . , u1

)
,

s0 + s1 + s2=m, and consider the 3-level GPC code C(n; k, u) with 0 ≤ m − k ≤ s2. Let
c=(c0, c1, . . . , cm−1) be an m× n array in C(n; k, u). Then, cj ∈ C0 for each 0 ≤ j ≤ m− 1,
and (4) and (5) give

m−1⊕
j=0

αrjcj ∈ C2 for 0 ≤ r ≤ s2 − 1 (8)

m−1⊕
j=0

αrjcj ∈ C1 for 0 ≤ r ≤ s1 + s2 − 1 (9)

m−1⊕
j=0

αrjcj = 0 for 0 ≤ r ≤ m− k − 1. (10)

2
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We are now ready to state the main result regarding GPC codes.

Theorem 2.1 Consider an m × n array corresponding to a C(n; k, u) t-level GPC code as
given by Definition 2.1. Then, the code can correct up to s0 erasures in any row, up to ui

erasures in any si rows, 1 ≤ i ≤ t− 1, and up to n erasures in any m− k rows.

Proof: We may assume that the rows with erasures contain more than u0 erasures, since
each row is in C0, an [n, n − u0, u0 + 1] code, hence, rows with up to u0 erasures can be
corrected. Assume that there are up to m−k erased rows and a number ℓ of rows with more
than u0 erasures such that there are up to ui erasures in any up to si rows, 1 ≤ i ≤ t − 1.
We do induction on ℓ.
Assume first that ℓ=0, that is, we have up to m− k erased rows and the rest of the rows

are erasure free. We can certainly correct such up to m− k erased rows by using (5) (which
states that each column in the array is in an [m,m− k,m− k + 1] MDS code).
So, assume that there are ℓ ≥ 1 rows with more than s0 erasures each such that there are

up to ui erasures in any up to si rows, 1 ≤ i ≤ t − 1. By induction, up to ℓ − 1 rows with
this property are correctable.
Let i0, i1, . . . , im−1 be an ordering of the rows according to a non-increasing number of

erasures such that:

1. Rows i0, i1, . . . , im−k−1 are erased.

2. Row im−k+j for 0 ≤ j ≤ ℓ−1 has vj erasures, where ut−1 ≥ v0 ≥ v1 ≥ . . . ≥ vℓ−1 > u0.

3. Rows im−k+ℓ, im−k+ℓ+1, . . . , im−1 have no erasures.

It suffices to prove that the vℓ−1 erasures in row im−k+ℓ−1 can be corrected. Then we are
left with ℓ− 1 rows with more than s0 erasures each such that there are up to ui erasures in
any up to si rows, 1 ≤ i ≤ t− 1, and the result follows by induction.
Choose a code Cs from the nested set of codes Ci, 1 ≤ i ≤ t− 1, in Definition 2.1 such that
Cs can correct vℓ−1 erasures. Rearranging the order of the elemens of the sums in (4), and
since Ct−1 ⊂ Ct−2 ⊂ · · · ⊂ Cs, from (4) we have

m−1⊕
j=0

αrijcij ∈ Cs for 0 ≤ r ≤ m− k + ℓ− 1. (11)

Since the (m − k + ℓ) × m matrix corresponding to the coefficients of the cijs in (11) is a
Vandermonde matrix, it can be triangulated, giving

cir ⊕

 m−1⊕
j=r+1

γr,jcij

 ∈ Cs for 0 ≤ r ≤ m− k + ℓ− 1, (12)
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where the coefficients γr,j are a result of the triangulation. In particular, taking
r=m− k + ℓ− 1 in (12), we obtain

cim−k+ℓ−1
⊕

 m−1⊕
j=m−k+ℓ

γm−k+ℓ−1,jcij

 ∈ Cs. (13)

Since cim−k+ℓ−1
has vℓ−1 erasures and cij has no erasures for m − k + ℓ ≤ j ≤ m − 1,

then cim−k+ℓ−1
⊕
(⊕m−1

j=m−k+ℓ γm−k+ℓ−1,jcij

)
has vℓ−1 erasures. Since the vector is in Cs, the

erasures can be corrected. Once cim−k+ℓ−1
⊕
(⊕m−1

j=m−k+ℓ γm−k+ℓ−1,jcij

)
is corrected, cim−k+ℓ−1

is obtained as

cim−k+ℓ−1
=

cim−k+ℓ−1
⊕

 m−1⊕
j=m−k+ℓ

γm−k+ℓ−1,jcij

 ⊕
 m−1⊕

j=m−k+ℓ

γm−k+ℓ−1,jcij


and the result follows by induction on ℓ.

2

Theorem 2.1 generalizes Theorem 1 in [2]. The proof of Theorem 2.1 is constructive in the
sense that it provides a decoding algorithm. The following example illustrates Theorem 2.1
and the decoding algorithm.

Example 2.5 Consider the 3-level GPC code C(7; 4, (1, 1, 3, 4, 4, 4)) according to Defini-
tion 2.1 and Example 2.4. We have three codes C2 ⊂ C1 ⊂ C0, where C0 is a [7, 6, 2] code, C1
is a [7, 4, 4] code and C2 is a [7, 3, 5] code. In addition, each column is in a [6, 4, 3] code. We
may assume that the entries of these codes are in GF (8) and that α is a primitive element
in GF (8).
Consider the 6× 7 array with erasures denoted by X

c0
c1
c2
c3
c4
c5

X
X X X X X X X

X X X X
X X X
X X X X X X X

X

The first step is correcting the single erasures in c0 and in c5. An ordering of the remaining
rows in non-increasing number of erasures is {i0, i1, i2, i3}= {1, 4, 2, 3}. In particular, c3 has
three erasures. Following the proof of Theorem 2.1, there are m − k=2 erased rows (rows
c1 and c4) and ℓ=2 rows with erasures, but not totally erased (rows c2 and c3). According
to (8) and (9),
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c0 ⊕ c1 ⊕ c2 ⊕ c3 ⊕ c4 ⊕ c5 ∈ C2
c0 ⊕ αc1 ⊕ α2c2 ⊕ α3c3 ⊕ α4c4 ⊕ α5c5 ∈ C2
c0 ⊕ α2c1 ⊕ α4c2 ⊕ α6c3 ⊕ α8c4 ⊕ α10c5 ∈ C2
c0 ⊕ α3c1 ⊕ α6c2 ⊕ α9c3 ⊕ α12c4 ⊕ α15c5 ∈ C1.

Notice that C1 can correct three erasures (i.e., s=1 in the proof of Theorem 2.1). Rear-
ranging the cis above in non-increasing number of erasures, we obtain

c1 ⊕ c4 ⊕ c2 ⊕ c3 ⊕ c0 ⊕ c5 ∈ C2
αc1 ⊕ α4c4 ⊕ α2c2 ⊕ α3c3 ⊕ c0 ⊕ α5c5 ∈ C2
α2c1 ⊕ α8c4 ⊕ α4c2 ⊕ α6c3 ⊕ c0 ⊕ α10c5 ∈ C2
α3c1 ⊕ α12c4 ⊕ α6c2 ⊕ α9c3 ⊕ c0 ⊕ α15c5 ∈ C1,

which corresponds to (11) in the proof of Theorem 2.1 (notice, C2 ⊂ C1). The coefficients in
the linear system above correspond to the following matrix:


1 1 1 1 1 1
α α4 α2 α3 1 α5

α2 α8 α4 α6 1 α10

α3 α12 α6 α9 1 α15

 .

Triangulating this matrix in GF (8), where 1⊕α⊕α3 =0, gives


1 1 1 1 1 1
0 1 α2 α5 α α4

0 0 1 α α3 α
0 0 0 1 α3 α5

 .

Applying this triangulation to the linear system, and since C2 ⊂ C1, we obtain the following
triangulated system:

c1 ⊕ c4 ⊕ c2 ⊕ c3 ⊕ c0 ⊕ c5 ∈ C2
c4 ⊕ α2c2 ⊕ α5c3 ⊕ αc0 ⊕ α4c5 ∈ C2

c2 ⊕ αc3 ⊕ α3c0 ⊕ αc5 ∈ C2
c3 ⊕ α3c0 ⊕ α5c5 ∈ C1.

Since c3 has 3 erasures and c0 and c5 have no erasures, c3⊕α3c0⊕α5c5 has 3 erasures,
which can be corrected in C1. Then,

c3=(c3⊕α3c0⊕α5c5)⊕ (α3c0⊕α5c5).

Similarly, c2⊕αc3⊕α3c0⊕αc5 has 4 erasures, which can be corrected in C2, and

c2 =(c2⊕αc3⊕α3c0⊕αc5)⊕ (αc3⊕α3c0⊕αc5).
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Finally, c1 and c4 are obtained from (5). We can apply the triangulation, so we obtain

c4 = α2c2⊕α5c3⊕αc0⊕α4c5

c1 = c4⊕ c2⊕ c3⊕ c0⊕ c5,

completing the decoding. 2

Before discussing the dimension, the encoding and the minimum distance of the code, let
us state and prove the following lemma.

Lemma 2.1 Consider the t-level GPC code C(n; k, u) as given by Definition 2.1. Then, if
ŝt =m − k and ŝj is given by (3) for 0 ≤ j ≤ t − 1, given uj + 1 fixed locations in ŝj+1 + 1
different rows, then there is an array in C(n; k, u) that is non-zero in such (ŝj+1 + 1) (uj + 1)
locations and 0 elsewhere.

Proof: Given j such that 0 ≤ j ≤ t − 1 and uj + 1 fixed locations in a vector of length n,
since Cj is an [n, n−uj, uj+1] MDS code, there is a codeword w in Cj whose non-zero entries
are in such uj +1 fixed locations. Assume that the ŝj+1+1 rows selected are i0, i1, . . . , iŝj+1

,

where
0 ≤ i0 < i1 < . . . < iŝj+1

≤ m− 1.

Let v=(v0, v1, . . . , vŝj+1
) be a codeword of weight ŝj+1 + 1 in the (shortened)

[ŝj+1 + 1, 1, ŝj+1 + 1] RS code whose parity-check matrix is given by

1 1 1 . . . 1

1 αi0 αi1 . . . α
iŝj+1

1 α2i0 α2i1 . . . α
2iŝj+1

...
...

...
. . .

...

1 α(ŝj+1−1)i0 α(ŝj+1−1)i1 . . . α
(ŝj+1−1)iŝj+1


.

In particular,

ŝj+1⊕
s=0

αrisvs = 0 for 0 ≤ r ≤ ŝj+1 − 1. (14)

Consider the m × n array of weight (ŝj+1 + 1) (uj + 1) such that row is equals vsw for
0 ≤ s ≤ ŝj+1, and the remaining rows are zero. We will show that this array is in C(n; k, u).
Since each row of the array is in Cj by design, in particular, it is in C0. Next, according
to (4) and (5), we have to show that
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ŝj+1⊕
s=0

αris (vsw) ∈ Ci for 1 ≤ i ≤ t− 1 and 0 ≤ r ≤ ŝi − 1 (15)

ŝj+1⊕
s=0

αris (vsw) = 0 for 0 ≤ r ≤ m− k − 1. (16)

Since m− k ≤ ŝj+1 and

ŝj+1⊕
s=0

αris (vs w) =

ŝj+1⊕
s=0

αrisvs

w,

(16) follows directly from (14).
If i ≤ j ≤ t− 1, then Cj ⊆ Ci and w ∈ Ci, so (15) follows. If 0 ≤ j ≤ i− 1, then, ŝj+1 ≥ ŝi,

and, for 0 ≤ r ≤ ŝi − 1, by (14),

ŝj+1⊕
s=0

αris (vsw) =

ŝj+1⊕
s=0

αrisvs

 w = 0,

so (15) follows also in this case. 2

Example 2.6 Consider the 3-level GPC code C(7; 4, (1, 1, 3, 4, 4, 4)) of Example 2.5. Ac-
cording to Lemma 2.1, the locations denoted by X in the following arrays correspond to the
non-zero entries of arrays in C(7; 4, (1, 1, 3, 4, 4, 4)):

X X
X X

X X
X X
X X

X X X X

X X X X
X X X X

X X X X

X X X X X

X X X X X
X X X X X

The arrays with erasures in locations X above are uncorrectable, since, provided the zero
array was stored, the decoding cannot decide between the zero array and the arrays with
non-zero entries in the locations X. 2

Next we compute the dimension K of a t-level GPC code C(n; k, u).
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Corollary 2.1 Consider the t-level GPC code C(n; k, u) as given by Definition 2.1. Then,
C(n; k, u) is an [N,K] code, where N =mn and

K = kn−
(

t−2∑
i=0

siui

)
− (st−1 −m+ k)ut−1. (17)

Proof: Let ŝt=m− k and ŝj be given by (3) for 0 ≤ j ≤ t− 1. Assume that the zero array
is stored, and a received array has erasures in the last ui entries of rows m− ŝi to m− ŝi+1−1
for 0 ≤ i ≤ t− 1, and all the entries of rows k to m− 1. Thus, we have a total of

n(m− k) +

(
t−2∑
i=0

siui

)
+ (st−1 −m+ k)ut−1

erasures. By Theorem 2.1, the array with erasures in the locations described above will be
correctly decoded as the zero codeword, thus,

N −K ≥ n(m− k) +

(
t−2∑
i=0

siui

)
+ (st−1 +m+ k)ut−1. (18)

Next, assume that an extra erasure has occurred in the array above, say, in location (u, v),
where u satisfies m− ŝi ≤ u ≤ m− ŝi+1 − 1 for some 0 ≤ i ≤ t− 1, and, defining ut =n, v
satisfies n− uj ≤ v ≤ n− uj−1− 1 for some 0 ≤ j ≤ t. We will show that the array with the
extra erasure is uncorrectable for any such (u, v), rendering

N −K ≤ n(m− k) +

(
t−2∑
i=0

siui

)
+ (st−1 +m+ k)ut−1, (19)

thus (18) and (19) will prove (17).
So, given the extra erasure in (u, v) such that i and j are defined above, consider an array

Y (u,v) =
(
y
(u,v)
a,b

)
0≤a≤m−1
0≤b≤n−1

, whose non-zero coordinates are in the intersection of rows

u, u+ 1, . . . , u+ ŝi+1,

and columns
v, n− ui, n− ui + 1, . . . , n− 1.

Such a non-zero array exists due to Lemma 2.1. Consider the arrays Y (u′,v), where u + 1 ≤
u′ ≤ m− ŝj − 1.

Since y
(u′,v)
u′,v can be arbitrarily chosen, we require, for u′ > u,

u′⊕
z=u

y(z,v)z,v =0.

12



Then, defining

Y =
m−ŝj−1⊕

z=u

Y (z,v),

we can see that Y has a non-zero entry in (u, v), while the remaininig non-zero entries are
contained in the locations of the original erasures. So, the array Y (u,v) is uncorrectable, since
it can be decoded either as the zero array or as Y . 2

Theorem II.1 in [25], which corresponds to Corollary 2 in [2], is a special case of Corol-
lary 2.1.
The encoding is a special case of the decoding. For example, we may place the parities

at the end of the array in increasing order of parities, as shown in Corollary 2.1. The
parities are considered as erasures and may be obtained using the triangulation method
described in Theorem 2.1. The fact that the locations of the erasures are known allows for a
simplification of the decoding algorithm. For example, the triangulated matrix corresponding
to the coefficients of (12) may be precomputed. We omit the implementation details.

Example 2.7 We illustrate the proof of Corollary 2.1 with the 3-level GPC code
C(7; 4, (1, 1, 3, 4, 4, 4)) of Examples 2.5 and 2.6. By Corollary 2.1, this code is a [42, 19] code.
Following the proof of Corollary 2.1, denote by X the erased locations in an array W :

W =

X
X

X X X
X X X X

X X X X X X X
X X X X X X X

If the non-erased locations are zero, by Theorem 2.1, the array will be decoded as the zero
array. Now, assume that the array has an extra erasure in location (u, v)= (0, 1), rendering

V =

X X
X

X X X
X X X X

X X X X X X X
X X X X X X X

Consider the following arrays Y (u′,1), 0 ≤ u′ ≤ 3, defined as in Corollary 2.1, whose non-

zero entries are denoted y
(u′,1)
a,b below:
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Y (0,1) =

0 y
(0,1)
0,1 0 0 0 0 y

(0,1)
0,6

0 y
(0,1)
1,1 0 0 0 0 y

(0,1)
1,6

0 y
(0,1)
2,1 0 0 0 0 y

(0,1)
2,6

0 y
(0,1)
3,1 0 0 0 0 y

(0,1)
3,6

0 y
(0,1)
4,1 0 0 0 0 y

(0,1)
4,6

0 0 0 0 0 0 0

.

Y (1,1) =

0 0 0 0 0 0 0

0 y
(1,1)
1,1 0 0 0 0 y

(1,1)
1,6

0 y
(1,1)
2,1 0 0 0 0 y

(1,1)
2,6

0 y
(1,1)
3,1 0 0 0 0 y

(1,1)
3,6

0 y
(1,1)
4,1 0 0 0 0 y

(1,1)
4,6

0 y
(1,1)
5,1 0 0 0 0 y

(1,1)
5,6

.

Y (2,1) =

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 y
(2,1)
2,1 0 0 y

(2,1)
2,4 y

(2,1)
2,5 y

(2,1)
2,6

0 y
(2,1)
3,1 0 0 y

(2,1)
3,4 y

(2,1)
3,5 y

(2,1)
3,6

0 y
(2,1)
4,1 0 0 y

(2,1)
4,4 y

(2,1)
4,5 y

(2,1)
4,6

0 y
(2,1)
5,1 0 0 y

(2,1)
5,4 y

(2,1)
5,5 y

(2,1)
5,6

.

Y (3,1) =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 y
(3,1)
3,1 0 y

(3,1)
3,2 y

(3,1)
3,4 y

(3,1)
3,5 y

(3,1)
3,6

0 y
(3,1)
4,1 0 y

(3,1)
4,2 y

(3,1)
4,4 y

(3,1)
4,5 y

(3,1)
4,6

0 y
(3,1)
5,1 0 y

(3,1)
5,2 y

(3,1)
5,4 y

(3,1)
5,5 y

(3,1)
5,6

.

Such arrays with non-zero entries exist by Lemma 2.1 (see also Example 2.6). We choose

y
(1,1)
1,1 , y

(2,1)
2,1 and y

(3,1)
3,1 such that

y
(0,1)
1,1 ⊕ y

(1,1)
1,1 = 0

y
(0,1)
2,1 ⊕ y

(1,1)
2,1 ⊕ y

(2,1)
2,1 = 0

y
(0,1)
3,1 ⊕ y

(1,1)
3,1 ⊕ y

(2,1)
3,1 ⊕ y

(3,1)
3,1 = 0
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Then, defining Y =Y (0,1)⊕Y (1,1)⊕Y (2,1)⊕Y (3,1), we see that

Y =

0 y
(0,1)
0,1 0 0 0 0 X

0 0 0 0 0 0 X
0 0 0 0 X X X
0 0 0 X X X X
0 X 0 X X X X
0 X 0 X X X X

Array Y is non-zero since y
(0,1)
0,1 ̸= 0 (entries denoted by X may be non-zero or not). Array

V may be decoded either as the zero array or as Y , so it is uncorrectable. Since we can make
the same argument for any entry (u, v) not contained in the erasures of W , the number of
parity symbols is exactly 23 and the dimension of the code is 19. 2

The following corollary extends Theorem II.2 on t-level II codes as stated in [25] and proven
as Corollary 3 in [2]. It also generalizes the well known result that the minimum distance of
a product code is the product of the minimum distances of the two component codes.

Corollary 2.2 Consider the t-level GPC code C(n; k, u) as given by Definition 2.1. Then,
if ŝt =m− k and ŝi is given by (3) for 0 ≤ i ≤ t− 1, the minimum distance of C(n; k, u) is

d = min {(ŝi+1 + 1) (ui + 1) , 0 ≤ i ≤ t− 1} . (20)

Proof: For each i such that 0 ≤ i ≤ t− 1, consider an array in C(n; k, u) that has ŝi+1 rows
with ui + 1 erasures each, one row with ui erasures, and all the other entries are zero. By
Theorem 2.1, such arrays will be corrected by the code C(n; k, u) as the zero codeword, thus

d ≤ min {(ŝi+1 + 1) (ui + 1) , 0 ≤ i ≤ t− 1} .

On the other hand, by Lemma 2.1, for each 0 ≤ i ≤ t− 1, there is an array in C(n; k, u) of
weight (ŝi+1 + 1) (ui + 1), so

d ≥ min {(ŝi+1 + 1) (ui + 1) , 0 ≤ i ≤ t− 1}

and (20) follows. 2
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Example 2.8 Consider the 3-level GPC code C(7; 4, (1, 1, 3, 4, 4, 4)) of Example 2.5. Ac-
cording to Corollary 2.2, since m=6, k=4, u0 =1, u1 =3, u2 =4, s0 =2, s1=1, s2=3 (and
hence, ŝ3 =m− k=2, ŝ2 = s2=3, ŝ1 = s1+ s2 =4), according to (20), the minimum distance
of this code is

d = min {(5)(2) ; (4)(4) ; (3)(5)} = 10.

2

Consider next a product code, such that the vertical code is an [m, k0,m − k0 + 1] code,
and the horizontal code is an [n, k1, n− k1 + 1] code. In the notation of GPC codes, this is

a 1-level (n; k0, (

m︷ ︸︸ ︷
n− k1 + 1, n− k1 + 1, . . . , n− k1 + 1) GPC code. However, we can look at

it also from the perspective of columns, and the code is also a 1-level

(m; k1, (

n︷ ︸︸ ︷
m− k0 + 1,m− k0 + 1, . . . ,m− k0 + 1) GPC code. The following theorem general-

izes this argument for a t-level GPC code.

Theorem 2.2 Consider an m × n array corresponding to a C(n; k, u) t-level GPC code
as given by Definition 2.1. Then, viewed as an n × m array on columns, the code is a
C(m;n − u0, u

′) t-level GPC code, where ŝt =m − k, ŝi is given by (3) for 1 ≤ i ≤ t − 1,
ut =n,

u′ =


s′0︷ ︸︸ ︷

u′
0, u

′
0, . . . , u

′
0,

s′1︷ ︸︸ ︷
u′
1, u

′
1, . . . , u

′
1, . . . ,

s′t−1︷ ︸︸ ︷
u′
t−1, u

′
t−1, . . . , u

′
t−1

 , (21)

u′
t−i= ŝi for 1 ≤ i ≤ t, s′i =ut−i − ut−i−1 for 0 ≤ i ≤ t− 2 and s′t−1=u1. (22)

Proof: Denote by c
(H)
i , 0 ≤ i ≤ m − 1, the rows of the array, and by c

(V)
j , 0 ≤ j ≤ n − 1,

the columns. Specifically, if the array consists of symbols (ci,j) 0≤i≤m−1
0≤j≤n−1

, then

c
(H)
i = (ci,0, ci,1, . . . , ci,n−1) for 0 ≤ i ≤ m− 1

and

c
(V)
j = (c0,j, c1,j, . . . , cm−1,j) for 0 ≤ j ≤ n− 1.

Consider the t nested codes (on columns) C ′t−1 ⊂ C ′t−2 ⊂ · · · ⊂ C ′0, where C ′i is an
[m,m− u′

i, u
′
i + 1] code. A parity-check matrix of C ′i is
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H ′
i =



1 1 1 . . . 1
1 α α2 . . . αm−1

1 α2 α4 . . . α2(m−1)

...
...

...
. . .

...
1 αu′

i−1 α2(u′
i−1) . . . α(m−1)(u′

i−1)

 (23)

In order to prove the theorem, according to Definition 2.1, we have to prove that each
c
(V)
j ∈ C ′0, 0 ≤ j ≤ n− 1, and

n−1⊕
j=0

αrjc
(V)
j ∈ C ′i for 1 ≤ i ≤ t− 1 and 0 ≤ r ≤ ŝ′i − 1 (24)

n−1⊕
j=0

αijc
(V)
j = 0 for 0 ≤ i ≤ u0 − 1. (25)

C ′0 is an [m,m− u′
0, u

′
0 + 1] code and by (22), u′

0=m− k, so from (5), c
(V)
j ∈ C ′0.

Notice also that since each c
(H)
i ∈ C0 for 0 ≤ i ≤ m− 1, (25) follows.

Next we have to prove (24). In effect, (24) holds if and only if, by (23),

m−1⊕
v=0

αuv
n−1⊕
j=0

αrjcv,j = 0 for 1 ≤ i ≤ t− 1, 0 ≤ u ≤ u′
i − 1 and 0 ≤ r ≤ ŝ′i − 1,

if and only if, changing the summation order,

n−1⊕
j=0

αrj
m−1⊕
v=0

αuvcv,j = 0 for 1 ≤ i ≤ t− 1, 0 ≤ u ≤ u′
i − 1 and 0 ≤ r ≤ ŝ′i − 1,

if and only if

m−1⊕
v=0

αuvc(H)
v ∈ Ĉi for 1 ≤ i ≤ t− 1, 0 ≤ u ≤ u′

i − 1, (26)

where a parity-check matrix for Ĉi is given by

Ĥi =



1 1 1 . . . 1
1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
. . .

...

1 αŝ′i−1 α2(ŝ′i−1) . . . α(n−1)(ŝ′i−1)

 . (27)
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By (3) and (22) ,

ŝ′i=
t−1∑
z=i

s′z =

(
t−2∑
z=i

ut−z − ut−z−1

)
+ u1=ut−i,

so, by (27) and (2), Ĥi=Ht−i and hence Ĉi = Ct−i. By (22), u′
i = ŝt−i, so (26) becomes

m−1⊕
v=0

αuvc(H)
v ∈ Ct−i for 1 ≤ i ≤ t− 1 and 0 ≤ u ≤ ŝt−i − 1,

which is equivalent to (4) and thus (24) and (4) are equivalent, completing the proof. 2

Example 2.9 Consider the 3-level GPC code C(7; 5, (1, 1, 3, 3, 5, 5)). According to Theo-
rem 2.2, this code is also a 3-level GPC code C(6; 6, (1, 1, 2, 2, 4, 4, 4)) consisting of 7 × 6
arrays, so, according to Theorem 2.1, it can correct any column with one erasure, up to two
columns with 2 erasures, up to 2 columns with 4 erasures and up to one erased column.
This allows for correction of erasures that cannot be handled by the correction on rows. For
example, consider the following array, where the erasures are denoted by X:

X X
X X

X X
X X

X X

The erasures cannot be decoded by the horizontal code C(7; 5, (1, 1, 3, 3, 5, 5)), but they
can certainly be handled by the vertical code C(6; 6, (1, 1, 2, 2, 4, 4, 4)). 2

Example 2.9 suggests an expansion of the decoding algorithm as given in the proof by
triangulation of Theorem 2.1: given a t-level GPC code C(n; k, u), each time there are
erasures we apply the decoding algorithm on rows as described in Theorem 2.1. If after this
process there are still erasures remaining, we apply the decoding algorithm on columns for
the C(m;m− u0, u

′) t-level GPC code as determined by Theorem 2.2. The method extends
the decoding method of product codes, in which erasures are iteratively corrected by both
codes, until they are either corrected or an uncorrectable pattern remains.
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3 Extended Product Codes and Optimality Issues

The t-level GPC codes C(n; k, u) described in Section 2 are a special case of product codes
with some extra (global) parities. Let us call an extended product (EPC) code such a code,
and denote it by EP (m, v;n, h; g), where v is the number of vertical parities, h the number
of horizontal parities, and g the number of global parities. We further assume

g < min{m− v;n− h}.

For example, the 3-level GPC code C(7; 4, (1, 1, 3, 4, 4, 4)) of Examples 2.5, 2.6 and 2.7 is
an EP (6, 2; 7, 1; 5), while the 3-level GPC code C(7; 5, (1, 1, 3, 3, 5, 5)) of Example 2.9 is an
EP (6, 1; 7, 1; 8).
The next lemma gives an upper bound for the minimum distance of an EP (m, v;n, h; g)

code.

Lemma 3.1 Let d(v, h, g) be the minimum distance of an EP (m, v;n, h; g) code. Then,

d(v, h, g) ≤ min{(v + 1)(h+ g + 1) , (h+ 1)(v + g + 1)} (28)

Proof: Assume that the zero array is stored, and the received array has the locations
(i, j) erased, where 0 ≤ i ≤ v and 0 ≤ j ≤ h + g (in particular, we have (v + 1)(h + g + 1)
erasures). We argue that such a received array is uncorrectable. Notice that we have h(v+1)
horizontal parities and v(h + g + 1) vertical parities corresponding to the product code in
order to correct such patterns, but hv of such parities are dependent, so that leaves us
with a total of h(v + 1) + v(h + g + 1) − hv=(h + g + 1)v + h parities corresponding to
the product code. In addition, an extra g global parities can be used, giving a total of
(h+ g+1)v+ h+ g=(v+1)(h+ g+1)− 1 parities, insufficient to correct (v+1)(h+ g+1)
erasures. A similar pattern of (h+1)(v+ g+1) erasures is also uncorrectable, proving (28).

2

Consider the special case of a 2-level GPC code C(n; k0, u), where

u=(

m−k0−1︷ ︸︸ ︷
k1, k1, . . . , k1,

m−k0+1︷ ︸︸ ︷
k1 + 1, k1 + 1, . . . , k1 + 1)

(the even more special case in which k0 =m−1 and k1=n−1 was examined in Example 2.3).
In particular, C(n; k0, u) is an EP (m,m−k0;n, n−k1; 1) code. By Corollary 2.2, the minimum
distance of this code is

d = min{(m− k0 + 1)(n− k1 + 2) , (n− k1 + 1)(m− k0 + 2)}. (29)

Notice that (29) meets bound (28) with equality, showing that when g=1, the bound is
tight.
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Notice also that if m − k0 =n − k1 =1 (single parity horizontal and vertical codes), then
d=6, as claimed in Example 2.3.
Let us examine now the case of EP (m, 1;n, 1; 2) codes. In this case, bound (28) gives

d(1, 1, 2) ≤ 8. (30)

Consider for example a 2-level GPC code C(n;m − 1, (

m−2︷ ︸︸ ︷
1, 1, . . . , 1), 3, 3) or a 2-level GPC

code C(n;m − 1, (

m−3︷ ︸︸ ︷
1, 1, . . . , 1), 2, 2, 2). Those are the only cases of GPC codes that are

EP (m, 1;n, 1; 2) codes. In both cases, according to Corollary 2.2, the minimum distance
is 6, so bound (30) is not met.
However, bound (30) is tight, and to show this we present an EP (m, 1;n, 1; 2) code with

minimum distance 8. The construction is related to the PMDS constructions in [3], and we
pay the price of requiring a larger finite field than for GPC codes.
Let GF (2b) be a finite field such that mn < 2b. Let α be a primitive element in GF (2b).

Consider the parity-check matrix H2 of the code given by

H2 =


Im ⊗ (

n︷ ︸︸ ︷
1, 1, . . . , 1)

(

m︷ ︸︸ ︷
1, 1, . . . , 1)⊗ In

1 α α2 . . . αmn−1

1 α−1 α−2 . . . α−(mn−1)

 , (31)

where Im denotes the m × m identity matrix and ⊗ the Kronecker product [14] of two
matrices. Notice that  Im ⊗ (

n︷ ︸︸ ︷
1, 1, . . . , 1)

(

m︷ ︸︸ ︷
1, 1, . . . , 1)⊗ In


corresponds to the parity-check matrix of the product code with single parity in rows and
columns. We denote the matrix in (31) as H2 to indicate that two extra parities are added
to the product code.
The following lemma gives the minimum distance of the code whose parity-check matrix

is given by H2.

Lemma 3.2 Consider the EP (m, 1;n, 1; 2) code whose parity-check matrix H2 is given
by (31). Then, the code has minimum distance 8.

Proof: We have to prove that any 7 erasures can be corrected.
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First assume that there are six erasures in locations (i0, j0), (i0, j1), (i0, j2), (i1, j0), (i1, j1)
and (i1, j2), where 0 ≤ i0 < i1 ≤ m − 1 and 0 ≤ j0 < j1 < j2 ≤ n − 1 or (i0, j0), (i0, j1),
(i1, j0), (i1, j1), (i2, j0) and (i2, j1), where 0 ≤ i0 < i1 < i2 ≤ m− 1 and 0 ≤ j0 < j1 ≤ n− 1,
and a seventh erasure in any other location. This seventh erasure can be corrected using
either horizontal or vertical parities, thus, it is enough to prove that the two situations of
six erasures described above are correctable. For example, using 5 × 5 arrays, these two
situations are illustrated below:

E E E

E E E

E E

E E
E E

Consider the first case, as illustrated by the array in the left. It suffices to prove, using
the parity-check matrix as given by (31) , that the 6× 6 matrix

1 1 1 0 0 0
0 0 0 1 1 1
0 1 0 0 1 0
0 0 1 0 0 1

αi0n+j0 αi0n+j1 αi0n+j2 αi1n+j0 αi1n+j1 αi1n+j2

α−i0n−j0 α−i0n−j1 α−i0n−j2 α−i1n−j0 α−i1n−j1 α−i1n−j2


is invertible. Redefining i←i1 − i0, j1←j1 − j0 and j2←j2 − j0, where now 1 ≤ i ≤ m − 1
and 1 ≤ j1 < j2 ≤ n− 1, this matrix is invertible if and only if matrix

1 1 1 0 0 0
0 0 0 1 1 1
0 1 0 0 1 0
0 0 1 0 0 1
1 αj1 αj2 αin αin+j1 αin+j2

1 α−j1 α−j2 α−in α−in−j1 α−in−j2


is invertible. This matrix is invertible if and only if the 5× 5 matrix

1 0 0 1 0
1⊕αj1 1⊕αj2 αin αin+j1 αin+j2

1⊕α−j1 1⊕α−j2 α−in α−in−j1 α−in−j2

0 1 0 0 1
0 0 1 1 1


is invertible, if and only if the 4× 4 matrix
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1 0 0 1

1⊕αj2 αin 1⊕αj1 ⊕αin+j1 αin+j2

1⊕α−j2 α−in 1⊕α−j1 ⊕α−in−j1 α−in−j2

0 1 1 1


is invertible, if and only if the 3× 3 matrix 1 1 1

αin 1⊕αj1 ⊕αin+j1 1⊕αj2 ⊕αin+j2

α−in 1⊕α−j1 ⊕α−in−j1 1⊕α−j2 ⊕α−in−j2


is invertible, if and only if the 2× 2 matrix(

(1⊕αj1)(1⊕αin) (1⊕αj2)(1⊕αin)
(1⊕α−j1)(1⊕α−in) (1⊕α−j2)(1⊕α−in)

)

is invertible, if and only if, since 1⊕αin ̸= 0,(
1⊕αj1 1⊕αj2

1⊕α−j1 1⊕α−j2

)
=

(
1⊕αj1 1⊕αj2

α−j1(1⊕αj1) α−j2(1⊕αj2)

)

is invertible, if and only if, since 1⊕αj1 ̸= 0 and 1⊕αj2 ̸= 0,(
1 1

α−j1 α−j2

)

is invertible, if and only if αj1 ̸= αj2 , which is the case since 1 ≤ j1 < j2 ≤ n− 1 < 2b − 1.
Consider now the second case, then, again by (31), we have to prove that the 6× 6 matrix

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 1 0 1 0 1

αi0n+j0 αi0n+j1 αi1n+j0 αi1n+j1 αi2n+j0 αi2n+j1

α−i0n−j0 α−i0n−j1 α−i1n−j0 α−i1n−j1 α−i2n−j0 α−i2n−j1


is invertible.
Redefining i1←i1−i0, i2←i2−i0 and j←j1−j0, where 1 ≤ i1 < i2 ≤ m−1 and 1 ≤ j ≤ n−1,

the matrix above is invertible if and only if the matrix

1 1 0 0 0 0
1 αj αi1n αi1n+j αi2n αi2n+j

1 α−j α−i1n α−i1n−j α−i2n α−i2n−j

0 0 1 1 0 0
0 0 0 0 1 1
0 1 0 1 0 1
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is invertible. Proceeding with Gaussian elimination like in the previous case, this matrix is
invertible if and only if the 2 matrix(

(1⊕αj)(1⊕αi1n) (1⊕αj)(1⊕αi2n)
α−j−i1n(1⊕αj)(1⊕αi1n) α−j−i2n(1⊕αj)(1⊕αi2n)

)

is invertible, if and only if αi1n ̸= αi2n, which is the case since

1 ≤ i1n < i2n ≤ (m− 1)n < 2b − 1.

Next, assume that there are seven erasures, such that each row and column has at least
two erasures. This can only happen if one row (column) has three erasures and two rows
(columns) have two erasures. The situation is illustrated by the two cases below:

E E

E E E
E E

E E

E E E
E E

Let i0 be the row with three erasures, and j0 the column with three erasures, while j1 < j2
and i1 is such that erasures are in (i1, j0) and (i1, j1) so the remaining two erasures are in
(i2, j0) and (i2, j2). It suffices to prove, using the parity-check matrix as given by (31), that
the 7× 7 matrix

1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 1 0 0 1 0 0
0 0 1 0 0 0 1

αi0n+j0 αi0n+j1 αi0n+j2 αi1n+j0 αi1n+j1 αi2n+j0 αi2n+j2

α−i0n−j0 α−i0n−j1 α−i0n−j2 α−i1n−j0 α−i1n−j1 α−i2n−j0 α−i2n−j2


is invertible.
Redefining i1←i1− i0, i2←i2− i0, j1←j1− j0 and j2←j2−j0, the matrix above is invertible

if and only if the matrix

1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 1 0 0 1 0 0
0 0 1 0 0 0 1
1 αj1 αj2 αi1n αi1n+j1 αi2n αi2n+j2

1 α−j1 α−j2 α−i1n α−i1n−j1 α−i2n α−i2n−j2
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is invertible, if and only if, doing Gaussian elimination like in the other two cases, the 2× 2
matrix (

(1⊕αj1)(1⊕αi1n) (1⊕αj2)(1⊕αi2n)
(1⊕α−j1)(1⊕α−i1n) (1⊕α−j2)(1⊕α−i2n)

)
is invertible, if and only if, since 1⊕αj1 , 1⊕αi1n, 1⊕αj2 and 1⊕αi2n are non-zero,(

1 1
α−i1n−j1 α−i2n−j2

)
is invertible, if and only if, computing the determinant,

αi1n+j1 ̸= αi2n+j2

which is the case since, being α a primitive element in GF (2b) and mn < 2b − 1,

(i2 − i1)n+ j2 − j1 ̸≡ 0 (mod 2b − 1).

2

Lemma 3.2 shows that the code given by parity-check matrix H2 meets bound (30) with
equality, something that could not be achieved by GPC codes with two global parities.
However, there is a tradeoff. Consider the 3-level GPC code C(n;m− 1, u), where

u=(

m−3︷ ︸︸ ︷
1, 1, . . . , 1), 2, 3, 3).

This is an EP (n, 1;m, 1; 3) code. According to Corollary 2.2, C(n;m − 1, u) has minimum
distance 8, the same as the code given by parity-check matrix H2, at the price of an extra
parity. However, the size of the field required by C(n;m − 1, u) is much smaller, greater
than max{m;n}, as opposed to greater than mn. Also, by Theorem 2.1, C(n;m− 1, u) can
correct 8 erasures involving two rows with 3 erasures and one row with two erasures, like for
example

E E E

E E
E E E

The code generated by H2 is unable to correct such pattern since it does not have enough
parities, so even if both codes have the same minimum distance, C(n;m − 1, u) can cor-
rect more erasure patterns. These tradeoffs need to be evaluated when implementation is
considered.
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Let us finish this section with the case of EP (n, 1;m, 1; 3) codes. Bound (28) gives

d(1, 1, 3) ≤ 10.

The next lemma shows that this bound can be improved.

Lemma 3.3 Let d(1, 1, 3) be the minimum distance of an EP (m, 1;n, 1; 3) code. Then,

d(1, 1, 3) ≤ 9. (32)

Proof: Assume that the zero array is stored, and the received array has the locations (i, j)
erased, where 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2 (in particular, we have 9 erasures). We claim
that such a received array is uncorrectable. Notice that we have 3 horizontal parities and 3
vertical parities corresponding to the product code in order to correct such erasures, but one
of such parities is dependent, so that leaves us with a total of 5 parities corresponding to the
product code. In addition, 3 extra global parities can be used to correct these 9 erasures,
giving a total of 8 parities, which are insufficient and proving (32). 2

The next question is if bound (32) is tight. The answer is yes.
As in the case of two global parities, let GF (2b) be a finite field and let α be an element

in GF (2b) such that O(α) > mn. Consider the parity-check matrix H3 given by

H3 =



Im ⊗ (

n︷ ︸︸ ︷
1, 1, . . . , 1)

(

m︷ ︸︸ ︷
1, 1, . . . , 1)⊗ In

1 α α2 . . . αmn−1

1 α−1 α−2 . . . α−(mn−1)

1 α2 α4 . . . α2(mn−1)


. (33)

Notice that H2 as given by (31) consists of the first m+ n+ 2 rows of H3. The following
lemma gives the minimum distance of these codes under a certain condition.

Lemma 3.4 The EP (m, 1;n, 1; 3) code whose parity-check matrix H3 is given by (33) has
minimum distance 9, where mn < O(α), if and only if, for any i1, i2 ̸= 0, 1 ≤ i1 ≤ m − 1,
1 ≤ |i2| ≤ m− 1 and j1, j2 ̸= 0, 1 ≤ j1 ≤ n− 1, 1 ≤ |j2| ≤ n− 1,

1⊕α−j1 ⊕α−i2n+j2 ⊕α−(i2−i1)n+j2 ̸= 0. (34)

Proof: We have to prove that any 8 erasures are going to be corrected under condition (34).
Assume that there are 8 erasures, such that each row and column has at least two erasures.

There are three situations under which this can happen:
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1. Two rows have four erasures and four columns have two erasures.

2. Four rows have two erasures and two columns have four erasures.

3. Two rows (columns) have three erasures and one row (column) has two erasures.

The situation is illustrated by the four cases below. The first array illustrates case 1, the
second array illustrates case 2, and the third and fourth arrays illustrate case 3.

E E E E

E E E E

E E
E E

E E
E E

E E E

E E E
E E

E E

E E E
E E E

Consider case 1 and assume that the erasures occurred in locations (i0, j0), (i0, j1), (i0, j2),
(i0, j3), (i1, j0), (i1, j1), (i1, j2) and (i1, j3), where 0 ≤ i0 < i1 ≤ m − 1 and 0 ≤ j0 < j1 <
j2 < j3 ≤ n− 1. We need to prove, using the parity-check matrix as given by (33) , that the
8× 8 matrix



1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

αi0n+j0 αi0n+j1 αi0n+j2 αi0n+j3 αi1n+j0 αi1n+j1 αi1n+j2 αi1n+j3

α−i0n−j0 α−i0n−j1 α−i0n−j2 α−i0n−j3 α−i1n−j0 α−i1n−j1 α−i1n−j2 α−i1n−j3

α2(i0n+j0) α2(i0n+j1) α2(i0n+j2) α2(i0n+j3) α2(i1n+j0) α2(i1n+j1) α2(i1n+j2) α2(i1n+j3)


is invertible. Redefining i←i1 − i0, j1←j1 − j0, j2←j2 − j0 and j3←j3 − j0, where now
1 ≤ i ≤ m− 1 and 1 ≤ j1 < j2 < j3 ≤ n− 1, this matrix is invertible if and only if matrix

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 αj1 αj2 αj3 αin αin+j1 αin+j2 αin+j3

1 α−j1 α−j2 α−j3 α−in α−in−j1 α−in−j2 α−in−j3

1 α2j1 α2j2 α2j3 α2in α2(in+j1) α2(in+j2) α2(in+j3)


is invertible. This matrix is invertible if and only if the 7× 7 matrix
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1 0 0 0 1 0 0
1⊕αj1 1⊕αj2 1⊕αj3 αin αin+j1 αin+j2 αin+j3

1⊕α−j1 1⊕α−j2 1⊕α−j3 α−in α−in−j1 α−in−j2 α−in−j3

1⊕α2j1 1⊕α2j2 1⊕α2j3 α2in α2(in+j1) α(in+j2) α2(in+j3)

0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 1 1 1


is invertible, if and only if the 6× 6 matrix

1 0 0 0 1 0
1⊕αj2 1⊕αj3 αin 1⊕αj1 ⊕αin+j1 αin+j2 αin+j3

1⊕α−j2 1⊕α−j3 α−in 1⊕α−j1 ⊕α−in−j1 α−in−j2 α−in−j3

1⊕α2j2 1⊕α2j3 α2in 1⊕α2j1 ⊕α2(in+j1) α2(in+j2) α2(in+j3)

0 1 0 0 0 1
0 0 1 1 1 1


is invertible, if and only if the 5× 5 matrix

1 0 0 0 1
1⊕αj3 αin 1⊕αj1 ⊕αin+j1 1⊕αj2 ⊕αin+j2 αin+j3

1⊕α−j3 α−in 1⊕α−j1 ⊕α−in−j1 1⊕α−j2 ⊕α−in−j2 α−in−j3

1⊕α2j3 α2in 1⊕α2j1 ⊕α2(in+j1) 1⊕α2j2 ⊕α2(in+j2) α2(in+j3)

0 1 1 1 1


is invertible, if and only if the 4× 4 matrix

1 1 1 1
αin 1⊕αj1 ⊕αin+j1 1⊕αj2 ⊕αin+j2 1⊕αj3 ⊕αin+j3

α−in 1⊕α−j1 ⊕α−in−j1 1⊕α−j2 ⊕α−in−j2 1⊕α−j3 ⊕α−in−j3

α2in 1⊕α2j1 ⊕α2(in+j1) 1⊕α2j2 ⊕α2(in+j2) 1⊕α2j3α2(in+j3)


is invertible, if and only if the 3× 3 matrix (1⊕αj1)(1⊕αin) (1⊕αj2)(1⊕αin) (1⊕αj3)(1⊕αin)

(1⊕α−j1)(1⊕α−in) (1⊕α−j2)(1⊕α−in) (1⊕α−j3)(1⊕α−in)
(1⊕α2j1)(1⊕α2in) (1⊕α2j2)(1⊕α2in) (1⊕α2j3)(1⊕α2in)


is invertible, if and only if the 3× 3 matrix 1 1 1

α−j1 α−j2 α−j3

1⊕αj1 1⊕αj2 1⊕αj3


is invertible, if and only if the 2× 2 matrix
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(
α−j1 ⊕α−j2 α−j1 ⊕α−j3

αj1 ⊕αj2 αj1 ⊕αj3

)
is invertible, if and only if the 2× 2 matrix(

1 1
α−j1−j2 α−j1−j3

)
is invertible, if and only if, computing the determinant of the matrix above,

α−j1(α−j2 ⊕α−j3) ̸= 0,

which is true since 1 ≤ j2 < j3 ≤ n− 1. So all these cases of 8 erasures are correctable.
Consider next case 2 and assume that the erasures occurred in locations (i0, j0), (i0, j1),

(i1, j0), (i1, j1), (i2, j0), (i2, j1), (i3, j0) and (i3, j1), where 0 ≤ i0 < i1 < i2 < i3 ≤ m− 1 and
0 ≤ j0 < j1 ≤ n− 1. We need to prove, using the parity-check matrix as given by (33) , that
the 8× 8 matrix



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 1 0 1 0 1 0 1

αi0n+j0 αi0n+j1 αi1n+j0 αi1n+j1 αi2n+j0 αi2n+j1 αi3n+j0 αi3n+j1

α−i0n−j0 α−i0n−j1 α−i1n−j0 α−i1n−j1 α−i2n−j0 α−i2n−j1 α−i3n−j0 α−i3n−j1

α2(i0n+j0) α2(i0n+j1) α2(i1n+j0) α2(i1n+j1) α2(i2n+j0) α2(i2n+j1) α2(i3n+j0) α2(i3n+j1)


is invertible. Redefining i1←i1 − i0, i2←i2 − i0, i3←i3 − i0 and j←j1 − j0, where now
1 ≤ i1 < i2 < i3 ≤ m− 1 and 1 ≤ j ≤ n− 1, this matrix is invertible if and only if matrix

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 1 0 1 0 1 0 1
1 αj αi1n αi1n+j αi2n αi2n+j αi3n αi3n+j

1 α−j α−i1n α−i1n−j α−i2n α−i2n−j α−i3n α−i3n−j

1 α2j α2i1n α2(i1n+j) α2i2n α2(i2n+j) α2i3n α2(i3n+j)


is invertible. This matrix is invertible if and only if the 4× 4 matrix

1 1 1 1
1⊕αj αi1n(1⊕αj) αi2n(1⊕αj) αi3n(1⊕αj)
1⊕α−j α−i1n(1⊕α−j) α−i2n(1⊕α−j) α−i3n(1⊕α−j)
1⊕α2j α2i1n(1⊕α2j) α2i2n(1⊕α2j) α2i3n(1⊕α2j)
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is invertible, if and only if the 3× 3 matrix (1⊕αi1n)(1⊕αj) (1⊕αi2n)(1⊕αj) (1⊕αi3n)(1⊕αj)
(1⊕α−i1n)(1⊕α−j) (1⊕α−i2n)(1⊕α−j) (1⊕α−i3n)(1⊕α−j)
(1⊕α2i1n)(1⊕α2j) (1⊕α2i2n)(1⊕α2j) (1⊕α2i3n)(1⊕α2j)


is invertible, if and only if the 3× 3 matrix 1 1 1

α−i1n α−i2n α−i3n

1⊕αi1n 1⊕αi2n 1⊕αi3n


is invertible, if and only if the 2× 2 matrix

(
αi1n⊕αi2n αi1n⊕αi3n

α−i1n⊕α−i2n α−i1n⊕α−i3n

)
= (αi1n⊕αi2n)(αi1n⊕αi3n)

(
1 1

α(−i1−i2)n α(−i1−i2)n

)

is invertible, if and only if, computing the determinant of this last matrix,

α(−i1−i2)n⊕α(−i1−i2)n =α−i1n(α−i2n⊕α−i3n) ̸= 0,

which is certainly the case since 1 ≤ i2n < i3n < mn < O(α).
Consider finally case 3. Let i0 < i1 and j0 < j1 be the rows and columns respectively with

three erasures. It suffices to prove, using the parity-check matrix H3 given by (33), that the
8× 8 matrix



1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1
0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0

αi0n+j0 αi0n+j1 αi0n+j2 αi1n+j0 αi1n+j1 αi1n+j2 αi2n+j0 αi2n+j1

α−i0n−j0 α−i0n−j1 α−i0n−j2 α−i1n−j0 α−i1n−j1 α−i1n−j2 α−i2n−j0 α−i2n−j1

α2(i0n+j0) α2(i0n+j1) α2(i0n+j2) α2(i1n+j0) α2(i1n+j1) α2(i1n+j2) α2(i2n+j0) α2(i2n+j1)


is invertible.
Redefining i1←i1− i0, i2←i2− i0, j1←j1− j0 and j2←j2−j0, the matrix above is invertible

if and only if the matrix
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1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1
0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 αj1 αj2 αi1n αi1n+j1 αi1n+j2 αi2n αi2n+j1

1 α−j1 α−j2 α−i1n−j0 α−i1n−j1 α−i1n−j2 α−i2n α−i2n−j1

1 α2j1 α2j2 α2i1n α2(i1n+j1) α2(i1n+j2) α2i2n α2(i2n+j1)


is invertible, if and only if the matrix

1 0 0 1 0 0 1
1⊕αj1 1⊕αj2 αi1n αi1n+j1 αi1n+j2 αi2n αi2n+j1

1⊕α−j1 1⊕α−j2 α−i1n−j0 α−i1n−j1 α−i1n−j2 α−i2n α−i2n−j1

1⊕α2j1 1⊕α2j2 α2i1n α2(i1n+j1) α2(i1n+j2) α2i2n α2(i2n+j1)

0 1 0 0 1 0 0
0 0 1 1 1 0 0
0 0 0 0 0 1 1


is invertible, if and only if the matrix



1 0 0 1 0 0
1⊕αj2 αi1n 1⊕αj1 ⊕αi1n+j1 αi1n+j2 αi2n 1⊕αj1 ⊕αi2n+j1

1⊕α−j2 α−i1n 1⊕α−j1 ⊕α−i1n−j1 α−i1n−j2 α−i2n 1⊕α−j1 ⊕α−i2n−j1

1⊕α2j2 α2i1n 1⊕α2j1 ⊕α2(i1n+j1) α2(i1n+j2) α2i2n 1⊕α2j1 ⊕α2(i2n+j1)

0 1 1 1 0 0
0 0 0 0 1 1


is invertible, if and only if the matrix


1 1 1 0 0

αi1n 1⊕αj1 ⊕αi1n+j1 1⊕αj2 ⊕αi1n+j2 αi2n 1⊕αj1 ⊕αi2n+j1

α−i1n 1⊕α−j1 ⊕α−i1n−j1 1⊕α−j2 ⊕α−i1n−j2 α−i2n 1⊕α−j1 ⊕α−i2n−j1

α2i1n 1⊕α2j1 ⊕α2(i1n+j1) α2(i1n+j2) 1⊕α2j1 ⊕α2i2n 1⊕α2j2 ⊕α2(i2n+j1)

0 0 0 1 1


is invertible, if and only if the matrix

(1⊕αi1n)(1⊕αj1) (1⊕αi1n)(1⊕αj2) αi2n 1⊕αj1 ⊕αi2n+j1

(1⊕α−i1n)(1⊕α−j1) (1⊕α−i1n)(1⊕α−j2) α−i2n 1⊕α−j1 ⊕α−i2n−j1

(1⊕α2i1n)(1⊕α2j1) (1⊕α2i1n)(1⊕α2j2) α2i2n 1⊕α2j1 ⊕α2(i2n+j1)

0 0 1 1
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is invertible, if and only if the matrix (1⊕αi1n)(1⊕αj1) (1⊕αi1n)(1⊕αj2) (1⊕αi2n)(1⊕αj1)
(1⊕α−i1n)(1⊕α−j1) (1⊕α−i1n)(1⊕α−j2) (1⊕α−i2n)(1⊕α−j1)
(1⊕α2i1n)(1⊕α2j1) (1⊕α2i1n)(1⊕α2j2) (1⊕α2i2n)(1⊕α2j1)


is invertible, if and only if the matrix 1 1 1

α−i1n−j1 α−i1n−j2 α−i2n−j1

(1⊕αi1n)(1⊕αj1) (1⊕αi1n)(1⊕αj2) (1⊕αi2n)(1⊕αj1)


is invertible, if and only if the matrix(

α−i1n−j1(α−j1 ⊕α−j2) α−j1(α−i1n⊕α−i2n)
(1⊕αi1n)(αj1 ⊕αj2) (1⊕αj1)(αi1n⊕αi2n)

)
is invertible, if and only if the matrix(

α−i1n−2j1−j2 α−(i1+i2)n−j1

1⊕αi1n 1⊕αj1

)
is invertible, if and only if the matrix(

α−j1−j2 α−i2n

1⊕αi1n 1⊕αj1

)
which is invertible if and only if its determinant, which is given by the left hand side of (34)
times a constant, is non-zero. 2

Notice that in Lemma 3.4, 8 erasures following the patterns of cases 1 and 2 will always be
corrected, while case 3 will be corrected only when condition (34) is satisfied. So Lemma 3.4
by itself does not prove that there is an EP (m, 1;n, 1; 3) code with minimum distance 9,
but we can find a code satisfying (34) using an argument similar to the one used to show an
infinite family of PMDS codes in [1]. In effect, consider the field GF (2p), p a prime number,
such that GF (2p) is generated by the irreducible polynomial Mp(x)= 1 + x + x2 + · · · +
xp−1. The polynomial Mp(x) may not be irreducible, for example, M5(x) is irreducible but
M7(x)= (1 + x + x3)(1 + x2 + x3), so not any prime number can be chosen. If we choose a
prime number large enough, condition (34) will hold, as shown in the next corollary:

Corollary 3.1 Consider the EP (m, 1;n, 1; 3) code whose parity-check matrix is given by (33)
with α in (33) a zero of Mp(x), p a prime number, Mp(x) irreducible and mn < p. Then the
code has minimum distance 9.
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Proof: We have to show that (34) is satisfied. Given an integer z, denote by ⟨z⟩p the unique
integer u, 0 ≤ u ≤ p− 1, such that u ≡ z (mod p). Let Mp(α)= 0, then O(α)= p. Hence,

1⊕α−j1 ⊕α−i2n+j2 ⊕α−(i2−i1)n+j2 = 1⊕α⟨−j1⟩p ⊕α⟨−i2n+j2⟩p ⊕α⟨−(i2−i1)n+j2⟩p .

Take the first three elements in (34), i.e.,

1⊕α−j1 ⊕α−i2n+j2 =1⊕α⟨−j1⟩p ⊕α⟨−i2n+j2⟩p .

Since 1 ≤ j1 ≤ n− 1, 1 ≤ |j2| ≤ n− 1, 1 ≤ |i2| ≤ m− 1 and mn < p, ⟨ − j1⟩p= p− j1 ̸= 0.
Assume that ⟨−i2n+j2⟩p =0, then −i2n+j2 = sp for some integer s. If s=0, then i2n= j2,

a contradiction since 1 ≤ |j2| ≤ n − 1 and 1 ≤ |i2| ≤ m − 1. So s ̸= 0 and j2 = sp + i2n. If
s ≥ 1, since 1 ≤ |i2| ≤ m−1 and mn < p, j2 = sp+ i2n ≥ mn−(m−1)n=n, a contradiction
since 1 ≤ |j2| ≤ n− 1. If s < 0, j2= sp+ i2n ≤ −mn+(m− 1)n= −n, also a contradiction.
If ⟨ − j1⟩p ̸= ⟨ − i2n + j2⟩p, then the first three elements in (34) are distinct from each

other, so they cannot be canceled by the 4th element and (34) holds. So, assume that
⟨ − j1⟩p= ⟨ − i2n+ j2⟩p. In particular,

−i2n+ j2 = −j1 + sp for some integer s. (35)

Now, in order for the left hand side of (34) to be zero, in addition to (35), we need
⟨ − (i2 − i1)n+ j2⟩p=0, giving

−i2n+ j2 = −i1n+ s′p for some integer s′. (36)

Combining (35) and (36), we obtain

i1n− j1 = s′′p for some integer s′′. (37)

Since 1 ≤ i1 ≤ m− 1 and 1 ≤ j1 ≤ n− 1,

1 ≤ i1n− j1 < mn < p,

contradicting (37) and completing the proof. 2

Corollary 3.1 shows that bound (32) is indeed tight.
The construction in Corollary 3.1 depends on, for each m × n array, finding a prime p

such that Mp(x) is irreducible (it is well known that Mp(x) is irreducible if and only if 2 is
primitive in GF (p) [14]). Strictly speaking, it is not proven that the number of such primes
is infinite, but it is believed it is, and from a practical point of view, it is always possible to
find such a large enough prime number.
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4 Conclusions

We have studied extended product (EPC) codes, in which a few global parities are added
to a traditional product code in order to enhance its distance properties. We presented a
special case of extended product codes: generalized product (GPC) codes. We showed that
GPC codes unify two types of codes: product codes and integrated interleaved (II) codes.
We studied the distance properties of these type of codes. Although, except for the special
case of one global parity, GPC codes do not optimize the minimum distance, they can be
implemented with modest field size, and in addition they provide a large variety of possible
parameters, making them an attractive alternative for implementation in practical cases. We
showed some optimal constructions for the cases of two and three global parities, requiring
a larger field size.
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