
RJ10538 (ALM1712-001) December 14, 2017
Computer Science

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

IBM Research Report

Calibrating Noise to Variance in Adaptive Data Analysis

Vitaly Feldman
Google Research

Thomas Steinke
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099
USA

Calibrating Noise to Variance
in Adaptive Data Analysis

Vitaly Feldman∗ Thomas Steinke†

Abstract

Datasets are often used multiple times and each successive analysis may depend on the
outcome of previous analyses. Standard techniques for ensuring generalization and statistical
validity do not account for this adaptive dependence. A recent line of work studies the challenges
that arise from such adaptive data reuse by considering the problem of answering a sequence of
“queries” about the data distribution where each query may depend arbitrarily on answers to
previous queries.

The strongest results obtained for this problem rely on differential privacy – a strong notion
of algorithmic stability with the important property that it “composes” well when data is reused.
However the notion is rather strict, as it requires stability under replacement of an arbitrary data
element. The simplest algorithm is to add Gaussian (or Laplace) noise to distort the empirical
answers. However, analysing this technique using differential privacy yields suboptimal accuracy
guarantees when the queries have low variance.

Here we propose a relaxed notion of stability that also composes adaptively. We demonstrate
that a simple and natural algorithm based on adding noise scaled to the standard deviation of
the query provides our notion of stability. This implies an algorithm that can answer statistical
queries about the dataset with substantially improved accuracy guarantees for low-variance
queries. The only previous approach that provides such accuracy guarantees is based on a
more involved differentially private median-of-means algorithm and its analysis exploits stronger
“group” stability of the algorithm.

1 Introduction
The central challenge in statistical data analysis is to infer the properties of some unknown population
given only a small number of samples from that population. While a plethora of techniques for
guaranteeing statistical validity are available, few techniques can account for the effects of adaptivity.
Namely, if a single dataset is used multiple times, then the choice of which subsequent analyses to
perform may depend on the outcomes of previous analyses. This adaptive dependence increases
the risk of overfitting — that is, inferring a conclusion that does not generalize to the underlying
population.

To formalize this problem, Dwork et al. [DFH+14] and subsequent works [HU14, SU15, BNS+16,
FS17, etc.] study the following question: How many data samples are necessary to accurately answer
a sequence of queries about the data distribution when the queries are chosen adaptively – that is,
∗Google Research (part of this work was done while at IBM Research – Almaden and while visiting the Simons

Institute, UC Berkeley) . vitaly@post.harvard.edu
†IBM Research – Almaden .alkls@thomas-steinke.net

1

each query can depend on answers to previous queries? Each query corresponds to a procedure
that the analyst wishes to execute on the data. The goal is to design an algorithm that provides
answers to these adaptive queries that are close to answers that would have been obtained had each
corresponding analysis been run on independent samples freshly drawn from the data distribution.

A common and relatively simple class of queries are statistical queries [Kea98]. A statistical
query is specified by a function ψ : X → [0, 1] and corresponds to analyst wishing to compute
the true mean EX∼P [ψ(X)] of ψ on the data distribution P. (This is usually done by using the
empirical mean 1

n

∑n
i=1 ψ(Si) on a dataset S consisting of n i.i.d. draws from the distribution P .) For

example, such queries can be used to to estimate the true loss (or error) of a predictor, the gradient
of the loss function, or the moments of the data distribution. Standard concentration results imply
that, given n independent samples from P, k fixed (i.e. not adaptively-chosen) statistical queries
can be answered with an additive error of at most O

(√
log(k)/n

)
with high probability by simply

using the empirical mean of each query. At the same time it is not hard to show that, for a variety
of simple adaptive sequences of queries, using the empirical mean to estimate the expectation leads
to an error of Ω(

√
k/n) [DFH+14]. Equivalently, in the adaptive setting, the number of samples

required to ensure fixed error scales linearly (rather than logarithmically in the non-adaptive setting)
with the number of queries and, in particular, in the worst case, using empirical estimates gives the
same guarantees as using fresh samples for every query (by splitting the dataset into k parts).

Dwork et al. [DFH+14] showed that, remarkably, it is possible to quadratically improve the
dependence on k in the adaptive setting by simply perturbing the empirical answers. Specifically, let
S ∈ X n denote a dataset consisting of n i.i.d. samples from some (unknown) probability distribution
P. Given S, the algorithm receives k adaptively-chosen statistical queries ψ1, . . . , ψk : X → [0, 1]
one-by-one and provides k approximate answers v1, . . . , vk ∈ R. Namely, vj = 1

n

∑n
i=1 ψj(Si) + ξj ,

where each “noise” variable ξj is drawn independently from N (0, σ2). The results of Dwork et
al. [DFH+14] and subsequent sharper analyses [BNS+16, Ste16] show that, with high probability
(over the drawing of the sample S ∼ Pn, the noise ξ, and the choice of queries), we have the following
guarantee

∀j ∈ {1, · · · , k}
∣∣∣∣vj − E

X∼P
[ψj(X)]

∣∣∣∣ ≤ O
√√k log k

n

 . (1)

This quadratic relationship between n and k was also shown to be optimal in the worst case
[HU14, SU15].

The approach of Dwork et al. [DFH+14] relies on properties of differential privacy [DMNS06,
DKM+06] and known differentially private algorithms. Differential privacy is a stability property
of an algorithm, namely it requires that replacing any element in the input dataset results in a
small change in the output distribution of the algorithm. Specifically, a randomized algorithm
M : X n → Y is (ε, δ)-differentially private if, for all datasets s, s′ ∈ X n that differ on a single
element and all events E ⊆ Y,

Pr [M(s) ∈ E] ≤ eε Pr
[
M(s′) ∈ E

]
+ δ.

This stability notion implies that a function output by a differentially private algorithm on a given
dataset generalizes to the underlying distribution [DFH+14, BNS+16]. Specifically, if a differentially
private algorithm is run on a dataset drawn i.i.d from any distribution and the algorithm outputs a
function, then the empirical mean of that function on the input dataset is close to the expectation
of that function on sample from the same distribution.

2

The second crucial property of differential privacy is that it composes adaptively: running several
differentially private algorithms on the same dataset still is differentially private (with somewhat
worse parameters) even if each algorithm depends on the output of all the previous algorithms. This
property makes it possible to answer adaptively-chosen queries with differential privacy and a number
of algorithms have been developed for answering different types of queries. The generalization
property of differential privacy then implies that such algorithms can be used to provide answers
to adaptively-chosen queries while ensuring generalization [DFH+14]. Specifically, the algorithm
for answering statistical queries mentioned above is based on the most basic differentially private
algorithm: perturbation by adding Laplace or Gaussian noise [DMNS06].

Differential privacy requires that the output distribution of an algorithm does not change much
when any element of a dataset is replaced with an arbitrary other element in the domain X . As a
result, the amount of noise that needs to be added to ensure differential privacy scales linearly with
the range of the function ψ whose expectation needs to be estimated. If the range of ψ is comparable
to the standard deviation of ψ(x) on x drawn from P (such as then ψ has range {0, 1} and mean
1/2) then the error resulting from addition of noise is comparable to the standard deviation of ψ.
However, for queries whose standard deviation is much lower than the range, the error introduced by
noise is much worse than the sampling error. Variance is much smaller than the range for a variety
of common settings, for example, difference between candidate predictors for the same problem or
individual input features when the input is usually sparse.

Achieving error guarantees in the adaptive setting that scale with the standard deviation instead
of range is a natural problem. Recently, Feldman and Steinke [FS17] gave a different algorithm that
achieves such a guarantee. Specifically, their algorithm ensures that with probability at least 1− β,

∀j ∈ {1, · · · , k}
∣∣∣∣vj − E

X∼P
[ψj(X)]

∣∣∣∣ ≤ sd(ψj(P)) ·O

√√√√√k log3(k/β)

n

+ β, (2)

where sd(ψj(P)) =
√

EY∼P [(ψj(Y)−EX∼P [ψj(X)])2] is the standard deviation of ψj on the
distribution P and β > 0 can be chosen arbitrarily. Their algorithm is based on an approximate
version of the median of means algorithm and its analysis still relies on differential privacy. (Their
results extend beyond statistical queries, but we restrict our attention to statistical queries in this
paper.)

In this work, we ask: does the natural approach of perturbing the empirical answers with
noise scaled to the standard deviation suffice to answer adaptive queries with accuracy scaling
to sampling error? To answer this seemingly simple question, we address a more fundamental
problem: does there exist a notion of stability that has the advantages of differential privacy
(namely, allows adaptive composition and implies generalization) but avoids the poor dependence
on the worst-case sensitivity of the query. This algorithm was analyzed by Bassily and Freund
[BF16] via a notion of typical stability they introduced. Their analysis shows that the algorithm
will ensure the correct scaling of the error with standard deviation but it does not improve on
the naive mechanisms in terms of scaling with k. Several works have considered relaxations of
differential privacy in this context. For example, Bassily et al. [BNS+16] considered a notion of
stability based on using KL divergence or total variation distance in place of differential privacy
(which can be defined in terms of approximate max divergence). Wang et al. [WLF16] considered
the expected KL divergence between the output of the algorithm when run on a random i.i.d dataset
versus the same dataset with one element replaced by a fresh sample; unfortunately, their stability

3

definition does not compose adaptively. Notions based on the mutual information between the
dataset and the output of the algorithm and their relationship to differential privacy have also
been studied [DFH+15, RZ16, RRST16, RRT+16, XR17]. However, to the best of our knowledge,
these approaches do not give a way to analyze the calibrated noise addition that ensures correct
dependence on k.

1.1 Our Contributions

We demonstrate that calibrating the variance of the perturbation to the empirical variance of the
query suffices to ensure generalization, as long as the noise rate does not become too small. To
ensure this lower bound on the noise rate we simply add a second order term to the variance of the
perturbation. Specifically, our algorithm is described in Figure 1. The only difference between our
algorithm and previous work [DFH+14, BNS+16] is that in prior work the variance of the Gaussian
perturbation is fixed.

Parameters: t, T > 0.
Input: s ∈ X n.
For j = 1, 2, · · · , k do:
Receive a statistical query ψj : X → [0, 1].
Compute µj = 1

n

∑n
i=1 ψj(si) and σ2

j = 1
n

∑n
i=1 (ψj(si)− µj)2.

Sample ξj ∼ N (0, 1).

Let vj = µj + ξj ·
√

max
{
σ2
j /t, 1/T

}
.

Output answer vj .

Figure 1: Calibrating noise to variance for answering adaptive queries.

We prove that this algorithm has the following accuracy guarantee.

Theorem 1.1 (Main Theorem). Let P be a distribution on X and letM be our algorithm from Figure
1 instantiated with T = n2/k and t = n

√
2 ln(2k)/k. Suppose M is given a sample S ∼ Pn and is

asked adaptive statistical queries ψ1, · · · , ψk : X → [0, 1]. Then M produces answers v1, · · · , vk ∈ R
satisfying the following.

E
[

kmax
j=1

|vj −EX∼P [ψj(X)]|
max {τ · sd(ψj(P)), τ2}

]
≤ 4, where τ =

√√
2k ln(2k)
n

.

Intuitively (that is, ignoring the second term in the maximum), the conclusion of Theorem 1.1
states that, with good probability, the error in each answer scales as the standard deviation of
the query multiplied by Õ

(√√
k/n

)
— which is what would be expected if we used n/

√
k fresh

samples for each query. The ln k factor arises from the fact that we take a union bound over the k
queries.

More precisely, applying Markov’s inequality to the conclusion of Theorem 1.1, shows that, with

4

probability at least 90%,

∀j
∣∣∣∣vj − E

X∼P
[ψj(X)]

∣∣∣∣ ≤ 40·max
{
τ · sd(ψj(P)), τ2

}
≤ sd(ψj(P))·40

√√
2k ln(2k)
n

+40
√

2k ln(2k)
n

.

(3)
This guarantee is directly comparable to the earlier bound (2) of Feldman and Steinke [FS17] –
though it is weaker in two ways: First, Theorem 1.1 is a bound on the expectation and does not
readily yield high probability bounds (other than via Markov’s inequality). Second, the second term
in the maximum (which we think of as a low-order term) still depends linearly on the sensitivity
and is potentially larger. The advantage of our algorithm is that it is substantially simpler than the
earlier work.

Now we turn to the analysis of our algorithm. Clearly the empirical error of our algorithm
— that is |vj − µj | — scales with the empirical standard deviation σj . However, we must bound
the true error, namely |vj − EX∼P [ψj(X)]|. By the triangle inequality, it suffices to bound the
generalization error |µj −EX∼P [ψj(X)]| in terms of standard deviation and to relate the empirical
standard deviation σj to the true standard deviation sd(ψj(P)).

1.1.1 Average KL leave-one-out stability and generalization

The key to our analysis is the following stability notion.

Definition 1.2 (Average Leave-one-out KL stability). An algorithm M :
(
X n ∪ X n−1) → Y is

ε-ALKL stable if, for all s ∈ X n,

1
n

∑
i∈[n]

D (M(s)‖M(s−i)) ≤ ε,

where s−i ∈ X n−1 denotes s with the ith element removed. Here D (·‖·) denotes the Kullback-Leibler
divergence.

Our notion differs from differential privacy in three significant ways. First, we use stability to
leaving one out (LOO) rather than replacing one element. Second, we average the stability parameter
across the n dataset elements. Third, we use KL divergence instead of (approximate) max divergence.
This is necessary to obtain stronger bounds for our calibrated noise addition as our algorithm does
not satisfy differential privacy with parameters that would be suitable to ensure generalization.
We note that average LOO stability is a well-studied way to define algorithmic stability for the
loss function (e.g. [BE02, PRMN04]). The use of KL divergence appears to be necessary to ensure
adaptive composition of our averaged notion. Specifically, the following composition result is easy
to prove.

Lemma 1.3 (Composition). Suppose M :
(
X n ∪ X n−1) → Y is ε-ALKL stable and M ′ : Y ×(

X n ∪ X n−1)→ Z is such that M ′(y, ·) :
(
X n ∪ X n−1)→ Z is ε′-ALKL stable for all y ∈ Y. Then

the composition s 7→M ′(M(s), s) is (ε+ ε′)-ALKL stable.

Using composition, we can show that our algorithm (Figure 1, with the parameters set as in
Theorem 1.1) is kt

n2 -ALKL stable. In particular, we show that each one of the k answers is computed
in a way that is t

n2 -ALKL stable. This follows from the properties of the KL divergence between

5

Gaussian distributions and the way we calibrate the noise. (Alternatively, we could use Laplace
noise to obtain similar results.)

We note that ε-differential privacy [DMNS06] (or 1
2ε

2-concentrated differential privacy [BS16])
implies 1

2ε
2-ALKL stability. Thus we can also compose any ALKL stable algorithm with any

differentially private algorithm as well as any KL-stable algorithm [BNS+16].
Crucially, average KL-divergence is strong enough to provide a generalization guarantee that

scales with the standard deviation of the queries, as we require. Our proof is based on the approach
introduced by Dwork et al. [DFH+15]. They showed that (ε, 0)-differential privacy implies an upper
bound on approximate max-information between the input dataset and output of the algorithm
when run on independent samples and used the upper bound to prove generalization bounds. This
approach was extended to (ε, δ)-differential privacy by Rogers et al. [RRST16]. Here, we demonstrate
that ALKL stability implies a bound on the mutual information between the input and output of
the algorithm when run on independent samples.1

Proposition 1.4. Let M :
(
X n ∪ X n−1) → Q be ε-ALKL stable. Let S ∈ X n consist of n

independent samples from some distribution P. Then

I(S;M(S)) ≤ εn,

where I denotes mutual information.

To prove Proposition 1.4, we introduce an intermediate notion of mutual information stability:

Definition 1.5 (Mutual Information Stability). A randomized algorithm M : X n → Y is ε-MI
stable if, for any random variable S distributed over X n (including non-product distributions),

1
n

n∑
i=1

I(M(S);Si|S−i) ≤ ε.

This notion is based on the notion of stability studied by Raginsky et al. [RRT+16] that considers
only product distributions over the datasets and, as a result, does not compose adaptively. We
show that (i) average leave-one-out KL stability implies mutual information stability and (ii)
mutual information stability implies a mutual information bound. Combining these facts will yield
Proposition 1.4. Further, we point out that mutual information stability also composes adaptively in
the same way as ALKL stability and hence could be useful for understanding adaptive data analysis
for more general queries (e.g. unlike ALKL stability it does not require M(S−i) to be defined).

As shown by Russo and Zou [RZ16], a bound on mutual information implies generalization
results. Using a similar technique, we show that if µj = 1

n

∑n
i=1 ψj(Si) is subgaussian (or, more

generally, subexponential) when ψj is independent from the sample S (consisting of n i.i.d. draws
from P) and the mutual information I(S;ψj) is small, then E [µj] ≈ EX∼P [ψj(X)]. Moreover,
the quality of the approximation scales with the standard deviation (or, rather, the subgaussian
constant). We can similarly relate the empirical variance σ2

j to the true variance. Thus a bound on
mutual information suffices to bound generalization error and, thus, prove Theorem 1.1.

Another known implication of bounded mutual information is that any event that would happen
with sufficiently low probability on fresh data will still happen with low probability [RZ16, RRST16].
In particular, if E is some “bad” event – such as overfitting the data or making a false discovery –

1We thank Adam Smith for pointing to this approach of proving generalization via mutual information.

6

and we know that we are exponentially unlikely to overfit fresh data S′, then the probability of M
overfitting its input data S is also small, provided the mutual information is small. (See Sec. 3.3 for
additional details.)

One downside of using KL divergence is that does not allow us to prove high probability bounds,
as can be done with differential privacy and the notion of approximate max-information [DFH+15].
We note, however, that our analysis still upper bounds the expectation of the largest error and.
Using known techniques, the confidence can be amplified at the expense of a somewhat more
complicated algorithm. In addition, our algorithm yields stronger stability guarantees than just
ALKL stability. For example, the minimum noise level of 1/T ensures differential privacy (albeit
with relatively large parameters2). The parameters can be improved using the averaging over the
indices that we use in ALKL stability but that leads to a notion that does not appear to compose
adaptively. Using a different analysis technique it might be possible to exploit the stronger stability
properties of our algorithm to prove high probability generalization bounds. We leave this as an
open problem. On the other hand, stability with KL divergence is easier to analyze and allows a
potentially wider range of algorithms to be used.

2 Preliminaries
We use X ∼ P to denote that X is drawn from the distribution P. For the most part, we
adopt the convention that upper-case letters denote random variables, whereas lower-case letters
denote realizations thereof. For n ∈ N, we denote [n] = {1, 2, · · · , n} and S ∼ Pn denotes that
S = (S1, · · · , Sn) consists of n independent draws from the distribution P. We use Si to denote
the ith element of S and S−i = (S1, · · · , Si−1, Si+1, · · · , Sn) to denote the other n− 1 elements. For
two random variables X and Y and a realization x of X, we use the notation Y |X = x to denote
the conditional distribution of Y given X = x.

For a distribution P on X and a function ψ : X → R, we use ψ(P) to denote the distribution on
R obtained by applying ψ to a random sample from P. The mean of this distribution is denoted
P[ψ] = EX∼P [ψ(X)]. We use sd(ψ(P)) =

√
Var [ψ(P)] =

√
EX∼P [ψ(X)2]−EX∼P [ψ(X)]2 to

denote the standard deviation of this distribution. We also interpret a tuple s ∈ X n as a distribution
— namely the distribution obtained by selecting si for a random i ∈ [n] — and we analogously define
the empirical mean and standard deviation: s[ψ] = 1

n

∑n
i=1 ψ[si] and sd(ψ(s)) =

√
Var [ψ(s)] =√

1
n

∑n
i=1(ψ(si)− S[ψ])2.

2.1 KL Divergence

Before continuing, we first establish some relevant properties of the KL divergence. See the textbook
by Cover and Thomas [CT12] for an introduction to the properties of KL divergence (a.k.a. relative
entropy).

First we state the definition of KL divergence for completeness.

Definition 2.1. Let P and Q be probability distributions on a space Ω. Suppose P is absolutely

2Specifically, with the parameter setting from Theorem 1.1, our algorithm satisfies
(
O
(√

log(1/δ)
)
, δ
)
-differential

privacy for all δ > k−Ω(k).

7

continuous with respect to Q. Then the KL divergence from Q to P is

D (P‖Q) = E
X∼P

[
ln
(P(X)
Q(X)

)]
,

where P(x) and Q(x) denote the probability mass or density functions of P and Q respectively
evaluated at the point X. (More generally, P(x)/Q(x) denotes the Radon-Nikodym derivative of P
with respect to Q evaluated at x.)

In some cases we will abuse notation and refer to D (X‖Y) where X and Y are “random variables”
rather than formally-defined distributions. This should be read to be the divergence between the
distribution of X and the distribution of Y .

We state the well-known chain rule:

Lemma 2.2 ([CT12, Theorem 2.5.3]). Let P and Q be two distributions over some domain X ×Y.
Then

D (P(x, y)‖Q(x, y)) = D (P(x)‖Q(x)) + E
x′∼P

[
D
(
P(y|x = x′)

∥∥Q(y|x = x′)
)]
.

Here P(x) (or Q(x)) denotes the marginal distributions of P (or Q) over X and P(y|x = x′)
denotes the marginal distribution of P on Y conditioned on x = x′.

We begin by looking at the KL divergence between two Gaussian distributions, as this is what
our mechanism uses. Recall that the Gaussian (or normal) distribution with mean µ and variance
σ2 — denoted N (µ, σ2) — has a probability density at x given by 1√

2πσ2 exp
(
− (x−µ)2

2σ2

)
.

Lemma 2.3 ([GAL13, Table 3]). Let µ, µ̃, σ, σ̃ ∈ R. Then

D
(
N (µ, σ2)

∥∥∥N (µ̃, σ̃2)
)

= (µ− µ̃)2

2σ̃2 + 1
2

(
σ2

σ̃2 − 1− ln
(
σ2

σ̃2

))
.

Corollary 2.4. Let µ, µ̃, σ, σ̃, x ∈ R. If σσ̃ 6= 0, then

D
(
N (µ, σ2)

∥∥∥N (µ̃, σ̃2)
)
≤ 1

2 ·

(µ− µ̃)2

σ2 +
(
σ̃2

σ2 − 1
)2

·min
{

1, 1
6

(
2 + σ2

σ̃2

)} · σ2

σ̃2 .

Proof. This follows from Lemma 2.3 and the inequalities x−1−ln x ≤ (1/x−1)2 ·x and x−1−ln x ≤
(1/x− 1)2 · x · (2 + x)/6 for all x > 0.

An analogous result holds for the Laplace distribution. Although we do not work this out, it
implies that our results can be extended to work for the Laplace distribution (with slightly different
constants and a higher power of ln k, since the Laplace distribution has heavier tails). Recall that
the Laplace distribution with mean µ and variance 2σ2 — denoted µ+Lap (σ) — has a probability
density at x given by 1

2|σ| exp
(∣∣∣x−µσ ∣∣∣).

Lemma 2.5 ([GAL13, Table 3]). Let µ, µ̃, σ, σ̃ ∈ R. If σ, σ̃ > 0, then

D (µ+Lap (σ)‖µ̃+Lap (σ̃)) =σ

σ̃

(
e−
|µ̃−µ|
σ −

(
1− |µ̃− µ|

σ

))
+ σ

σ̃
− 1− ln

(
σ

σ̃

)

≤(µ̃− µ)2

2σσ̃ + 1
7

(
σ̃2

σ2 − 1
)2

σ2

σ̃2 .

8

Next we have a technical lemma relating expectations to KL divergence.
Lemma 2.6 ([Gra11, Theorem 5.2.1]). Let P and Q be probability distributions on Ω. Then

D (P‖Q) = sup
f :Ω→R

E
X∼P

[f(X)]− ln E
X∼Q

[
ef(X)

]
.

Setting f(x) = tx and rearranging gives the bound we will use:
Corollary 2.7. Let X and Y be real-valued random variables and t > 0. Then

E [X] ≤ 1
t

(
D (X‖Y) + ln E

[
etY
])
.

Next we note that KL divergence is a convex function.
Lemma 2.8 ([VEH14, Theorem 11]). Let P0, P1, Q0, Q1 be probability distributions on the same
space Ω. For t ∈ (0, 1), let Pt = (1− t)P0 + tP1 and Qt = (1− t)Q0 + tQ1 be the convex combinations
interpolating between these distributions. Then, for all t ∈ [0, 1],

D (Pt‖Qt) ≤ (1− t)D (P0‖Q0) + tD (P1‖Q1) .
This lemma immediately extends to convex combinations of more than two distributions.
Next we have a geometric statement about KL divergence:

Lemma 2.9 ([BMDG05, Proposition 1],[FSG08, Theorem II.1]). Let {Py} be a family of distribu-
tions indexed by y ∈ Y and let Q be a distribution on Y. Let PQ = EY∼Q [PY] denote the convex
combination of the distributions {Py} weighted by Q. Then

inf
R

E
Y∼Q

[D (PY ‖R)] = E
Y∼Q

[D (PY ‖PQ)].

Lemma 2.9 shows that the “center” of a collection of probability distributions — as measured
my minimizing average KL divergence to one distribution — is none other than the mean of those
distributions.

2.2 Mutual Information

A key quantity that we use is mutual information:
Definition 2.10 (Mutual Information). For two random variables X and Y jointly distributed
according to a distribution P over X × Y, the mutual information between X and Y is

I(X;Y) = D (P(x, y)‖P(x)× P(y)) = E
x′∼P(x)

[
D
(
P(y|x = x′

∥∥P(y)
)]
,

where P(x)× P(y) denotes the product of the marginal distributions of P.
Note that mutual information is symmetric – I(X;Y) = I(Y ;X).

Definition 2.11 (Conditional Mutual Information). For three random variables X, Y , and Z. The
mutual information between X and Y conditioned on Z is given by

I(X;Y |Z) = E
z∼PZ

[I(X|Z = z;Y |Z = z)],

where PZ is the marginal distribution of Z.
The key property is the chain rule:

Lemma 2.12 (Mutual Information Chain Rule). For random variables X, Y , and Z, we have
I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X)

9

3 Average KL Stability & Generalization
In this section, we cover our theoretical tools, which center around our definition of average leave-
one-out KL stability, which we restate here. For a randomized algorithm M and input s we use
M(s) denote the random variable obtained by running on M on s and the distribution of this
random variable (according to the context).

Definition 3.1 (Average Leave-one-out KL stability). An algorithm M :
(
X n ∪ X n−1) → Y is

ε-ALKL stable if, for all s ∈ X n,

1
n

∑
i∈[n]

D (M(s)‖M(s−i)) ≤ ε,

where s−i ∈ X n−1 denotes s with the ith element removed.
An algorithm M : X n → Y is ε-ALKL stable if there exists M̃ :

(
X n ∪ X n−1) → Y that is

ε-ALKL stable and M(s) = M̃(s) holds for all s ∈ X n.

Note that the second half of the definition extends it to mechanisms that are only defined for
inputs in X n, but not X n−1.

The key property of our definition is composition. This lemma allows us to account for the
accumulation of information through multiple adaptive queries. The following lemma only considers
the composition of two algorithms. Induction allows this to be extended to k algorithms.

Lemma 3.2 (Composition). Suppose M :
(
X n ∪ X n−1) → Y is ε-ALKL stable and M ′ : Y ×(

X n ∪ X n−1)→ Z is such that M ′(y, ·) :
(
X n ∪ X n−1)→ Z is ε′-ALKL stable for all y ∈ Y. Then

the composition s 7→M ′(M(s), s) is (ε+ ε′)-ALKL stable.

Proof. Fix s ∈ X n. By the chain rule for KL divergence (Lemma 2.2),

1
n

∑
i∈[n]

D
(
M ′(M(s), s)

∥∥M ′(M(s−i), s−i)
)

≤ 1
n

∑
i∈[n]

(
D (M(s)‖M(s−i)) + E

y∼M(s)

[
D
(
M ′(y, s)

∥∥M ′(y, s−i))]
)

= 1
n

∑
i∈[n]

D (M(s)‖M(s−i)) + E
y∼M(s)

 1
n

∑
i∈[n]

D
(
M ′(y, s)

∥∥M ′(y, s−i))

≤ ε+ ε′.

Another key property of our definition of average leave-one-out KL stability is postprocessing.
That is, if M is ε-ALKL stable, then applying an arbitrary function to the output of M continues
to be ε-ALKL stable. This can be seen by taking ε′ = 0 in the above composition lemma or by
using the data processing inequality for KL divergence [VEH14, Theorem 1].

10

3.1 Mutual Information

In order to show that our notion of average leave-one-out KL stability implies generalization, we
first show that it implies a bound on mutual information:

Proposition 3.3. Let M : X n → Y be ε-ALKL stable. Let S ∈ X n be a product distribution. Then
I(M(S);S) ≤ ε · n.

To prove Proposition 3.3, we introduce an intermediate notion of stability that is based on that
of Raginsky et al. [RRT+16]. Specifically, mutual information stability is defined as follows.

Definition 3.4 (Restating Definition 1.5). A randomized algorithm M : X n → Y is ε-MI stable if,
for any random variable S distributed over X n (including non-product distributions),

1
n

n∑
i=1

I(M(S);Si|S−i) ≤ ε.

We show that mutual information stability has the following properties.

1. Average leave-one-out KL stability implies mutual information stability.

2. Mutual information stability implies a mutual information bound.

3. Mutual information stability composes adaptively.

Combining properties (1) and (2) yields Proposition 3.3. The adaptive composition property of
mutual information stability implies that it might be useful for analysis of adaptive procedures which
are not ALKL stable (although we do not use this property since ALKL stability itself composes
adaptively).

Lemma 3.5. If M : X n → Y is ε-ALKL stable, then it also is ε-MI stable.

Proof. Let S be a random variable distributed according to some distribution P on X n. Let Pi and
P−i denote the marginal distribution of Si and S−i, respectively. For z ∈ X n−1 we use P(si|z) to
denote the distribution of Si conditioned on S−i = z. Now, by the definition of (conditional) mutual
information,

1
n

n∑
i=1

I(M(S);Si|S−i) = 1
n

E
z∼P−i

[I(M(S)|S−i = z;Si|S−i = z)]

= 1
n

E
z∼P−i

[
E

x∼P(si|z)
[D (M(S)|S−i = z, Si = x‖M(S)|S−i = z)]

]

= 1
n

E
z∼P−i

[
E

x∼P(si|z)
[D (M(z ◦i x)‖M(S)|S−i = z)]

]
.

Here z ◦i x refers to the vector s ∈ X n such that s−i = z and si = x. Here the inner expectation is
over x drawn from the distribution of Si conditioned on S−i = z — of the KL divergence from the
distribution of M(z ◦i x) to the distribution of M(S) conditioned on S−i = z. The latter distribution
is exactly the convex combination of the distribution of M(z ◦i x) weighted by the distribution of
x ∼ P(si|z).

11

Now the key observation: the convex combination — M(S)|S−i = z — is the distribution that
minimizes the inner expectation. Hence, we can replace it by M(z) and only increase the expression.
Formally, by Lemma 2.9, for all z ∈ X n−1,

E
x∼P(si|z)

[D (M(z ◦i x)‖M(S)|S−i = z))] ≤ E
x∼P(si|z)

[D (M(z ◦i x)‖M(z))]

Note that M(z) refers either to execution of M itself or (if M is not defined over inputs of length
n − 1) to M ’s extension to X n−1 promised by the second half of Definition 3.1. The result now
follows, as we have established that

1
n

n∑
i=1

I(M(S);Si|S−i) ≤
1
n

E
z∼P−i

[
E

x∼P(si|z)
[D (M(z ◦i x)‖M(z))]

]

= 1
n

n∑
i=1

E
s∼P

[D (M(s)‖M(s−i))].

Lemma 3.6. Suppose M : X n → Y is ε-MI stable. Let P be a distribution over X and S be
distributed according to Pn. Then I(M(S);S) ≤ εn.

Proof. Denote S<i = (S1, · · · , Si−1), S>i = (Si+1, · · · , Sn) and S≤i = (S1, · · · , Si). By the chain
rule for mutual information (Lemma 2.12 and induction),

I(M(S);S) =
n∑
i=1

I(M(S);Si|S<i).

By the definition of (conditional) mutual information,

I(M(S);Si|S<i) = E
z∼Pi−1

[I(M(S)|S<i = z;Si|S<i = z)]

= E
z∼Pi−1

[
E
x∼P

[D (M(S)|S≤i = z ◦ x‖M(S)|S<i = z)]
]

(4)

Here z ◦ x ∈ X i denotes the concatenation of z ∈ X i−1 with x ∈ X . Now, by the convexity of KL
divergence (Lemma 2.8), we can move the randomness of S>i from the divergence and into the
expectation. Namely,

D (M(S)|S≤i = z ◦ x‖M(S)|S<i = z) ≤ E
z′∼Pn−i

[
D
(
M(S)|S = z ◦ x ◦ z′

∥∥M(S)|S−i = z ◦ z′
)]
.

Here we use the fact that M(S)|S≤i = z ◦ x and M(S)|S<i = z are convex combinations of the
distribution of M(s) weighted by S>i (note that independence is crucial here). Plugging this into
eq. (4) and using the definition of (conditional) mutual information we get

I(M(S);Si|S<i) ≤ E
z∼Pi−1

[
E
x∼P

[
E

z′∼Pn−i

[
D
(
M(S)|S = z ◦ x ◦ z′

∥∥M(S)|S−i = z ◦ z′
)]]]

= E
s∼P

[D (M(S)|S = s‖M(S)|S−i = s−i)]

= I(M(S);Si|S−i)

12

Combining these (in)equalities yields the result:

I(M(S);S) ≤
n∑
i=1

I(M(S);Si|S−i).

Lemma 3.7. Suppose M : X n → Y is ε-MI stable and M ′ : Y × X n → Z is such that M ′(y, ·) :
X n → Z is ε′-MI stable for all y ∈ Y. Then the composition s 7→M ′(M(s), s) is (ε+ ε′)-MI stable.

Proof. Let S be a random variable on X n and let PM(S) denote the probability distribution of
M(S). By the chain rule,

1
n

n∑
i=1

I(M ′(M(S), S);Si|S−i) ≤
1
n

n∑
i=1

I(M(S);Si|S−i) + I(M ′(M(S), S);Si|S−i,M(S))

= 1
n

n∑
i=1

I(M(S);Si|S−i) + E
y∼PM(S)

[
I(M ′(y, S);Si|S−i,M(S) = y)

]
= 1
n

n∑
i=1

I(M(S);Si|S−i) + E
y∼PM(S)

[
1
n

n∑
i=1

I(M ′(y, S);Si|S−i,M(S) = y)
]

≤ε+ ε′.

The key is that the stability property holds for all distributions, which means it holds for the
distribution of S conditioned on M(S). Note that if we defined mutual information stability only to
quantify over product distributions, then this proof would not carry through, as S conditioned on
M(S) is not necessarily a product distribution anymore.

3.2 Generalization in expectation

In this section we translate an upper bound on I(S;M(S)) into an upper bound on the expectation
of the generalization error. As in earlier work [RZ16], our main technical tool is Corollary 2.7.
However we deal with more general random variables (not just subgaussian) and also prove bounds
that are scaled to standard deviation of the random variable as opposed to the subgaussian constant.
In Section. 3.3 we describe an alternative approach to generalization which is based on bounding
the probability of any “bad” event.

The following proposition bounds the expected generalization error.

Proposition 3.8. Let M be a randomized algorithm with input from X n and output in Q, where Q
is the set of functions ψ : X → [0, 1]. Let P be a distribution on X and S ∼ Pn. Let τ > 0. Suppose
I(S;M(S)) ≤ εn. Then

E
S∼Pn
ψ∼M(S)

[
S[ψ]− P[ψ]

max {sd(ψ(P)), τ}

]
≤
{

2
√
ε if

√
ε ≤ τ

ε/τ + τ if
√
ε ≥ τ

}
≤ 2
√
ε+ ε/τ.

Proof. Define a random variable X = S[ψ]−P[ψ]
max{sd(ψ(P)),τ} for S ∼ Pn and ψ ∼ M(S). Our goal is to

bound E [X]. Let Y = S[ψ]−P[ψ]
max{sd(ψ(P)),τ} for (S, S′) ∼ Pn × Pn and ψ ∼ M(S′). That is, Y is X

altered so that the query ψ is independent of the data S, but has the same marginal distribution.

13

Since I(S;M(S)) = D (S,M(S)‖S,M(S′)) ≤ εn, we have D (X‖Y) ≤ εn by the data processing
inequality. By Corollary 2.7,

E [X] ≤ inf
λ>0

1
λ

(
D (X‖Y) + ln E

[
eλY

])
. (5)

Thus it only remains to bound E
[
eλY

]
. We have

E
[
eλY

]
= E

(S,S′)∼Pn×Pn
ψ∼M(S′)

[
exp

(
λ

n

n∑
i=1

ψ(Si)− P[ψ]
max {sd(ψ(P)), τ}

)]

= E
S′∼Pn
ψ∼M(S′)

[
n∏
i=1

E
Si∼P

[
exp

(
λ

n

ψ(Si)− P[ψ]
max {sd(ψ(P)), τ}

)]]
.

Thus it suffices to bound ESi∼P
[
exp

(
λ
n

ψ(Si)−P[ψ]
max{sd(ψ(P)),τ}

)]
for a fixed i and a fixed ψ. The random

variable Yi = ψ(Si)−P[ψ]
max{sd(ψ(P)),τ} has mean 0 and variance at most 1 (since Si ∼ P). Also |Yi| ≤ 1/τ .

Thus by Lemma 3.9 (stated below), we have E
[
e
λ
n
Yi
]
≤ e

λ2
n2 for all λ/n ≤ τ . Hence E

[
eλY

]
≤ eλ2/n

for all λ ≤ nτ . Plugging this into eq. (5), we get

E [X] ≤ inf
0<λ≤nτ

εn

λ
+ λ

n
=
{

2
√
ε if

√
ε ≤ τ

ε/τ + τ if
√
ε ≥ τ

}
.

Lemma 3.9. Let Y be a random variable supported on [−1/τ, 1/τ]. Suppose E [Y] = 0 and
E
[
Y 2] ≤ 1. Then for λ ∈ [0, τ], E

[
eλY

]
≤ eλ2.

This lemma is similar to the proof of Bernstein’s inequality [Ber24].

Proof. Since |Y | ≤ 1/τ , we have |Y |k ≤ (1/τ)k−2Y 2 for all k ≥ 2. Thus, for all λ ≥ 0, we have

E
[
eλY

]
= 1 + λE [Y] +

∞∑
k=2

λk

k! E
[
Y k
]
≤ 1 +

∞∑
k=2

λk

k! (1/τ)k−2E
[
Y 2
]

= 1 +
(
eλ/τ − 1− λ/τ

)
τ2E

[
Y 2
]
≤ e(eλ/τ−1−λ/τ)·τ2

.

If λ/τ ≤ 1, then eλ/τ − 1− λ/τ ≤ (λ/τ)2, which yields the result.

To analyse our algorithm, we also need to bound the empirical error in terms of the standard
deviation. Note that the empirical error – the noise we add – scales with the empirical standard
deviation. Thus we must bound the empirical variance in terms of the true variance:

Proposition 3.10. Let M be a randomized algorithm with input from X n and output in Q, where
Q is the set of functions ψ : X → [0, 1]. Let P be a distribution on X and S ∼ Pn. Let τ > 0.
Suppose I(S;M(S)) ≤ εn. Then

E
S∼P

ψ∼M(S)

[(sd(ψ(S))
max {sd(ψ(P)), τ}

)2]
= E

S∼P
ψ∼M(S)

√

1
n

∑n
i=1(ψ(Si)− S[ψ])2

max {sd(ψ(P)), τ}

2 ≤ 2 + ε/τ2.

14

To prove Proposition 3.10 we make use of the following two standard facts.
Let ψ : X → R. Let P be a distribution on X and S ∈ X n. Then

1
n

n∑
i=1

(ψ(Si)− S[ψ])2 ≤ 1
n

n∑
i=1

(ψ(Si)− P[ψ])2 . (6)

Let X be a random variable supported on [0, 1]. Suppose E [X] = σ. Then for s ∈ [0, 1],

E
[
esX

]
≤ E [1 + 2sX] = 1 + 2σs ≤ e2σs. (7)

Proof of Proposition 3.10. By (6),

E
S∼P

ψ∼M(S)

√

1
n

∑n
i=1(ψ(Si)− S[ψ])2

max {sd(ψ(P)), τ}

2 ≤ E
S∼P

ψ∼M(S)

[1
n

∑n
i=1(ψ(Si)− P[ψ])2

max {Var [ψ(P)], τ2}

]
.

Define a random variable X =
∑n
i=1

(ψ(Si)−P[ψ])2

max{Var[ψ(P)],τ2} for S ∼ Pn and ψ ∼M(S). Our goal is thus

to bound 1
nE [X]. Define another random variable Y =

∑n
i=1

(ψ(Si)−P[ψ])2

max{Var[ψ(P)],τ2} for (S, S′) ∼ Pn×Pn

and ψ ∼M(S′). That is, Y is defined for S and ψ being independent, whereas X has them being
dependent through M . By the data processing inequality, D (X‖Y) ≤ D (S,M(S)‖S,M(S′)) =
I(S;M(S)) ≤ εn. Now, by Corollary 2.7,

E [X] ≤ inf
λ>0

1
λ

(
D (X‖Y) + ln E

[
eλY

])
. (8)

To bound E
[
eλY

]
we note that Y is determined by S and ψ. Since these are independent, we

may consider an arbitrary fixed ψ. We let Z denote Y conditioned on ψ being equal to a fixed
φ ∈ Q. We can write Z as a sum of n independent terms Zi = (φ(Si)−P[φ])2

max{Var[φ(P)],τ2} , and hence

E
[
eλZ

]
=
∏n
i E

[
eλZi

]
. For each i, we have E [Zi] = Var[φ(P)]

max{Var[φ(P)],τ2} ≤ 1 and 0 ≤ Zi ≤ 1/τ2. Thus,

by (7) (with X = Ziτ
2, σ ≤ τ2, and s = λ/τ2), E

[
eλZi

]
≤ e2λ for λ ∈ [0, τ2].

This implies that E
[
eλZ

]
≤ e2λn for λ ∈ [0, τ2] for every φ and hence E

[
eλY

]
≤ e2λn under the

same condition. Substituting this into eq. (8) yields

E [X] ≤ inf
0<λ≤τ2

1
λ

(
εn+ ln

(
e2λn

))
= εn/τ2 + 2n.

3.3 Preservation of low-probability events

Propositions 3.8 and 3.10 bound the expected generalization error given a bound on mutual
information. An alternative approach to analysis of generalization is to use a bound on mutual
information to upper bound the increase in probability of any “bad” event that results from the
dependence between the dataset and algorithm’s output. Specifically, we prove the following simple
lemma:

15

Lemma 3.11. Let S consist of n independent samples from some distribution P. Let S′ be an
independent copy of S. Let M : X n → Y and let E be an event on X n × Y satisfying

Pr
[
(S′,M(S)) ∈ E

]
≤ δ.

Then
Pr [(S,M(S)) ∈ E] ≤ I(S;M(S)) + ln 2

ln(1/δ) .

Intuitively, Lemma 3.11 says that if an event happens with very low probability on fresh
data, then it happens with somewhat low probability on non-fresh data, as long as the mutual
information between the event and the data is low. Note however, that the probability grows
from δ to I(S;M(S))+ln 2

ln(1/δ) . In particular, the inverse of the probability decreases exponentially. For
example, Lemma 3.11 can be used to correct a p-value obtained under the assumption that the
data is independent from the choice of the test (since p-value is the probability that a test statistic
satisfies a chosen condition) [RZ16, RRST16].

The same approach to generalization is used in [DFH+14, DFH+15, RRST16] for differential
privacy and max-information and in [RZ16, RRST16] for mutual information. The bound implicit

in [RZ16] is Pr [(S,M(S)) ∈ E] ≤ δ +
√

I(S;M(S))
ln(1/(2δ)) which is asymptotically worse than our bound.

The bound in [RRST16] is derived by first using mutual information to bound approximate max-
information [DFH+15]. Their approach yields the following bound

Pr [(S,M(S)) ∈ E] ≤ inf
k≥0

(
2k · δ + I(S;M(S)) + 0.54

k

)
which is comparable to the bound in Lemma 3.11.

As a more concrete application, we demonstrate how Lemma 3.11 can be used to derive a bound
on the probability of generalization error being large (or, equivalently, to construct a valid confidence
interval for the true expectation of a real-valued function).

Recall the setting of Proposition 3.8. Here S consists of n independent samples from P and M
outputs a function ψ : X → [0, 1] and has I(S;M(S)) ≤ εn. By Bernstein’s inequality, for n fresh
samples S′ (independent from M(S)), we have

Pr
(S,S′)∼Pn×Pn

ψ∼M(S)

[
S′[ψ]− P[ψ]

max {sd(ψ(P), τ} > t

]
≤ exp

(
−t2n

2 + 2
3
t
τ

)

for all t > 0. Thus, by Lemma 3.11, for all t > 0,

Pr
S∼Pn
ψ∼M(S)

[
S[ψ]− P[ψ]

max {sd(ψ(P), τ} > t

]
≤

2 + 2
3
t
τ

t2
·
(
ε+ ln 2

n

)
.

In our application of Proposition 3.8, we have ε = τ2 ≥ 1/n; setting t = 3τ/β and simplifying yields

Pr
S∼Pn
ψ∼M(S)

[
S[ψ]− P[ψ]

max {τ · sd(ψ(P), τ2}
>

3
β

]
≤ β.

Note that this bound appears to correspond to an application of Markov’s inequality to the conclusion
Proposition 3.8. However, since the random variable in question may take both positive and negative

16

values, Markov’s inequality cannot be applied. Namely, Lemma 3.11 corresponds to a strengthening
of Proposition 3.8 that bounds the expectation of the absolute value of the random variable. This
approach can also be easily used to get a bound (based on Markov’s inequality) on the tail of the
largest error we state in Theorem 1.1. This follows from the fact that a high probability bound on
this tail is easy to prove when the dataset is independent from the algorithm’s answers.

To prove Lemma 3.11, we observe that for any random variable S and any randomized algorithm
M ,

D
(
1E(S,M(S))

∥∥1E(S′,M(S))
)
≤ D

(
S,M(S)

∥∥S′,M(S)
)

= I(S;M(S))
where S′ is an independent copy of S, E is an arbitrary event on X n × Y, and 1E is the indicator
function of the event. Note that 1E(S,M(S)) is a Bernoulli random variable with bias equal to
Pr[(S,M(S)) ∈ E]. Now the proof of Lemma 3.11 follows from the following lemma.

Lemma 3.12. Let B(p) denote the Bernoulli random variable with bias p. Then for any p, q ∈ (0, 1],

p ≤ D (B(p)‖B(q)) + ln 2
ln(1/q) .

Proof. We have

D (B(p)‖B(q)) = p ln
(
p

q

)
+ (1− p) ln

(1− p
1− q

)
= p ln(1/q)− H(p) + (1− p) ln(1/(1− q))
≥ p ln(1/q)− ln 2 + 0,

where H(p) = p ln(1/p) + (1− p) ln(1/(1− p)) is the binary entropy function. Rearranging yields
the result.

4 Analysis of our Algorithm
Now we assemble the tools developed in the previous section to analyse our algorithm (Figure 1).
To do this we must introduce some formalisms for dealing with adaptive algorithms.

Our algorithm M answers adaptively-chosen queries. We call the entity A choosing these queries
the analyst (or adversary to connote worst-case behaviour). The interaction between A and M
defines a function mapping inputs (the sample) to a transcript of queries and answers. Figure 2
defines how this function is computed.

Input s ∈ Xm is given to M .
For j = 1, 2, . . . , k:
A computes a query ψj ∈ Q and passes it to M
M produces answer vj ∈ R and passes it to A

The output is the transcript (ψ1, ψ2, . . . , ψk, v1, v2, . . . , vk) ∈ Qk ×Rk.

Figure 2: A→←M : Xm → Qk ×Rk

With this formalism in hand, we can extend our definition of average leave-one-out KL stability
from non-interactive algorithms (Definition 1.2) to interactive algorithms:

17

Definition 4.1 (Interactive ALKL stable). An interactive algorithm M is ε-ALKL stable if A→←M
(as defined in Figure 2) is ε-ALKL stable for all interactive algorithms A.

4.1 Stability of our algorithm

We now show that our algorithm is (interactive) average leave-one-out KL stable:

Theorem 4.2. Our algorithm (Figure 1) is kt
n2 -ALKL stable for any n ≥ 20 and T ≤ min{t2, tn/10}.

To establish that our algorithm is average leave-one-out KL stable, we first only consider one
query ψ = ψj . We show that, for each query ψ, the answer given by our algorithm is t

n2 -ALKL
stable. Using composition (Lemma 1.3), we can extend this to k queries ψ1, . . . , ψk. That is, we
prove that our algorithm is kt

n2 -ALKL stable.
First we recall how our algorithm answers a query ψ : X → [0, 1]: The algorithm is given as

input a sample s ∈ X n and, for each statistical query ψ = ψj the algorithm M outputs a sample
from N (µ,max

{
σ2/t, 1/T

}
) where

µ = s[ψ] = 1
n

∑
i∈[n]

ψ(si) and σ2 = Var [ψ(s)] = 1
n

∑
i∈[n]

(ψ(si)− µ)2.

Here t, T > 0 are parameters controlling the accuracy-stability tradeoff.
Theorem 4.2 is implied by the following result.

Proposition 4.3. Let s ∈ X n, n ≥ 2, t, T > 0, and ψ : X → [0, 1]. For i ∈ [n], define

µ = s[ψ] = 1
n

∑
i∈[n]

ψ(si), µ−i = s−i[ψ] = 1
n− 1

∑
j∈[n]\{i}

ψ(sj),

σ2 = Var [ψ(s)] = 1
n

∑
i∈[n]

(ψ(si)− µ)2, σ2
−i = Var [ψ(s−i)] = 1

n− 1
∑

j∈[n]\{i}
(ψ(sj)− µ−i)2.

Then

1
n

∑
i∈[n]

D
(
N
(
µ,max

{
σ2

t
,

1
T

})∥∥∥∥∥N
(
µ−i,max

{
σ2
−i
t
,

1
T

}))
≤ 1

4n2

(
2t+ T

t
· (1 + ζ)

)
· (1 + ζ) ,

(9)
where 1 + ζ =

(
1 + 1

n−1

)2
(

1 + T
tn

(
1 + 1

n−1

)2
)
.

In particular, ζ = O
(

1
n + T

tn

)
and, if n ≥ 20 and T

t ≤
n
10 , then (9) ≤ 1

n2 max{t, T/t}.
The proof of Proposition 4.3 is technical and is deferred to Appendix A.
To gain some intuition, we present a proof of a weaker result which captures the main points of

the proof.

Simplified Proof Sketch. We make three simplifications:

• Ignore constant factors. (Take n and t
T n to be sufficiently large.)

• Consider ψ : X → {0, 1} instead of ψ : X → [0, 1].

18

• Assume σ2

t ≥
1
T and σ2

−i
t ≥

1
T for all i.

Intuitively, the last assumption is not really an assumption, since we perforce ensure this by using
max

{
σ2

t ,
1
T

}
in place of σ2

t and likewise for σ−i. This assumption is only to simplify notation.

Begin by considering a fixed index i. By Corollary 2.4,

D
(
N
(
µ,max

{
σ2

t
,

1
T

})∥∥∥∥∥N
(
µ−i,max

{
σ2
−i
t
,

1
T

}))

= D
(
N
(
µ,
σ2

t

)∥∥∥∥∥N
(
µ−i,

σ2
−i
t

))

≤ 1
2 ·

(µ− µ−i)2

σ2/t
+
(
σ2
−i
σ2 − 1

)2

·min
{

1, 1
6

(
2 + σ2

σ2
−i

)} · σ2

σ2
−i

≤ t · (µ− µ−i)2

σ2 +
(
σ2
−i − σ2

σ2

)2

. (Ignoring constant factors.)

We use 1
2
σ2

σ2
−i
≤ 1, which holds as long as T ≤ tn.

Since we assumed (for simplicity) that ψ takes only values 0 and 1, the entire vector ψ(s) is
characterized by the mean µ = s[ψ]. In particular, we have σ2 = µ(1− µ) and σ2

−i = µ−i(1− µ−i).
Thus, we have |σ2

−i − σ2| ≤ |µ− µ−i| and

D
(
N
(
µ,max

{
σ2

t
,

1
T

})∥∥∥∥∥N
(
µ−i,max

{
σ2
−i
t
,

1
T

}))
≤ t·(µ− µ−i)

2

σ2 +
(
µ− µ−i
σ2

)2
=
(
t+ 1

σ2

)
·(µ− µ−i)

2

σ2 .

Since σ2

t ≥
1
T , we have t+ 1

σ2 ≤ t+ T
t . Also

µ−µ−i = 1
n

(∑
i′

ψ(si′)
)
− 1
n− 1

(
−ψ(si) +

∑
i′

ψ(si′)
)

=
(1
n
− 1
n− 1

)
·nµ+ ψ(si)

n− 1 = ψ(si)− µ
n− 1 .

We now have

D
(
N
(
µ,max

{
σ2

t
,

1
T

})∥∥∥∥∥N
(
µ−i,max

{
σ2
−i
t
,

1
T

}))
≤
(
t+ T

t

)
· (ψ(si)− µ)2

σ2(n− 1)2 .

Averaging over all i ∈ [n] gives

1
n

∑
i∈[n]

D
(
N
(
µ,max

{
σ2

t
,

1
T

})∥∥∥∥∥N
(
µ−i,max

{
σ2
−i
t
,

1
T

}))
≤
(
t+ T

t

)
·

1
n

∑
i∈[n](ψ(si)− µ)2

σ2(n− 1)2

=
(
t+ T

t

)
· σ2

σ2(n− 1)2

≤
(
t+ T

t

)
· 2
n2 ,

as desired.

19

4.2 Accuracy guarantees

Note that, by the postprocessing property of average leave-one-out KL stability, applying any
function f to the transcript of an average leave-one-out KL stable algorithm still is average leave-
one-out KL stable. More precisely, for a ε-ALKL stable interactive algorithm M and any interactive
algorithm A, the composed algorithm mapping input s to output f(A→←M(s)) is ε-ALKL stable.
We now invoke the generalization properties of average leave-one-out KL stability:

Lemma 4.4. Fix a distribution P on X . Let M be a ε-ALKL stable interactive algorithm that
answers k statistical queries. Let A be an arbitrary interactive algorithm that asks k statistical
queries. Let f : Qk × Rk → Q, where Q denotes the set of statistical queries ψ : X → [0, 1]. Let
τ =
√
ε. Then ∣∣∣∣∣∣∣ E

S∼Pn
ψ∼f(A→←M(S))

[
S[ψ]− P[ψ]

max {sd(ψ(P)), τ}

]∣∣∣∣∣∣∣ ≤ 2
√
ε (10)

and

E
S∼Pn

ψ∼f(A→←M(S))

[(sd(ψ(S))
max {sd(ψ(P)), τ}

)2]
≤ 3. (11)

Proof. This follows from our generalization results (Propositions 3.8 and 3.10), postprocessing, and
the connection between average leave-one-out KL stability and mutual information (Proposition
3.3).

A natural choice of function f is to simply pick out one of the queries — that is, f(ψ1, . . . , ψk, v1, . . . , vk) =
ψj for some fixed j. However, f can also pick out the “worst” query. For example, the monitor
technique of Bassily et al. [BNS+16] takes

f∗(ψ1, . . . , ψk, v1, . . . , vk) = ψj∗ , where j∗ = argmax
j∈[k]

|vj − P[ψj]| .

The monitor technique allows us to reason about a single query and derive bounds that apply to
all queries simultaneously as this query is the worst query. Since we have a more refined notion of
error, we must use a slightly different argument.

We use the following function fτ,P : Qk × Rk → Q to pick out the query with the worst scaled
error.

fτ,P(ψ1, . . . , ψk, v1, . . . , vk) =
{

ψj∗ if vj∗ ≥ P[ψj∗]
1− ψj∗ if vj∗ < P[ψj∗]

}
, where j∗ = argmax

j∈[k]

|vj − P[ψj]|
max {sd(ψj(P), τ} .

(12)
Note that we flip the sign to ensure that the error is always positive.

Now we give a bound on the expected scaled error of our algorithm. We use the following simple
technical lemma bounding the maximum of standard Gaussians.

Lemma 4.5. Let ξ1, . . . , ξk be independent samples from N (0, 1). Then

E
[
max{ξ2

1 , . . . , ξ
2
k}
]
≤ 2 ln(2k).

20

Proof. Let X = maxi∈[k] ξ
2
i and t > 0. Since cosh(

√
z) = 1

2(e
√
z + e−

√
z) is a convex function of

z ≥ 0, Jensen’s inequality gives

cosh
(
t
√

E [X]
)
≤ E

[
cosh

(
t
√
X
)]

= E
[

kmax
j

cosh(tξj)
]
≤ E

 k∑
j

cosh(tξj)

 = k · et2/2.

Rearranging yields

E [X] ≤
(1
t

cosh−1
(
k · et2/2

))2
≤
(1
t

ln(2k · et2/2)
)2

=
(ln(2k)

t
+ t

2

)2
,

as cosh(v) ≥ ev/2 and, hence, cosh−1(u) ≤ ln(2u). Setting t =
√

2 ln(2k) completes the proof.

Theorem 4.6 (Main Theorem). Fix n, k ≥ 20. Let M be our algorithm from Figure 1 with
T = n2/k and t = n

√
2 ln(2k)/k that answers k statistical queries given n samples.

Let P be a distribution on X and let A be an interactive algorithm that asks k statistical queries.
Then

E
S∼Pn

(ψ,v)∼A→←M(S)

[
max
j∈[k]

|vj − P[ψj]|
max {τ · sd(ψj(P)), τ2}

]
≤ 4,

where τ =
√√

2k ln(2k)
n .

Proof. Set ε = τ2 = kt
n2 = t

T =
√

2k ln(2k)
n . Since n ≥ 20 and T ≤ min{t2, nt/10}, A→←M is ε-ALKL

stable by Theorem 4.2. Let S ∼ Pn and (ψ, v) ∼ A→←M(S). Define

j∗ = argmax
j∈[k]

|vj − P[ψj]|
max {sd(ψj(P)), τ}

and
(ψ∗, v∗) =

{
(ψj∗ , vj∗) if vj∗ ≥ P[ψj∗]

(1− ψj∗ , 1− vj∗) if vj∗ < P[ψj∗]

}
.

Thus

E
S∼Pn

(ψ,v)∼A→←M(S)

[
max
j∈[k]

|vj − P[ψj]|
max {τ · sd(ψj(P)), τ2}

]
= 1
τ

E
[

v∗ − P[ψ∗]
max {sd(ψ∗(P)), τ}

]
. (13)

Let σ∗ = σj∗ =
√

1
n

∑n
i=1(ψj∗(Si)− S[ψj∗])2 be the empirical standard deviation corresponding

to the query ψ∗ and the sample S. By Lemma 4.4,

E
[

S[ψ∗]− P[ψ∗]
max {sd(ψ∗(P)), τ}

]
≤ 2τ (14)

and

E
[(

σ∗
max {sd(ψ∗(P)), τ}

)2
]
≤ 3. (15)

21

Let ξ1, . . . , ξk be the independent standard Gaussians sampled by M (Figure 1). Let ξ∗ = ξj∗ if
vj∗ ≥ P[ψj∗] and ξ∗ = −ξj∗ if vj∗ < P[ψj∗]. By the definition of our algorithm,

v∗ = S[ψ∗] + ξ∗ ·
√

max {σ2
∗/t, 1/T} = S[ψ∗] + 1√

t
· ξ∗ ·max {σ∗, τ} .

Thus, by Cauchy-Schwartz,

E
[

v∗ − P[ψ∗]
max {sd(ψ∗(P)), τ}

]
=E

[
S[ψ∗]− P[ψ∗]

max {sd(ψ∗(P)), τ}

]
+ 1√

t
·E
[

ξ∗ ·max {σ∗, τ}
max {sd(ψ∗(P)), τ}

]

≤E
[

S[ψ∗]− P[ψ∗]
max {sd(ψ∗(P)), τ}

]
+ 1√

t
·

√√√√E [ξ2
∗] ·E

[(max {σ∗, τ}
max {sd(ψ∗(P)), τ}

)2]

(by (14)) ≤2τ + 1√
t
·

√√√√E [ξ2
∗] ·E

[(
σ∗

max {sd(ψ∗(P)), τ}

)2
+
(

τ

max {sd(ψ∗(P)), τ}

)2
]

(by (15)) ≤2τ + 1√
t
·
√

E [ξ2
∗] · (3 + 1)

(by Lemma 4.5) ≤2τ + 1√
t
·
√

2 ln(2k) · 4

=4τ = 4

√√
2k ln(2k)
n

.

Combining with (13) completes the proof.

Acknowledgements

We thank Adam Smith for encouraging us to prove our generalization bounds via the mutual
information between the input and output of the ALKL stable algorithm. This suggestion greatly
improved our results and simplified the analysis.

References
[BE02] Olivier Bousquet and André Elisseeff. Stability and generalization. JMLR, 2:499–526,

2002.

[Ber24] Sergei Bernstein. On a modification of chebyshev?s inequality and of the error formula
of laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

[BF16] Raef Bassily and Yoav Freund. Typicality-based stability and privacy. CoRR,
abs/1604.03336, 2016.

[BMDG05] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering
with bregman divergences. Journal of machine learning research, 6(Oct):1705–1749,
2005.

[BNS+16] Raef Bassily, Kobbi Nissim, Adam D. Smith, Thomas Steinke, Uri Stemmer, and
Jonathan Ullman. Algorithmic stability for adaptive data analysis. In STOC, pages
1046–1059, 2016.

22

[BS16] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications,
extensions, and lower bounds. In Theory of Cryptography Conference, pages 635–658.
Springer Berlin Heidelberg, 2016.

[CT12] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley &
Sons, 2 edition, 2012.

[DFH+14] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold,
and Aaron Roth. Preserving statistical validity in adaptive data analysis. CoRR,
abs/1411.2664, 2014. Extended abstract in STOC 2015.

[DFH+15] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Aaron Roth. Generalization in adaptive data analysis and holdout reuse. CoRR,
abs/1506, 2015. Extended abstract in NIPS 2015.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 486–503.
Springer Berlin Heidelberg, 2006.

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In TCC, pages 265–284, 2006.

[FS17] Vitaly Feldman and Thomas Steinke. Generalization for adaptively-chosen estimators
via stable median. In Conference on Learning Theory (COLT), 2017.

[FSG08] Béla A Frigyik, Santosh Srivastava, and Maya R Gupta. Functional bregman divergence
and bayesian estimation of distributions. IEEE Transactions on Information Theory,
54(11):5130–5139, 2008.

[GAL13] Manuel Gil, Fady Alajaji, and Tamas Linder. Rényi divergence measures for commonly
used univariate continuous distributions. Information Sciences, 249:124–131, 2013.

[Gra11] Robert M Gray. Entropy and information theory. Springer, 2011.

[HU14] M. Hardt and J. Ullman. Preventing false discovery in interactive data analysis is hard.
In FOCS, pages 454–463, 2014.

[Kea98] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the
ACM, 45(6):983–1006, 1998.

[PRMN04] Tomaso Poggio, Ryan Rifkin, Sayan Mukherjee, and Partha Niyogi. General conditions
for predictivity in learning theory. Nature, 428(6981):419–422, 2004.

[RRST16] Ryan Rogers, Aaron Roth, Adam Smith, and Om Thakkar. Max-information, differential
privacy, and post-selection hypothesis testing. In Foundations of Computer Science
(FOCS), 2016 IEEE 57th Annual Symposium on, pages 487–494. IEEE, 2016.

[RRT+16] Maxim Raginsky, Alexander Rakhlin, Matthew Tsao, Yihong Wu, and Aolin Xu.
Information-theoretic analysis of stability and bias of learning algorithms. In 2016 IEEE
Information Theory Workshop, ITW 2016, Cambridge, United Kingdom, September
11-14, 2016, pages 26–30, 2016.

23

[RZ16] Daniel Russo and James Zou. Controlling bias in adaptive data analysis using information
theory. In Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, AISTATS, 2016.

[Ste16] Thomas Steinke. Adaptive data analysis. 2016. Lecture Notes http://people.seas.
harvard.edu/~madhusudan/courses/Spring2016/notes/thomas-notes-ada.pdf.

[SU15] Thomas Steinke and Jonathan Ullman. Interactive fingerprinting codes and the hardness
of preventing false discovery. In COLT, pages 1588–1628, 2015.

[VEH14] Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence.
IEEE Transactions on Information Theory, 60(7):3797–3820, 2014.

[WLF16] Yu-Xiang Wang, Jing Lei, and Stephen E Fienberg. On-average kl-privacy and its
equivalence to generalization for max-entropy mechanisms. In International Conference
on Privacy in Statistical Databases, pages 121–134. Springer, 2016.

[XR17] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability
of learning algorithms. CoRR, abs/1705.07809, 2017.

A Average Leave-One-Out KL Stability of Scaled Gaussian Noise
Proposition A.1 (Restating Proposition 4.3). Let s ∈ X n, n ≥ 2, t, T > 0, and ψ : X → [0, 1].
For i ∈ [n], define

µ = s[ψ] = 1
n

∑
i∈[n]

ψ(si), µ−i = s−i[ψ] = 1
n− 1

∑
j∈[n]\{i}

ψ(sj),

σ2 = Var [ψ(s)] = 1
n

∑
i∈[n]

(ψ(si)− µ)2, σ2
−i = Var [ψ(s−i)] = 1

n− 1
∑

j∈[n]\{i}
(ψ(sj)− µ−i)2.

Then

1
n

∑
i∈[n]

D
(
N
(
µ,max

{
σ2

t
,

1
T

})∥∥∥∥∥N
(
µ−i,max

{
σ2
−i
t
,

1
T

}))
≤ 1

4n2

(
2t+ T

t
· (1 + ζ)

)
· (1 + ζ) ,

where 1 + ζ =
(
1 + 1

n−1

)2
(

1 + T
tn

(
1 + 1

n−1

)2
)
.

Proof. We have
µ− µ−i = µ− nµ− ψ(si)

n− 1 = ψ(si)− µ
n− 1 (16)

and
1
n

∑
i∈[n]

(µ− µ−i)2 = 1
n(n− 1)2

∑
i∈[n]

(ψ(si)− µ)2 = σ2

(n− 1)2 . (17)

24

http://people.seas.harvard.edu/~madhusudan/courses/Spring2016/notes/thomas-notes-ada.pdf
http://people.seas.harvard.edu/~madhusudan/courses/Spring2016/notes/thomas-notes-ada.pdf

Furthermore,

σ2 − σ2
−i =σ2 −

 1
n− 1

−ψ(si)2 +
∑
j∈[n]

ψ(sj)2

− µ2
−i

=σ2 −

(1
n− 1

(
−ψ(si)2 + n(σ2 + µ2)

)
− µ2

−i

)
=σ2

(
1− n

n− 1

)
+ ψ(si)2

n− 1 −
n

n− 1µ
2 + µ2

−i

=ψ(si)2 − µ2 − σ2

n− 1 − (µ2 − µ2
−i)

=(ψ(si)− µ)(ψ(si) + µ)− σ2

n− 1 − (µ− µ−i)(µ+ µ−i)

=(ψ(si)− µ)(ψ(si) + µ)− σ2

n− 1 − ψ(si)− µ
n− 1 (µ+ µ−i) (by (16))

=ψ(si)− µ
n− 1 ((ψ(si)− µ) + (µ− µ−i))−

σ2

n− 1

=ψ(si)− µ
n− 1

(
(ψ(si)− µ) + ψ(si)− µ

n− 1

)
− σ2

n− 1 (by (16))

=
n
n−1(ψ(si)− µ)2 − σ2

n− 1 (18)

and ∣∣∣σ2 − σ2
−i

∣∣∣ ≤ max{ n
n−1(ψ(si)− µ)2, σ2}

n− 1 ≤ n

(n− 1)2 . (19)

By (18),

1
n

∑
i∈[n]

(
σ2 − σ2

−i

)2
= 1
n(n− 1)2

∑
i∈[n]

(
n

n− 1(ψ(si)− µ)2 − σ2
)2

= 1
n(n− 1)2

∑
i∈[n]

n2

(n− 1)2 (ψ(si)− µ)4 − 2n
n− 1(ψ(si)− µ)2σ2 + σ4

≤ 1
n(n− 1)2

∑
i∈[n]

n2

(n− 1)2 (ψ(si)− µ)2 − 2n
n− 1(ψ(si)− µ)2σ2 + σ4

(Since 0 ≤ (ψ(si)− µ)2 ≤ 1.)

= 1
(n− 1)2

(
n2

(n− 1)2σ
2 − 2n

n− 1σ
2σ2 + σ4

)

= σ2

(n− 1)2

(
n2

(n− 1)2 − σ
2n+ 1
n− 1

)

≤ σ2

(n− 1)2
n2

(n− 1)2 . (20)

25

Let

γ = max
i

∣∣∣∣∣∣∣∣
max

{
σ2

t ,
1
T

}
max

{
σ2
−i
t ,

1
T

} − 1

∣∣∣∣∣∣∣∣ .
By (19), for some i,

γ =

∣∣∣∣max
{
σ2
−i
t ,

1
T

}
−max

{
σ2

t ,
1
T

}∣∣∣∣
max

{
σ2
−i
t ,

1
T

} ≤

∣∣∣∣σ2
−i
t −

σ2

t

∣∣∣∣
1
T

= T

t
|σ2 − σ2

−i| ≤
Tn

t(n− 1)2 . (21)

By Corollary 2.4, we have

D
(
N
(
µ,max

{
σ2

t
,

1
T

})∥∥∥∥∥N
(
µ−i,max

{
σ2
−i
t
,

1
T

}))

≤ 1
2

 (µ− µ−i)2

max
{
σ2

t ,
1
T

} +

max
{
σ2
−i
t ,

1
T

}
max

{
σ2

t ,
1
T

} − 1

2

·min
{

1, 2 + (1 + γ)
6

} · (1 + γ)

≤ 1
2

 (µ− µ−i)2

max
{
σ2

t ,
1
T

} +

(
max

{
σ2
−i
t ,

1
T

}
−max

{
σ2

t ,
1
T

})2

max
{
σ2

t ,
1
T

}2 · 1
2

(
1 + γ

3

) · (1 + γ)

≤ 1
2

(µ− µ−i)2

σ2

t

+

(
σ2
−i
t −

σ2

t

)2

σ2

t ·
1
T

· 1 + γ/3
2

 · (1 + γ) . (22)

26

Combining (22), (17), (20), and (21), we have

1
n

∑
i∈[n]

D
(
N
(
µ,max

{
σ2

t
,

1
T

})∥∥∥∥∥N
(
µ−i,max

{
σ2
−i
t
,

1
T

}))

≤ 1
n

∑
i∈[n]

1
2

(
(µ− µ−i)2

σ2

t

+
(
σ2 − σ2

−i
)2

2 · t2 · σ2

t ·
1
T

(1 + γ/3)
)
· (1 + γ)

≤ 1
2

 σ2

(n−1)2

σ2

t

+
σ2

(n−1)2
n2

(n−1)2

2 · t2 · σ2

t ·
1
T

(1 + γ/3)

 · (1 + γ)

= 1
4(n− 1)2

(
2t+ T

t

n2

(n− 1)2 (1 + γ/3)
)
· (1 + γ)

≤ 1
4(n− 1)2

(
2t+ T

t

n2

(n− 1)2

(
1 + Tn

3t(n− 1)2

))
·
(

1 + Tn

t(n− 1)2

)

= 1
4n2

(
2t+ T

t
·
(

1 + 1
n− 1

)2 (
1 + Tn

3t(n− 1)2

))
·
(

1 + 1
n− 1

)2 (
1 + Tn

t(n− 1)2

)
≤ 1

4n2

(
2t+ T

t
· (1 + ζ)

)
· (1 + ζ) . (23)

27

	Introduction
	Our Contributions
	Average KL leave-one-out stability and generalization

	Preliminaries
	KL Divergence
	Mutual Information

	Average KL Stability & Generalization
	Mutual Information
	Generalization in expectation
	Preservation of low-probability events

	Analysis of our Algorithm
	Stability of our algorithm
	Accuracy guarantees

	Average Leave-One-Out KL Stability of Scaled Gaussian Noise

