RJ 5118 (53162) 4/23/86
Computer Science

Research Report

SYSTEMS PROGRAMMING: COPING WITH PARALLELISM
R. Kent Treiber
IBM Almaden Research Center

650 Harry Road
San Jose, California 95120-6099

Research Division
Yorktown Heights, New York « San Jose, California « Zurich, Switzeriand

fan]

RJ 5118 (53162) 4/23/86
Computer Science

Systems Programming: Coping With Parallelism

R. Kent Treiber

Almaden Research Center

K 55/801

650 Harry Road

San Jose, Califormia 95120-6099

Abstract: Creating operating system components and subsystems in today’s large processors generally
requires dealing with more than one CPU operating in parallel against a shared memory. While “applica-
tions” are typically shielded from the effects of parallelism, components and subsystems usually are designed
in such a way that some level of understanding is required. This paper concentrates on the pitfalls awaiting
the programmer in a parallel (or even a multiprogramming) environment when shared data structures
(control blocks) are referenced and altered by multiple processes (tasks). The focus is on the IBM
System/370 architecture because of its multiple CPU architecture and the powerful “compare and swap”
instruction. The paper reviews some architectural groundrules that a parallel programmer must understand,
presents problems that must often be solved in a parallel environment, then describes solutions such as

usage of compare and swap, locks, and single-process schemes. Kernels of code are used to illustrate
problems and solutions.

CONTENTS

INTRODUCTION
UNNATURAL, ERROR PRONE AND UNTESTABLE
ARCHITECTURE REVIEW

BASIC RULES FOR SAFE OPERATION

OTHER GENERAL SOLUTIONS

LOCKS AND LATCHES
BASIC DESCRIPTION
Function

- Modes and Compatibility
Deadlocks
Recovery

Convoy

PROBLEMS AND SOLUTIONS
SETTING BITS
The Problem
Solutions

The Problem
Solutions
COUNTERS
The Problem
Solution
CPU SERIALIZATION
The Problem
Soluttons

The Problem - FIFO Processing
Solutions - FIFO Processing, Single Process
Locking
Single Process Design
Solutions - FIFO Processing, Parallel Processes
Approximate FIFO
Parallel FIFO Removal
The Problem - Find and Remove by Name

Solutions - Find and Remove by Name

Contents

..................................

L () 4ed post pamt

OO 1~ nawn

i1

i1
11
12
12
13
14
14
14
15
15
17
17
17
19

)
&~

22
22
22
23
23
25
29
31

Locking

Appendix A. ASSEMBLER EXAMPLES, BY NAME, OBLIGATION PASSING

References

Contents

iv

31
31

34

35

36

42

INTRODUCTION

UNNATURAL, ERROR PRONE
AND UNTESTABLE

Designing and coding in a parallel environment
1s unnatural for most programmers. Programmers
tend to think in sequential, if-then-else kind of
logic. In a parallel environment, the traditional
if-then-else may be totally invalid if its operating
against a daia structure that is shared with another
process (task or dispatchable unit of work). In a
parallel environment, the programmer must ask
"what if another process is running simultane-
ously?” after coding each instruction associated
with a shared data structurc (most commonly a
control block). In fact, many of the problems
discussed here can occur in a multiprogramming
environment as long as at least two processcs are
operating with preemptive dispatching (where one
process can lose control of the CPU at any in-
struction boundary and another process can be
given control of the CPL).

In addition to being unnatural, the parallel
environment is very error prone (partially due to
the unnatural nature, partly duc to complexity).
Unless serialization is done at a very high level,
the level of system understanding required to even
recognize and then resofve a parallelism exposure

is high.

As if unnatural and error prone weren’t bad
enough, parallelism “bugs” are very difficult to
detect by testing. Most of these parallelism ex-
posures only function incorrectly in very small
“windows” of time that occur in a parallel envi-
ronment. Often the failure results in a problem
much later in processing and there is no trace of
the actual failure. In many cases, the failures onty
come under load and are very difficult to repro-
duce, particularly in a real customer environment.
Introducing debugging tools can alter performance

INTRODUCTION

such that a parallelism exposure window does not
occur (an example of the Heisenburg uncertainty
principle).

A fairly obvious solution to this nasty set of
problems 1s to introduce high level serialization
to avoid parallelism exposures. This is a valid
approach, but such a decision must be made care-
fully: it may have far reaching impacts on thruput
and response time. Once complex code is written
depending on high level serialization it is likely to
be extremely difficult to make the code work with
lower level techniques that allow more parallelism.

The author’s early experiences with system
programming basically did not involve parallel
environments and he has learned the hard way.
It is hoped that this paper will make it easier for
others.

ARCHITECTURE REVIEW

The System/370 (extended or not) architecture
[princop} documents synchronizing and serializing
that must occur in all System/370 machines.
These 1ssues are important when programming in
a parallel environment with shared data structures;
most are important even in a preemptively dis-
patched multiprogramming environment. The
following portions of the principles of operation
[princop] are summarized in this document, but
are worth review:

e Chapter 5, section on “Sequence of Storage
References”. This describes what “really” hap-
pens when instructions that modify main storage
are executed.

¢ Chapter 7, the Compare and Swap (CS), Com-
pare Double and Swap (CDS) instruction de-
scriptions.

* Appendix A, section on "Multiprogramming
and Multiprocessing Examples”.

When dealing with a parallel environment, the
machine does not operate the way many program-
mers think it does. For example, “comparing a
field to itself my yield a result other than zero”.
This can occur if another CPU updates the storage
after the compare has fetched the first operand
and before it fetches the second operand. Another
example is that a test of a bit by an instruction
on CPU A can show 0 even though an instruction
on CPU B set the bit to | several microseconds
earlier. Thus occurs when CPU serialization is not
performed. A third example is a move instruction
copying shared storage that obtains a copy that
contains only part of the changes caused by an
instruction running on another processor. A
fourth example is code that increments a counter
in shared storage - occasional increments will be
lost. These are problems m scrialization and con-
sistency. The key architectural rules are:

® To obtain consistent data from shared storage
that may be altered by other CPU’s, you must
use instructions that provide block-concurrent
reference. This can allow you to see or copy
all bytes within a halfword, word, or
doubleword consistently - there will be no par-
tial results of an instruction. Note that this
does not guarantee you current data, just con-
sistent data. Note that you also cannot get
consistency on more than a doubleword. The
following instructions give you block-
concurrent reference for a word or doubleword:
LOAD, LOAD MULTIPLE, COMPARE
LOGICAL, COMPARE 1L.OGICAL CHAR-
ACTERS UNDER MASK, INSERT CHAR-
ACTERS UNDER MASK, MOVE CHAR-
ACTER. Most RX format instructions are
block-concurrent when their operand is on the
appropriate boundary. When using higher level
languages such as PL/AS, you generally don't
control the instuctions used but vou can often

INTRODUCTION

control storage boundaries. You can get block-
concurrent instructions that alter storage, but
this is misleading: these instructions will prevent
the contents of a word or doubleword from
containing partial results of an instruction, but
they will not prevent total loss of the results of
an instruction due to alteration of the same
storage locations by instructions running on
another CPU. Another potential problem with
block-concurrent instructions that alter storage
is that programs running on other CPU’s may
not see the change for a while - see below.

To alter data in shared storage, access must be
serialized by a software mechanism such as
locks, or the Compare and Swap, Compare
Double and Swap (CS|CDS) instructions must
be used. A surprisingly large number of oper-
ations can be accomplished with careful use of
these instructions.

A basic description of
CS Ry, Ry, disp(Ry)

is: The content of the first operand (R;) is
compared to the value at the main storage ad-
dressed by the second operand and, if equal,
the main storage at the second operand address
is replaced by the content of the third operand
(R3) This i1s all done "atomically”: no other
CPU is permitted to alter the main storage
location between the compare and the altera-
tion. If the companson produces a not-equal
condition, the value at the main storage ad-
dressed by the second operand is loaded into
the first operand register. Condition codes al-
low branching based on the success of the in-
struction.

In order to be sure that the results of storage
alteration by instructions are visible to instruc-
tions executing on other CPU’s, a CPU serial-
ization operation must be performed by the
CPU that altered the storage. Common instruc-
tions that cause serialization are: BR R0 (which
causcs CPU senalization but does not branch),

STORE CLOCK, SUPERVISOR CALL,
COMPARE AND SWAP (CS|CDS). All in-
tirruptions cause serialization. Assuming you
have a "safe” technique for altering storage
t+uch as serializing through a lock), this aspect
1s inportant - you must cause CPU serialization
at the appropriate time (before unlock is com-
plete) or you can still get into trouble. This
aspect of the architecture is most likely to cause
a problem with readers of shared storage on
one CPU while an updater is on another CPU:
the reader sees old data or an inconsistent mix
of old and new data.

BASIC RULES FOR SAFE
OPERATION

To survive in a parallel environment, rules for
accessing and altering shared storage must be es-
tablished; the specific rules must be followed by
all programs. The primary rule to follow for stor-
age alteration 1s: you rmust alter shared storage
only when holding a lock that protects it or via the
CS, CDS instructions.!

® If every program wishing to alter an area of
shared storage obtains an exclusive lock (refer
to “LOCKS AND LATCHES” on page 5)
before altering the storage and frees the lock
when through, consistency and mtegrity will be
maintained.?

¢ If storage alteration is performed using the
Compare and Swap (CS or CDS) instructions,

consistency and integrity will be maintained.
Obviously, the largest area that may be safely
altered in a consistent manner with these in-
structions 1s 8 bytes on a doubleword boundary.

The primary rule to follow for storage access
(rcading) is: you rmust read shared storage only
when holding its lock or by use of block-concurrent
instructions. If you need consistent data that does
not come from the same doubleword in the shared
storage, you must hold a lock that prevents up-
dates.

These rather restrictive rules are relatively sim-
ple and easy to follow once you have really
learned them. Unfortunately, the basic rules drive
vou toward lock solutions that in turmn can cause
performance problems.

OTHER GENERAL SOLUTIONS

There are other approaches to dealing with
parallelism, but “rule 1” strongly applies: know
what you're doing; the cost of failure is high. We
recommend that you keep your design as simple
as possible consistent with your performance ob-
jectives. This section summarizes some of the
generally applicabie approaches.

¢ Single Update Process.. A single process can
be used to update areas of shared storage. With
a single process, there is no parallelism problem
and no preemptive interrupt problem. A single
operating system process may be sub-dispatched
to get “multi-threading” as in CICS, IMS, or
other systems, but this is OK because threads
are not preempted to run other threads. Other

1 The test and set (TS) instruction available on 370 is a holdover from the System/360 MP65 machine. TS is very primitive and
is, in general, no longer used. TEST AND SET can be described as: atornically set all bits in a byte to ones while evaluating
bit 0 of that byte. Thus you can detect if you were the one to set a bit (bit 0 of a byte only) to one. You cannot use this
instruction to directly set a bit to zero; you cannot test several bits; you cannot set/reset several bits. In addition, since TEST
AND SET is carried along soleiy for compatability, its implementation is probably slow.

2 This assumes that the unlock operation will use an instruction (CS) that will cause CPU serialization {cause all storage changes

to occur as viewed from other CPU’s).

INTRODUCTION

processes may read the shared storage as long
as they understand the CPU serialization and
block concurrent reference implications. This
single update process can manipulate complex
chains involving many shared storage areas in
complete safety. Optionally, the single update
process can be used for only certain areas of a
shared data structure such as complex chain
manipulation while other areas (such as words
containing bt flags) are updated by any process
via CS.

The single update process has many at-
tnbutes in common with the use of a single
high level lock for update - both techniques
serialize to allow only one updater at a time.

There are certainly drawbacks to the single
update process approach. If the need to update
occurs on other processes, then passing that
need to the single process can be cumbersome
and expensive. A single update process cannot
take advantage of multiple CPU’s and poten-
tially becomes a bottleneck. If the single update
process must do [/0, a much bigger potential
bottleneck exists unless the design employs
multi-threading.

® Single Owner. Another approach, single owner,
naturally fits some designs. If a given data area
is shared among many processes, but is owned
or allocated to one specific process at a time,
that one process can update with ordinary in-
structions without a lock. If other processes
may read the arca, caution must be used to
ensure that what they read is as consistent and
current as they require - serialization operations
may be required of the owning process.

INTRODUCTION

® Complex CS Algorithms. There are several dif-

ferent “tricks” that can be performed using the
CS, CDS instructions to manipulate shared
data structures in ways that are not immediately
obvious. These approaches have the advantage
of avoiding locks, but tend to have the disad-
vantage of complexity. If you invent what you
think is a new such approach, examine it care-
fully for subtle bugs.

Obligation Passing. Usually combined with the
use of CS, the obligation passing technique has
many different applications. The basic ap-
proach is to attempt to perform the work that
requires serialization, but if another process is
conflicting with you, pass the obligation to per-
form the work to the other process.

One vanation of obligation passing uses
“last one out, take out the trash” type of logic.
Normally, there will only be one person in the
room and he will take out the trash, but the
logic also handles a crowd, keeping trash off
the floor.

Another variation of obligation passing uses
“first one there does it all until there is no more
to do” type of logic. Normally, the first one
there will do his own work and leave, but the
logic also handles a crowd showing up while
he’s doing the work.

Several examples of obligation passing,
some quite complex, are shown later.

LOCKS AND LATCHES

BASIC DESCRIPTION

Function

A well-known seralization mechanism, the
lock is a mechanism allowing control of access to
and change of shared data structures - locks are
a serialization mechanism3. Data base systems
usc’locking to control access and change of data
base items - that application 1s ignored here. Note
that a lock, like other techniques, is based on a
gentlepersons’ agreement. Everyone must agree to
perform operation xyz on a data structure only
when lock abc is owned.

In 1ts simplest form, all must agree that any
access to shared data object x requires lock /
Only one process at a time is allowed to own the
lock. When desiring access to x you request
lock /, and when you get control back from the
request, you own the lock. You may now read
and alter shared data item x. When you are
through reading and altering x, you release the
lock. This is basically the type of lock provided
and used extensively by MVS [mvslock].

What happens when you request a lock and
some other process owns it? In most cases, your
process “suspends” or waits until the lock is avail-
able. For certain critical operating system func-
tions, the “spin lock” approach may be used: go
into a loop trying to obtain the lock, preventing
other work on this CPU by disabling interrupts
while trying to get the lock and while holding the
lock. Because of the “severe” action that occurs
when a lock is not available, a lock service (like

MYVS) may allow a conditional request for a lock:
get it if it’s available, tell me if it’s not available.

The IMS/VS product has both locks and
latches. My collcague Kurt Shoens differentiates
locks and latches thusly: A lock is based on a
name (some bit string), a latch is based on a
storage location (a word or doubleword in stor-
age). Thus, MVS and VM have misnamed their
senialization mechanisms since their “locks” are
really latches because they are based on storage
locations; MVS ENQ/DEQ really is lock/unlock.
For this paper, we will remain unenlightened and
use the term lock for both locks and latches.

Modes and Compatibility

Locks often have different “modes”. Once you
have modes, you need to define “compatibility”
between modes. The simple lock we described
above is an exclusive mode lock: only one holding
process is allowed at a time (since exclusive is not
compatible with exclusive). It is possible for a
lock to have a shared raode: any number of pro-
cesses may share it. Shared mode locks usually
have an exclusive mode, exclusive mode being
incompatible with exclusive and share (see Figure
1 on page 6). When a lock request is received
that is incompatible with the modes of existing
holders of a lock, the request waits (and all sub-
sequent requestors of any mode are usually made
to wait as well) until incompatibie holders release
the lock. Database lock managers often have
many modes and complex compatibility tables.

3 For those with a computer science background[introos], some translation of terms: What is often called a lock, this paper would
call an exclusive mode spin lock. The P and V operations on the semaphores described in computer science literature would
be called lock and unlock operations against an exclusive mode suspend lock.

LOCKS AND LATCHES

SHARE

EXCLUSIVE

SHARE compatible

incompatible

EXCLUSIVE

incompatible

incompatible

Figure 1: LOCK COMPATIBILITY TABLE

Appendix A of [princop] describes logic (and
shows assembler code) for two different lock/
unlock services. Both support an exclusive lock,
assume the caller can issue WAIT and POST,
and ignore recovery considerations. One has
LIFO queueing on contention (somewhat unfair,
but easy), the other FIFO queueing. Note that
these routines use CS and may issuc SVC instruc-
tions so CPU scrialization (all changes visible to
other CPU’s) will be performed before any other
CPU may obtain the lock.

Deadlocks

The use of locks generally requires either a
deadlock avoidance or deadlock detection/
resolution mechanism. A simple deadlock can
occur as follows: Process A gets lock 1; process
B gets lock 2; process A requests lock 2 and is
suspended until it is available; process B requests
lock 1 and is suspended until it is available. It is
possible for deadlock to occur with combinations
of locks and other “wait until available” resources.

By far the most desirable treatment of dead-
locks for the parallel environment is deadlock
avoidance.* The simplest deadlock avoidance
scheme 1s to never attempt to hold more than
one lock at a time. For the majority of applica-
tions of locking, this may be possible, but it is
unlikely to cover all cases encountered when build-
ing a system. For example, a control block may
be on two chains because it can be located in
two ways. Most of the time, a lock on only one
chain would be required, but deletion of the block

would require simultaneous ownership of two
locks.?

The MVS approach to deadlock avoidance is
to define a hierarchy of locks and a rule: you may
request unconditionally only those locks that are
higher® in the hierarchy than the locks you cur-
rently hold. This sounds like it is easy to do, but
1t can get complicated where there are many layers
of code: you may get into trouble by holding a
lock and then using a function which, it turns
out, uses a lower level lock to cover itself.

The basic address-space related lock in MVS
1s called the “local lock”. It is relatively easy to
get and senalizes activity within an address space
nicely. There is only one of these type of locks

4 Database systems have had deadlock detection and backout mechanisms since the 1970’s. Building a backout mechanism can
be expensive and restricuve, but database managers tend to need 1t anyway in case of failures.

5 You could do it in sequence: get one lock, manipulate one chain, release the lock, then repeat for the other chain. The potential
problem here is the creation of a window where the block is on only one chain.

§ In VM, you must only request locks “lower” in the hierarchy. The key is that there must be an ordering and you must move

in only onc direction when obtaining locks.

LOCKS AND LATCHES

per address space so there is no deadlock problem
uniess you're dealing with other “wait until avail-
abls resources. Unfortunately, the locking gran-
ulanity is very coarse - only one for all activitics
in v.e address space. Many basic and unrelated
MVS services require the local lock - there is
more serialization than necessary. For example,
if you get the local lock and then page fault, any
other process in your address space that attemnpts
GETMAIN will be senalized (because
GETMAIN needs the local lock) until your
pagefault is resolved and vou give up the lock.

Recovery

In components and subsystems that have logic
to prevent abnormal termination when a failure
such as a program check or abend occuis, addi-
tional complexity is required in lock support. If
an erTor occurs in a process that holds a lock, the
recovery logic must ensure that the lock is released,
otherwise your system will probably “dry up” as
processes wait for the lock that they can never
obtain. If an error occurs in a process that is
waiting for a lock (asynchronous abend, for ex-
ample), the mechanism used by the lock support
to locate and resume the waiter must be cleaned
up if the process in error is terminated. MVS
includes recovery in its lock support, but if your
code is going to retry from failures, voull need
to take locks into account.

ADVANTAGES

Building a complete lock service including re-
covery support is not trivial, but is also not a
tremendous amount of work. You may be able
to use existing operating system support. Once a
iock service is available, using it to serialize and

-
J

avold parallelism problems appears quite desir-
able:

e Getting a Jock is simple: a procedure call or a
macro.

® Code wntten to manipulate a shared object
while holding a lock does not have to use spe-
ctal instructions or worry about consistency and
CPU serialization. To a large degree, the com-
plexity of parallelism is eliminated (because
when you have the lock you have eliminated
parallelism), eliminating lots of opportunities
for tricky bugs.

* A simple lock request can be satisfied in as few
as 6 instructions generated by an inline macro
if the lock is not already held by another pro-
cess; the release of the lock can be as cheap.

* Avoiding deadlock seems easy early in a design
and most of the time actually is easy.

DISADVANTAGES

* The primary disadvantages of locking lie in the
performance arena: Designs that made “bad”
dectsions about the use of locks have caused
serious bottlenecks in systems and increased
pathlengths significantly:

- The suspend/resume that occurs when a lock
15 requested and already heid normally costs
several thousand instructions.” This is one of
the costs of “Tlock contention”. How much
contention will occur? You need to know
this to decide if a particular locking design is
viable. A suggested approach is 1o discussed
under “LOCKING PERFORMANCE
ANALYSIS” on page 9.

When running disabied for interrupts, spin locks can be used instead of suspend locks. The cost of spinning is gererally going

1o be less than the cost of suspend:resume assuming that lock holders do not hold the lock for long insiruction sequences.

LOCKS AND LLATCHES

- Using an exclusive lock to cover a “large” components do enough locking to justify mi-
function causes that function to be available crocode assist.
on only one CPU at a time. On a 4-way, 4
mip machine for example, a maximum of ! e Another disadvantage of locking is the need to
mips worth of such a function can be sup- avoid deadlocks. The hierarchical rule approach
plied. Using a single lock to cover lots of used by MVS is simple and may allow you the
function is just as bad as supplying all the flexibility you need. You probably want to
function under | and only 1 process: you build a hierarchy validity check into your lock
cannot utilize more than 1 CPU in the ma- service - it’s a whole lot easier to find hicrarchy
chine. program errors that way (the alternative is to

debug the resulting deadlocks).
- Designs that are likely to page fault or do

voluntary i/o while holding locks drastically The strct hierarchy approach to avoiding
reduce the capacity of the function and in- deadlock may be too restrictive - look closely
crease the probability of contention. If you at MVS locking and you'll see that it was for
estimate that a random i/o may average 25 them: there 1s an exception where three locks
milliseconds and a page fault response may at the same level can be obtained with one
take longer, then a locked service loses re- request; there’s also a new "CPU” lock that
sponsiveness and capacity very quickly when doesn’t follow the hierarchy rule. If you can’t
/o or paging occurs. follow a strct hierarchy, rule 1 applies again,
know what you're doing. Remember that the
- If your lock can be used by requests from more complex the scheme, the more error prone
several address spaces, your users had better it is.
be non-swappable. Getting swapped out
while holding the lock would reduce the avail- e Locking often causes complications in recovery.
ahility of your function significantly. If your component or subsystem is to have
serious recovery logic (functional recovery or
- If your lock can be used by requests from ESTAE logic that tries to clean up damage and
several address spaces of differing prionties retry), vour recovery code must clean up locks
you may provide poor service to high priority obtained by a failing routine. It is difficult to
users. If you are running on a low priority determine precisely whether the failing logic
user’s process and obtain the lock and then obtained a lock. particularly when the lock ser-
are preempted for higher priority work your vice allows onc process to request the same
function will not be very responsive. lock many times, thus the caller of the failing
routine mayv have owned the lock. Mimmum
- In the general case, a lock service will prob- recovery logic must free any locks obtained by
ably cost more than the minimum. In reality, a terminating process, otherwise the rest of the
getting and releasing a lock with no conten- system will probably dry up behind them.
tion will cost roughly 23 instructions as op-
posed to the three or four extra instructions ® Once code is built with locking as the mecha-
required for a simple Compare and Swap.? nism for preventing parallelism problems,
If the function is “mainline”, many cpu cycles changing approaches (climinating the lock) will
may be spent in locking and unlocking. MVS normally be quite difficult uniess the function

8 A lock function in a real system reguires instructions to deal with several aspects: finding the lock structure; siatistics; tracking
for recovery; checking hierarcny vioiations; linkage to out-of-line rouunes. The 25 instruction number is from a specialized
subsystem macro that runs inline unless there is lock conflict. The MVS lock function with microcode assist (one instruction
performs a iot of function) taxkes about 20 nstructions for set and release.

LOCKS AND LATCHES

is simple and well contained. The primary rea-
son is that other approaches place more re-
siraints on what can be done and when - code
written based on locks wiil not be structured
v:th this in mind.

LOCKING PERFORMANCE
ANALYSIS

One potential problem with locking perfor-
mance 1s contention. Designs using locks should
undergo at least a cursory analysis to spot prob-
lems. A suggested approach is to:

1. Estimate /Al the average number of mstruc-
tions that will be executed while holding the
lock. Be sure to be pessimistic.

2. Identify your favorite machine and get an
estimate of the mips of a single CPU,

3. Estimate n: the maximum number of timnes
per second that a function using this lock
could be invoked on this machine. Again,
be sure to be pessimistic.

A simplistic calculation of the probability of
lock contention is:

p = n*ikl{mips*1000000)

A simple sensitivity analyvsis should also be
done: what happens if the pathlength of the func-
tion doubles or the number of requests doubles
or the number of CPU’s per machine doubles?
If any one of these causcs trouble, come up with
another design. If two of thesc cause trouble,
worry about the design.

Example 1: A function that averages 500 in-
structions will be executed under a lock on a
4-way machine where each CPU produces 10
mips. In a high usage environment, a 40 mip
machine could generate 4000 invocations per sec-
ond of this function. There would then be a

LOCKS AND LATCHES

probability of 4000*500/(10*1000000) = .20 for
lock contention assuming an equal distribution
of requests among processors and across time. I
would look for another design approach: On the
average, 20% of the requests will require suspend/
resumnc. Just the pathlength impact of contention
assuming 2500 instructions for suspend/resume
would effectively double the cost of the function
(.20%2500+ 500=1000). Another viewpoint 1is
that the senalization mechanism actually costs as
much as the function.

Sensitivity analysis: if the number of requests
doubles, then contention goes to
8000+500/(10*1000000) = .40. H, in addition,
the number of CPU’s per machine doubles, you
would normaily expect the number of requests to
doubie again, now giving 16000*500;(10*1000000)
= .80.

Example 2: A function that averages 100 in-
structions will be executed under a lock on a

4-way machine where each CPU produces 1 mip.

In a high usage environment, a 4 mip machine
could generate 50 invocations per second of this
function. There would then be a probability of
50*100/(1*1000000) = .005 of lock contention
assuming an equal distribution of requests among
processors and across time. Use of a lock for this
function appears reasonable.

Example 3: A function that averages 100 in-
structions will be executed under a lock on a
4-way machine where cach CPU produces | mip.
In a high usage environment, a 4 mip machine
could generate 50 invocations per second of this
function. Since the function accesses user storage,
we estimate a probability of .05 that a request
will take a page fault lasting 40 milliscconds.
There would then be a probability of
S0*100/(1*1000000) + S0*.05+.040 = .105 of
lock contention assuming an equal distribution
of requests among processors and across time.
Use of a lock for this function is marginal at best;
I would look for another solution.

Convoy

A performance problem that has been encoun-
tered in some systems is the “convoy phenome-
non|convoy]. This occurs when a locked function
that is normally quite fast suddenly takes a long
time (takes a page fault, for example), causing a
large number of requests to queue up waiting for
the lock. The standard lock service logic when a
lock is freed and a waiter is found is to grant the
lock to the waiter and resume him. Once you get
a large number queued up, it is hard to get back
to a ‘nobody queued” state:

* Quecuing up costs suspend/resume mstructions.
The instructions for resume and the elapsed
time until the resumed process is dispatched all
tend to count as “lock held time”, thus the lock
is 100% busy until the queue 1s dried up even
though the code needing lock protection is ex-
ecuting very rarely.

* If a process releases the lock and then quickly
requests the lock again (quite likely in some
applications - remember the process releasing
the lock 1s already dispatched), it will queue up
for the lock behind everybody else, leading to
a lock driven “timeslicing” condition.?

The solution to the "convoy phenomenon” is
to change the “unlock, waiter found” logic: a)
actually unlock, do not allocate the lock to any-

10

ong; b) resume every waiting process. This gives
access to the lock to the first process that can use
it, including the process that issues the unlock
and other processes that have not yet requested
the lock.

In solving the convoy phenomenon, you have
changed a “fair access” design for the lock service
into a design which could allow monopolization
ofalock by a process. For example, two processes
running on a two processor machine both are in
a loop executing 500 instructions then getting a
specific lock. If re-dispatching a resumed process
takes more than 500 instructions then one of the
processes will be “starved” - it will never get the
lock because by the time 1t tries to get it again,
it's held agamn. In most cases, if lock utilization
is low as it should be, starvation should not be
a problem although it might be a short term
problem when trying to clear up a convoy. An
approach that has been suggested [convoy] is to
free the lock and resume only the first waiter,
thus aliowing the current process, the process
who has waited the longest, and any new processes
to compete for the lock.

The convoy phenomenon is a lesson in how

complex the performance aspects of locking can
be.

If your logic is such that you need the lock, then execute a few instructions that don‘t need the lock, then need the lock again,

you should normally keep the lock instead of giving 1t up and obtaining it again. Giving it up for a very short time will tend
Lo cause convoys or, if the convoy resclution approach is used, giving it up for a short time can cause lots of unproductive

suspend;resume processing.

LOCKS AND LATCHES

PROBLEMS AND SOLUTIONS

SETTING BITS

The Problem

As descnibed 1in Appendix A of [princop], the
standard instructions used for sctting the value of
bits will not consistently work for shared data
structures in a parallel environment since the ef-
fects of some of the changes will be lost.

Figure 2 provides an cxample of failure. The
intent of the two Ol instructions was a valuc for
A of 90. In a parallel environment, different tim-
mgs will produce 90, 80 or 10. In this example,
it produces 10. Note that this example does not
tlustrate the additional "window of error” that
can be caused by lack of CPU seralization.

Solutions .

Holding a lock that, by agrecment, covers the
bits being altered will allow use of ordinary in-

11

structions to alter the bits. To obtain a lock just
1o set bits that reside in the same word is overkill.

When using PL/AS, the solution is relatively
simple: define the bits with the “abnormal” at-
tribute and the compiler will generate Compare
and Swap instructions to alter them. This is the
only case where the compiler provides meaningful
assistance. If you alter byte, character, or word
variables that have the “abnormal” attribute, the
generated code 1s not correct for shared data struc-
tures in paralle] environments.

When using assemnbler, you must use Compare
and Swap to alter the word that thé bits reside
in, typically altering the bits in a register. Appen-
dix A of {princop] gives an example of this; an-
other example is given in Figure 3 on page 12

Note one of the costs of paralielism: a simple
AND IMMEDIATE instruction is replaced with
five instructions that require registers and use an
instruction that’s relatively expensive if the ma-
chine has more than one CPU (CS). In addition,
for the code to remain somewhat independent of
bit locations, additional definitions such as

TIME CPU 1 MAIN STORAGE
0 A: 00
1 0I A X'80"
2 fetch A = 00
3 alter A = 80
4 store A = 80 A: 80
5 A: 10

Figure 2: BIT SETTING FAILURE

CPU ¢

01 A X'lo!
fetch A = (0
alter A = 10
store A = 10

PROBLEMS AND SOLUTIONS

L RO,FWORD
CSFAIL EQU *
LR RIL,RO
N RI1,FLONBITO
CS RO.R1,FWORD
BNE CSFAIL

SDATA DSECT
FWORD DS OF

FLO DS X
FLOBITO EQU X's0o'
FL1 DS X

: DS N

FLONBITC DS OF

GET WORD WITH BITS

COPY OLD VALUE

CREATE NEW VALUE

REPLACE IF NO VALUE CHANGE

GO DO IT AGAIN IF VALUE CHANGE

SHARED DATA STRUCTURE

WORD ALTERED VIA CS

FLAGS 0

BIT 0 LABEL FOR TESTING ONLY

AND MASK FOR FLOBITO
DC AL1(255-FLOBITO),X'FFFFFF!

Figure 3: BIT SETTING VIA CS

FLONBITO must be created for “and and or
masks” in CS sequences.

TESTING AND SETTING BITS

The Problem

Commonly encountered logic 1s

IF BITx=0ON THEN

DO;
BITy=0FF;
other iogic;
END;

There are many minor variations of this logic: the
common point s that based on the value of a bit

PROBLEMS AND SOLUTIONS

or bits, you wish to change a bit or bits and
perform some other action; the change of bits
must occur “atomuically” with the test.

In both a muitiprogramming and a parallel
environment with shared data structures, the “nor-
mal” code for this type of logic will occasionally
fail to perform as desired even though you include
code to alter the bits via Compare and Swap.
There are several ways the failure can occur; one
is shown in Tigure 4 on page 13. The basic
problem is the timing window between testing
the bits and setting the bits - parallel processes
can hit this window and two processes will take
action where the intent is that only one process
will take action. The impact of this problem is
significant: you basically have to evaluate every
test of a bit in a shared data structure to see if
the test and set problem applies.

13

T:ME CPU L MAIN STORAGE CPU 2

a A: 00

1 ™ FLO,FLOBITO

2 BO DONE

3 L RO, FWORD

4 RT LR R1,R0O

5 0 R1,FLOGBITO TM FLO,FLOBITO

.b CS RO,R1,FWORD A: 80 BNZ DONE

7 BNE RT L RO, FWORD

8 CALL ONETIME RT LR R1,RO

9 DONE EQU * 0 R1,FLOOBITO

10 A: 80 CS RO,R1,FWCRD

il BNE RT

% CALL ONETIME

13 DONE EQU *
SDATA DSECT SHARED DATA STRUCTURE
FWORD 0S OF WORD ALTERED VIA CS
FLO DS X FLAGS ©
FLOBITO EQU X'80' BIT 0 LABEL FOR TESTING ONLY
FL1 DS X

DS H
FLOOBITO DS OF - OR MASK FOR FLOBITO
DC ALL(FLOBITO),X'000000"
Figure 4: TEST AND SET FAILURE

Code using a bit to perform some function “onc time” will fail and perform the function twice.

Solutions

Basically, we need an "atomic test and set” or
an “if and only if” type of operation when we are
dealing with shared data structures. Do not bother
to investigate the System/370 TEST AND SET

Holding a lock that. by agreement, covers the
bits being altered will allow use of ordinary in-
structions to alter the bits and consistently achicve
the proper result. To obtain a lock just for this
function is also overkill.

PROBLEMS AND SOLUTIONS

Instruction, it's of no general value.! It tums out
that a slight vanation on the code that gets in
trouble will perform correctly - see Figure 3 on
page 14.

L RO ,FWORD
*

RT EQU
TM FLO,FLOBITO
BO DONE
LR R1,RO

0 RL,FLOOBITO

€S RO,R1,FWORD

BNE RT

CALL ONETIME
DONE FQU *

SODATA DSECT
FWORD DS OF
FLO DS X
FLOBITO EQU Xx'80'
FL1 ps X

DS H

FLOGBITO DS oOF

is no need to test the copy of the bits in register 0.

GET WORD WITH BITS FIRST

IS THE BIT ON?

BRANCH NO

COPY OLD VALUE

CREATE NEW VALUE

REPLACE IF NO VALUE CHANGE

GO TRY IT AGAIN IF VALUE CHANGE
D0 ONLY IF WE SET RIT

SHARED DATA STRUCTURE

WORD ALTERED VIA CS

FLAGS ©

BIT 0 LABEL FOR TESTING ONLY

OR MASK FOR FLOBITO
DC ALI1(FLOBITO),X'000000"

Figure 5: TEST AND SET VIA CS

By saving a copy of the word containing the bits before the test, we ensure that any change up to the psint where we
atomically change the bit will be detected, causing us to look again. Note that you may test the bits in storage; there

This technique works as long as all the bits
involved in the test and set are within onec word
(or doubleword if you use CDS). The coding for
this gets tedious in assembler and PL/AS: 2 nice
candidate for a macro.

COUNTERS

The Problem

The simplest problem solved by Compare and
Swap is that of a counter in a shared data struc-
ture. Without Compare and Swap, we have the
same old problem: occasional updates will be lost
in very much the same way as bit updates arc

PROBLEMS AND SOLUTIONS

iost as shown in Figure 2 on page 11. For some
counters used for statistics, you may decide that
complete accuracy is not necessary and specifically
choose to use normal instructions which are faster
and sumpler. If you do this, 1 suggest you docu-
ment 1t to avoid later confusion.

Solution

As described in Appendix A of [princop], basic
Compare and Swap logic handles counters well -
see the iogic in Figure 6 on page 15.

L RO,COUNTER
"

RT EQU
LA RI,1
AR RI,RO
CS RO,R1,COUNTER
BNE RT

SDATA DSECT
COUNTER DS F

GET OLD VALUE

INCREMENT VALUE

NEW VALUE

REPLACE TF NO VALUE CHANGE

GO TRY IT AGAIN IF VALUE CHANGE

SHARED DATA STRUCTURE
WORD ALTERED VIA CS

Figure 6: COUNTER SET V1A CS

CPU SERIALIZATION

The Problem

The fact that storage changes done on one
CPU may not be mmmediately seen by another
CPU can cause “timing” bugs whose probability
of occurrence depends on load and processor im-
plementation. This problem is not understood
by many people who understand compare and
swap very well.

An example of the problem is shown in Figure
7 on page 16. In the application, the "NORM”
routine runs quite often. NORM's job is to alter
field CBO to 2. The process structure is such that
no other process can contlict with this, so compare
and swap 1s not necessary. On rare occasions,
routine "EXC” will run on a parailel process and

PROBLEMS AND SOLUTIONS

must ensure that afler CBO is set to 2, routine
"DOIT” 15 called. To avoid a timing problem,
EXC first sets a bit via CS, then looks at CB0.
If CBO is already set to 2, it assumes that NORM
1s unlikely to call DOIT, thus EXC calls DOIT.
If CBO 1s not set to 2, LXC assumes that NORM
will see the bit set via CS and call DOIT. Calling
DOIT twice will use extra instructions, but not
do any damage.

Even if the two routines execute in the time
relationship shown in Figure 7 on page 16, DOIT
may not be called at all even though EXC is run.
The reason 1s that the alteration of CBO at time
1 wili cause the cache of CPU 1 to be altered,
but there is no CPU seralization operation run
on CPU | to cause main storage and cache for
CPU 2 10 reflect the alteration. Because of this,
EXC at time 12 sti]] sees an old value of CBO
and expects NORM (which is already done) to
run later and call DOIT.

16

TiIME CPU 1 TIME CPy 2

. NORM MVI CBO,2

2 ™ FLO,FLOBITO
3 BZ [JONE
CALL DOIT
L RO,FWORD 7 EXC L RO ,FWORD
RT LR R1,RO 8 RT LR RI1,RO
N R1,FLONBITO 9 ¢ R1,FLOOBITO
CS RO,R1,FWORD 10 CS RO,R1,FWGRD
BNE RT 11 BNE RT
4 DONE EQU = i2 cLI CB0,2
13 BNE DONE
CALL DOIT
L RO ,FWORD
RTl1 LR RI1,RO
N R1,FLONBITO
CS RO,R1,FWCRD
BNE RT1
14 DONE EQU *
SDATA DSECT SHARED DATA STRUCTURE
FWORD DS OF WORD ALTERED VIA CS
FLO DS X FLAGS 0
FLOBITO EQU Xx'80! BIT 0 LABEL FOR TESTING CONLY
FL1 DS X
DS H
SDATA1 DSECT SHARED READ, UPDATE BY "NORM" PROCESS
CBO DS X CONTROL BYTE
FLOOBITO DS ©OF OR MASK FOR FLOBITO
OC ALI(FLOBITO),X'0000C0"
FLONBITO DS OF AND MASK FOR FLOBITO

DC AL1(255-FLOBITO),X'FFFFFF'

Figure 7: CPU SERIALIZATION FAILURE

Although CBO is set to 2 at time | by CPU I, CPU 2 at time 12 can still see the prior value of CBO if CPU 1 has
not not been forced to perform CPU serialization.

PROBLEMS AND SOLUTIONS

Solutions

The simplest solution is to causc CPU scrial-
ization at the proper time. This can be accom-
plished by adding a branch remster 0 (BR RO)
instruction to NORM before the test of FLOBITO.
This instruction causes CPU serialization (and is
otherwise 2 no-op). Once this is done, the logic
will work - if EXC is called, DOIT will be invoked
at least once, regardless of timing.

Another solution would be to have NORM
set CBD using compare and swap. While not
strictly necessary because the design prevents con-
flicts, compare and swap will cause CPU seral-
ization.

CHAINS, LISTS, QUEUES

There are many vanations of chains, lists, and
queues that are commonly used in system pro-
grammmung. These mechanisms becotne more
cormon as components and subsystems become
more dynamic. In thuis section, we will refer to
all of these as chains. Dealing with these tech-
niquesin a parailel environment ranges in difficulty
from fairly simple to very complex. In choosing
the solution to a given chaining problem it often
helps to understand the absolute and relative fre-
quencies of three operations against the chain:
search, add, delete. If, for example, vou never
delete, things get simple. If there are many
searches and few adds/deletes, vou'd like to make
searching the most efficient. If you rarely use the
chain an efficient technique is not importanti0,

10 Beware of system programmer myopia -

17

In all the problems discussed in this section,
the use of a lock to serialize access and manage-
ment of a chain is a potential solution. The pros
and cons of locks have been discussed earlier and
will not be repcated here. There are cases where
locks or another “single process” serialization tech-
mique are the only solution.

The Probiem - Free Element List

An cxtremely common technique is the use
of a “frec clement list” to keep track of resources
available for use. The basic approach as showu
in Figure 8 on page 18 begins a chain at an
"ancher” in a control block. The anchor contains
0 {(empty chain} or the address of the first element;
each clement contains a chain word which will
point to the next element or contain 0 {end of
chain).

In a single process environment with no mul-
tiprogramming or parallelism considerations, deal-
ing with such a chain is casy. It is easy to manage
the chain in FIFO (first in - first out) or LIFO
(last in - last out) sequence.

In a multiprogramming or parallel environ-
ment with the chain being a shared data structure,
management of the chain is more difficult. Ap-
pendix A of [princop] discusses this problemn and
provides a solution. A modified solution is pre-
sented here.

At first glance it seems that, as long as you're
willing to use LIFO processing, a simple Compare
and Swap sequence as shown i Figure 9 on page
18 will work. It turns out that there is a bug in
this code; on occasion you'll lose elements or
even worse, have an element that is actually in
use also appear on the free chain. An occurrence
of the problem 1s shown in Figure 10 on page 19.

systems and components usually must last more than a decade and tremendous

changes in system scale occur. Such changes often turn one year's sensible design decision into another year s performance disaster.

PROBLEMS AND SOLUTIONS

18

ANCHOR:

___/V ——-—i>: 0

Figure 8: BASIC FREE ELEMENT LIST

PUTEL EQU = PUT R4 ELEMENT ON FREE CHAIN
L R2,ANCHOR -> FIRST ELEMENT OR O
PRETRY EQU *

ST RZ,ELNEXT-EL(.R4) -> NEXT IN CHAIN CR 0
CS RZ2,R4,ANCHOR ADD ELEMENT FROM CHAIN

BNE PRETRY GO TRY I7 AGAIN IF VALUE CHANGE
GETEL EQU * GET FREE ELEMENT

L R2 ,ANCHOR -> FIRST ELEMENT OR O
RT EQU =

LTR RZ,R2 CHECK FCR EMPTY

BZ EMPTY BRANCH IF IT IS

L R4 ELNEXT-EL(,R2)} -> NEXT IN CHAIN OR O
CS RZ,R4,ANCHOR REMOVE ELEMENT FROM CHAIN

BNE RT GO TRY IT AGAIN IF VALUE CHANGE
SDATA DSECT SHARED DATA STRUCTURE
ANCHOR DS F ANCHOR OF CHAIN OF FREE ELS
EL OSECT ELEMENT
ELNEXT DS F POINTER TO NEXT FREE ELEMENT OR O

Figure 9: ERRONEOUS FREE ELEMENT CHAIN LOGIC

This apparently good logic for putting an element on a free chain and removing it has a serious flaw that is described
in Figure 10 on page 19.

PROBLEMS AND SOLUTIONS

19

A: B:
ANCHOR: j i 0
ANCHOR A L
byl ——3> Q
._—/
B:

' 0
ANCHOR:
__.j

Figure 10: DESTROYING A CHAIN

The first picture shows the chain as it exists when the GETEL logic of Figure 9 on page 18 loads register 4 with the
“next” pointer. This CPU is then interrupted. Before the interrupted process gets re-dispatched, the chain has been
altercd to that shown in the second picture by: allocate A, allocate B, free C, free A. At re-dispatch of the interrupted
process, the Compare and Swap succeeds, giving the totally invalid chain shown in the third picture. Note that in

addition to losing track of C, somebody could now get B as a free element when it is in fact already in use, creating
a very nasty bug.

Solution - Free Element List ter” and use Compare Double and Swap to detect
the situation that gets us in trouble - where an
clement has been removed and replaced but it
points to a different element than it used to.

A shight change to the anchor structure and a While [princop| uses CDS on GET and PUT, it
change in the logic will solve the problem (for all 15 sufficient to do it on GET.!! The good logic is
practical purposes}. We add an “allocation coun- shown in Figure Il on page 20.

11 GET must have a way lo atormcally: a} Fnsure that the first elements’ chain field has not changed; b) Ensure that the anchor
field has not changed; ¢j Change the anchor. To satisfy the first constraint, GET uses the CDS with allocaticn counter to
detect that other GET's have occurred and thus the new anchor value musi be re-fetched. PUT by itself cannot get into

trouble. PUT must atomically: a) Ensure that the ancher field has not changed; b) Change the anchor. For this reason, a C§
on the anchor field is sufficient for PUT.

PROBLEMS AND SOLUTIONS

PeTEL EQU *
L R2,ANCHORP
PRLTRY EQU *

CS R2,R4,ANCHORP
BNE PRETRY

GETEL QU >

LM R2,R3,ANCHOR
RT EQU *

LTR R2,R2

BZ EMPTY

LA R5,1

AR R5,R3

CDS R2,R4,ANCHCR
BNE RT

SDATA DSECT
ANCHOR DS 0D
ANCHORP DS F
ANCHORC DS F

EL DSECT
ELNEXT DS F

PUT R4 ELEMENT ON FREE CHAIN
-> FIRST ELEMENT OR 0

ST RZ2,ELNEXT-EL(,R4) -> NEXT IN CHAIN OR 0
ACD ELEMENT TO CHAIN (CS IS ENOUGH)
GO TRY IT AGAIN IF VALUE CHANGE

GET FREE ELEMENT
-> FIRST ELEMENT OR O, COUNTER

CHECK FOR EMPTY

BRANCH IF IT IS

L R4 ,ELNEXT-EL(,R2) -> NEXT IN CHAIN OR 0
INCREMENT VALUE

NEW COUNTER VALUE

REMOVE ELEMENT FROM CHAIN

GO TRY IT AGAIN IF VALUE CHANGE

SHARED DATA STRUCTURE
ANCHOR DOUBLEWQRD

FIRST WORD, POINTER TO NEXT ELEMENT OR 0
COUNT OF GETS

ELEMENT
POINTER TG NEXT FREE ELEMENT OR 0

Figure [1: FREE ELEMENT CHAIN LOGIC

It should be noted that the storage cccupied
by free clements cannot be safely freemained even
though the element has been removed from the
chain property. The problem is that a process
interrupted in the GETEL logic before the load
of register 4 with the element’s next pointer can
program check (0C4) on the load instruction if,
before the process was re-dispatched. the clement
was gotten, freemained and its page was invali-
dated. If its page was not invalidated, there’s no
problem because the CDS will fail. An intelligent

PROBLEMS AND SOLUTIONS

recovery routine can recognize the program check,
check the anchor for different values and, if so,
assume the above problem and retry.

The counter used to get chain integrity may
have some functional value: it will contain a count
of the number of allocations. An occasionally
useful vanation allows you to keep an “in use”
count as well - it is shown in Figure 12 on page
21. Your use count will wrap to 0 if vou have
more than 65,535 elements in use. There is no
wrap problem with the activity count halfword.

21

PEZTRY

GETEL
RY

DOUBLE1L
PLUSMIN

*

SDATA
ANCHOR
ANCHORP
ANCHORC
ANCHORB

EL
ELNEXT

EQU *
LM R2,R3,ANCHOR
EQu =

PUT R4 ELEMENT ON FREE CHAIN
=> FIRST ELEMENT OR 0, COUNTERS

ST RZ,ELNEXT-EL(,R4) -> NEXT IN CHAIN OR 0

L RS.PLUSMIN
ALR R5.R3

CDS R2.R4,ANCHOR
BNE PRETRY

EQU >

LM R2,R3,ANCHOR
EQU *

LTR R2,R2

BZ EMPTY

ADD TO COUNTER, DECREMENT BUSY

ADD ELEMENT TO CHAIN
GO TRY IT AGAIN IF VALUE CHANGE

GET FREE ELEMENT
-> FIRST ELEMENT OR 0, COUNTER

CHECK FOR EMPTY
BRANCH IF IT IS

L R4 ELNEXT-EL(,R2) -> NEXT IN CHAIN OR 0

L R5,DOUBLEL
ALR R5.R3

CDS R2.R4,ANCHOR
BNE RT

DS OF
0C X'coo10001!
DS OF
OC X'COOOFFFF'

DSECT
DS 0O
DS F
0S5 H
DS H

D

DSECT
ps F

INCREMENT VALUE

NEW COUNTER VALUE

REMOVE ELEMENT FROM CHAIN

GO TRY IT AGAIN IF VALUE CHANGE

STMULTANEOUS ADD 2 HALFWORDS.

INCREMENT LEFT HW, DECREMENT RIGHT HW
AS LONG AS RIGHT HW > 0.

SHARED DATA STRUCTURE

ANCHOR DOUBLEWORD

FIRST WORD, POINTER TO NEXT ELEMENT OR O
COUNT OF GETS,PUTS

COUNT OF CURRENTLY "BUSY" ELEMENTS

ELEMENT
POINTER TO NEXT FREE ELEMENT OR 0

Figure 12: FREE ELEMENT CHAIN LOGIC WITH BUSY COUNT

This logic will manage the chain and give you ar accurate ”in use” count. The cost is the requirement to do CDS
on both PUT and GET. Note that the logic at "EMPTY?”, if it creates an element and returns the element to the
caller, must increment the busy count via CS,

PROBLEMS AND SOLUTIONS

The Problem - FIFO Processing

The basic operation of CS or CDS on chains
results in Last-in First-out (LIFO) processing.
This is probably good for free resource chains -
LIFO would have better cache and paging effects
than First-in First-out (FIFO) processing. In
many other applications, FIFQ processing is ei-
ther highly desirable or required.

In a parallel or multiprogramming environ-
ment, FIFO processing requires special logic be-
cause it 1s generally unsafe to scan the chain to
find the “first chained” element while the chain is
being altered by other processes that are removing
elements. This goes back to a basic problem -
chain scanning when delete is allowed requires
special protection.

Solutiens - F1FO Processing, Single Process

In a parallel or multiprogramming environ-
ment, when only one process removes elements
from a chain, it may do FIFO processing by
scanning the chain to the end even though mul-
tiple processes are adding to the chain as long as
all alterations to ANCHOR use CS or CDS.

Unless otherwise mentioned, all these ap-
proaches:

1. Alow codc that adds 1o the chain to use a
simple CS, as shown by the PUTEL logic
wr Figure 14 on page 26. CDS with an allo-
cation counter is not required because there
will be no conflict between processes trying
to remove elements.

2. Require the remover of an element 1o remove
the element via CS if it is being removed
from the anchor.

Locking

PROBLEMS AND SOLUTIONS

22

The most obvious and simple approach, as
usual, is to have a process get a lock before scan-
ning the chain and free the lock after removing
an element.

One application of this solution is the lock
service itself. A lock service desiring to resume
the first waiting requestor of a lock is already
serialized - it holds the lock in question. Thus,
assuming that convoy effects are 1o be ignored
and only one waiter is 10 be posted, 2 simple
chain scan is all that is required - not the complex
mechanism suggested in Appendix A of [princop]
under “LOCK/UNLOCK with FIFO Queueing
for Contentions”.

Even if the lock is not exclusive mode only,
support for a shared/exclusive lock can have a
single process scan the wait list if waiters queue
up while many processes are sharing the lock.
Assuming that all requests wait once an exclusive
request i1s madc, the process that decrements the
share count to 0 is the one who performs the scan.

Single Process Design

By designing the logic such that only one spe-
cific process will scan the chain, remove elements
and, presumably, process them. For many envi-
ronments, this “singie server” design is quite rea-
sonable. The essential difference between this ap-
proach and locking is that this approach has only
one process; with locking, the serialized work is
done under many processes, but only one at any
given time. Evaluation of the viability of a single
server design is similar in some ways to evaluating
locking performance:

¢ Will there be cnough capacity on a single CPU
of an “n” way machine to support requests gen-
crated by the entire machine?

* Will the single server be responsive enough
given its use of only one CPU and the delays
causcd by activities like page faults and i/0?

Solutions - FIFO Processing, Parallel Processes

Approximate FIFO

If multiple processes are to perform some op-
eration against an item, then even if cach item is
removed from a chain in strict FIFO sequence,
actual processing of each item mayv not occur in
strict FIFO sequence since several processes may
be running in parallel subject to their own page
faults, preemptions, etc. This type of environment
might be called "approximate FIFO” since it ap-
proximates FIFO processing but does not guar-
antee it.

Recognizing the approximate nature of the
processing, you may be willing to make it slightly
more approximate by having two anchors for the
chain: LIFQ and FIFO. Logic to remove an
element is shown in Figure 13 on page 24 and
described below.

23

Processes adding to the chain do the normal
Compare and Swap on the LIFQO anchor.

Processes looking for work look on the FIFQO
chain first, atternpting to remove the first element
from it via Compare and Swap. If the FIFO
chain is empty, the process takes the entire LIFQ
chain using Compare and Swap, reverses the order
of the chain to FIFO sequence (taking the last
one (first in) for processing), then places any re-
mairung items carefully on the FIFO chain. While
this logic requires a fair amount of code, the most
probable path (one clement on the LIFO chain)
takes only a few more instructions than standard
LIFO GETEL logic.

As you can see, there are windows where
items will be selected in a non-FIFO sequence!?,
thus we would process them more out of sequence
than a scheme that always selected them in se-
quernce.

12 While one process has swapped a chain off the LIFO anchor and is re-ordering it, other processes can add to the LIFQ chain
and yet other processes can remave either a single element from the LIFQ anchor (and process it}, or a chain of elements
which may be re-ordered and placed on the FIFO anchor before the firsi process puts its chain on the FIFQ anchor.

PROBLEMS AND SOLUTIONS

24

GETEL

RT

FIEMPTY

RESER

RESEQ@Z20

X k¥

DONE
NOWORK

SDATA
FIANCHOR
LIANCHOR

EL
ELNEXT

EQU
LM

*
R2 »R3, FTANCHOR

USING EL,R2

EQU
LTR
BZ
L
LA
ALR
Ccos
BE
BNE
EQU
L
LTR
BZ
SLR
cs
BNE
cLe
BE

LR
SLR
EQU

ST
LR
LTR
BNZ

LM
EQU

ST

LA

ALR
Cos
BNE
EQU
EQU

*
RZ,RZ
FIEMPTY

GET FREE ELEMENT
FIFQ -> FIRST ELEMENY OR O

CHECK FOR EMPTY
BRANCH IF IT IS

RG,ELNEXT-ELI,,R2Z} -> NEXT IN CHAIN OR 0

R5,1

R5,R3
R2,R&%,FTANCHOR
DONE

RT

*

RZ;LIANCHOR
R2,R2

NOWORK

R3,R3

R2,R3 ,LTANCHOR
GETEL
ELNEXT,=F'0"
DONE

Rb,R2
Ré R4
%*

RE,,ELNEXT
Ra , ELNEXT
R&,R2
R2,R5
RESEQ

INCREMENT VALUE

NEW COUNTER VALUE

REMOVE ELEMENT FROM CHAIN

G0 PROCESS ELEMENT

GO TRY IT AGAIN IF VALUE CHANGE
FIFO CHAIN IS EMPTY

LIFO -»> FIRST ELEMENT OR O

CHECKX FOR EMPTY

PROBABLY NO WORK, BUT NOT FOR SURE

SWAP ENTIRE CHAIN OFF

TRY FROM THE START IF THINGS CHANGE
NORMAL CASE: IS THIS THE ONLY ONE?
YES -~ GO PROCESS ELEMENT

MUST RECRDER THE LIST

SAVE > TO LAST IN REORDERED CHAIN
ZERO FOR FIRST PAS3 IN THE LOOP
LOOP TC REVERSE SEQUENCE

NEW PREVIOUS
NEM CURRENT OR DETECT END

FIFO CHAIN: R4->FIRST, Re->LAST
CHAIN OF LAST NEED SETTING

R2,ELNEXT-EL(,R&} -> TO SECOND ELEMENT

RB,R%.FTANCHOR
»

FIFO ANCHOR

CDS RETRY

COVER CASE WHEN FIFQG CHAIN IS NOT EMPTY
BY PLACING OUR CHAIN IN FRONT OF CHAIN
ALREADY THERE, POSSIBLY GETTING THINGS
QUITE OUT OF SEQUENCE.

R8,ELNEXT-ELI ,Re) CHAIN TO IT FROM QUR LAST

RE,1

R5,R9
R8,R4,FIANCHOR
RESEQZ0

MY BUNCH FIRST, THEN PRIOR BUNCH
BRANCH IF BUSY

RZ2->GOTTEN ELEMENT

R2 = B, NQ ELEMENTS AVAILABLE

SHARED DATA STRUCTURE

ANCHOR DOUBLEWORD - FIFOD CHAIN

FIRST WORD, POGINTER TO MNEXT ELEMENT OR O
SECOND WORD, ACTIVITY COUNT FOR SAFETY
ANCHCOR FOR LIFO CHAIN

ELEMENT
POINTER TO MNEXT FREE ELEMENT OR O

Figure 13: APPROXIMATE FiFO

PROBLEMS AND SOLUTIONS

25

® The chain area of the clement must not be
altered by any code other than GETEL,
PUTEL.
Parallel FIFO Removal
¢ After an clement has been placed on the chain
once, the element’s storage may not be freed
even though the element is no longer on the
chain (if storage is freed, other processes search-
ing the chain which may have obsolete data
pointing to this element may program check
when referencing this element). There is a way
around this problem - described later in this
section.

With certain restrictions, this scheme allows
parallel addition to a chain and provides for FIFQ
removal from the chain by parallel processes. The
restrictions exist because the removal logic may
be exarmiming and even attempting to alter the
chain fields of an element that has alrcady been
removed from {or even re-inscried into) the chain:

The code to perform parallel FIFO removal
is shown in Figure 14 on page 26.

PROBLEMS AND SOLUTIONS

26

PATEL EQU
L
EQU
ST
cs
BNE

PRETRY

GETEL
RESTART

EQU
SLR
EQU
LM
LTR
BZ

LA
USING

EQU
C

BE
LA
LM
LTR
BNZ
B
EQU
LA
ALR
CDS
BNE
EQU

SCAN

MAYBE

DONE

SDATA DSECT
ANCHOR DS
ANCHORP DS

oS

EL DSECT
ELDWORD DS
ELNEXT DS

(IR

FIFO logic performs

w

R2 ,ANCHORP
*

RZ2 ,ELNEXT-EL{ ,R4)
R2 ,R4,ANCHORP

PRETRY

*

RO RO

R2 ,R3,ANCHOR
R2.R2

DONE

R4 , ANCHOR
EL.R2

RO, ELNEXT
MAYBE

R4, ELDWORD
RZ.R3,ELDWORD
R2 R2

SCAN

RESTART

k3

R1,1

R1,R3
R2R0,0(R4)
RESTART

*

PUT R4 ELEMENT ON FREE CHAIN
-> FIRST ELEMENT OR 0

-> NEXT IN CHAIN OR ©
ADD ELEMENT TO CHAIN
GO TRY IT AGAIN IF VALUE CHANGE

GET AN ELEMENT, FIFO
0 VALUE

POINTER, COUNTER
ANY ELEMENTS?
BRANCH NO
->DCUBLEWORD

SCAN FOR THE LAST ON THE CHAIN
IS THERE A NEXT ELEMENT?

BRANCH NO

->BOUBLEWORD

POINTER, COUNTER

NOW END OR OFF OF CHAIN?

BRANCH NO

BRANCH YES - START FROM BEGINNING
AT ONE TIME, R2 EL WAS LAST
INCREMENT VALUE

NEW COUNTER VALUE

SWAP LAST ELEMENT OFF CHAIN

IF FAIL, SOMEONE ELSE GOT IT
RZ->ALLOCATED ELEMENT OR R2 = 0

SHARED DATA STRUCTURE

A(FIRST ELEMENT) OR 0
COUNT: NEXT ELEMENT REMOVED

AREA ONLY ALTERABLE BY GETEL, PUTEL

A(NEXT ELEMENT) OR O
COUNT : NEXT ELEMENT REMOVED

Figure i4: PARALLEL FIFQ REMOVAL

better.

Note that this logic is somewhat slow if the average queue/chain length is large. With long chains, the approximate

PROBLEMS AND

SOLUTIONS

it tums out that an obligation passing ap-
proach can be used to free storage for an element
if tnat capability is required. We must add a
doubleword containing a "GETEL use count”
and a delete chain anchor to the shared data struc-
ture. Any process destring to free the storage for
an element first checks to see if there are any
active GETEL processes by looking at the
GETEL use count. If there are none, the element
can actually be deleted (freemained or used for
something else or whatever). If there are active
GETEL processes, the obligation to delete the
element is passed on by chaining the element off

PROBLEMS AND SOLUTIONS

27

of the delete chain anchor using a delete chain
field in the element. Before entering the scan
portion of GETEL, we increment the "GETEL
use count” - effectively a share mode lock. Once
through the GETEL logic, we decrement the use
count and, if we decrement it to zero, remove the
entire chain (if any) of elements to be deleted and
actually delete them.

When obligation passing delete support is
addcd, good recovery logic becomes more impor-
tant: a failure in GETEL 1s likely to leave the
GETEL use count incremented - if it’s not dec-
remented you will be unable to actually delete
any elements.

28

DELEL

DELEL1O

DELELZD

GETEL
GET10

DONE

DONE 1D

DONEZ20

DONE 40

SDATA
ANCHOR
ANCHORP

DANCHOR
DANCHORP
DANCHORC

EL
ELDWORD
ELNEXT

ELDNEXT

EQU

*

USING EL,R2Z

LM
EQU
LTR
BP
CALL
8
EQU
ST
LR
cs
BNE

EQU

EQU
LA
ALR
Cs
BNE

EQU
LM
EQU
LR
BCT
SLR
cDs
BNE
LTR
BZ
CALL
B
EQU
cs
BNE
EQU

DSECT
[
DS
DS
bs
DS
bs

DSECT
Ds
DS
3059

Ds

RO,R1,DANCHOR
*

R1:R1

DELELZO
DELETEZ
DELEL3OQ

L4

ROLELDNEXT
R3,R1
RO.RZ,DANCHORP
DELELLO

*

R1 sUANCHORC

*

RZ:1

R2,;R1
R1,R2,DANCHORC
GET10

*

RO ,R1,DANCHOR
*

R5,R1
R5,DONEZ0

R, RG

RO, R4 ,DANCHOR
DONELD

RG,RO

DONE4O
DELETEL
DONE&Q

*
R1,R5,DANCHORC
DONE

*

i =Ty |
o

Mmoo

DELETE ELEMENT THAT ONCE WAS
ON THE CHAIN (ANCHORP). RZ->EL

DELETE ANCHOR POINTER

CS RETRY

ACTIVE GETEL PROCESSES?

BRANCH YES, PASS THE OBLIGATION
ACTUALLY DELETE THE RZ ELEMENT
DONE

PASS OW DELETE OBLIGATION
CHAIN OFf NEW ELEMENT

SAME USE COUNT

PUT NEW ELEMENT ON CHAIN
BRANCH IF BUSY

GET AN ELEMENT, FIFO
GETEL USE COUNT
CS FETRY

INCREMENT USE COUNT

OTHER PARALLEL FIFO REMOVAL CODE
GOES HERE UNCHANGEDR

R2->ALLOCATED ELEMENT OR RZ = O

CD3 RETRY

COPY USE COUNT

DECREMENT , BRANCH IF NOT O
NEW CHAIN ORIGIN VALUE

SET BOTH WORDS TO Z2ERD

RETRY

DID WE GET A DELETE CHAIN?
BRANCH NO

DELETE CHAIN STARTING WITH RO

USE COUNT ~ 0

APPLY MY DECREMENT

GO REFRESH BOTH REGISTERS
REALLY DDMNE, R2 STILL SET

SHARED DATA STRUCTURE

ALFIRST ELEMENT) OR O
COUNT: NEXT ELEMENT REMOVED
DELETE ELEMENT CONTROL
ALFIRST ELEMENT ! OR O
COUNT: NEXT ELEMENT REMOVED

AREA ONLY ALTERABLE BY GETEL,
AINEXT ELEMENT I CR 0O

COUNT: NEXT ELEMENT REMOVED
AUNEXT ELEMENT ON DELETE CHAIN) QR O

PUTEL

Figure 15; PARALLEL FIFO REMOVAL WITH DELETION

The additional code required to support safe deletion {freemain) of elements that have once been on the chan.

PROBLEMS AND SOLUTIONS

The Problem - Find and Remove by Name

A more complex class of problem than FIFO
processing 1is the case where you must be able to
find a specific element on a chain and be able to
remove it from the chain no matter where it 1s

PROBLEMS AND SOLUTIONS

29

in the chain. Typically, you would be trying to
find an element that was uniquely identified by
some bit-string (NAME).

This problem is somewhat difficult, primarily
because you need to remove items from the mid-
dle of a chain and you need to scan the chain.
Figure 16 on page 30 provides an example of
what can go wrong. Note that parallehsm is not
required to cause the problem shown - multipro-
grammung is sufficient.

30

ANCHOR: : ‘ —5

ANCHOR: I 0
T

A B C

ANCHOR: T AR o <%ji‘%

A D C

Figure 16: PROBLEM: FIND and REMOVE by NAMFE

This figure illustrates one possible sequence that could occur using simple logic to search a chain and remove an
element, even if compare and swap is used for removal.

1. The first figure shows the chain as process 1. scarching for element named C, gets the “next pointer” (value 2)
from the element at location 1. This process is then suspended due to preemption or a page fault.

2. The second figure shows the chain after process 2 {finds and removes the element named B located at address 2.

3. The third figure shows the chain after process 2 changes the name of the element at address 2 to D and adds
the element into the chain in name sequence.

4. Process | then resumes and looks at the element at address 2, finds name D and concludes that C is not on the
chain!

What would happen if process 2 freemained the clement at address 2 (and freemain invalidated the page in the
page table)?

What would happen if process 2 used the storage at address 2 for some other purpose?

PROBLEMS AND SOLUTIONS

Sotutions - Find and Remove by Name

This problem can be resolved by the single
process approach, but this eliminates parailelism
for finding, adding, and removing elements. Once
an element is found and either removed or pro-
tected from deletion, the element can be used by
parallel processes.

If chains are to be scarched, it is a good idea
to use one or more search techniques such as
ordering by name and/or hashing Jrjhash]. Hash-
ing is particularly nice - it is simply a bunch of
lists, each of which can be handled using these
senalization techniques.

Locking

As usual, locking can be used to solve the
problem. A lock with shared and exclusive modes
as shown in Figure 1 on page 6 is the best solution.

* If the request is merely to search for a named
element but leave it on the chain, the lock is
obtained in share mode and the chain is searched
by merely following the chain.

¢ If the request is to remove a named element
from the chain, the lock is obtained in exclusive
mode, the chain is scarched and the element
may be removed with ordinary instructions.

¢ If the request is to add a named element then
the lock is obtained in exclusive mode and the
element added to the chain with ordinary in-
structions. If names must be unique, you
should search for the name while holding the
exclusive lock before adding the new element
to the chain.

PROBLEMS AND SOLUTIONS

3l

Obligation Passing

Obligation passing may be used in this situa-
tion if approprate to the application. As used
here, obligation passing controls processing such
that one and only one process at a time will be
manipulating chains for the purposes of element
deletion.

If other processes want to perform chain ma-
nipulation at the same time, they pass their ob-
ligation to the last process dealing with the struc-
ture. This vanation of obligation passing, devel-
oped by Ron Obermarck, is somewhat complex .
and will be described with words as well as an
assembler language example (found in “Appendix
A. ASSEMBLER EXAMPLES, BY NAME,
OBLIGATION PASSING” on page 36).

One potential shortcoming: physical removal
of deleted items (and the ability to re-use/free the
storage) can take “a while” because it can only be
triggered when the chain goes “idle” (no processes
in search or delete). In most applications, this
should not be a problem since there are no built-in
suspends in the logic. In an extremely high usage
application with lots of parallelism, it might be-
come a problem.

The actual application being used for the ex-
ample needs the following functions:

I. ADD an element to the list.

2. FIND a spectiic (named) element for shared

usage. Support for exclusive usage could be
easily added.

3. UNFIND an element from shared usage es-
tabiished by a prior FIND.

4. DELETE a specific (named) element - make
it no longer eligible for FIND and free its
storage as soon as possible.

All of these functions must be accessible from
parallel processes and the functions must not sus-
pend {or spin for a lock).

ADD is accomplished by standard compare
and swap of the new element onto the chain
anchor producing a LIFO ordered chain. An as-
sembler example, essentially the same as the
PUTEL logic in Figure 11 on page 20, 1s shown
in Figure 19 on page 37.

FIND is accomplished by incrementing a use
count {basically a shared-mode-only lock) that is
associated with the entire chain. The chain is
then secarched for the requested element. If the
element s found, an element use count is incre-
mented (using Compare and Swap logic) as long
as the element 1s not marked as “logically deleted”.
If the element is logically deleted, it is treated as
"not found”. The following case is covered: a
named element is logically deleted then an element
with the same name is added. Before returning
to the caller, a RELEASE routine is called to
decrement the chain’s use count and handle any
passed obligations.

An assembler example is shown in Figure 20
on page 38.

UNFIND is accomplished by decrementing an
element’s use count using compare and swap.
The chain use count is not required for this op-
eration.

DELETE is begun by mncrementing the cham'’s
use count. The chain is then scarched for the
requested element. If the element is found, the
element 1s not marked as logically deleted (this
check protects against parallel processes trying to
delete the same element), and the element use
count is zero {a safety check}, then the element
15 marked as logically deleted (using Compare and
Swap logic). If we successfully mark the element

PROBLEMS AND SOLUTIONS

32

as logically deleted, we add the element to a delete
chain. Note that we do not alter the primary
element chain here since it is not safe. Before
returming to the caller, a RELEASE routine is
called to decrement the chain’s use count, handle
any passed obligations, and, if we are the only
current user of the chain, perform further delete
actions on the element we may have placed on
the delete chain.

Results of DELETE processing are shown
pictorially in Figure 17 on page 33. An assembler
example 1s shown in Figure 21 on page 39.

RELEASE is a function invoked by FIND
and DELETE to decrement the chain use count.
If it finds the use count to be 1 (this is the only
process working on the chain), it then looks for
delete work (indicated by elements chained from
the delete anchor). A first pass removes elements
from the primary element chain (this is safe be-
cause only one process is doing the chain altera-
tion; processes that start FIND or DELETE will
be OK because the old elements and their chain
fields are still valid).

A second pass begins if the chain use count
is 1 after the first pass completes. The second
pass can actually free elements that were removed
from the pnmary chain by an earlier pass. Freeing
the elements is safe because no process can be
scarching the primary chain with the address of
these elements since they were off the piimary
chain before we found that no other processes
were looking at the chain (use count of 1 at the
beginning of pass 2).

The actual logic 1s a bit more complicated
because it must account for DELETE action oc-
curnng during any of the passes and ensure that
the chain use count never reaches (¢ while there
are elements on the delete chain.

Results of RELEASE processing are shown
pictorially in Figure 17 on page 33. An assembler
example is shown in Figure 22 on page 40 and
Figure 23 on page 41.

33

1: 2: 3.
ANCHOR;
o 7 B [0
DANCHOR:
0 A B c
] 1. 2 3:
ANCHOR: 1 - . .5
DANCHOR: A0
N A / B C
1. <2 &‘3:
ANCHOR: —
—] Y — > 0
DANCHOR. [
N A / B C
_ 1 3:
ANCHOR: 1 = — X} 5
DANCHOR:
A c

Figure 17: DELETE FROM MIDDLE VIA OBLIGATION PASSING
1. The first figure shows the chain with no delete activity, possibly many processes searching it.

2. The second figure shows the chain after 2 process running the DELETE function on the element named B located
at address 2 has finished all but the call to RELEASE. If, when RELEASE is called by the DELETF. process,
there are other processes busy with the chain, the DELETE process will make no further changes to the structure
and the physical delete obligation has been passed.

3. The third figure shows the chain after a process running FIND or DELETE logic calls RELEASE and the chain
use count is found to be 1 and the first pass of physical delete has completed by altering the primary chain and
marking the element as “off primary chain”. Note that the pointer from DANCHOR to element B would not
exist unless at the beginring of pass 2, RELEASE logic found a chain use count of greater than 1, in which case
this process would decrement the use count and return, passing the obligation for stage 2 of physical delete.

4. The fourth figure shows the chain after the second pass of RELEASFE has compieted: all deletion work has
completed. Mote that it is possible that three different processes are involved in the deletion of element B,

PROBLEMS AND SOLUTIONS

SUMMARY

Coding in a parallel environment can be com-
plex and error prone. The first step to success,
hopefully provided by this paper. is understanding
the problems and understanding the solutions
available.

The simplest solution to problems of paral-
lelism appears to be the use of locks, but they

Summary

34

introduce subtle capacity and performance prob-
lems. A large number of parallelism problems
can be dealt with using Compare and Swap as
shown above. Use of Compare and Swap tech-
niques to avoid locks is strongly suggested where
at all possible. As of 1986, large /370 processors
have 4 CPU’s - parallelism is real and indiscim-
inate use of locking can defeat it.

35

ACKNOWLEDGEMENTS

The content of this document has many and cannot be attributed. I am indebted to Ron
sources, some of which are listed in the bibliog- Obermarck and Kurt Shoens for significant assis-
raphy, some are just “systems programming lore” tance in “coping with parallelism”.

ACKNOWLEDGEMENTS

36

APPENDIX A. ASSEMBLER EXAMPLES, BY NAME, OBLIGATION PASSING

This appendix contains assembler language examples of logic to use obligation passing to support a “find
by name” with delete capability.

* COPYRIGHT IBM CORPORATION 1986
* DATA AREAS AND EQUATES USED

LISTANCH DC A(0) LIST ANCHOR

SHRLATCH DS 0D DOUBLE-WORD BOUNDARY

RCOUNT BC F'O' COUNT OF CURRENT USERS OF LATCH
DELTANCH DC A(0) ANCHOR FOR PENDING DELETES

*®

* DEFINE RETURN-CODE VALUES RETURNED TO CALLER IN R15

w

SUCCESS EQU 0 VALUE RETURNED IF SUCCESS

NOSUCCES £QU 4 VALUC RETURNED IF NO SUCCESS

*

* DEFINE THE LIST ELEMENT STRUCTURE AS A DUMMY SECTION

*

ELEMENT DSECT DUMMY SECTION -

ELEMPCHN DS A PRIMARY CHAIN FOR LIFQ QUEUE
ELEMACHN DS A ALTERNATE CHAIN

ELEMIDEN DS F ELEMENT IDENTIFIER

ELEMCTFL DS OF ELEMENT IN-USE COUNTER AND DELETE FLAG
USECTR1 EQU X'00008100" USE-COUNT 1'S POSITION VALUE IN WORD
ELEMUSCT DS FL3 ELEMENT IN-USE COUNTER (0 = NO USERS)
ELEMUSFL DS X ELEMENT DELETE FLAGS

DELETED EQU B'00000001" FLAG BIT - IF 1, ELEMENT DELETED
OFFCHAIN EQU B'00000010" FLAG BIT - IF 1, ELEMENT UNCHAINED
ELEMDATA DS C DATA BEGINS HERE

Figure 18: Sample data structures for List Manipuiation

Appendix A, ASSEMBLER EXAMPLES, BY NAME, OBLIGATION PASSING

37

* COPYRIGHT IBM CORPORATION 1986
ADD STM R14,R12,12(13)

L R9,0(,R1)

USING ELEMENT ,R9

SLR R8,R8

ST R8,ELEMCTFL

L R8 ,LISTANCH
ADDO1 ST R8,ELEMPCHN

CS R8,R9,LISTANCH

BNE ADDO1

LM R14,R12,12(13)
LA R1S,SUCCESS
BR R14

DROP R9

SAVE INPUT REGISTERS

GET POINTER TG ELEMENT TO ADD
ASSTGN BASE REGISTER

GET A ZERO

SET FLAGS AND COUNT TO NULL

CURRENT ANCHOR CONTENT
LIFO CHAIN

ATTEMPT ANCHOR UPDATE
LOOP IF NOT SUCCESS

RESTORE REGISTERS
ALWAYS SUCCESSFUL
RETURN

RELEASE BASE REGISTER

Figure 19: Sample Implementation of ADD for List Manipuiaﬁon

Appendix A. ASSEMBLER EXAMPLES, BY NAME, OBLIGATION PASSING

38

FIND STM
L
L

L

L

FINDO1 LA
: AL
CS

BNZ

*

L

USING

B
FINDO2L L
FINDDZ LTR
BZ
C
BNE
EQU
ST
LTR
BZ

FINDOZX

*

L
FINDO3 LA
NR
BNZ
LA
AL
CS
BNZ

CALL
LM
LA
BR

*

FINDERRX CALL
LM
LA
BR
DROP

* COPYRIGHT IBM CORPORATION 1986

R14 ,R12,12(R13)
RZ,OE,RI;
R6,0(.R?
RS,4(.R1)

RO ,RCOUNT
R1.,1

R1,R0

RO,R1 ,RCOUNT
FINDO1

R9,LISTANCH
ELEMENT ,R9
FINDOZ

R9,ELEMPCHN
R9,R9
FINDO2X

R6 ,ELEMIDEN
FINDOZL

*

R9,0(,R5)
R9 ,R9
FINDERRX

RO,ELEMCTFL

R1 .DELETED
R1.RO

FINDERRX
R1,USECTR1
R1.RO
RO.R1,ELEMUSCT
FINDO3

RELEASE

R14 ,R12,12(13)
R15,SUCCESS
R14

* ELEMENT WAS NOT FOUND - RETURN

RELEASE

R14 ,R12,12(13)
R15,NOSUCCES
R14

RS

SAVE CALLERS REGS

POINTER TO IDENTIFIER

GET IDENTIFIER ITSELF

GET POINTER TO FOUND BLOCK

CURRENT READER COUNT
COUNTER INCREMENT
NEW COUNTER VALUE
ATTEMPT THE CHANGE
LOOP UNTIL SUCCESS

GET A(FIRST ELEMENT IN LIST)
SET AS BASE
ENTER AT TEST FOR WHILE-LOOPS

TO NEXT IN CHAIN

TEST FOR NULL POINTER

EXIT LOOP IF NULL

COMPARE FOR IDENT TO DELETE
LOOP IF NOT EQUAL

SEARCH EXIT

SAVE POINTER TO BLOCK OR NULL
TEST FOR NULL POINTER

EXIT IF NULL(SUCCESS = OFfF)

CURRENT USER COUNT

FLAG VALUE FOR DELETED
AND OLD VALUE WITH FLAG
DELETED - EXIT NO SUCCESS
COUNTER INCREMENT

NEW COUNTER VALUE
ATTEMPT THE CHANGE

LOOP UNTIL SUCCESS

* ELEMENT IS NOW RESERVED FOR THE CALLER - RETURN SUCCESS

RESET SHARED LATCH
RESTORE REGISTERS

SET SUCCESS RETURN CODE
RETURN

NO SUCCESS

RESET SHARED LATCH
RESTORE REGISTERS

SET ERROR RETURN CODE
RETURN

RELEASE BASE REGISTER

Figure 20: Sample Impiementation of FIND for List Manipulation

Appendix A. ASSEMBLER EXAMPLES, BY NAME, OBLIGATION PASSING

39

* COPYRIGHT IBM CORPORATION 1986
DELETE STM R14,R12,12(R13)
L Rl,UE,ng
L R6,0(,R1
L RO ,RCOUNT
DLET01 LA R1,1

AL RI.RO
CS RO.R1,RCOUNT
BNZ DLETOI

L R9,LISTANCH
USING ELEMENT ,RS

B DLETOZ
DLETO2L L R9,ELEMPCHN
DLETB2 LTR R9,R9

BZ DLETERRX
C R6,ELEMIDEN
BNE DLETO2L

* CODE FOR LOGICAL DELETION
L R8,ELEMCTFL
LA R6,DELETED

*

DLET03 LTR R8,R8
BNZ DLETERRX
LR R7,R8
OR R7,R6
CS R8.R7,ELEMCTFL
BNZ DLETO03

*

SAVE CALLERS REGS

POINTER TO IDENTIFIER

GET IDENTIFIER ITSELF

CURRENT READER COUNT

COUNTER INCREMENT

NEW COUNTER VALUE

ATTEMPT THE CHANGE

LOOP UNTIL SUCCESS

GET A(FIRST ELEMENT IN LIST)
SET AS BASE

ENTER AT TEST FOR WHILE-LOQPS
TO NEXT IN CHAIN

TEST FOR NULL POINTER

EXIT LOOP IF NULL - (NOT FOUND)
COMPARE FOR IDENT TO DELETE
LOOP IF NOT EQUAL

GET USE COUNTER AND FLAGS
FLAG FOR TEST AND SETTING

TEST FOR DELETED OR IN USE
IF EITHER, EXIT WITH ERROR
CURRENT COUNT AND FLAG VALUE
SET DELETE FLAG ON IN NEW
ATOMIC CHANGE TO DELETE FLG
LOOP IF OLD VALUE CHANGED

* ELEMENT MARKED DELETED - CHAIN FOR RELEASE PROCESS BY SOME PROCESS

L R8,DELTANCH
DLETO4 ST R8,ELEMACHN

CS R8,R9 ,DELTANCH

BNZ DLETO4

W

CURRENT VALUE OF PENDING DELETES
LIFO QUEUE ON ALTERNATE CHAIN
ADD TO ANCHOR

LOOP TILL SUCCESS

* ELEMENT HAS BEEN DELETED (NOT FREED) - RETURN SUCCESS

CALL. RELEASE

LM R14,R12,12(13)
LA R15,SUCCESS
BR R14

*

RESET SHARED LATCH
RESTORE REGISTERS

SET SUCCESS RETURN CCDE
RETURN

* ELEMENT TC DELETE NOT FOUND ON CHAIN - RETURN NO SUCCESS

DLETERRX CALL RELEASE
LM R14,R12,12(13)
LA R15,NOSUCCES
BR Rl4
DROP R9

RESET SHARED LATCH
RESTORE REGISTERS

SET ERROR RETURN CODE
RETURN

RELEASE BASE REGISTER

Figure 21: Sample lmplementation of DELETE for List Manipuiation

Appendix A. ASSEMBLER EXAMPLES, BY NAME. OBLIGATION PASSING

40

"COPYRIGHT IBM CORPORATION 1986

RELEASE SHARED LATCH, AND FREE PENDING DELETES IF LAST USER.
REGISTERS ARE NOT SAVED -

ACTUAL FREEING OF REMOVED ELEMENTS IS NOT SHOWN.

% ¥ ¥ £ F ¥

RELEASE SLR R4 R4 ZERO REMAINING WORK FIC
SLR R5,R5 ZERG REMAINING WORK LIC
*

* QUTER RELEASE LOOP - DETERMINES WHETHER TO WORK OR EXIT

RLSEQO LM RO,R1,SHRLATCH COUNT AND CHAIN ANCHOR
RLSEOIL LR RZ,R0O REPLICATE READER COUNT
LTR R3,RS REMAINING WORK LIC
BZ RLSEO1A IF REMAINING WORK THEN
ST R1,ELEMACHN-ELEMENT(,R4) ADD ANY NEW TO FRONT (LIFO)
B RLSEQ1B
RLSEOIA LTR R3,R1 ELSE REPLICATE NEW WORK LIC
BZ RLSEQ1C IF NEW WORK OR REMAINING WORK THEN
RLSEOIB BCT R2,RLSED1D DECREMENT - BRANCH IF NOT TO 0
LR R3,R2 WAS ZERO - ZERG NEW ANCHOR
LR RZ,R0 RESTORE READER COUNT T0 1
B RLSEDID TO €DS
RLSECIC BCTR R2,0 ELSE RELEASE SHARED LATCH
RLSEQID CDS RO,RZ2,SHRLATCH ATTEMPT THE CHANGE
BNZ RLSEOQIL LOOP IF NOT SUCCESS
* IF LATCH COUNT WAS DECREMENTED, RELEASE IS COMPLETE.
* OTHERWISE, THERE IS SOME WORK REMAINING
CR RO,RZ DID I CHANGE COUNT?
BNZR R14 IF YES, THEN EXIT - DONE.

*

CHAIN TO PROCESS EITHER IN R4 OR IN R1 IF R4 IS ZERO

LTR R9,R5 CHECK FOR RESIDUAL CHAIN

BNZ RLSEOZ IF RESIDUAL IS ZERC THEN

LR R9,R1 MOVE NEW CHAIN ANCHOR
RLSEOZ SLR R4 ,R4 ZERC RESIDUAL LIC

LR R5,R4 AND RESIDUAL FIC

USING ELEMENT,R9 SET AS BASE

Figure 22: Sample Implementation of RELEASE for List Manipulation

Part-! Quter Loop Control

Appendix A. ASSEMBLER EXAMPLES, BY NAME, OBLIGATION PASSING

41

* COPYRIGHT IBM CORPORATION 1986
RLSE03 M ELEMUSFL ,OFFCHAIN IF ELEMENT OFF PRIMARY CHAIN
BNZ RLSED4 THEN TO FREE CHAIN, ELSE

* ELEMENT TO BE UNCHAINED FROM PRIMARY CHAIN

e

L R8 ,ELEMPCHN GET -> NEXT ELEMENT
w®
LR R7,R9 MAKE CURR COMPARE VALUE FOR CS
CS R7 ,R8,LISTANCH ATTEMPT SWAP UPDATE
BZ RLSEQ3T IF SUCCESS EXIT, ELSE
B RLSEO3E BRANCH TO WHILE LOOP TEST

*

RLSEO3L L R7,ELEMPCHN-ELEMENT(,R7) TO NEXT LIST ELEMENT

RLSEO3E C R9,ELEMPCHN-ELEMENT(,R7) POINT TO ELEMENT TO DELETE?
BNE RLSEQ3L NO- LOOP

ST R8,ELEMPCHN-ELEMENT(,R7) CHAIN PREV AROUND DELETED ONE

#*

RLSEO3T L R8,ELEMCTFL CURRENT VALUE OF COUNT AND FLAGS
RLSEO3U LA R7,0FFCHAIN FLAG - OFF PRIMARY CHAIN
OR R7,R8 SET FLAG ON IN PROPOSED VALUE
CS R8 R/, ELEMCTFL ATTEMPT UPDATE
BNZ RLSEO3U LOOP TILL SUCCESS
*
L R8,ELEMACHN SAVE NEXT IN CHAIN
LTR R4 ,R4 CHECK FOR FIRST TIME
BNZ RLSEQ3X IF FIRST (ZERO) THEN
LR R4 ,R9 SAVE FIC RESIDUAL
RLSEO3X ST RS ,ELEMACHN ADD POINTER TO NEW ELEMENT
LR R5,R9 MAKE IT NEW LAST
B RLSEQS T0 COMMON

*

* ELEMENT OFF PRIMARY CHAIN - MAY NOW BE FREED

*

RLSEO4 L R8,ELEMACEN SAVE NEXT IN CHAIN
b

™ FREEING PROCESS OF R9->ELEMENT NOT SHOWN, BUT DONE HERE
* WITHOUT DISTURBING R8, R4, R5, OR R14 CURRENT CONTENTS

*

RLSEOS LTR R9,R8 POSSIBLE NEXT TO PROCESS
BNZ RLSEO03 IF NOT ZERO, INNER LOOP
B RLSEOOQ ELSE TO OUTER LOOP
DROP RO RELEASE ELEMENT BASE

Figure 23: Sample Implementation of RELEASE. for List Manipulation

Part-2 Processing of Queued Work for Obligated Process.

Appendix A. ASSEMBLER EXAMPLES, BY NAME, OBLIGATION PASSING

REFERENCES

[princop] IBM Svstemn/370 Extended Architec-
ture, Principles of Operation, [BM Pub.
No. SA22-7085 (1983).

mvslock] MVS/Extended Architecture System

Programmung Libraryv: System Macros

and Facilities Volume 1 and Volume 2,

IBM Pub. No. GC28-1150 and
GC28-1151 (1983).

[rjhash] R. L. Obermarck, R. K. Treiber, Prac-
tical Uses of Hashing For Main Storage

References

42

Searching, IBM Research Report No.
RJ3483 (1982).

fconvoy] Mike Blasgen, Jim Gray, Mike Mitoma,
Tom Price, The Convoy Phenomenon,
ACM Operating Systems Review Vol 13
No 2 (Apnl, 1979).

[introos] A. N. Habermann, Introduction To Op-

erating System Design, Science Research
Assodiates (1976).

{deadlock] J. W. Havender, Avoiding Deadlock
in Multitasking Systems, IBM Systems
Journal 7 No. 2 (1968) pp. 74-84.

