
RJ 5118 (s3 r62) 4 /23 /86
Computer Sci .ence

Research Report
SYSTEMS PROGRAMMING: COPING WITH PARALLELISM

R. Kent Treiber

IBM Almaden Research Center
650 Harry Road
San Jose, Cal i forn ia 95120-6099

? :== Resea rch D iv i s i on
= -= : t= Yo rk town He igh ts , New York . San Jose , Ca l i f o rn ia . Zu r i ch , Sw i t ze r l and

RJ s l r8 (53162) 4 /23 /86
CompuEer Science

Systems Programming: Coping With Parallelism

R. Kent Treiber

Almaden Research Center
Ks5/801
650 Harry Road
San Jose, California 95120-6099

Abstract: Creating operating system components and subsystcms in today's large processors generally
requires dcaling with morc than one CPU operating in parallel against a shared memory. Whiie "applica-
tions" are typically shielded from the effects of parallciism, components and subsystems ,15u,lly are designed
in such a way that some level of understanding is rcquired. This paper concentrates on the pitfalls awaiting
thc proprammer in a parallel (or even a multiprogramming) environment when shared data structures
(control blocks) are referenced and altercd by muitipie processes (tasks). The focus is on the IBM
Systemi 370 architecture because of its multiple CPU architectwe and the powerfirl -compare and swap'
hstruction. The paper reviews some architectural groundrules that a parallel programmer must understand,
presents problems that musl often be solved in a parallel environment, then describes solutions such as
usage of comPare and swap, locks, and single-process schemes. Kernels of code are used to illustrate
problems and solutions.

lU

CONTENTS

II{TRODUCTION
UNNATURAL, ERROR PRONE AND UNTESTABLE
ARCHITECTURE. REVIEW
BASIC RULES FOR SAFE OPERATION
OTI{ER GENERAL SOLUTIONS

LOCKS AND LATCTIES
BASIC DESCRIPTION .

Function
Modes and
Deadlocks
Recovery

ADVANTAGES .
DISADVANTAGES
LOCKING PERFORMANCE ANALYSIS

Convoy

PROBLEI{S A.\D SOLUTIONS
SETTING BITS

The Problem
Solutions

TESTING AND SEMING BITS
The Problern
Solutions

COUN'TERS
The Problem
Solution

CPU SERIALIZATION
The Problem
Solutions

CHAINS, LISTS, QUEUES
The Problem - Free Element List
Solution - Free Eiement List

3
3

Compatibility

- FIFO Proccssing
FO Proccssing, Singie Process

Single Process Design
Solutions - FIFO Processing,Parallel Processes

Approximate FIFO
Parallel FIFO Removal

The Problem - Find and Rcmcve
Solutions - Find and Remove bv

by Name

5
5
5
5
6
7
.1

9
9

l t
t2
t2
l3
l4
l4
t4

l 9
22
22
22
22
23
23
25
29
3 l

l l
l l
l l

L I

t 7
l7

l 5
l 5

The Problcm
Solutions - FI

l,ocking

Contents

Narne

lv

[ncking
Obligation Passing

Summary

A C I[\J O\I'LE D G E MEi\iTS

Appendix A. ASSEMBLER E)L{\fLES, BY NA\IE, OBLIGATION PASSING

Referencs

3 l
3 l

34

35

36

+z

Contents

INTRODUCTION

UNNATURAL, ERROR PRONE
AND UNTESTABLE

Dcsigning and coding in a parallci environment
is unnatural for most programmers. Programmers
tend to think in sequential, if-then-else kind of
logic. ln a parallel enl'ironment, the traditional
if-then-else rray be totally invalid if its operating
against a dara structure that is shared with another
process (task or dispatchable unit of work). ln a
parallel environmcnt, thc prograrruner must ask
'what if another process is running simultane-
ously?- after coding each instruction associated
with a shared data structurc (most commonly a
control block). ln fact, many of the problems
discussed here can occur in a multiprogramming
environment as long as at least two processcs are
operating with preemptive dispatching (whcrc one
process can lose control of the CPU at any in-
struction boundary and another process can be
given control of the CPU).

ln addition to being unnatural, the parallel
environment is very error prone (partially due to
the unnatural nature, partly duc to complcxity).
Unless serializ3liotr is done at a very high level,
the level of system understanding rcquired to even
recognize and then resoh'e a parallelism cxposure
is high.

As if unnatural and error prone weren't bad
enough, parallelism "bugs" are very rlifficult to
detect by testing. Most of these parallelism ex-
posures only funaion incorrectly in very small
"windows" of time that occur in a parallel envi-
ronment. Often the failure results in a problem
much larer in processing and there is no trace of
the actual failwe. ln many cases, the failures only
come under load and are very difficult to repro-
duce, particularly in a reai customer environment.
lnrrcducing debugging tools can alter pcrformance

such that a parallelism exposure window does not
occur (an example of the Heisenburg uncertainty
principle).

A fairly obvious solution to this nasty set of
problems is to introduce high level se1ializa1i6l
to avoid parallelism exposures. This is a valid
approach, but such a decision must be made care-
fully: it may have far reaching impacts on thruput
and response time. Once complex code is written
depending on high level serialization it is likely to
be extremely difficuit to make the code work with
lower level techniques that allow more parallelism.

The author's early experiences with system
programming basically did not involve parallel
cnvironments and he has learned the hard way.
It is hoped that this paper will make it easier for
others.

ARCHITECTURE REVIEW

The Systeml370 (extended or not) architectu.r€
[princop] documents synchronizing and serializing
that must occur in all System/370 machines.
Thesc issues are important when proggamming in
a parallcl environment with shared data structures;
most €ue important even in a preemptively dis-
patched multiprogramming environment. The
following portions of the principles of operation
fprincop] are summarized in this document, but
are worth reyiew:

o Chapter 5, section on "Sequence of Storage
Refercnces". This describes what "really" hap-
pens when instructions that modifu main storage
are executed.

INTRODUCTION

o Chapter 7, the Compare and Swap (CS), Com-
pare Double and Swap (CDS) instruction de-
scriptions.

. Appendix A, section on "Multiprogrammrng

and Multiprocessing Examples".

When dealing with a parallel environment, the
machine does not operate the way many program-
mers think it does. For example, "comparing a
field to itself my yield a result other than zero".
This can occur if another CPU updates the storage
after the compare has fetched the fust operand
and before it fetches the second opcrand. Another
example is that a test of a bit by an instruction
on CPU A can show 0 even though an instruction
on CPU B set the bit to I several microseconds
eariier. This occurs when C?U serializationis not
performed. A third example is a move instruction
copylng shared storage that obtains a copy that
contains only part of the changes caused by an
instruction running on another proccssor. A
fourth example is code that increments a counter
in shared storage - occasional increments will be
lost. Thesc are probiems in scri:li'ation and con-
sistency. The key architsctual nrles are:

o To obtain consistent data from shared storage
that may be altered by other CPU's, you must
use instructions t}tat providc block-concwrent
reference. This can allow you to see or copy
ail bytes within a halfu'ord, word, or
doubleword consistently - there will be no par-
tial results of an instruction. Note that this
does not guarantee you current data, just con-
sistent data. Note that you also cannot get
consistency on more than a doubleword. The
following instructions grve you biock-
concurrent reference for a word or doubleword:
LOAD, LOAD \,{UL]'IPLE, COIVIPARE
LOGICAL. COMPARE I,OGICAL CHAR.
ACTERS UNDER .\L\SK, INSERT CTLA.R-
ACTERS UNDER MASK. MOVE CIIAR.
ACTER. Most RX format instructions are
block-concurrent when their operancl is on the
appropriate boundary. When using higher level
languages such as PLIAS, you generaiiy don't
control the instuctions used but vou can often

control storage bowrdaries. You can get block-
concurrent instructions that alter storage, but
this is misleading: these instructions will prevent
the contents of a word or doubleword from
containing pafiial results of an instruction, but
they will not prevent total loss of the results of
an instruction due to alteration of the same
storage locations by instructions nrnning on
another CPU. Another potentiai probiem with
block-concu.rrent instructions that alter storage
is that programs rururing on other CPU's may
not see the change for a while - see below.

To aitcr data in shared storage, access must be
serialized by a software mechanism such as
locks, or the Compare and Swap, Compare
Double and Swap (CSICDS) instructions must
be used. A surprisingly large number of oper-
ations can be accomplished with careful use of
these instructions.

A basic descriotion of

C.S R1, R3, dkp(Rz)

is: The content of the first operand (R1) is
compared to t}te value at the main storage ad-
dressed by the second operand and, if equal,
thc main storage at the second operand address
is replaced by the content of the third operand
(R3) This is all done "aromically": no other
CPU is permitted to alter the main storage
Iocation between the compare and the altera-
tion. If the comparison produces a not-equal
condition, the value at the main storage ad-
dressed by the second operand is loaded into
thc fust operand register. Condition codes al-
lorv branchhg based on the success of the in-
struction.

ln order to be sure that the results of storage
aiteration by instructions are visible to instruc-
tions executing on other CPU's, a CPU serial-
ization operation rnust be performed by the
CPU that altered the storage. Common instruc-
tions that "uu5s 5sri:lization are: BR R0 (which
causcs gp[-] 5srirlization but does not branch).

INTRODUCTION

STORE CLOCK, SUPERVISOR CALL,
(:|)MPARE AND SWAP (CSICDS). All in-
tr:mrptions cause serirlization. Assuming you
have a "safe" technique for altcring storage
(-.uch as 5srializirlg through a lock), this aspect
is rmportant - you must cause CPU serialization
at the appropriate time (before unlock is com-
plete) or you can still get into troublc. This
aspect of the architecturc is most likely to cause
a. probiem with readers of shared storage on
one CPU while an updater is on another CPU:
the reader sees old data or an inconsistent mix
of old and new data.

BASIC RULES FOR SAFE
OPERATION

To su.rvive in a parallel environment, rules for
accessing and altering shared storage must be es-
tablished; the specific nries musr bc followcd by
ali programs. ltre primary rule to foliow for stor-
age alteration is: you must alter shared storage
only when holding a lock that protects it or via the
CS, CDS instructiotu.l

r If every progam wishing to alter an area of
shared storage obtains an exclusivc lock (refer
to "LOCKS AND LATCIIES" on page 5)
before altering the storage and frees the lock
when through, consistency and integrity will bc
maintained.2

o If storage alteration is performed using the
Compare and Swap (CS or CDS) instructions,

consistency and integrity will be maintained.
Obviously, the largest area that may be safely
altered in a consistent manner with these in-
structions is 8 bytes on a doubleword boundary.

The primary mle to follow for storage access
(rcading) is'. you must read shared storage only
when holding its lock or by use of block-concwrent
irctructioru. If you need consistent data that does
not come from the same doubieword in the shared
storage, you must hold a lock that prevents up-
dates.

Thesc rather restrictive rules are relatively sim-
ple and easy to follow once you have really
learned them. Unfortrnately, the basic nrles drive
you toward lock solutions that in tum can cause
performancc problems.

OTHER GENERAL SOLUTIONS

There are other approaches to dealing with
parallclism, but "rule l" strongly applies: know
what you're doing; the cost of failure is high. We
recommend that you keep your design as simple
as possible consistent with your performance ob-
jectives. This section summarizes some of the
generaliy appiicable approaches.

o Single Update Procus.. A single process can
be used to update areas of shared storage. With
a singde process. there is no parallelism problem
and no preemptive intemrpt probiem. A single
operating system process may be sub-dispatched
to get "multi-threading" as in CICS, IMS, or
other svstems. but this is OK because threads
arc not preempted to nm other threads. Other

The test and set fIS) instructton avarlabie on 370 is a hoidover from the Sysremi360 MP65 machrne. TS is very primirive and
is, n general, no longer used. TEST AND SET can be described as: aromicaily ser all bits in a byte to ones while evaluating
bit 0 of that by"te. Thus you can detec! if you were the one to se! a bit (bit 0 oi a byte only) to one. you cannor use this
rnstruction to drcctly se! a bit to zero; you cannol test severa] bits; you cannol set/reset several bits. In addiion, since TEST
AND sET is carried aiong soleiy for compatabi-Liry, rrs rmplemenrauon is probably slow.

This assumes lhal the unlock operadon will use an L-rstructron (CS) that .*tll cause CPU seriali"arron (cause all storage chalges
to occur as viewcd from othcr CPU's).

INTRODUCTION

processes may read the shared storage as long
as they understand the CPU serialization and
block concurrent reference impiications. This
single update process can manipuiate complex
chains invoiving many shared storage areas ln
complete safety. Optionally, the single update
process can be used for only certain areas of a
shared data structure such as complcx chain
manipulation whiie othcr areas (such as words
containing bit flags) are updated by any process
via CS.

The single update process has many at-
tributes in common with the use of a singie
high level lock for update - both techniques
serialize to allow only one updater at a time.

There are certainly drawbacks to the single
update process approach. lfthe need to update
occurs on other processes, then passing that
need to the single process can be cumbersome
and expensive. A single update process cannot
take advantage of multiple CPU's and poten-
tially becomes a bottlcneck. lf the single update
process must do IiO, a much bigger potential
bottleneck exists uniess the desien emplovs
multi-threading.

o Single Clvrner. Another approach, sinpCe owrer,
naturally fits some designs. If a given data area
is shared among many processes, but is owned
or allocated to one spccific process at a time,
that one process can update with ordinary in-
structions without a iock. lf othcr processes
may read the arca, caution must be used to
ensure that what they read is as consistent and
current as they require - serializalisn operations
may be required of the owning process.

I Complex CS Algorithms. There are several dif-
fcrent "tricks" that can be performed using the
CS, CDS instructions to manipulate shared
data structures in ways that are not immediately
obvious. These approaches have the advantage
of avoiding locks, but tend to have the disad-
vantage of complcxity. 11 you invent what you
think is a new such approach, examine it care-
fully for subtie bugs.

o Obligation Passing. lsrr:lly combined with the
use of CS, the obligation passing technique has
many different applications. The basic ap-
proach is to attcmpt to perform the work that
rcquires serielization, but if another process is
conllicting with you, pass the obligation to per-
form the work to the other Drocess"

One variation of obligation passing uses
"last one out, take out the trash" tlpe of logic.
Normally, there will only be one person in the
room and he will tale out the trash, but the
logic also handles a crowd, keeping trash off
thc floor.

Another variation of obligation passing uses
"fust one there does it all until there is no more
to do" tlpe of logic. Normally, the first one
thcre rviil do his own work and leavs, but the
Iogic also handles a crowd showing up while
he's doing the work.

Several examples of obiigation passing,
somc quite complex, are shown later.

INTRODUCTION

LOCKS AND LATCHES

BASIC DESCRIPTION

Function

A well-known seri:lization mechanism, thc
lock is a mechanism allowing control of access to
and change of shared data structures - locks arc
a serirlization mechanism3. Data base systems
usc'iocking to control access and change of data
base items - that application is ignored herc. Note
that a lock, like other techniqucs, is based on a
gentlepersons' agreement. Everyone must agree to
perform operation xyz on a data structure only
when lock abc is owned.

In its simplest form, all must agree that any
access to shared data object x requires lock /.
Only one process at a time is allowcd to own the
lock. When desiring access to x you rcquest
lock /, and when you get control back &om the
request, you own the lock. You may now read
and alter shared data item x. When you :ue
through reading and altering .r, you release the
lock. This is basically the typc of lock provided
and used extensivelv by MVS [mvslock].

W}rat happens when you request a lock and
some othcr process owns it? ln most cases, your
process'suspends" or waits until the lock is avail-
able. For certain critical operating svstem func-
tions, the "spin lock" approach may be uscd: go
into a loop trying to obtain the lock, preventing
other rvork on this CPU bv disabling intem:pts
whiie trying to get the lock and while holding the
lock. Because of the "severe" action that occurs
when a lock is not available. a lock service (like

VfVS) may allow a conditional request for a lock:
get it if it's available, tell me if it's not available.

The IMS/VS product has both locks and
latches. l1y collcague Kurt Shoens difercntiates
locks and latches thusly: A lock is based on a
name (some bit string), a latch is based on a
storage location (a word or doubleword in stor-
agc). Thus, N{!'S and VM have misnamed their
serialization mechanisms since their "locks" are
reerlly latches because they are based on storage
locations; MVS ENQ/DEQ really is lock/uniock.
For this paper, we will remain unenlightened and
use the term lock for both locks and latches.

Modes and Compatibility

Locks often have different "modes". Once you
have modes, you need to define "compatibility"

between modes. The simple lock we described
above is an exclusive mode lock; only one holding
process is allowed at a time (since exciusive is not
compatible with exclusive). It is possible for a
Iock to have a shared raode: any number of pro-
cesses mav share it. Shared mode locks usually
havc an cxclusivc modc, exclusive mode being
incompatibie with exclusive and share (see Figure
I on page 6). When a lock request is received
that is incompatible with the modes of existing
holders of a lock, the request waits (and all sub-
scquent requestors of any mode are usually made
to wait as weil) until incompatible holders release
thc lock. Database lock managers often haye
many modes and complex compatibility tables.

3 For those wrth a compuler sctence backgroundfintroos], some lranslauon of lcrms: What is ofren called a lock, this paper would
cail an exclusive mode sorn lock. The P and V opera[ons on the semaphores described iri computer sciencc literaturc woulC
be called lock and unJock operations against an cxclusrve mocie suspend iock.

LOCKS AND LATCHES

EXCLUSIVE
SHARE i n c o m p a t i b . l e
EXC LUS I VE i n c o m p a t i b 1 e

Figure l: LOCK CO){P.,\TIBtLITY TABLE

SHARE
c o m p a t i b 1 e
i n c o m p a t i b 1 e

Appendix A of [princop] describes logic (and
shows assembler code) for two different locki
unlock services. Both support an exclusive lock,
assurne the callcr can issue WAIT and POST,
and ignore recovery considerations. One has
LIFO queueing on contention (somewhat unfair,
but easy), the other FIFO queueing. Note that
these routines use CS and may issue SVC instruc-
tions so CPU scrielization (all changcs visibie to
other CPU's) will be pcrformed before any other
CPU may obtain the lock.

Deadlocks

The use of locks generally requires either a
deadlock avoidance or deadlock dstectionl
resolution mechanism. A simple deadlock can
occur as foliows: Proccss A gets lock i; process
B gets lock 2; process A requests iock 2 and is
suspended untii it is available; process B rcquests
lock I and is suspended until it is available. It is
possible for deadlock to occur with combinations
of locks and other "wait until available" resources.

By far the most desirable treatment of dead-
locks for the parallel environment is deadlock
avoidance.a The simplest deadlock avoidance
scheme is to never attempt to hold more than
one lock at a time" For the majority of applica-
tions of locking, this may be possible, but it is
unlikely to cover all cases encowrtered when build-
ing a system. For example, a control block may
be on two chains because it can be located in
two ways. Nlost of thc time, a lock on only one
chain would be required, but deletion of the block
wouid rcquire simultaneous ownership of two
locks.s

The N{VS approach to dcadlock avoidance is
to define a hierarchy of locks and a rule: you may
request unconditionally only those locks that are
highet' in thc hierarchy than the locks you cur-
rcntly hold. This sounds like it is easy to do, but
it can get complicated where there are many layers
of code: you may get into trouble by holding a
lock and then using a fi-urction which, it turns
out, uses a lower levcl lock to cover itseif.

Thc basic address-space related lock in iVfVS
is cailed the local lock". It is relatively easy to
get anci 5sfializes activity within an address space
nicely. There is only one of these type of locks

Database systems have had deadlock delecuon and backout mecharusms sincc the 1970's. Bui.ld.ing a backout mechamsm can
be expensive and resricuve, bul database managers tend to need lt anylvay in case of fai]ures.

You cou.ld do it in sequencc: ge! one lock, mampuiate one charn, release rhe lock, then repeat for lhe olher chain. The potential
problem here is the creatlon of a wrndow where the block rs on oniv one charn.

In VM' you must only request locks "lower" rn the hrerarchy. The key is t\at rhere must be an ordering and you must move
in onjy onc ducctron when obtatning locks.

LOCKS AND LATCHES

per address space so there is no deadlock problem
ttnkrss you'rc dealing with other "wait untii avail-
ab|. resowces. Unfortunately, the locking gran-
ulanty is very coarse - only one for all aclivitics
in :.:,e address space. Many basic and r.uuelatcd
MYS sewices require the local lock - there is
more scrialization than ncccssrr5. For crumplc,
if you get the local lock ard thcn pagc fault, any
other process in your address space that atlempts
GEf I!{AIN will be serializcd (because
GETI\IAIN needs the local lock) unlil your
pagefault is resolvcd and you give up the lock.

Re'urvery

ln components and subsystems thal havc logic
to prevent abnormal tcrrnination when a failure
such as a program check or abend occuis, addi-
tional complexity is required in lock support. If
al error occurs in a process that holds a lock, the
recovery logic must ensure that the lock is released,
otherwise your systcm will probably 'dry up" as
processes wait for the lock that they can ncvcr
obtain. If an error occurs in a process that is
waiting for a lock (aslnchronous abend, for ex-
ample), the mechanism used by the lock support
to locate ard resumc the waitcr must bc cleaned
up if the process in error is terminated. :vlVS
includes recovery in its lock support. but if your
code is going to retry fiom failures, -vou1l necd
to tahe iocks into account.

ADVANTAGES

Building a complcte lock sen'icc hcluding rc-
covery support is not trir.ia.l, but is also not a
tremendous amount of work. You may be abie
to use existing operatirg system support. Once a
lock seryice is availabie, usilg it to serialize and

avoid parallelism problems appears quite desir-
able:

r GettinB a lock is simplc: a procedure call or a
m3cto.

. Codc written to manipulate a shared object
whilc holding a lock does not have to use spe-
cial instructions or worry about consistency and
CPU serialization. 'I'o a large deeree, the com-
plexity of parallel.ism is eliminated (because
when you have lhe lock you have eliminated
parallelism), eliminating lots of opponunities
for tricky bugs.

. A simple lock request car be satisfied in as few
as 6 instructions generated by an inline macro
if the lock is not already hcld by another pro-
ccss; the release of the lock can be as cheap.

o Avoiding dcadlock secms easy early in a design
and most of the time actually is casy.

DISADVANTAGES

. The primar.v disadvantages of locking lie in the
pcrformance arena: Designs that rnade "bad-

dccisions about the use of locks have caused
serious bottlenecks il systems and ilcreased
pathisnghs signifi cantly:

- The suspend/resume that occurs when a lock
is requesled and already held normallv costs
severa.l thousand instn:ctions.? This is one of
the costs of "lock contention". How much
contention will occur? You need to know
this 1o decide if a panicular locking desiggr is
viable. A suggested approach is to discussed
under "LOCKING PERFOR\,!.ANCE
A\-ALYSIS" on page 9.

7 when rurmllg drsabied for rnterrupts, spin locks can be usec insread of susDend locks. Tbe cos! of spinmng is generally goirg
!o be less !h&1 Lhe cost ci susoendlresume 3ssu!1iirg Lhal lock hoidcrs oo not hold lhe lock for long insiruclon sequcnc€s.

LOCKS AND LATCHES

q

Using an exclusive lock to cover a 'large'

function causes that function to be avaiiable
on or y one CPU at a time. On a 4-waY, 4
mip machinc for example, a ma-aimum of I
mips worth of such a function can bc sup-
plied. Using a single lock to cover lots of
functron is just as bad as supplying all the
firnction under I and onl-v I process: you
cannot utilize morc thar I CPU in thc ma'
chine.

Designs that are likely to page fault or do
voluntary i/o while holding Iocks drastically
reduce the capacity of the function and in-
crease the probabilitv of contention. If you
estimate that a random i1o may average 25
milliseconds and a page far.rlt rtsponse may
1ake longer, then a locked senice loses re-
sponsiveness and capacity very quickly when
i7o or paging occurs.

If your lock can bc used bv requests from
several address sPaces, your users had bctter
be non-swappable. Getthg swaPpcd out
while holding the lock would rcduce the avail-
abilily of yow function sig:rificantl.r.

' If your lock can bs used by rcquests from
several address spaces of diffcring priorities
you may providc poor service to high prionty
users. If you are nrnning on a lorv priority
user's process and obrain ths lock and then
are preempled for higher priority work your
firnction wil not be Yery rcsponsrvc.

- In the general case, a lock service t"ill prob-
ably cost morc tharL the minimum. ln reality,
getting and releasirrg a lock with no conten'
rion wiLl cost roughlv 25 irstrunions as op-
posed to the three or fow exlta rnslmctlons
required for a simpic Compare arrd Swap.E
If rhe function is "mainlile ", many cpu cycics
may be spcnt in locking and unlocking. llVS

components do enough locking to justi! mi-
crocode assist.

o .Anolher disadvanlage of locking is the need to
avoid deadlocks. The hierarchical nrle approach
uscd by MVS is simple and may allow you the
Ilcribility you need. You probably want to
build a hierarchy validity check into your lock
service - it's a whole lot easier to find hicrarchy
pro8rarn elrors that way (the altemative is to
debug thc resuJring deadlocks).

The strict hierarchy approach to avoiding
dcadlock may be too restricti.ve - look closely
at MVS locking and youll se€ that it was for
them: there is an exception where three locks
at ths sane level can be obtained with one
request; there's a.lso a new "CPU" lock that
doesn't follow the hierarchy rule- If you can't
foilow a strict hicrarchy, nrle I applies again'
krow what you're doing. Remember that the
more complex the scheme, the more error Prone
it is.

. lnckirlg oftcn causcs complications h rccovery.
lf your componcnt or subsystcm is to have
serious recovery logic (functional tecovery or
ESTAE logic that lries to clean up damage and
retry), your rccovery code must clean up locks
obtaincd by a failing routirc. It is difficult to
determinc precisely whethcr the failing logic
obtained a lock. parricularly when the lock ser-
rice allows onc ptocess to request tlte same
lock many times, thus thc caller of the faiiing
routine may have owned the lock. Minimum
recovery logic must free any locks obtained by
a tcrminating process, otherwise the rest of the
system rl'ill probably dry up behind them'

o Once code is built with locking as the mecha-
nism for preventing parallelism problems,
charging approaches (eiiminating the lock) will
normallv be quite difficult unless the fi-rnction

8 A lock function ln a real sysleri requrres inslructrons !o deal wlth sevcral aspecls: ftndng thc lock suuctue; slalrsucs; lra4krng

for rccovery; checkng hierarchy lrolatrons; Il,.lkalle !o our-of-lme rouunes. The 25 inslruclion nuober is from a sPecialzed

subsyslem macro Lha! runs inline uiless rhere is lock conJlic!. The \'lVS lock funclon wilh rr,rcrocode Lssist (one Lnsuuc[on

oerforrns a iot o[firnc''ron) lakes about 20 inslruchons for se! aid relcase

LOCKS AND L-.\TCI]ES

is simple and well contained. The primary rea-
s();.I is that other approaches place more re-
sl:;rints on what can bc done and when - code
\\x1ten based on locks will not be structured
Y ilh this in mind.

LOCKING PERFORMANCE
ANALYSIS

One potential problem with locking pcrfor-
mance is conlention. Designs usirr locks :hould
undcrgo at least a cursory analysis to spot prob-
lems. A suggested approach is to:

l. Estimate iil: the average number of insrruc-
tions that will be executed whilc holding the
lock. Be sure to be pessimistic.

2. Idcnti! your favoritc machinc and gct an
estimate of the rnrps of a single CPU.

3. Esrimate n: the ma-rimum number of timcs
per sccond that a furction using this lock
could be hvoked on this machhe. Again,
be sure to bc pessimistic.

A simplistic calculation of thc probabiliry of
lock contention is:

p = naihll (mipsr 1000000)

A simple scnsitivit,r' analysis should also be
done: what happens if rhc pathlcn€fh of the fiurc-
tion doubles or the number of rcquests doubles
or the mmber of CPU's per machire doubles?
If anv one of these causcs trouble, come up with
another design- If two of thcsc cause trouble,
worry about the design.

Example l: A function that averages 500 in-
stnrctions will be executed undcr a lock on a
4-way machine wherc each CPU produces l0
mips. ln a high usage env;onment, a 40 mip
machile could generate 4000 irvocations per sec-
ond of this fi:ncrion. There would thcn be a

probability of 40001500/(l0i 1000000) = .29 L.
lock contention assurning an equal distribution
of requests among processors and across time. I
would look for another design approach: On the
zverage, 20To of thc requests will require suspend/
resumc. Just the pathlength impact of contention
assuming 2500 instruaions for suspend/resume
would effectively double the cost of the function
(.20+2500 + 500 = 1000). Anorher viewpoint is
thal the serialization mechiurism actually costs as
much as the firnction.

Scnsitivity a-nalysis: if the number of requests
doubles, then contention goes to
8000{5001(10*1000000) : .40. If, in addition,
the number of CPU's per machine doubles, you
would normally expect the number of requssts to
doublc again, now giving 16000+500i (10i1000000)
= . 8 0 .

Examplc 2: A funaion that averages 100 in-
structions will be executed under a lock on a
4-way machine where each CPU produces I mip.
In a high usage environment, a 4 mip machine
coulci generatc 50 invocations per second of this
firnction. There would then be a probability of
50rl00i(1i1000000) = .005 of l,ock contenl.ion
assuming a.n equ:rl distribution of requests arnong
proc€ssors and across time. Use of a lock for this
frrnction appears rcasonable.

Example 3: A fiuction that averages 100 in-
struclions will be executed under a lock on a
4-wav machine where cach CPU produces I mip.
ln a high usagte environment, a 4 mip machine
could generate 50 invocations per second of this
function. Since the funAion accesses user storage,
we estimale a probabiiity of .05 that a request
w'ill take a page fault iasting 40 milliseconds.'Ihere

would then be a probability of
50+100/(1r1000000) + 50+.05{ .040 : .105 of
iock contcntion assuming an equal distribution
of requests arnong processors and across time.
Use of a iock for this firnction is margital at best;
I would look for another solution.

Convol

LOCKS AND LATCHES

10

A performance problem that has been encoun-
lercd in some systems is the'convoy phenorne-
non"lconvoyl. This occurs when a locked fi:nction
that is normally quile fast suddedy takes a long
time (takes a pagc fault, for example), causing a
large number of requests to queue up waiting for
the lock. The standard lock senice logic when a
lock is freed arrd a waiter is found is to grant the
lock to the waiter and rcsume him. Once you get
a large nurnber queucd up, it is hard to gct back
to a "nobody queued" stalc:

o Queuing up costs suspcnd'resurne instructions.
The instruciions for rcsumc and the elapsed
time until the resumcd process is dispatched all
tend to count as "lock held time', thus the lock
is 100% busy uatil the queue is dried up evcn
though the codc needing lock protection is ex-
ecuting very rarely.

. If a process releases the lock and then quickly
requests the lock again (quitc likely in some
applications - rcmember tJre process releasirg
the lock is already dispatched), it u'ill queue up
for thc lock bchhd everybody elsc, lcadi:re to
a lock driven "time:iicing" condilion.e

The solution to the "convoy phenomenon' is
to change the "unlock, waiter found" logic: a)
actuaily unlock, do not allocatc the lock to any-

one; b) resume every waiting process. This gives
access to the lock to the fust process that can use
it, including the process that issues the unlock
and other processes that have not yet r€quested
thc lock.

ln solving the convoy phenomenon, you have
changcd a 'fair acccss" dcsign for thc lock sewice
into a dcsign which could allow monopolization
ofa lock bv a process. For cxample, two procgsses
running on a two processor machine both are in
a loop execuling 500 instructions th€n g€tting a
specific lock. If re-dispatching a resumed process
takes morc than 500 instructions then one of the
processes will be "starved'- it will never get the
lock because by the time it tries to get it again,
it's held agajn. Ln most cases, if lock utilizadsl
is low as it should be, starvalion should not be
a problcm although i1 might be a short lerm
problem when trying to clcar up a convoy. An
approach that has been suggested lconvoyl is to
free thc lock and resume only the first waiter,
thus a-llowing the cur€nt process, the process
who has waited the longest, and any new processes
to compctc for the lock.

Thc convoy phcnomenon is a lesson in how
complex thc performance aspects of locking can
L-

9 If your logic ls such !ha! you need '-he lock, then execule a few rnstrucrions ria! don'! need rhe lock, then need lhe lock again,
you shou.id normally keeD lhe lock ll]sread of gi\,utg l! up &1d oblaurulg l! agaln. Giving i! up ior a very shoa! tfne will tend
!o cause convoys or, iI the convov aesoiutron aDproach is used, giying i! up ior a shor! trme can cause lots of unproductive
suspenoircsumc processLng.

LOCKS AND LATCHES

l l

PROBLEMS AND SOLUTIONS

SETTING BITS

Thc Problcm

As describcd in Appendix A of [princop], the
standard instructions used for sctting thc valuc of
bits will not consisl.cnll.v work for shared data
structures in a parallei enyionment sincc the ef-
fects of somc of the changcs will be lost.

Figure 2 provides ar cxamplc of faiiurc. The
intent of the two OI instructions was a valuc for
A of 90. tn a parallcl environmcnt, different tim-
ings will produce 90, 80 or 10. ln this example,
it produces 10. Note that this examplc does not
illustrate the additional "window of error" that
cal be caused by lack of CPU serialization.

Solulions

IJolding a lock that, by agreemcnt, covers the
bits beurg altered will allow use of ordinary in-

structions to alter the bits. To obtain a lock just
to set bits that reside in the same word is overkill.

When using PL/AS, the solution is relatively
simplc: dcfine the bits *'ith the "abnormal" at-
tdbute and the compiler will generate Compare
and Swap instructions to alter th€m. This is the
only casc wherc the compilcr provides meaningfirl
assistance. If you alter b14e, character, or word
va:iablcs that havc the 'abnormal' attribute, thc
generated code is not corrcct for shared data struc-
lurcs in parallel environmenls.

When usilg assembler, you must use Compare
and Swap to alter the word that the bits reside
in, typically altering the bils in a rcgister. Appen-
dix A of lprincopj gives an example of this; an-
other exarnple is given in Figure 3 on page 12.

Note one of the costs of parallclism: a simple
AND IMMEDIATE instruction is replaced with
five instructions that require registers and use an
instruction that's relatively expensive if the ma-
chine has more than one CPU (CS). In addition,
for the code to remain somewhat independent of
bit locations, additional definitions such as

TIME CPU 1 MAIN STORAGE CPU 2

0
1 0 I A , X ' 8 0 ,
2 f e r c h A = 0 0
3 a l t e r A = 8 0

A : 0 0

0 I A , X ' 1 0 '
f e t ch A = 00

4 s to re A = 80 A : 80 a l t e r A = 10
5 A : 10 s to re A = 10

Fisure 2: BIT SET'Il\c FAILUR-E

PROBLEMS AND SOLT-]TIONS

I t

L RO,FI,JORD GET WORD WITH B1TS
CSFAIL EQU '(

LR RI,RO COPY OLD VALUE
N R1 ,FLONBITO CREATE NEI, I VALUE
CS RO,R1 ,FWORD REPLACE IF NO VALUE CHANGE
BNE CSFAIL GO DO IT AGAIN IF VALUE CHANGE

SDATA DSECT SHARED DATA STRUCTURE
FWORD DS OF I,/ORD ALTERED VIA CS
FLO DS X FLAGS O
FL()B ITO EQU X ISO ' B IT O LABEL FOR TESTING ONLY
FL l DS X

. DS I,i

FLONBITO DS OF AND I, IASK FOR FLOBITO
D C A L 1 (2 5 5 - F L 0 B I T 0) , X ' F F F F F F '

l- igure 3: BIT SET'IING !'IA CS

FLONBIT0 musl be qeated for "arrd and or
masks' il CS sequcnces.

TESTING AND SETTING BITS

The Problem

Commonly encountercd logic rs

I F B i T x = 0 N T H E N
D O ;
BITY=695 '
o t h e r l o g i c ;
END;

'lhere
are many minor variations of this logic: the

corrunon point is thar based on the value of a bit

or bits, you wish to change a bit or bits and
pcrform some othcr action; the change of bits
must occur "atomically" with the test.

ln both a muitiprogpamming and a parallel
environment with sha:ed data structures, the "nor-

ma.l" code for this t-rpe of logic wiil occasionally
iail to pcdbrm as dcsired even though you include
code to alter the bits rria Compare and Swap.'Ihere

are several ways the faiiure can occrtr; one
is shovn in Figrue 4 on paee 13. The basic
problcm is thc timing window bctween testing
the bits and setting thc bits - parallel processes
can hit this window and two processes will take
action whcre the intcnt is that oniy onc process
will take action. The impact of this problem is
significant: you basicall,v have to evaluate every
tcst of a bit in a sharcd data strucrure 1() see if
th€ tcst lnd sct problcm applies.

PROBI EMS .\ \D SOLUTIO\S

T ir"lE CPU 1 I4AIN STORAGE CPU 2

c
L
2
3
4 R T
5
6
7
8
9 DONE

1 0
1 i
).2

A : 0 0
TM FLO, FLOBITO
BO DONE
L RO,FWORD
L R R l , R O
O RI ,F IOOBITO
C S R 0 , R 1 , F W O R D A : B 0
BNE RT
CALL ONETIME
EQU *

A : 8 0

Tlvl
BNZ
L

RT LR
0
CS
BNE
CALL

DONE EQU

FLO , FLOBITO
DONE
RO, FWORD
R1 ,RO
R1 , FLOOBITO
RO ,R1 , FWORD
RT
ONETIME

SDATA
F|,/ORD
FLO
FLOBITO
FL1

FLOOBITO

DSECT
DS
DS
EQU
DS
DS

DS
DC

O F
X
) (' 80 1
X
H

O F

SHARED DATA STRUCTURE
WORD ALTERED VIA CS
FLAGS O
BIT O LABEL FOR TESTING ONLY

OR MASK FOR FLOBITO
A L 1 (F L 0 B I T 0) , X ' 0 0 0 0 0 0 '

Figure 4: TES I. ,l"\D SEl' F-{ILUR-[

Code using s bit to perform some function "onc time. wilt fail anrl perform thc function twice.

Solutions

tlolciing a lock that. by aglccmcnt. covcrs thc
bits being altered will a.llow use of ordinary in-
structions 1o a.lter the bits and consistcntl]- achicvc
the proper result. To obtain a lock just for rhis
fi:nction is a]sc overkill.

Basically, we need an "atomic lest and set" or
an "if and onlv i{" ttpe of operation when we are
dealing with shared data structures. Do not bother
to investisate the Sysrem/370 TEST AND SET
instruction, it's of no general value.l It tums out
that a slight vuiation on the code that sets in
troubie will perform conectly - see Figure 5 on
oaee 14.

PROBLEMS A\D SOLUTIONS

!

l4

RT
L RO , FI,JORD
EQU 'T
TI '4 FLO , FLOBITO
BO DONE
L R R 1 , R O
O R l , F L O O B I T O
CS RO,R1 , FWORD
BNE RT
CALL ONET]ME
EQU *

GET I,/ORD WITH BITS FIRST

IS THE BIT ON?
BRANCH NO
COPY OLD VALUE
CREATE NEI,I VALUE
REPLACE IF NO VALUF CHANGE
GO TRY IT AGAIN IF VALUE CHANGE
DO ONLY IF |,JE SET BIT

SHARED DATA STRUCTURE
I^/ORD ALTERED VIA CS
FLAGS O
BIT O LABEL FOR TESTING ONLY

OR MASK FOR FLOBITO

DONE

SDATA
FWORD
FLO
FLOBiTO
FL1

FLOOBITO

OF
X
x ' 9 0 '
X
n

OF

U J t r L I

DS
DS
EQU
DS
DS

DS
DC AL i (FLoBrT0) , x ' 000000 '

Figure 5: TEST ,{\D SET V'f A CS

By saving a copy-' of the rvord containing the bits before thc test. rve cnsure that uny ch&nge up to the poiht where we
stomicslly change the bit *ill be dctected, csusing us to look again. \ote th&t you ms.y test th€ bits in storage; therc
is no need to tcst the copy of the bits in register 0.

This technique works as long as all rhe bits iost as shown in Figue 2 on page ll. For some
iivoived in the tcst and set are withir onc word countcrs used for statistics, vouLay dccirie that(or doubleword if you usc CDS). 'I}lc

coding for completc accuracv is not ncccssarv and specifically
this Sets tedious irl assembler and PL.'AS: a nice choose to usc nomal instruclions rvhich are faster
candidate for a mac:o. a-nd sirnpler. lf you do this, I suggest you docu-

ment it to avoid later corrfusion.

COUNTERS
Solution

'fhc
Problcm

As described in Appendix A of lprincopl, basic
The simplest problem solved b-v'. Comparc and Compare and Swap tgi. h-d]", iognters well -

Swap is that of a counter in a shared data struc- scc the logic h lrigure-6 on page 15.
twe. Without Compar.e and Swap, we have the
samc oid problem: occasional update s will be lost
rn very much the same wav as bit updates J.r.c

PROBLEMS AND SOLUTIONS

1 5

SDATA
COUNTER

L RO,COUNTER
EQU *
LA R l ,1
A R R 1 , R O
CS RO,Rl ,COUNTER
BNE RT

DSECT
D S F

GET OLD VALUE

INCREI'4ENT VALUE
NEI.J VALUE
REPLACE IF NO VALUF CHANGE
GO TRY IT AGAIN IF VALUE CHANGE

SHARED DATA STRUCTURE
I,JORD ALTERED VIA CS

Figure 6: COUNTER SET !' lA CS

CPU SERIALIZATION

Thc Problem

The fact that storage changes done on one
CPU may not be immediatelv seen by another
CPU can cause liming" bugs whose probability
of occunencc dcpcnds on load and processor im-
plementation. This problem is not understood
by many people who understand comparc and
swap very well.

An example oflhe problem is shown in Figure
7 on pagc 16. ln the appiication. thc "NOI{M"

routine runs quitc often. NOR\I's job is to alter
field CBO to 2. l-he proccss srructure is such thar
no oth€r process can conllicl *ith this. so comparc
and swap is not necessarl. On rarc occasions,
routine '€XC" will run on a parallcl process ald

must ensure that after CBO is set to 2, routine
"DOIT' is called. To avoid a timing problem,
EXC fust sets a bit via CS, then looks at CB0.
If CBO is already set to 2, it assumes that NORM
is unlikely 1o call DOIT, thus EXC calls DOIT.
If CBO is not sct to 2, IXC assumes that NORM
will see the bit set via CS and call DOIT. Caling
DOIT twtce will use extra instructions, but not
do any damage.

Even if the two routines execute in the iime
relationship shown in Figure 7 on page 16, DOIT
may not be callcd at ali even though EXC is run.
The reason is that the altcration of CBO at time
I will cause the cache of CPU I to be altered,
but thcrc is no CPU scrializarion opcrarion nrn
on CPU I to causc main storage and cache for
CPU 2 ro reflect the aiteradon. Because of this,
EXC at trmc 12 still sees an old value of CBO
and expects \ORM (which is already done) to
run laler and call DOIT.

PROBLEMS .{ND SOLUTIONS

l 6

T iME CPU 1 TIME CPU 2

0
.L

2
3

NORM MVI
TM
BZ
CALL

RT LR
N
cs
BNE

DONE EQU

c80 ,2
FLO , FLOBITO
DONE
DOIT
RO , FWORD
R 1 , R O
R l , F L O N B I T O
RO,R1 ,F I I IORD
RT

7
8
9

l 0
i 1
7 2
1 3

EXC L
RT LR

0
CS
BNE
CLI
BNE
CALL
L

RT1 LR
N
cs
BNE

DONE EQU

RO , FWORD
R 1 , R O
R1 , FLOOBITO
RO,R1 ,FWORD
RT
a o . ' ,)

DONE
DOIT
RO , FWORD
R 1 , R O
R1 , FLONBITO
RO,R1 , FWORD
RT1

74

SDATA
FWORD
FLO
FLOBITO
FL1

SDATAl
cB0

FLOOBITO

FLONBITO

DSECT
DS OF
D S X
EQU X '80 '
D S X
D S H
DSECT
D S X

SHARED DATA STRUCTURE
WORD ALTERED VIA C5
FLAGS O
BIT O LABEL FOR TESTING ONLY

SHARED READ. UPDATE BY ''NORM" PROCESS
CONTROL BYTE

DS
DC
DS
DC

OF OR MASK FOR FLOBITO
A L 1 (F L 0 B I T 0) , X ' 0 0 0 0 0 0 '
OF AND MASK FOR FLOBITO
A L 1 (2 5 5 - F L O B I T 0) , X ' F F F F F F '

Figure 7: CPU SERjALIZAI tON FA.ILURE

Although CBO is sct to 2 st timc I by CPU l. CPU 2 at time 12 csn still see ihe prior value of CBO if CPU I has
not not been forced to pcrform CPL serialization.

PROBLEMS AND SOLUTIONS

17

Solutions

The simplest solulion is to causc CPU scrial-
iz,ation at the proper time. This can be accom-
plished by adding a branch regstcr 0 (BR R0)
instruction to NORM bcfore the test of FLOBIT0.
This instruction causes CPt,'serialization (and is
otherwise a no-op). Oncc this is done, the logic
will work - if EXC is called, DOIT will be invokcd
at least once, regardless of timing.

Another solution would be to have N[)RM
set CBO using compare and swap. \\trilc not
strictly necessary becausc thc design prevcnts con-
flicts, compare and swap will cause CPU scrial-
ization.

CHAINS, LISTS,, QUEUES

There are rna.ny variations of chains, lists, ald
queues that arr: commonlv uscd in svstcm pro-
gramrning. These mechanisms become more
conmon as components and subsyslcms become
more d1.namic. [n this sccrion, we will rcfsr to
all of these as chairs. Dca-ling u'ith thesc tech-
niques in a oaJallcl environmcnt ranscs in difficulty
from fairly simple to very complex. ln choosing
the solution to a given chaining problem it often
helps to understand thc absolute and relativc frc-
quencies of three operations against thc chain:
scarch, add, deietc. Ii, for example, you ncvcr
delete, things get simple. If there are many
searches ard fcw addsrdcletcs. r-ou'd lilc to m3kc
searching the most efficient. If you rarely usc the
chain an efficient technique is not importantlo.

tn all the problems discussed in this section,
thc use of a lock to serialize access ald manage-
ment of a chain is a pol.ential solution. The pros
and cons of locks have been discussed earlier and
will not be repcated here. There are cases where
locks or another "single process" serialization tech-
nique arc thc only solution.

'l}le Probhm - l-re'e Elemcnt List

An extrcmely corruron techaique is the use
of a "liec elcmenl list" to keep track of resources
available for use. The basic approach as showir
il Figure 8 on page 18 beghs a chain at an"anchor" in a control block. The anchor contains
0 (cmp1y chain) or the address ofthe first element;
each cicmcnt contains a chain word which will
poirt to the nert elemsnt or contain 0 (end of
chain).

ln a single process environment with no mul-
tiprogramming or palallelism considerations. deal-
hg with such a chain is easy. It is easy to manage
the chain in FIFO (fust in - fust out) or LIFO
(last in - last out) sequence.

ln a multipropramrning or paral.lel environ-
mcnt with the chain bcing a sha-red data structure,
managemcnt of the chain is more difficult. Ap-
pcndix A of lprincopl discusses this problem and
provides a solution. A modificd solution is pre-
scnted her€.

.4t first glance it seems that, as long as you're
wiiling to usc LIF0 proccssing, a simple Compare
and Swap sequence as shown in Figure 9 on page
Iti will work. 11 tr.rms out that there is a bug in
this code: on occasion you'll lose elements or
cven worsc. havc a:r elcment that is actually in
usc also appear on the free chain. An occrurence
ofthe problcm is shown in fiigure l0 on page 19.

10 Beware of system programmer myopia - syslems and components usually dust LaJ! more lian a decadc and tremenctous
changes rn svstcm scale ocauf, Suc:l changes oilen !!.n one year s sensjble deslgn decislon lnto ano|}ler year s performancc disaster.

PROBLEMS AND SOLUTIONS

l 8

Figure 8: B,\SlC I. 'RIi, lt ELEME*T l,tST

PUTEL EQU * PUT R4 ELEMENT ON FREE CHAIN
L R2,ANCHOR -> FIRST ELEI4ENT OR O

PRETRY EQU *
ST R2,ELNEXT.EI (.R4) - ' NEXT IN CHAIN OR O
CS R2,R4.ANCHOR ADD ELEI4ENT FROIVI CHAIN
BNE PRETRY GO TRY IT AGAIN IF VALUE CHANGE

GETEL EQU * GET FREE TLEMENT
L R2,ANCHOR -> FIRST ELEMENT OR O

RT EQU *
LTR R2,R2 CHECK FOR EMPTY
BZ EMPTY BRANCH IF IT IS
L R4 ,ELNEXT-EL(,R2) -> NEXT IN CHAIN 0R 0
CS R2,R4,ANCHOR REMOVE ELEI|ENT FROI.4 CHAIN
BNE RT GO TRY IT AGAIN IF VALUE CHANGE

SDATA DSECT SHARED DATA STRUCTURE
ANCHOR DS F ANCHOR OF CHAIN OF FREE ELS

EL DSECT ELE|\'IENT
ELNEXT DS F POINTER TO NEXT FREE ELEI, IENT OR O

Figure 9: ERROr*EOUS FREE EI,EME.\.-T CHArN LOGTC

This apparently good logic for putting an elemcnt on a free chain and removing it hg-s a serious flaw that is described
in Figure l0 on page 19-

PROBLEMS AND SOLUTIONS

l 9

Figure l0: DESTROYINC A CIIAIN

The first piaure shows the chain as it cxists when thc GETEL logic of l'igure 9 on page 18 loa-ds register 4 with the-next"
Pointer. This CPU is then interrupted. Before thc inier.upted proccss gets re{ispatched, the chrin hqs been

<ercd to that shown in the second picturc bv: allocatc A, sllocste B, frce C, free A. At re{ispatch of the intcrrupted
process' the Compare and Sr|aP succecds' giving thc totally invalid chain shown in thc third picture. Note that in
sddition lo losing track of C' somebodv could now 8et B a.s a free element nhen it is in fact already in use, creating
e ve.y nssty bug.

Soluiion - Frec Element List

A slight change to thc anchor structure and a
change in the logic will solvc the problem (for all
practica.l pu+)oses). Wc add an "allocation coun-

ter" ald use Compare Doubie artd Swap to detect
the sitution that gets us in trouble - where a,n
clcmcnl has becn rcmoved and replaccd but it
points to a differcnt clement thm it used to.
\\rhile [princop] uses CDS on GET and PUT, it
is sufficient to do it on GET.ll The good logic is
shown in Figurc I I on page 20.

l l CEI musl have a way !o alornically: a) Ensute that lhe his! elements cham fie]d has nor changed; b) Dnsure rhar lhc anchor
field has nor changed; c) change rhe anchor To saLlsfy Lhe firsr constran!, cEf uses tbe CDS wrth:llocalion counrer ro
delecL tial other GEl"s have occurred &1d L\us rhe ne\4 anchor vrlue mus! be re-felched. pUT by ilsef cai.not ge! into
fouble PUl musa ato[uca]ly: a) Ensure Lha! lhe ancho. ileid has not changed; b) change rhe anchoa. F_or this reason, a CS
on lhc anchor {ield is suliicicnr for PUT.

PROBLEMS AND SOLUTIOn-S

20

PI-IIEL EQU * PUT R4 ELEI.'1ENT ON FREE CHAIN
L Rz,ANCHORP -> FIRST ELEI' IENT OR O

PIiTRY EQU)t

ST R2 ,ELNEXT.EL(,R4) - ' NEXT IN CHAIN OR O
CS RZ,R4,ANCHORP ADD ELEI '4ENT TO CHAIN (CS IS ENOUGH)
BNE

.PRETRY
GO TRY IT AGAIN IF VALUE CHANGE

GETEL EQU ET FREE ELEMENT
LM R2,R3,ANCHOR -> FIRST ELEMENT OR O. COUNTER

RT EQU
LTR R2,R2 CHECK FOR EIVIPTY
8Z EMPTY BRANCH IF IT IS
L R4 ,ELNEXT-EL(,R2) -> NEXT iN CHAIN OR O
LA R5 ,1 INCRET4ENT VALUE
AR R5.R3 NEI, I COUNTER VALUE
CDS R2,R4,ANCHOR RFMOVE ELEMENT FROM CHAIN
BNE RT GO TRY IT AGAIN IF VALUE CHANGE

SDATA DSECT SHARED DATA STRUCTURE
ANCHOR DS OD ANCHOR DOUBLEWORD
ANCHORP DS F
ANCHORC DS F

EL DSECT
ELNEXT DS F

FIRST I ,JORD, POINTER TO NEXT ELEMENT OR O
COUNT OF GETS

ELEMENT
POINTER TO NEXT FREE ELEMENT OR O

l- igure I l: FREE ELEME\T Cll Al\" LOGIC

It should be notcd that the storagc occupicd
by free clcments cannot be safcly freemaincd cvcn
though the elemcnt has been rcmovcd fiom the
chain properly. 'lhc problcm is that a process
interrupled in the GETEI, logic before the load
of rcgister 4 with the clcment s nerit pointer can
program check (0C4) on the load instruoion if,
before thc proccss was re-dispatchcd. thc clement
was gottcn, frecmajncd and its pagc was invali-
dated. lf its pase was not inyalidated. thcrc's no
problem because the CDS will fail. An intelligent

rccovery rr;utinc cal rccognizc the program check,
chcck the a:rchor for difcrcnt va.lucs artd, if so,
assume thc above problem and re1ry.

The counter used to get chain integrity may
have sorne fi:nctional value: it will contain a count
of the number of allocalions. An occasionally
uscful variation a.llows vou to kecp an "il use"
count as wcll - it is shown in Figurc 12 on page
?1. Your usc count will wrap to 0 if vou have
more than 65,535 elements in use. There is no
wrap problem with the activitl' corrnl halfword.

PROBLEMS,A,\D SOLUTIO\S

2 l

PIIEL EQU * PUT R4 ELEMENT ON FREE CHAIN
LM Rz,R3,ANCHOR -> FIRST ELEMENT OR O. COUNTERS

P'. i TRY EQU
ST R2,ELNEXT-EL(,R4) - ' NEXT IN CHAIN OR O
L R5,PLUSIVIIN ADD TO COUNTER, DECREI,IENT BUSY
ALR R5,R3
CDS R2,R4,ANCHOR ADD ELEI'4ENT TO CHAIN
BNE PRETRY GO TRY IT AGAIN IF VALUE CHANGE

GETEL EQU * GET FREE ELEMENT
ll4 R2,R3,ANCHOR -> FIRST ELEMENT 0R 0, CoUNTER

R-I EQU
LTR R2,R2 CHECK FOR EMPTY
8Z EI"IPTY BRANCH IF IT IS
L R4,ELNEXT-EL(,R2) -> NFXT IN CHAIN OR O
L R5,DOUBLEI INCREI.4ENT VALUE
ALR R5,R3 NEW COUNTER VALUE
CDS R2,R4,ANCHOR REMOVE ELEMENT FROM CHAIN
BNE RT GO TRY IT AGAIN IF VALUE CHANGE

DOUBLE1 DS OF
DC X IOOO1OOO1 ' S iMULTANEOUS AOD 2 HALFWORDS.

PLUSMIN DS OF

*
0c X'0000FFFF' INCRET4ENT LEFT HW, DECREi, IENT RIGHT HW

AS LONG AS RIGHT HW > O.

SDATA DSECT SHARED DATA STRUCTURE
ANCHOR DS OD ANCHOR DOUBLEI,IORD
ANCHORP DS F FIRST I^/ORD, POINTER TO NEXT ELEMENT OR O
ANCHORC DS H COUNT OF GETS.PUTS
ANCHORB DS H COUNT OF CURRENTLY "BUSY" ELEI,4ENTS

EL DSECT ELEMENT
ELNEXT DS F POINTER TO NEXT FREE ELEMENT OR O

Figurc 12: FREE ELEnENT Cll?U\ LOGIC Wt'I l t Bt,Sy COUNT

'l'his
logic will m&rlag€ the chain and give you an accurs.tc'in useo count. The cost is the requirement to do CDS

on both PUl' and GET. Notc thst the logic at 'EIIP'|'Y-! if it creates an element &nd returns the element to the
ca.ller! must increment the husv count via CS.

PROBLEMS AND SOLLTIO\S

22

The Problem - FIFO Proctssing

The basic operation of CS or CDS on chains
results in l"ast-in First-out (LIFO) processing.
This is probably good for free resowcc chains -
LIFO would have bettcr cache and paghg effects
than First-h First-out (IrIfO) proccssing. In
manl' orher applicarions. li lFO proccssing is ci-
ther highly dcsirable or requircd.

ln a parallel or mu.itiprogrammirg cnr-iron-
ment, FIFO processing requires spccial logic be-
cause it is generally wrsafe to scan the chain to
find the "first chained" element while thc chain is
behg altered b.v other processcs that arc rcmoving
elements. This goes back to a basic problcm .
chain scalning when deletc is allowcd rcquires
special protection.

Srlutions - I'IFO Procssing, Singlc Process

ln a parallcl or muJripropramrnirg en!.nun-
ment, when only one process removes elements
from a chain, it may do FIFO processing by
scanning the chail to the end even though mul-
tiple processes arc adding to the chain as long as
all alterations to A\CIIOR use CS or CDS.

Unless otherwisc mendoncd, all thesc ap-
proaches:

l. Allow codc that adds to the chain to use a
simple CS, as shoun by rhe PUTEL logic
in Figur€ 14 on page 26. CDS with an allo-
cation counter is nor required because therr
will be no conllict between proccsses rn.lnu
to r€move elements-

2. Require the removcr of al clcment to rcmove
the element via CS if it is bcirg removed
from the anchor.

Locking

The most obvious and simple approach, as
usual, is to have a process get a lock before scan-
ning the chain and ftee the lock after removins
an element.

One application of this solution is the Iock
servicc itself. A lock sen'ice desirins to rcsume
the first waiting requestor of a loci. is already
scriaiized - it holds the lock in question. Thus,
assuming that convov effects are to be ignored
a:rd only one wailer ts to be posted, a simple
chail scan is a.ll that is required - no1 the complex
mcchanism suggested in Appendix A of [princop]
under "LOCKiUNLOCK with FIFO Queueing
for Contcntions-.

Even if thc lock is not exclusive mode only,
support for a sharedi exclusive lock cal have a
single process scan the wait list if waiters queue
up wh.ilc many processes are sharing the lock.
Assuming that all requcsts wait once an exclusive
r€qucs1 is madc, the process that decrcments the
share count to 0 is the one who performs tle scan.

Single Process Design

Ily desigxring thc logic such that only one spe-
cific process will scan Lhe chain, removc elements
and, prcsumablv, process them. For many envi-
ronmcnts, this "srngie scwer'design is quite rea-
sonablc. '1he

esscntial difference between this ap-
proach arrd locking is that this approach has only
one process; wlth locking, the scrialized work is
done under many processes, but or y one at any
given time. Evaluation of the viability of a single
sen'er desigr is similar in some ways to evaluating
locking performance:

. Will therc bc cnough capacity on a single CPU
of an 'n- way machine to support requests gen-
erated by the entire machine?

. Will the single server be responsive enough
grven its use of only one CPl,' and the delays
causcd by actit'ities like pagc faults and iio?

PROBLEMS AND SOLLITIO)iS

Solutions - FIFO Processing, Parallel Proccsses

Approximate FIFO

If multiple processes are to perform some op-
eration against an item, thcn even if cach item is
removed from a chain in stdct FIFO scquence,
actual processing of c:rch itcm mav not occur in
strict FIFO sequence sincc scvcra.l processes may
be mnning in parallel subject 1o their own page
faults, preemptions, etc. This t)?e of cnvironment
might be called "approximare FIFO" sincc it ap-
proximates FIFO processiag but does not guar-
antee n.

Recognizing the approximate naturc of the
processing, you may be willing to make it slightly
more approximate by having two anchors for the
chain: LIFO and FIFO. Logic to lcmove an
elemenl is shot'n in Figure 13 on page 24 and
described below.

Processes adding to the chain do the normal
Compare and Swap on the LIFO anchor.

Processes looking for work look on the FIFO
chain fust, attcmpting to rcmove the first element
from it via Compare and Swap. If the FIFO
chain is empty, thc process takes the entirc LIFO
chain using Compare and Swap, reverses the order
of the chain to FIFO sequence (taking the last
one (fust in) for processing), then places any re-
maining items care{irlly on the FIFO chain. While
this logic requires a fair amount of code, the most
probable path (one element on the LIFO chain)
takcs oniy a few more itstructions than standard
LIFO GETEL logic.

As you can see, there are windows where
items will be selected in a non-FIFO sequencel2,
thus we would process them rnore out of sequence
than a schcme that always selected them in se-
qucnce.

12 Whrile one process has swapped a chaln off thc LIFO anchor and rs re-ordenng i!. other pro€ssses can add !o lhe LIFO chain
itnd yel other processes ciur remove ellher a smgle eicmcnt from the LIFO anchor (and process it), or a chain of elements
which may be re-ordercd and olaced on r:re FIFO anchor bciorc rhe firsr oroccss Duts ils chatn on lie FIFO anchor.

PROBLEVS A. l "D SOI LTIONS

GIJIEL EQU * GET FREE ELEI1ENT
L I ' I R 2 , R] , F I A N C H O R F I F O - > F I R S T E L E H E N ' T O R O
U S I N G E L , R ?

R T E Q U *
L T R R ? , R z C H E C K F O R € H P T Y
BZ FIEHPTY ERANCH IF TT IS
L R 4 , E L N E X T . E L I , R 2 I - > N E X T I N C H A I N O R O
LA R5,] . INCRET1ENT VALUE
ALR Rs,R] NEX COUIITER VALUE
C O S R 2 , R 4 , F I A N C H O R R E H O V E E L E } . 1 E N T F R O H C H A I N
BE DONE GO PROCESS ELEHENT
8NE RT GO TRY IT AGAIN IF VALUE CHANGE

F I E H P T Y E Q U X F I F O C H A I N I S E H P T Y
L R Z , L I A N C H O R L I F O - > F I R S T E L E I ' I E N T O R O
L T R R 2 , R 2 C H E C K F O R E h P T Y
BZ NO'{ORK PROBASLY NO I{ORK, AUT NOT FOR SURE
S L R R 3 , R 5
C S R 2 , R J , L I A N C H O R S h A P E N T I R E C H A I N O F F
8NE GETEL TRY FROI. I THE START IF THINGS CHANGE

. C L C € L N E X T ' = F ' o ' N O R i 1 A L C A S E : I S T H I S f H E O N L Y O N E ?
BE OONE YES - GO PROCESS ELEHENT

X I IUST REOROER THE LIST
L R R 5 , R 2 S A V E . - } T O L A S T I N R E O R D E R E D C H A I N
SLR R4,R4 ZERO FOR FIRST PASs IN THE LOOP

RESEQ €QU * LOOP TO REVERSE SEOU€NC€
L R5, ELNEKI
S T R 4 , E L N E X T
LR R4,R2 NE}I PREVIOUS
L T R R 2 , R 5 N E X C U R R E N] O R O E T E C T E N O
BNZ RESEQ

* F I F O C H A I N I R 4 - > F I R S T , R 6 - > L A S T
I C H A I N O F L A S T N E € D S E T T I N G

L R 2 , E L N E X T - E L I , R q } -) T O S E C O N D E L E H E N T
L } 4 R A , R 9 , F I A N C H O R F I F O A N C H O R

R E S E A 2 O E Q U } C O S R E T R Y
* COVER CASE XHEN FIFO CHAIN IS NOl EHPTV
X AY PLACING OUR CHAIN IN FRONT OF CHAIN
r A L R E A D Y T H E R E , P O S S I B L Y G E T T I N G T H I N G S
* OUITE OUT OF S€OUENCE.

ST RS,ELNEXT-ELI ,R6) CHAIN TO IT FROH OUR LAST
L A R 5 , 1
A L R R 5 ' R 9
COS RA,R4,FIAI ICHOR I ' IY BUNCH FIRST, THEN PRIOR AUNCH
SNE RESEQzO BRANCH IF BUSY

OONE EOU * Rz->GOTTEN ELE}{ENT
NOI. IORK EOU } R2 : O, NO ELEI, IENTS AVAILAALE

SOATA OSECT
FIANCHOR OS OO

0 s F
D S F

LIANCHOR DS F

EL O5ECT
ELNEXT OS F

SHAREO DATA STRUCTURE
ANCHOR DOUBLEIIORD . FIFO CHAIN
FIRST I{ORO. POINTER TO NEXT ELE}4ENT OR O
SECONO I{ORD, ACTIVITY COUNT FOR SAFETY
ANCHOR FOR LI FO CHAIN

E LE I,1E NT
POINTER TO NEXT FREE ELEI1ENT OR O

Fiflrc l3: -APPRO)(f\l,{Tf, FIFO

PROBLEMS AND SOLUTIO\S

25

Parallel FIFO Removal

With certain rcstrictions, this scheme a.llows
para.llel addition to a chain ind provide s for FIFO
removal from the chain by parallcl proccsses. Thc
rcstiictions exist becausc thc rcmoval logic may
be examining and even attcmpting to altcr the
chain fields of an element that has alrcady been
removed &om (or evcn re-inserted into) thc chain:

o The chain area of the element must not be
altered by arry code other than GETEL,
PUTEL.

r After ar element has been placed on the chain
once, the element's storage may not be freed
even though the clemcnt is no longer on the
chain (if storage is freed, other processes search-
ing the chain which may have obsolete data
pointing to this element mav program check
when referencilg this element). 'Ihere

is a way
around this problem - described later in this
secllon,

The code to pcrform parallcl FIFO rcmoval
is shown il Figrre 14 on page 26.

PROBLEMS AND SOLUTIONS

26

P:ITEL EQU
L

PTETRY EQU
C T

CS
BNE

R2,ANCHORP

R2,ELNEXT-EL(,R4)
R2,R4,ANCHORP
PRETRY

PUT R4 ELEI'4ENT ON FREE CHAIN
.> FIRST ELEMENT OR O

-> NEXT IN CHAIN OR O
ADD ELEMENT TO CHAIN
GO TRY IT AGAIN IF VALUE CHANGE

GET AN ELEI.4ENT, FIFO
O VALUE

POINTER, COUNTER
ANY ELEI'1ENTS?
BRANCH NO
->DOUELEI./ORD

SCAN FOR THE LAST ON THE CHAIN
IS THERE A NEXT ELEMENT?
BRANCH NO
->DOUBLEI,]ORD
POINTER, COUNTER
NOW END OR OFF OF CHAIN?
BRANCH NO
BRANCH YES - START FROF'I BEGINNING
AT ONE TIt '4E, R2 EL I , IAS LAST
INCREMENT VALUE
NEW COUNTER VALUE
SWAP LAST ELEMENT OFF CHAIN
IF FAIL, SOI '4EONE ELSE GOT IT
R2->ALLOCATED ELEMENT 0R R2 = 0

SHARED DATA STRUCTURE

A(FIRST ELEI4ENT) OR
COUNT: NEXT ELEMENT

AREA ONLY ALTERABLE
A(NEXT ELEI4ENT) OR O
COUNT: NEXT ELEMENT

SCAN

GETEL

RESTART

MAYBE

DONE

SDATA
ANCHOR
ANCHORP

EL
ELDI,JORD
ELNEXT

DSECT
DS
DS
DS

DSECT
DS
DS
DS

EQU
S L R R O , R O
EQU
LM R2,R3,ANCHOR
LTR R2,R2
BZ DONE
LA R4,ANCHOR
U S I N G E L , R 2
EQU 'T
C RO , ELNEXT
BE MAYBE
LA R4,ELDUIORD
LlI RZ , R3 , ELDI,/ORD
LTR R2 ,R2
BNZ SCAN
B RESTART
EQU *
L A R l , 1
A L R R 1 , R 3
cDs R2 ,R0 ,0 (R4)
BNE RESTART
EQU *

OD
F
F

OD
F
F

0
REMOVED

BY GETEL, PUTEL

REMOVED

Fieure l4: PAIL\LLEL FII-O REMOVAL

Note that this logic is somewhat slow if the avcrage qucue/chain length is large. With long chains, the epproximete
FIFO logic performs better.

PROBLEMS AND SOLUTIONS

27

ll turns out that an obligation passing ap-
proach can be used to frec storage for al elcment
if ',;.at capability is required. We must add a
doubleword containing a 'GETEL use count'
and a delete chain anchor to the shared data struc-
ture. Any process desiring to frce thc storagc for
arr element first checks to see il there are any
active GETEI, processes bv lookine at the
GETEL use count. lfthere are none, the element
can actually be delctcd (frccmained or used for
something else or whatevcr). If there are active
GETEL processes, the oblisation to delctc the
elcrrrcnt is passed on by chaining the element off

of the delete chain anchor using a delete chain
field in the element. Before entering the scan
portion of GETEL, we increment the "GETEL

use count- - effectively a share modc lock. Once
through the GETEL logic, we decrement the use
count and, if we decrcment it to zero, remove the
cnlire chain (if any) of elemcnts to bc deleted and
actually dclete them.

\Vhen obligation passing delete support is
addcd, good recoverv logic bccomes more impor-
tant: a failure in GETEL is likely to leave rhe
GETEL usc count indemented - if it's not dec-
rcmented vou w.ill be unable to actually delete
anv elemenls.

PROBLEMS ,\ \D SOLL TIO\S

28

DELEL EQU x DELETE ELEhENT THA1 oNcE t{AS
* O N T H E C H A I N { A N C H O R P I . R 2 , > E L

U S I N G E L , R 2
L M R O , R l , O A N C H O R D E L € T E A N C H O R P O I N T E R

D E L E L T O E Q U * C S R E T R Y
L T R R] . , R l A C T I V E G E T E L P R O C E S S E S ?
B P D E L E L 2 O B R A N C H Y E S , P A S S T H E O B L I G A T I O N
C A L L D E L E T E z A C T U A L L Y D E L E T E T H E R U E L E I 1 E N T
B DE LE L3O DONE

O E L E L z O E A U * P A S S O N D E L E T E O B L I G A T I O N
S T R O , E L O N E X T C H A I N O F F N E I 1 E L E H E N T
LR R3,R1 SAI1E USE COUNT
C S R O , R 2 , O A N C H O R P P U T N E I { E L T X E N T O N C H A I N

l*l .
jt.r.t.

BRANCH rF ausY

G E ' E L E Q U , . G E T A N E L € H E N T , T I F O
L RI,OANCHORC G€TEL USE COUNT

G E T I o E Q U * C S F E T R Y
L A R Z , l
A L R R 2 , R]
C S R I , R z , O A N C H O R C I N C R I H E N T U S E C O U N '
BNE GET1O

O T H E R P A R A L L E L F I F O R E I 1 O V A L C O O E
GO€S HERE UNCHANGE D

DONE EQU * Rz.>ALLOCATED ELEHENT oR R2 : o
L } 4 R O , R l , D A N C H O R

D O N E I O E Q U } C O S R E T R Y
LR R5,R1 COPY USE COUNT
B C T R s , O O N E z O O E C R E M E N T , B R A N C H I F N O T O
S L R R q , R 4 N E h C H A I N O R I G I N V A L U E
C D S R O , R q , O A N C H O R S E T B O T H X O R D S T O Z E R O
BNE DONEIO RETRY
L T R R O , R O D I O I l E G E T A D E L E T E C H A I N ?
BZ DONE4O ARANCH NO
C A L L O E L E I E I D E L E T E C H A I N S T A R T I N G X I T H R O
B DONE4O

DONEzO EQU } USE COUNT \ o
C S R l , R 5 , O A N C H O R C A P P L Y M Y D E C R E I 1 E N T
ANE DONE GO REFRESH BOTH REGISTERS

D O N E 4 O E Q U * R E A L L Y O O N E , R 2 S T I L L S E T

SOATA DSECT
ANCHOR D5 OD
ANCHORP DS F

D S F
OANCHOR DS OO
DANCHORP OS F
DANCHORC DS F

E L D S E C T
ELDI{ORD OS OD
E L N E X T O S F

0 5 F
ELDNEXT OS F

SHARED DATA STRUCTURE

A I F I R S T E L E H E N T) O R O
COUNT: NEXT E LEI '1El lT RE|IOVED
D E L E T E E L E M E N T C O N T R O L
A I F I R S T E L E h E N T I O R O
COUNT: NEXT E LEMENT REI '1OVED

A R E A O N L Y A L T E R A A L € O Y G E T E L , P U T E L
A I N € X T E L € I 1 E N T I O R O
COUNT: NEXT EL€HENT Rtt lOVEo
A { N E X T E L E H E N T O N O E L E T E C H A I N) O R O

Figurc 15: PARALI^EL FIFO RIIIIOVAL I'ITII DETITION

Thc adchDona.l codc rcqur.d ro suppoft safc delelon (hrelrlaln) oi el€mcntl lhat lravc once oesn on rnc cnajr.

PROBLEMS AND SOLUTIONS

29

Th<' Problem - I'ind and Removc by \ame

A more complex class of problem than FIFO
processing is the case where you must bs ablc to
find a specific elcmsnt on a chajn and be ablc to
remove it ftom the chain no matter whcre it is

in the chah. Tlpically, you would be trying to
find an element that was uniquely identified by
some bit-string (NAME).

This problem is somewhat difFcult, primarily
because you need to remove items ftom the mid-
dle of a chain and you necd to scan the chain.
Figure 16 on page 30 provides an example of
what can go wrong. Note that parallelism is not
rcquircd to causc the problern shown - multipro-
gramming is sufficient.

l

PROBLEMS A\D SOLUTIONS

30

ANCHOR:

ANCHOR:

ANCHOR:

Figure 16: PROBLEM: FIND snd RE}IOVE by NAME

This figure illustrates one possible sequence that could occur using simple logic to seerch a chain gnd remove an
elemcnt, even if compere erd swap is used for rcmovsl,

I. The lirst figure shorrs the chain e^s process l, sea-rching for element named C, gets the -ncxt pointer" (value 2)
from the element &t locstion l. This process is then suspcnded due to preemption or rr page fault.

1

3.

The second figure shows the chain alier process 2 finds and removes thc eiement namcd B located et address 2.

The third ffgute shorvs the ch&in alicr process 2 changes ihe name of the element et address 2 to D arrd adds
the element inro the chs.in in narne seouence.

Process I thcn resumcs snd looks at the elemcnt st address 2, finds name D and concludes thBt C is not on thc
chain!

What would happcn i i process 2 frecmaincd the elcment st eddress 2 (and freemain inval idated thc page in the
p&ge t&ble)?

W}|at would happen if process 2 used the storagc at address 2 for some other purpose?

4 .

PROBLEVS A \D SOLL ' I IO \S

3 l

Solutions - find and Removc by Name

This problem can be resolved by the singlc
process approach, but rhis eLiminatcs parailelism
for finding, adding, and remor.ing elements. Once
an element is found and eithcr rcmoved or pro-
tected &om deletion, the eiemcnt can be used by
parallel processes.

.lf chains are to be scarched, i1 is a good idea
to use one or more search tcchniques such as
ordering by name andlor hashing frjhash]. I{ash-
ing is particularly nice - ir is simpiy a bunch of
lists, each of which can be hardlcd using these
serialization techniques.

Locking

As usual, locking can bc uscd to solvc the
problcm. A lock with shared and e xclusive modcs
as shown in Figure I on page 6 is the best solution.

o If the request is merely to search for a named
element but leavc it on the chain, the lock is
obtained in share mode and the chah is searched
by merely following the chain.

. If the request is to remove a ninned elcment
from the chaia, thc lock is obtainsd in exclusiye
mode, thc chain is scarched and the element
may be removed with ordinrv instructions.

. lf th€ request is to add a named element then
the lock is obtahed in exclusive mode and the
element added to the chain with ordinarl in-
structions. If names must bc uniquc, you
should search for the name whiie holding the
exclusive lock bcfore adding the new element
to the chait.

0bligation Passing

Obligation passing may be used in this situa-
tion if appropriate to thc application. r\s used
herc, obligation passing controls processing such
that onc and only one process al a time wiil be
manipulating chains for *re purposes of element
delction.

If other processes want to perform chain ma-
nipulation at the same time, they pass their ob-
ligation to the last process dealing with the struc-
ture. This variarion of obligation passing, devel-
oped by Ron Obermarck, is somewhat complex .
and will be described with words as well as an
assemblcr iarguage example (found in "Appendi_r.

A. ASSE}IBLER EXAMPLES, BY NAME,
OBLIGATION PASSING" on page 36).

One potenrial shortcomhg: physical removal
of deleted itcms (and the ability to re-use,/free the
storage) can take "a whilc'because it can on.ly be
tnstered when the chain goes "idle" (no processes
in search or delete). ln most applications, this
should not be a problem since there are no built-in
suspends in thc logic. ln an exfemcly high usage
application with lots of parallelism, it might be-
come a problem.

The actua.l application being used for the ex-
ample needs the followrng functions:

l. ADD an element to the list.

2. FIND a specific (named) element for shared
usage. Support for exclusive usage could be
easily added.

3. UNFIND an elcment from shared usase es-
tablishcd b;-. a pnor FIND.

PROBLEMS A]\.'D SOLU'f lO\S

32

4. DELETE a specific (named) element - make
i1 no longer eligible for FIND and free its
storage as soon as possible.

All of thesc functions must be accessible ftom
parallel processes and the funaions must not sus-
pend (or spin for a lock).

ADD is accomplished by standard comparc
and swap of the new element onlo the chain
anchor producing a LIFO ordered chah. Ar as-
sembler example , essentially the same as the
PUTEL logic in Figure I I on pagc 20, is shown
in Figure 19 on pagc 37.

FINTT is accompLished by incremcnting a use
count (basicallv a shared-mode-only lock) that is
associated with the entire chain. The chain is
then searched for the requested element. If the
element is found, an element use count is ircre-
mented (using Compare and Swap iogic) as long
as the element is not marked as "logicallv deleted'-
I{ the element is logtcally deleted, it is trcated as
"not found". The following casc is covered: a
named element is logically deleted thcn an elcmsnt
*ith the same na:ne is added. Bcforc rctuming
to the caller, a RELEASFI roulinc is called to
decfement the chain's use count and handle anv
passed obligations.

An assembler example is shown in Figure 20
on pagc 38.

UI{FL\ID is accomplished by decrementing an
elcment's usc count using compale and swap.
The chain use count is not required for this op-
eration.

DELETE is bepun by incrementing the chain's
use court. The chain is then scarchcd for the
requested element. If the element is found, the
elemcnt is not marked as ioglcally deleted lthis
check prolects against parallel processcs tqing to
delete the sarne elemcnt), and the element use
count is zero (a safety check), thcn the elcment
is marked as logically deieted (using Compare a:rd
Swap logic). If we successfully mark the eiement

as logically deleted, we add the element to a delete
chain. Note that we do not alter the primary
element chain here since it is not safe. Before
retuming to the caller, a RELEASE routine is
called to dccrement the chain's use couat, handle
any passed obligations, and, if we are the onJy
currcnt uscr of thc chain, perform lurther delete
actions on the element we may have placed on
the delete chain.

Results of DELETE processing are shown
piaorially in Figr:re 17 on page 33. An assembler
ex,ample is shown in Figure 2l on page 39.

RELEASE is a firnction invoked by FIND
and DELETE to decr€ment the chain use count.
If it finds the use count to be I (this is the only
process working on the chain), it then looks for
delete work (indicated by elements chained from
the delete anchor). A 6rst pass removes elements
from the primary element chah (this is safe be-
cause onJy ons process is doing the chain altera-
tion; processes that start FIND or DELETE will
be OK bccause the old eiements and their chain
fields are still valid).

A second pass begins if the chain use count
is I ailer ihe fust pass completes. The second
pass can actuallv free el€ments that were removed
from the primar,v chain bv an cariier pass. Freeing
the elements is safe becausc no process cal be
scarching the primary chain with the addrcss of
these elements sirce they were off the piimary
chain bcforc x'o found that no other processes
wcrc looking at thc chain (use count of I at the
begirLning of pass 2).

l-he aaual logic is a bit more complicated
because il musl account for DELETE action oc-
curring during arrv of the passes ald ensure that
the chain use cowrt ncver rcaches 0 while there
are elcmcnts on the delcre chairr.

Results of RELDASE processing are shown
pictorially h Figure 17 on page 33. An assembler
examplc is shown in Figure 22 on page 40 ald
Figurc 23 on page 41.

PROBI.E\1S A\D SOLUTIO\S

33

ANCHOR:

DANCHOR:

ANCHOR:

DANCHOR:

l .

Figurc l7: DELETE FROM I\{IDDLE } ' I A OBLIGATIO|{ PASSING

The first figure shows the chain rrith no delcte acivitv, possibly mnny processes searching it.

The second figure shows thc ch6.in s-fter & process running thc DELETE function on the elcment nshed B locoteo
st add.ess 2 hss linished all but the c&ll to tl-El-E,tSE. tf. whcn REI,E.I-SE is called bv the DELETE process,
there ate other processes busr with thc chain. the Df,LE'l'[, process will msle no further chsnges to the structure
and the phvsical delete obl igation ha-s been passcd.

Thc third f igure shows the chein after e process running l ' lND or DELETE logic cal ls Ri jLEASF, and thc ch&in
use count is found to be I end the first pass of physical deletc hss completed by altering the prirnaty chain ard
markjng the elcrnenl as '0tr primary chain". Note ihst thc pointer from Drl:iCHOR to element B would nor
exist unless at the beginning ofpass 2. RII,EA.SE logic found a chein use count ofgreater than l, in which cese
this process would dccrement the use count ard rcturn, psssing the obligation for stege 2 of physical delete.

The fourth figure shows the chain after the second pa-ss of RELErlSti, hss completedi sll deletion work has
comPlctcd. \otc tbs.t i t is possiblc that three dif fcrcnl processcs are involvcd in thc dclct ion of element B.

PROBLE}IS AND SOLUTIONS

34

SUMMARY

Coding in a parallel €nvi.ronment can be com-
plex and error prone. The fust step to success,
hopefirlly providcd by* this papcr. is understanding
the problems and understanding the solutions
availablc.

The simplest solution to problems of paral-
lelism appears to be the use of locks, bu1 they

htroduce subtlc capacity arrd performance prob-
lems. A large nurnber of parallelism problems
can be dcalt with using Compare and Swap as
shown above. Use of Compare and Swap tech-
nioucs to avoid locks is strongly suggcsted where
at all possible. As of 1986, large /370 processors
have 4 CPU's - para.llelism is real and indiscrim-
inate usc of locking can defear i1.

Summary

35

ACKNOWLEDGEMENTS

lhe content of this document has many and cannot be attributed. I am indebted to Ron
sources, some of which arc listed in the bibliog- Obermarck and Kurt Shoens for signficant assis-
raphy, some are rust

"s)-stcms programrninr lorc- tance in "coping *'ith parallelism".

ACKNOWLEDGEl\,tE\TS

36

APPENDIX A. ASSEMBLER EXANIPLES, BY NAME, OBLIGATION PASSING

This appendlr contains assemblcr languagc examples of logic to use obligation passing to support a -find

by name" with delete capability.

* COPYRIGHT IBM CORPORATION 1986
* DATA AREAS AND EQUATES USED

LISTANCH DC A(O) L IST ANCHOR
SHRLATCH DS OD DOUBLE-I^iORD BOUNDARY
RCOUNT DC F'O' COUNT OF CURRENT USERS OF LATCH
DELTANCH DC A(O) ANCHOR FOR PENDING DELETES

* DEFINE RETURN-CODE VALUES RETURNED TO CALLER IN R15

SUCCESS EQU O VALUE RETURNED IF SUCCESS
NOSUCCES EQU 4 VALUE RETURNED IF NO SUCCESS

X DEFINE THE LIST ELEMENT STRUCTURE AS A DUI '4MY SECTION

ELEMENT DSECT , DUMMY SECTION .
ELEMPCHN DS A PRIMARY CHAIN FOR LIFO QUEUE
ELEI'IACHN DS A ALTERNATE CHAIN
ELEI '4IDEN DS F ELEMENT IDENTIFIER
ELEI '4CTFL DS OF ELEMENT IN_USE COUNTER AND DELETI FLAG
USECTR1 EQU X 'OOOOO1OO' USE-COUNT 1 'S POSIT ION VALUE IN WORD
ELEMUSCT Ds FL3 ELEMENT IN-USE COUNTER (0 = NO USERS)
ELEMUSFL DS X ELEMENT DELETE FLAGS
DELETED EQU B 'OOOOOOOI ' FLAG B IT - IF 1 , ELEMENT DELETED
OFFCHAIN EQU B 'OOOOOOIO ' FLAG B IT - IF 1 . ELEMENT UNCHAINED
ELEMDATA DS C DATA BEGINS HERE

Figure l8: SeJnplc dsta structures for List Manipulation

Appendix A. ASSEMBLER E)L{MPLES, BY NAME, OBLIGATION PASSING

J I

* COPYRIGHT IBM CORPORATION 1986
ADD STM R14,R12,12(13) SRVE INPUT REGISTERS

L R9,0(,R1) cET POiNTER T0 ELEMENT T0 ADD
USING ELEMENT,R9 ASSIGN BASE REGISTER
SLR R8,R8 GET A ZERO

* sT RS,ELEMCTFL SET FLAGS AND CoUNT TO NULL

L RS,LISTANCH CURRENT ANCHOR CONTENT
ADDO1 ST R8,ELEMPCHN L iFO CHAIN

CS RB,Rg,LISTANCH ATTEMPT ANCHOR UPDATE
*

BNE ADD01 L00P IF NoT SUCCESS

LM R14,R12,12(13) RESToRE REGISTERS
LA R1s,SUCCESS ALWAYS SUCCESSFUL
BR R14 RETURN
DROP R9 RELEASE BASE REGISTER

Figure l9: Sample lmplementation of .{DD for List Manipulation

Appendix A. ASSEMBLER EX,\MPLES, BY NAME, OBLIGATION PASSING

38

usirue
B

L
LTR
BZ
c
BNE
EQU
J I

LTR
BZ" a

FINDO3 LA
NR
BNZ
LA
AL
CS
BNZ

* 'COPYRIGHT IBM
FIND STM

L

L

L
F INDOl LA

AL
cs
BNZ

F I NDO2L
F I NDO2

FI NDO2X

CORPORATiON 1986
R 1 4 , R 1 2 , 1 2 (R 1 3)
R 2 , 0 (, R 1)
R 6 , 0 (, R 2)
R s , 4 (, R 1)

RO,RCOUNT
R l , 1
R l , R O
R O , R I , R C O U N T
FINDOl

R9 , LI STANCH
ELEMENT , R9
F I NDO2

R9 , ELEMPCHN
R 9 , R 9
F I NDO2X
R6 , ELEMIDEN
FINDO2L

R e , 0 (, R s)
R 9 , R 9
FiNDERRX

RO , ELEI,ICTFI
R l ,DELETED
R 1 , R O
FI NDERRX
Rl ,USECTRl
R i , R O
RO,R1 , ELEi '4USCT
F I NDO3

NOI,I RESERVED FOR THE
RELEASE
R 1 4 , R 1 2 , 1 2 (1 3)
R 1 5 , S U C C E S S
R14

SAVE CALLERS REGS
POINTER TO IDENTIFIER
GET IDENTIFIER ITSELF
GET POINTER TO FOUND BLOCK

CURRENT READER COUNT
COUNTER INCREt"lENT
NEI,I COUNTER VALUE
ATTEMPT THE CHANGE
LOOP UNTIL SUCCESS

GET A(FIRST ELEMENT IN L IST)
SET AS BASE
ENTER AT TEST FOR I^IHILE-LOOPS

TO NEXT IN CHAIN
TEST FOR NULL POINTER
EXIT LOOP IF NULL
COMPARE FOR IDENT TO DELETE
LOOP IF NOT EQUAL
SEARCH EXIT
SAVE POINTER TO BLOCK OR NULL
TEST FOR NULL POINTER
EXIT IF NULL(SUCCESS = OFF)

CURRENT USER COUNT
FLAG VALUE FOR DELETED
AND OLD VALUE WITH FLAG
DELETED - EXIT NO SUCCESS
COUNTER iNCREMENT
NEI,/ COUNTER VALUE
ATTEI''IPT THE CHANGE
LOOP UNTIL SUCCESS

CALLER - RETURN SUCCESS
RESET SHARED LATCH
RESTORE REGISTERS
SET SUCCESS RETURN CODE
RETURN

NO SUCCESS
RESET SHARED LATCH
RESTORE REGISTERS
SET ERROR RETURN CODE
RETURN
RELFASE BASE REGISTER

" ELEMENT iS
CALL
LM
LA
BR

" ELEI"IENT WAS NOT FOUND - RETURN
FINDERRX CALL RELEASE

L M R 1 4 , R i 2 , 1 2 (1 3)
LA R15 ,NOSUCCES
BR R14
DROP R9

Figure 20: Sarnple lmplehcntstion of FIND for List Manipulation

Appendix A- ASSEMBLER E)CA,MPLE.S, BY \A\{E. OBLIGATION PASSING

39

* COPYRIGHT IBM CORPORAT]ON 1986
D E L E T E S T M R 1 4 , R 1 2 , 1 2 (R 1 3)

L R 1 , 0 (, R 1)
L R 6 , 0 (, R 1)
L RO,RCOUNT

DLETOl LA R1,1
A L R 1 , R O
CS RO,Rl ,RCOUNT
BNZ DLETOl
L R9, L ISTANCH
USiNG ELEI4ENT,R9
B DLETOz

DLETO2L L R9, ELEMPCHN
DLET02 LTR R9,R9

BZ DLETERRX
C R6, ELEMIDEN
BNE DIETO2L* CODE FOR LOGICAL DELETION
L RS,ELEMCTFL

* LA R6,DELETED

DLETO3 LTR R8, R8
BNZ DLETERRX
LR R7,R8
OR R7,R6
CS RB , R7 , ELEMCTFL
BNZ DLETO3

R8 , DELTANCH
R8 , ELEMACHN
RS,R9 ,DFLTANCH
DLETO4

SAVE CALLERS REGS
POINTER TO IDENTIFIER
GET IDENTIFIER ITSELF
CURRENT READER COUNT
COUNTER INCREI'IENT
NEI,/ COUNTER VALUE
ATTEMPT THE CHANGE
LOOP UNTIL SUCCESS
GET A(FIRST ELEMENT IN L IST)
SET AS BASE
ENTER AT TEST FOR WHILE-LOOPS
TO NEXT IN CHAIN
TEST FOR NULL POINTER
EXIT LOOP IF NULL - (NOT FOUND)
COMPARE FOR IDENT TO DELETE
LOOP IF NOT EQUAL

GET USE COUNTER AND FLAGS
FLAG FOR TEST AND SETTING

TEST FOR DELETED OR IN USE
IF EITHER, EXIT l , j ITH ERROR
CURRENT COUNT AND FLAG VALUE
SET DELEIE FLAG ON IN NEl./
ATOI''IIC CHANGE TO DELETE FLG
LOOP IF OLD VALUE CHANGED

" ELEMENT I , IARKED DELETED - CHAIN FOR RELEASE PROCESS BY SOME PROCESS

L
DLETO4 ST

CS
BNZ

* ELEI4ENT HAS BEEN DELETED (NOI
CALL RELEASE
L M R 1 4 , R 1 2 , 1 2 (1 3)
LA R15,SUCCESS

* BR R14

* ELEI'4ENT TO DELETE NOT FOUND
DLETERRX CALL RELEASE

L M R 1 4 , R 1 2 , 1 2 (1 3)
LA R l5 ,NOSUCCES
BR R14
DROP R9

CURRENT VALUE OF PENDING DELETES
LIFO QUEUE ON ALTERNATE CHAIN
ADD TO ANCHOR
LOOP T]LL SUCCESS

FREED) - RETURN SUCCESS
RESET SHARED LATCH
RESTORE REGISTERS
SET SUCCESS RETURN CODE
RETURN

ON CHAiN - RETURN NO SUCCESS
RESET SHARED LATCH
RESTORE REGISTERS
SET ERROR RETURN CODE
RETURN
RELEASE BASE REGISTFR

Figure 2l: Ssmplc Implemcntetion of DELETE for List Monipuletion

Appendix. A. ASSEMBLER EXA\IPLES. BY \-AME. OBI-IGATION PASSING

40

".3OPYRIGHT IBM CORPORATION 1986

" RELEASE SHARED LATCH, AND FREE PENDING DELETES IF LAST USER." REGISTERS ARF NOT SAVED -
* ACTUAL FREEING OF REMOVED ELEMENTS IS NOT SHOI,/N.

RELEASE SLR R4,R4 ZERO REI ' IAINING WORK FIC
SLR R5,R5 ZERO REI '4AINING WORK LIC

* OUTER RELEASE LOOP - DETERMINES WHETHER TO WORK OR EXIT

RLSFOO LM RO,RI,SHRLATCH COUNT AND CHAIN ANCHOR
RLSEO1L LR RZ,RO REPLICATE READER COUNT

LTR R3,R5 REMAINING I^IORK LIC
87. RLSEO1A IF REMAINING WORK THEN
ST R1 ,ELEMACHN-ELEI"IENT(,R4) ADD ANY NFW TO FRONT (LIFO)
B RLSEO1B

RLSEO1A LTR R3,R1 ELSE REPLICATE NEl, l WORK LIC
BZ RLSEO1C IF NEW WORK OR REMAINING I,JORK THEN

RLSEO1B BCT R2,RLSEOID DECREMENT - BRANCH IF NOT TO O
LR R3,R2 WAS ZERO - ZERO NEi^/ ANCHOR.
LR R2,RO RESTORE READER COUNT TO 1
B RLSEO1D TO CDS

RLSEO1C BCTR Rz,O ELSE RELEASE SHARED LATCH
RLSEO1D CDS RO,R2,SHRLATCH ATTEMPT THE CHANGE

*
BNZ RLSE01L L00P IF NoT SUCCESS

,, IF LATCH COUNT I^JAS DECREMENTED, RELEASE IS COI'1PLETE." OTHERWISE, THERE IS SOI"IE WORK REMAINING

CR RO,RZ DID I CHANGE COUNT?
* BNZR R14 IF YES, THEN EXIT - DONE.

* CHAIN TO PROCESS EITHER IN R4 OR IN R1 IF R4 IS ZERO

LTR R9,R5 CHECK FOR RESIDUAL CHAIN
BNZ RLSEOz IF RESIDUAL IS ZERO THEN
LR R9,R1 I , IOVE NEW CHAIN ANCHOR

RLSEOz SLR R4 ,R4 ZERO RESIDUAL L IC
LR R5 ,R4 AND RESIDUAL F IC

USING ELEI ' IENT,Rg SET AS BASE

Figure 22: S&mph Implementation of RELl]ASE for List Manipulation

Pe.rt- | Outer Loop Control

Appendix A. ASSEMBI-ER EXAMPLES, BY \AllE,, OBLIGATION PASSING

4 l

" COPYRIGHT IBM CORPORATION 1986
RLSEO3 TM ELEMUSFL,OFFCHAIN IF ELEMENT OFF PRIMARY CHAIN

*
BNZ RLSEo4 THEN T0 FREE CHAIN, ELSE

* ELEMENT TO BE UNCHAINED FROM PRII . '1ARY CHAIN

* L R8,ELEMPCHN GET -> NEXT ELEMENT

LR R7,R9 I '4AKE CURR COMPARE VALUE FOR CS
CS RT,RS,LiSTANCH ATTEMPT SWAP UPDATE
87 RLSEO3T IF SUCCESS EXIT . ELSE

* B RLSE03E BRANCH T0 WHILE L00p TEST

RLSEO3L L RT,ELEi '4PCHN-ELEI. , IENT(,R7) TO NEXT LIST ELEMENT
RLSEO3E C R9,ELEI '4PCHN-ELEMENT(,R7) POINT TO ELEMENT TO DELETE?

BNE RLSEO3L NO- LOOP

*
ST RB,ELEMPCHN-ELEMENT(,R7) CHAIN PREV AROUND DELETED ONE

RLSEO3T L RS,ELEMCTFL CURRENT VALUE OF COUNT AND FLAGS
RLSEO3U LA RT,OFFCHAIN FLAG - OFF PRIMARY CHAIN

OR R7,R8 SET FLAG ON IN PROPOSED VALUE
CS RS.RT,ELEMCTFL ATTET', IPT UPDATE

*
BNZ RLSEo3U L00P TILL SUCCESS

L RS,ELEMACHN SAVE NEXT IN CHAIN
LTR R4 ,R4 CHECK FOR F IRST T IME
BNZ RLSEO3X IF F IRST (ZERO) THEN
LR R4 ,R9 SAVE F IC RESIDUAL

RLSEO3X ST Rs,ELEMACHN ADD POINTER TO NEW ELEMENT
LR R5,R9 I4AKE IT NEW LAST

* B RLSEOS T0 c0t'4M0N

* ELEMENT OFF PRIMARY CHAIN - MAY NO\i BE FREED

RLSEO4 L RS,ELEMACHN SAVE NEXT iN CHAIN

* FREEING PROCESS OF R9->ELEI '4ENT NOT SHOWN, BUT DONE HERE* I ,JITHOUT DISTURBING RB, R4, R5, OR R14 CURRENT CONTENTS

RLSEOs LTR R9 ,R8 POSSIBLE NEXT TO PROCESS
BNZ RLSEO3 IF NOT ZERO, INNER LOOP
B RLSEOO ELSE TO OUTER LOOP
DROP R9 RELEASE ELEI ' IENT BASE

Figure 23: Sample Implementation of RELf,ASE for List Manipulation

Part-2 Processing of Queued Work for Obligatcd Process.

Appendk A. ASSEMBLER E)L.L\{PLES, BY NA\{E. OBLIG.{TION PASSING

42

REFERENCES

lprincopi IBM S;-s1emi3?0 Extcnded Archircc-
turc, Principles of Opcration, IB!1 Pub.
No. 3r\22-7085 (1983).

lmvslockl \fVS/Enendcd Architecturc System
Itrogrammrng I ibrarv: Systcm \tacros
and Facilities Voiumc I and Volume 2,

IBM Pub. No. GC28-1150 and
GC28- l l5 r (1983) .

lrjhashl R, L. Obermarck, R. K. Trcibcr, Prac-

" tical Uses of Hashing For Main Storage

Searching, IBM Research Report No.
RJ3483 (1982).

[convo;-] Mike Blasgen, Jirn Gray, Mike Mitoma,
T'om Price, 'Ihe

Convoy Phcnomenon,
ACi\l Operating Systems Review Vol 13
No 2 (April, 1979).

[introos] A- N. I.labcrmann, lntroduction To Op-
crating System Design, Science Lesearch
Associates (1976).

ldeadlockl J. W. Havender, Avoiding Deadlock
in lVlultitasking Systems, IBM Systems
Jouma.l 7 No. 2 (1968) pp. 7tl-84.

References

