
September 25, 1998
RT0269
Computer Science 15 pages

Research Report

A Study of Locking Objects with Bimodal Fields

Tamiya Onodera and Kiyokuni Kawachiya

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

A Study of Locking Objects with Bimodal Fields

Tamiya Onodera
Kiyokuni Kawachiya

IBM Research, Tokyo Research Laboratory

1623-14, Shimo-tsuruma, Yamato-shi, Kanagawa-ken 242-8502 Japan

Abstract

Object locking can be e�ciently implemented by bi-
modal use of a �eld reserved in an object. The �eld
is used as a lightweight lock in one mode, while it
holds the reference to a heavyweight lock in the other
mode. A bimodal object-locking algorithm recently
proposed for Java achieves the highest performance in
the absence of contention, and is still fast enough when
contention occurs.
However, mode transitions inherent in bimodal lock-

ing have not yet been fully considered. The above al-
gorithm requires busy-wait in the transition from the
light mode (ination), and does not make the reverse
transition (deation) at all.
We propose a new algorithm that allows both ina-

tion without busy-wait and deation, but still main-
tains an almost maximum level of performance in the
absence of contention. We also present statistics on the
synchronization behavior of real multithreaded Java
programs, which indicates that busy-wait in ination
and absence of deation can be problematic. An ini-
tial implementation of our algorithm shows promising
results in terms of increased robustness and improved
performance.

1 Introduction

The Java programming language [3] has built-in sup-

port for multithreaded programming. To synchro-

nize threads, Java adopts a high-level mechanism

called monitors, and provides language constructs of

synchronized statements and methods, where locks

are associated with objects.

The �eld of locking has been studied both long and

deeply. As a result, most modern computer systems

provide two classes of locks for system programmers,

spin and suspend locks. A spin lock is realized with a

memory word, and by repeatedly performing against

the word such atomic primitives as test and set,

fetch and add, and compare and swap. On the other

hand, suspend locks, typical instances of which are

semaphores and monitors, must inevitably be inte-

grated with an operating system's scheduler, and thus

implemented within the kernel space.

A well-known optimization of a suspend lock, �rst

suggested by Ousterhout [11], is to combine it with

a spin lock in the user space. In acquiring this hybrid

suspend lock, a thread �rst tries the spin lock, but only

a small number of times (possibly only once). If it fails

to grab the spin lock, the thread then attempts to ob-

tain the actual suspend lock, and goes down to the

kernel space. As a result, when there is no contention,

synchronization requires just one or a few atomic prim-

itives to be executed in the user space, and is therefore

very fast.

Locking of objects is done with conventional locks.

The main concern here is how associations between

objects and locks are realized. A simple way is to

maintain them in a hash table that maps an object's

address to its associated lock. This approach is space-

e�cient, since it does not require any working memory

in an object. However, the runtime overhead is pro-

hibitive, because the hash table is a shared resource

and every access must be synchronized.

Recently, Bacon, Konuru, Murthy, and Serrano [2]

proposed a locking algorithm for Java, called thin

locks, which optimizes common cases by combining

spin locking and suspend locking as in hybrid suspend

locking. What is really intriguing is that the algorithm

reserves a 24-bit �eld in an object and makes bimodal

use of the single �eld. This was the beginning of bi-

modal locking.

Initially, the �eld is in the spin locking mode, and

remains in this mode as long as contention does not

occur. When contention is detected, the �eld is put

1

into the suspend locking mode, and the reference to

a suspend lock is stored into the �eld. In this way,

the algorithm achieves the highest performance in the

absence of contention, while it is still fast enough in

the presence of contention.

However, mode transitions inherent in bimodal lock-

ing have not yet been fully considered. Transitions

from and to the spin locking mode are called ination

and deation, respectively. Their algorithm requires

contending threads to busy-wait in ination, and does

not perform deation at all.

In this paper we propose a new algorithm that al-

lows both ination without busy-wait and deation,

but still maintains an almost maximum level of perfor-

mance in the absence of contention. We also measure

the synchronization behavior of real multithreaded

Java programs, which indicates that busy-wait and

absence of deation can be problematic. Finally, we

evaluate an implementation of our algorithm in IBM's

version of JDK 1.1.6 for the AIX operating system.

The initial results are promising in terms of increased

robustness and improved performance.

The remaining sections are organized as follows.

Section 2 presents the base bimodal locking algorithm,

which is a simpli�ed version of thin locks. Section 3

describes our bimodal locking algorithm in detail. Sec-

tion 4 gives measurements for multithreaded Java ap-

plications, and Section 5 shows performance results of

an implementation of our algorithm. Section 6 dis-

cusses related work, and Section 7 presents our con-

clusions.

2 The Base Locking Algorithm

and Related Issues

The base locking algorithm is a simpli�ed version of

thin locks by Bacon, Konuru, Murthy, and Serrano [2].

We simplify the original algorithm to concentrate on

those portions relevant to mode transitions. We start

with an overview of thin locks, derive a simpli�ed ver-

sion, and discuss issues inherent in bimodal locking.

2.1 Thin Locks

Thin locks [2] was the �rst bimodal locking algorithm

to allow a very e�cient implementation of monitors

in Java. It is deployed across many IBM versions

of JDK, including JDK 1.1.6 OS/2, JDK 1.1.6 AIX,

JDK 1.1.4 for NetworkStation 1000, and JDK 1.1.4

OS/390.1 The important characteristics are:

Space It assumes that a 24-bit �eld is available in

each object for locking,2 and makes bimodal use

of the lock �eld, with one mode for spin locking

and the other for suspend locking.

Speed It takes a few machine instructions in lock-

ing and unlocking in the absence of contention,

while it still achieves a better performance in the

presence of contention than the original JDK.

Software Environment It assumes that the under-

lying layer provides suspend locks with the full

range of Java synchronization semantics, namely,

(heavyweight) monitors.

Hardware Support It assumes the existence of a

compare-and-swap operation.

Like hybrid suspend locking, thin locks optimize com-

mon cases by performing hardware-supported atomic

operations against a lock �eld. However, they optimize

not only the most common case | that of locking an

unlocked object | but also the second most common

case | that of locking an object already locked by the

same thread a small number of times. They do so by

carefully engineering the structure of a lock �eld or,

speci�cally, by using as entry counts 8 bits in a lock

�eld in the spin locking mode.

2.2 The Base Algorithm

We made two major simpli�cations to the original al-

gorithm:

� Extension of the lock �eld to make it a full word.

� Omission of optimization for shallowly nested

locking.

1As of October 9, 1998
2They did not reserve the �eld by increasing the size of an

object. The base Java virtual machine adopts the handles-in-

headers object structure, and an object's header includes a �eld

for storing the object's hash code. They invented a technique

that allows the �eld to be reduced to two bits, and made 24 bits

free and available to their algorithm.

2

0 0

unlocked

0 A

locked by thread A

Figure 1: Flat lock structure

1 Monitor ID

heavyweight
monitor

Figure 2: Inated lock structure

Except in these two respects, the base algorithm shares

all the abovementioned important characteristics of

thin locks.

We now present the base locking algorithm. First,

the lock word takes one of two structures - a at struc-

ture for spin locking and an inated structure for sus-

pend locking. These structures are distinguished by

one bit, called the shape bit.

The at structure is shown in Figure 1. The value of

the shape bit is 0, and the remaining bits hold a thread

identi�er. The value of the lock �eld is 0 if nobody

owns the object. Otherwise, the value is the identi�er

of the owning thread. On the other hand, the inated

structure contains a shape bit with a value of 1 and a

monitor identi�er, as in Figure 2. Notice that, when

the lock word of an object is in the inated mode, the

object may or may not enter the monitor.

When an object is being created, the lock word is

initialized to 0, which indicates that it is unlocked

in the at mode. The compare-and-swap operation

takes three arguments, and atomically performs the

task represented by the pseudo-C code in Figure 3.

2.2.1 Locking

Figure 4 shows the base algorithm. In locking an

object, it �rst attempts to grab a at lock by using

a compare-and-swap operation. If the compare-and-

swap succeeds, the lock word was 0 (unlocked in the

at mode), and becomes the current thread's identi�er

(locked by the current thread).

If the compare-and-swap fails, there are two possi-

bilities. In one case, the lock word is already in the

inated mode. The conditional in the while loop im-

mediately fails, and the current thread enters the ob-

ject's monitor. In the other case, the lock word is in

the at mode but the object has been locked by some

other thread. Namely, at lock contention happens.

The thread then enters the ination loop, which we

will explain in Section 2.2.3.

2.2.2 Unlocking

In unlocking an object, the current thread �rst tests

the lock word to determine whether it is in the at

mode. If so, the current thread unlocks the at lock

by simply storing 0 into the lock word. Otherwise, it

takes the object's monitor out of the lock word, and

exits from the monitor.

Notice that unlocking in the at mode does not re-

quire any atomic operation. This is because an im-

portant discipline is imposed on the algorithm that

only the thread locking an object can modify the lock

word, except for the initial compare-and-swap in the

lock function. Hence, the algorithm achieves the high-

est performance in the absence of contention: one

compare-and-swap in locking, and one bit-test followed

by one assignment in unlocking.

2.2.3 Ination

When a thread detects at lock contention, the thread

enters the ination loop in the lock function. In the

loop, it performs the same compare-and-swap opera-

tion in order to grab the at lock. The inating thread

needs to acquire the at lock before modifying the lock

word, because of the abovementioned discipline.

If the compare-and-swap succeeds, the current

thread calls the inflate function. It creates a mon-

itor for the object, enters the monitor, and stores in

the lock word the monitor's identi�er with a shape bit

3

int compare_and_swap(Word* word,Word old,Word new){

if (*word==old){

word=new; return 1; / succeed */

} else

return 0; /* fail */

}

Figure 3: Semantics of compare-and-swap

void lock(Object* obj){

/* flat lock path */

if (compare_and_swap(&obj->lock,0,thread_id()))

return;

/* inflation loop */

while ((obj->lock & SHAPE_BIT)==0) {

if (compare_and_swap(&obj->lock,0,thread_id())){

inflate(obj);

return;

}

yield();

}

/* inflated lock path */

monitor_enter(obj->lock & ~SHAPE_BIT);

return;

}

void unlock(Object* obj){

if ((obj->lock & SHAPE_BIT)==0) /* flat lock path */

obj->lock=0;

else /* inflated lock path */

monitor_exit(obj->lock & ~SHAPE_BIT);

}

void inflate(Object* obj){

MonitorId mon = create_monitor(obj);

monitor_enter(mon);

obj->lock = (Word)mon | SHAPE_BIT;

}

Figure 4: Base locking algorithm: a simpli�ed version
of thin locks

whose value is 1. If it fails, the thread needs to per-

form busy-wait until it detects that some other thread

has completed ination or it succeeds in the compare-

and-swap in the ination loop.

2.2.4 Deation

Like the original algorithm, the base algorithm does

not attempt deation at all. Once the lock word has

inated, all subsequent attempts to lock the object

take the inated lock path, even if contention no longer

occurs.

Actually, deation is di�cult to realize in the algo-

rithm. For instance, storing 0 in the lock word just

before calling monitor exit in the unlock function

does not work. What may happen is that, while one

thread acquires the suspend lock at the inated lock

path in the lock function, another thread simultane-

ously succeeds in the initial compare-and-swap.

2.3 Inherent Issues

Ination and deation are unique to bimodal locking.

Thin locks inate the lock words by busy-waiting, and

never deate them, as we have seen in the base algo-

rithm. We summarize and consider the reasons and

justi�cations given by the authors of [2] for their ap-

proach to mode transition.

They deem busy-wait in ination to be acceptable

for two reasons. First, the cost is paid once because of

the absence of deation. Second, the cost is amortized

over the lifetime of an object, assuming locality of con-

tention, which states that, if contention occurs once

for an object, it is likely to occur again for that ob-

ject. Furthermore, they mention that standard back-

o� techniques like those proposed by Anderson [1] can

be used to ameliorate the cost and the negative e�ect

of busy-waiting.

However, the above reasons rely on their choice of no

deation, which may not necessarily be a right thing to

do. In addition, Anderson's techniques are considered

and evaluated in situations in which spin locking is

useful, namely, where the critical section is small or

where no other process or task is ready to run. Locking

activities in Java are so diverse that we do not think

that these techniques are straightforwardly applicable

to Java.

4

They do not deate lock words, for two reasons. The

�rst of these is locality of contention. The choice pre-

vents lock words from thrashing between the at and

inated modes. The second is that the absence of de-

ation considerably simpli�es the implementation.

However, locality of contention is not veri�ed. The

real programs they measured were single-threaded ap-

plications, which obviously resulted in no contention.3

As we will see, our measurements of real multithreaded

programs show that locality of contention does not ex-

ist in many more cases than one might expect. On the

other hand, the second reason is understandable. As

we explained above, deation is quite di�cult to real-

ize in the algorithm.

3 Our Locking Algorithm

We describe a new locking algorithm that allows both

ination without busy-wait and deation, but still

maintains an almost maximum level of performance

in the absence of contention.

The algorithm requires one additional bit in an ob-

ject. The bit is set when at lock contention occurs,

and hence named the c bit. An important require-

ment is that the c bit of an object belongs to a dif-

ferent word from the lock word, since the bit is set by

a contending thread without holding a at lock.

Figure 5 shows our locking algorithm. The �rst

thing to note is that, if a thread fails to grab the at

lock in the ination loop, it waits on a monitor; it does

not busy-wait at all.

The second thing to note is that the unlock func-

tion, which is responsible for notifying a thread wait-

ing in the ination loop, �rst tests the c bit outside

the critical region. This means that, in the absence

of contention, the additional overhead is only one bit-

test. Hence, an almost maximum level of performance

is maintained. We explain in Section 3.1 why this un-

safe bit-test does not cause a race hazard.

The third thing to note is that the algorithm condi-

tionally deates an object's lock word at Line 36. The

necessary condition is that nobody is waiting on the

object. Furthermore, as long as the necessary condi-

tion is satis�ed, our algorithm allows selective dea-

3This is not nonsensical, because the most important contri-

bution of thin locks is that it removes the performance tax Java

imposes on single-threaded applications.

1 void lock(Object* obj){

2 /* flat lock path */

3 if (compare_and_swap(&obj->lock,0,thread_id()))

4 return;

5

6 /* inflated lock & inflation path */

7 MonitorId mon=obtain_monitor(obj);

8 monitor_enter(mon);

9 /* inflation loop */

10 while ((obj->lock & SHAPE_BIT)==0){

11 set_flc_bit(obj);

12 if (compare_and_swap(&obj->lock,0,thread_id()))

13 inflate(obj, mon);

14 else

15 monitor_wait(mon);

16 }

17 }

18

19 void unlock(Object* obj){

20 /* flat lock path */

21 if ((obj->lock & SHAPE_BIT)==0){

22 obj->lock=0;

23 if (test_flc_bit(obj)){/*the only overhead*/

24 MonitorId mon=obtain_monitor(obj);

25 monitor_enter(mon);

26 if (test_flc_bit(obj))

27 monitor_notify(mon);

28 monitor_exit(mon);

29 }

30 return;

31 }

32 /* inflated lock path */

33 Word lockword=obj->lock;

34 if (no thread waiting on obj)

35 if (better to deflate)

36 obj->lock=0; /* deflation*/

37 monitor_exit(lockword & ~SHAPE_BIT);

38 }

39

40 void inflate(Object* obj, MonitorId mon){

41 clear_flc_bit(obj);

42 monitor_notify_all(mon);

43 obj->lock = (Word)mon | SHAPE_BIT;

44 }

45

46 MonitorId obtain_monitor(Object* obj){

47 Word lockword=obj->lock;

48 MonitorId mon;

49 if (lockword & SHAPE_BIT)

50 mon=lockword & ~SHAPE_BIT;

51 else

52 mon=lookup_monitor(obj);

53 return mon;

54 }

Figure 5: Our locking algorithm

5

tion, which is the purpose of the condition in Line 35.

For instance, we can deate lock words on the basis

of dynamic or static pro�ling information. Again, we

explain in Section 3.2 why deation is so simple to re-

alize in our algorithm, and does not cause problems

such as those described in Section 2.2.4.

The last thing to note is the way in which moni-

tors are used. In inating an object's lock word, all

the code related to ination is basically protected by

the corresponding monitor; a notable exception is the

unsafe test of the c bit. Interestingly, the monitor is

simply the same as the suspend lock whose reference

is eventually stored in the lock word. As we will show

in Section 3.3, our algorithm ensures that a monitor's

dual roles do not interfere with each other.

To understand the duality a bit better, consider the

case in which a thread locks an object already in the

inated mode. The thread fails in the initial compare-

and-swap in the lock function. It then looks up and

enters the object's ination monitor. The only remain-

ing thing is to fail in the conditional expression of the

while loop. Notice that the object's monitor is en-

tered after the while loop in the base algorithm; it is

already entered as the ination monitor in our algo-

rithm.

Finally, we mention the lookup monitor function;

the code is not shown in Figure 5. We assume

that there exists an underlying hash table that main-

tains associations between objects and their monitors.

Given an object, the function searches the hash table,

and returns the object's monitor, after creating a mon-

itor if necessary. Notice that deation purely means

the mode transition of a lock word; it does not imply

the removal of the corresponding association from the

table.

3.1 Testing an Flc Bit

We explain why testing an c bit outside the critical

region does not cause a race hazard. Speci�cally, we

show that no thread continues to wait forever in the

ination loop without receiving any noti�cation. We

start with the following two properties, which can be

obtained immediately from the code in Figure 5.

Property 3.1 An object's shape bit is set only in the

inflate function, and cleared only at Line 36 in the

unlock function. In both cases, the object's monitor

is entered.

Property 3.2 An object's c bit is set only in the in-

ation loop, and cleared only in the inflate function.

In both cases, the object's monitor is entered.

We then prove the following crucial property, which

states that the failing compare-and-swap has an im-

portant implication. There are subtle issues related

to this property on a multiprocessor system, which we

will consider in Section 3.4.

Property 3.3 If a thread T fails in the compare-and-

swap against an object in the ination loop, there is

always some other thread that subsequently tests the

object's c bit at Line 23 of the unlock function.

Proof. From Property 3.1, the object's shape bit

remains the same when T fails in the compare-and-

swap at t1 as when T �nds the while loop's conditional

true. That is, the lock word is in the at mode at t1.

The failure then implies that some other thread U

holds the object's at lock at t1. In other words, U

does not execute the store of 0 into the lock word at

Line 22 of the unlock function. Hence, U unsafely

tests the c bit after t1.

The following lengthy property is all that we can

theoretically state about what happens after a thread

waits in the ination loop.

Property 3.4 If a thread T waits on an object's mon-

itor M in the ination loop, there is always a thread

that subsequently calls the inflate function against

the object or executes the compare-and-swap against

the object in the ination loop.

Proof. Let t1 be the time at which T performs the

compare-and-swap in the ination loop that fails and

causes T to wait on M . From Property 3.3, there

exists some other thread U that unsafely tests the cor-

responding object's c bit at some time t2 after t1.

We then perform a two-case analysis based on

whether U �nds the c bit set or cleared at t2. Con-

sider the simpler case, in which U �nds the c bit

cleared at t2. From Property 3.2, the clearance of the

c bit implies that a third thread calls inflate before

t2. Since T already enters M at t1, V calls inflate

after T waits onM and implicitly exits fromM . Thus,

the property holds in this case.

6

Next, consider the case in which U �nds the c bit

set at t2. The thread U then succeeds in the unsafe

test and continues to execute test-and-notify, which is

properly protected byM . The properly protected test

may fail or succeed. If it fails, obviously, the c bit

is cleared. By the same reasoning as above, we can

induce that the property holds.

If the test succeeds, the thread U noti�es M , and

wakes up one of the waiting threads, which may or

may not be identical to T . Again, notice that, since

T already enters M at t1, U calls notify after T

waits on M and implicitly exits from M . The woken-

up thread W eventually resumes the execution and

reaches the while loop's conditional. W may �nd the

conditional false or true. If the conditional is false,

some thread sets the shape bit, which implies, from

Property 3.1, that the thread has called inflate. If

the conditional is true, the thread W continues to ex-

ecute the body of the ination loop; that is, it executes

compare-and-swap. Thus, we have shown in both cases

that the property holds.

In theory, the execution of the compare-and-swap in

the ination loop repeatedly fails and is retried forever.

Our algorithm lacks fairness, like the base algorithm.

However, we can state that, in practice, a thread even-

tually succeeds in the compare-and-swap and calls the

inflate function.

Thus, a practical consequence of Property 3.4 is

that, if a thread waits on an object's monitor in the in-

ation loop, there is always a thread that subsequently

calls the inflate function. Since the function wakes

up all the threads waiting on the ination monitor,

this means that every thread waiting on the ination

monitor at the call is eventually woken up.4

3.2 Deating a Lock Word

We show that our deation is safe. Consider a general

locking sequence in which a thread T locks an object,

executes the code in the critical section, and unlocks

the object. Let us consider that T acquires the object's

lock when T returns from the lock function, and re-

leases the lock when T calls (rather than completes)

the unlock function. Let us also consider that T holds

the lock between the two times. We can then state the

4Because of deation, the woken-up threadmight wait on the

ination monitor again.

safety of our deation as follows.

Property 3.5 No thread ever acquires an object's at

lock when some other thread holds the object's suspend

lock. Similarly, no thread ever acquires an object's sus-

pend lock when some other thread holds the object's at

lock.

Proof. In order for a thread to acquire an object's at

lock, the thread needs to succeed in the �rst compare-

and-swap in the lock function. However, it never suc-

ceeds as long as some other thread holds the suspend

lock.

Similarly, in order for a thread to acquire an object's

suspend lock, the thread T needs to enter the object's

monitor and fail in the while loop's conditional. The

conditional never fails as long as some other thread

holds the object's at lock.

Indeed, what makes our deation simple and safe is

that the shape bit is always tested after the monitor

(re-)enters. Notice that deation of an object does

not imply that the association between the object and

its suspend lock is instantaneously removed from the

underlying hash table. Thus, it is safe even if the lock

word of an object becomes deated in the middle of

the obtain monitor function.

3.3 Monitors' Dual Roles

The immediate concern about using a monitor both

for protecting the ination code and suspend-locking

a Java object is that these two roles may interfere with

each other. More speci�cally, one concern is that no-

tifying an ination monitor might wake up a thread

waiting on the Java object, and another is that notify-

ing a Java object might wake up a thread waiting on

the ination monitor.

Actually, our locking algorithm ensures that nei-

ther case occurs, if we properly de�ne the internal

functions for waiting on and notifying a Java ob-

ject, wait object and notify object. First, the

wait object function forces ination of the lock word

if the lock word is in the at mode.5 This is done under

appropriate protection by the object's ination mon-

itor. In addition, the unlock function suppresses de-

ation as long as a thread is waiting on a Java object.

Combining the two, we obtain the following property:

5Notice that the thread which calls wait object in the at

mode already holds the at lock.

7

Property 3.6 If some thread is waiting on a Java ob-

ject, the lock word is in the inated mode.

Second, the notify object function performs one

of the following two actions. If the object's lock word

is in the at mode, the function simply ignores the

noti�cation request, since the contrapositive of Prop-

erty 3.6 states that no thread is waiting on a Java

object in this mode. Otherwise, the function noti�es

the corresponding suspend lock. This implementation

immediately yields the following property:

Property 3.7 If a thread noti�es a Java object, the

lock word is in the inated mode.

Third, our locking algorithm noti�es an ination

monitor in two places, one in the unlock function and

the other in the inflate function. Notice that both

places are protected by the monitor. A thread of con-

trol reaches the former only when the c bit is set, and

the latter only when the shape bit is cleared. Each of

the conditions holds if and only if the lock word is in

the at mode. We thus have the following property:

Property 3.8 If a thread noti�es an ination moni-

tor, the lock word is in the at mode.

Finally, our locking algorithm causes a thread to

wait on an ination monitorM in one place, that is, in

the ination loop that is entered only when the shape

bit is cleared. Furthermore, calling inflate against

M wakes up all the waiting threads on M . This gives

the following property:

Property 3.9 If a thread is waiting on an ination

monitor, the lock word is in the at mode.

We are now ready to conclude the section. From

Property 3.8 and the contrapositive of Property 3.6

we can infer that it is impossible for notifying an ina-

tion monitor to wake up a thread waiting on the Java

object. Similarly, from Property 3.7 and the contra-

positive of Property 3.9, we can infer that it is impos-

sible for notifying a Java object to wake up a thread

waiting on the ination monitor.

3.4 MP Issues

In general, special care must be taken in implement-

ing a locking algorithm on a multiprocessor system.

This is the case for the base algorithm. For instance,

when implemented on a PowerPC multiprocessor sys-

tem, which is weakly ordered, the store of 0 in the

lock word at Line 22 of the unlock function must be

preceded by the sync instruction, to ensure that any

stores associated with the shared resource are visible

to other processors. As a result, the performance in

the absence of contention is not as high as in a unipro-

cessor system.

Notice, however, that the store does not have to be

followed by sync. Although a thread trying to lock

the same object may see the stale value and thus fail

in the compare-and-swap, this simply results in a few

more iterations in the busy-wait loop.

Our algorithm imposes more stringent requirements.

As we have seen above, the proof of Property 3.3 relies

on the implication that, if T fails in the compare-and-

swap, U has not yet executed the store of 0 in the lock

word at Line 22.

However, the implication is not necessarily true in a

multiprocessor system, whether it is strongly ordered

or weakly ordered. Thus, we need to issue an addi-

tional instruction to ensure that Property 3.3 remains

valid. More speci�cally, on a PowerPC multiprocessor

system, the store must also be followed by sync. The

failure of the compare-and-swap then implies that U

has not yet started executing the next instruction of

the sync instruction. Thus, Property 3.3 still holds, al-

though the additional instruction slows down the per-

formance in the absence of contention.

Besides the store, the same care must be taken with

the setting of the c bit in the ination loop and the

clearance of the c bit in the inflate function. How-

ever, both are in the ination path, and do not a�ect

the performance in the absence of contention.

4 Measurements

To evaluate approaches to mode transitions, we have

measured the synchronization activities of multi-

threaded Java programs in IBM JDK 1.1.4 for the AIX

operating system. In particular, we are interested in

the locality of contention and the durations for which

objects are locked. The former is related to deation,

and the latter to busy-wait in ination.

We made some additions to the JDK code to log var-

8

ious synchronization events for measurements. We ran

all the programs under AIX 4.1.5 on an unloaded RISC

System/6000 Model 43P containing a 166-MHz Pow-

erPC 604ev with 128 megabytes of main memory, and

took timing measurements by using the PowerPC's

time base facility, whose precision is about 60 ns on

our machine. We disabled the JIT compiler for these

measurements.

We consider that the lifetime of each object consists

of fat and at sections, one alternating with the other.

An object is said to be in a fat section either when a

thread is waiting on the object or when a thread has

attempted to lock the object but has not yet acquired

the lock. Otherwise, an object is said to be in a at

section.

As long as an object is in a at section, the object is

not involved in any suspend locking operations. Thus,

in terms of performance, objects should be in the at

mode in at sections. On the other hand, an object

in a fat section is really involved in suspend locking

operations. Objects should therefore be in the inated

mode in fat sections. An object having at least one fat

section is said to be heavily synchronized.

Tables 1 and 2 summarize the programs we mea-

sured and their runtime statistics, respectively. We

measured the number of threads created, the maxi-

mum number of threads that simultaneously exist, the

number of objects created, the number of objects that

are synchronized, and the total number of synchro-

nization operations.

In addition, we include in Table 2 the number of ob-

jects that are heavily synchronized, and the total num-

ber of synchronization operations by those objects. As

we see in the table, less than 1% of synchronized ob-

jects are heavily synchronized, but these objects are

involved in more than 18 times as many synchroniza-

tion operations on average.

4.1 Locality of Contention

Using our terminology, we can rephrase the locality

of contention as follows: fat sections are long, or at

sections following fat sections are short. Here, time is

represented by the number of synchronization opera-

tions. We verify these claims in this section.

We �rst divide heavily synchronized objects into two

groups. Objects in the nowait group are only involved

in mutual exclusion by monitor enter and exit, while

objects in the wait group are also involved in long-term

synchronization by wait and notify(All).

Table 3 shows the lengths of fat and at sections for

each group of objects. Clearly, we observe locality of

contention in the wait group. However, we do not see

any such tendency in the other group. This suggests

that deation should be performed for objects in the

nowait group.

The average number of fat sections per object in the

eSuite program is interesting. All the heavily synchro-

nized objects in the nowait group have only one fat

section. We suspect that contentions were accidental

for these objects.

4.2 Durations of Locking

Busy-wait begins to have a negative e�ect on perfor-

mance when a thread holds an object's lock for a long

time, keeping other threads in the ination loop. We

therefore measured the lengths for locked sections.

An object's locked section starts when a thread ac-

quires the object's lock, and ends when the thread re-

leases the lock. Notice that the thread may implicitly

release the lock to wait on the object, and implicitly

acquire the lock after returning from the wait. When

a garbage collection is invoked within a locked section,

we subtract the time spent in the collection from the

length of the locked section, since the JDK's garbage

collector is stop-the-world.

Table 4 shows the results. As we see, in comparison

with the average length, there are a few sections that

are unusually long. This suggests that busy wait is

potentially dangerous. Furthermore, notice that if we

perform deation as recommended above, busy-wait in

ination is likely to be attempted many more times.

5 Performance Results

In this section, we evaluate an implementation of our

locking algorithm in JDK 1.1.6 for IBM's AIX oper-

ating system. We based the implementation on that

of thin locks contained in the original JDK. Thus, we

use a 24-bit lock �eld, and include optimization for

shallowly nested locking.

We adopted a deation policy as suggested by the

measurements in the previous section; that is, we de-

9

Table 1: Description of programs measured

Program Description

eSuite An o�ce suite from Lotus. Version 1.0. Open the desktop and read 62 pages
of a presentation �le.

HotJava A Web browser from Sun. Version 1.0. Open an HTML page containing ten
40-KB animated-GIF images.

Jigsaw An HTTP server from W3C. Version 2.0 Beta2. Let it serve requests from
ten clients simultaneously. Each client receives two hundred 5-KB �les.

Ibench A Java application that implements a business logic. Create twelve threads
and let them perform transactions.

Table 2: Overall synchronization statistics

Program Threads Threads Objects Objects SyncOps SyncOps Objects SyncOps SyncOps
created that created sync'd by per heavily by per

exist sync'd sync'd sync'd heavily heavily
simulta objects object sync'd sync'd
-neously objects object

eSuite 35 27 214820 22771 2195829 96.4 116 56535 487.4
HotJava 21 21 80951 13191 1652768 125.3 33 380770 11538.5
Jigsaw 71 71 346995 39269 1854118 47.2 209 424324 2030.3
Ibench 14 14 599963 79007 6092938 77.1 109 903542 8289.4

Table 3: Locality of contention

Program Group Objects SyncOps Fat SyncOps SyncOps
sections per fat per at

per object section section

eSuite nowait 14 6596 1.00 28.36 250.64
wait 102 49939 4.51 101.11 5.59

HotJava nowait 22 170370 5.14 26.44 1319.53
wait 11 210400 27.09 657.26 49.58

Jigsaw nowait 141 387382 5.06 38.53 466.58
wait 68 36942 65.78 6.56 1.62

Ibench nowait 109 903542 18.53 72.68 296.74
wait 0 0 | | |

Table 4: Durations of locked sections

Program Locked Average Longest Durations
sections duration duration �10 ms

(ratio)

eSuite 895349 0.146 ms 32.13 s 953 (0.11%)
HotJava 709970 0.625 ms 3.46 s 3178 (0.45%)
Jigsaw 669851 0.316 ms 1.23 s 5042 (0.75%)
Ibench 2986946 0.519 ms 25.64 s 13062 (0.44%)

10

ate the lock word of an object if the object belongs

to the nowait group and if a fat section of the ob-

ject ends. We thus check these two conditions at the

location corresponding to Line 35 in Figure 5.

The check is realized as follows. First, in order to de-

termine whether an object belongs to the nowait group

we add a counter to the object's monitor, which is in-

cremented when the wait object function is called.

Notice that this incurs virtually no execution over-

head, since only the execution of wait object is af-

fected. Second, we determine when an object's fat

section ends by checking whether both the entry and

waiting queues of the object's monitor are empty. In

most cases, the information needed for checking this

is already included in the underlying layer's internal

structures. Thus, if these structures are available and

accessible, checking the second condition does not in-

volve any extra overhead.

We measured the performance of two versions of

JDKs on the same machine with the same con�gu-

ration as in the previous section, and took a median of

ten runs for each measurement. Table 5 summarizes

the three micro-benchmarks we used.

The LongLocker benchmark test is intended to de-

termine the e�ect of ination without busy-wait, and

Figure 6 shows the results. As we see, as the num-

ber of concurrent threads increases, the performance

of the original JDK badly deteriorates, while our JDK

maintains a constant performance.

The FlatFat benchmark test is intended to deter-

mine the e�ect of deation. Figure 7 shows the results

for n = 40 and m = 40000. As we see, once ination

has occurred, the original JDK no longer performs as

well in subsequent at sections as in the �rst at sec-

tion, while our JDK maintains a constant performance

in all the at sections. We also obtained similar results

for other cases such as n = 10,20,80.

The Thrashing benchmark test was written so that

each time one thread locks an object, it ends up with a

contention with the other thread. The result for m =

2000 is that, while the original JDK takes 1966.4 msec

to complete, our JDK takes 1977.6 msec, inating and

deating the object exactly two thousand times.

The rate of more than one cycle of ination and de-

ation per msec is extremely high if we consider that

the scheduling quantum is of the order of ten millisec-

onds in our machine. Nevertheless, our JDK performs

as well as the original JDK, which means that thrash-

ing does not pose a serious problem in our algorithm.

We suspect that this is mainly because of the under-

lying hash table that we use to maintain associations

between objects and monitors. We simply enabled

the implementation of the monitor cache in the Sun

JDK 1.1.6, which includes an optimization of small

per-thread monitor caches. A thread �rst looks up its

own small monitor cache for an association. In doing

so, it does not have to hold any lock. Thus, as long

as a hit occurs in the per-thread cache, obtaining an

object's monitor is almost as e�cient in the at mode

as in the inated mode.

Finally, Table 6 shows the dynamics of our algorithm

in the real Java programs mentioned in the previous

section6. As we can see, signi�cantly more synchro-

nizations occur in the at mode in our locking algo-

rithm.

While the removal of busy-wait in ination is purely

aimed at increasing robustness or avoiding disasters,

deation is aimed at improving performance. Obvi-

ously, the e�ect of deation on overall performance de-

pends on several factors, particularly, how much time

an application spends on synchronization. All of eS-

uite, HotJava, and Jigsaw perform many I/O opera-

tions, and the elapsed times of these programs thus

unpredictably varied from one run to another. As a

result, we could not see any consistent di�erences be-

tween the original and our JDKs for these programs.

On the other hand, Ibench is computation-intensive,

and gives scores in terms of transactions per minute.

Here we observed that the scores are improved by

1.77%. Although this may look small, a speedup

of 1%{2% in the interpreter mode often results in a

speedup of 10%{20% in the JIT compilation mode.

With this expectation, we are currently working on

modifying the JIT compiler to accommodate our lock-

ing algorithm.

6The �gures for the dynamicsdo not necessarily coincidewith

those in the measurements given in the previous section. This is

primarily because of the di�erent amounts of code inserted for

recording di�erent kinds of synchronization events.

11

Program Description

LongLocker n One thread locks an object for a long computation (about 5 sec), while n� 1 threads
attempt to lock the same object.

FlatFat n m The at section, where one thread executes a small synchronized block n �m

times, alternates with the fat section, where n threads concurrently execute the same
block m times.

Thrashing m Each of two threads iterates over a small synchronized block m times in such a way
that each iteration forces contention to occur and disappear.

Table 5: Micro-benchmarks

1 10 20 40 80

Threads

0

2

4

6

8

10

12

Time (sec)

IBM116
Ours

Figure 6: Performance of the LongLocker benchmark

1st flat 1st fat 2nd flat 2nd fat 3rd flat 3rd fat
0

1

2

3

4

5

Time (sec)

IBM116
Ours

Figure 7: Performance of the FlatFat benchmark

12

Table 6: Ination and deation dynamics of various Java programs

IBM116 Ours
Program SyncOps Ina Dea SyncOps SyncOps Ina Dea SyncOps

-tion -tion in inated -tion -tion in inated
mode mode
(ratio) (ratio)

eSuite 1642879 118 0 0.78% 1643217 137 126 0.39%
HotJava 813954 23 0 11.4% 853686 70 63 1.65%
Jigsaw 1612467 140 0 27.0% 1616936 659 592 6.54%
Ibench 16852849 199 0 26.4% 17030564 3963 3963 2.27%

6 Related Work

A signi�cant number of papers and text books deal

with the topic of locks. Here we mainly concentrate

on locks for objects.

Mesa [9, 6] provides language support formonitoring

of large numbers of small objects. A monitored record

is a normal Mesa record, except that it implicitly in-

cludes a �eld for a monitor lock. It is of a prede�ned

type named MONITORLOCK, which can be thought of as

the following record [9]:

RECORD [locked: BOOLEAN, queue: QUEUE]

The size is one word (16 bits at that time) [6], which

suggests packing.

In our terminology, Mesa directly stores a suspend

lock, not a reference to one, in the lock word. A sus-

pend lock can be so small in Mesa for two reasons.

First, recursive entry into a monitor is not allowed.

Second, a suspend lock is solely used for mutual ex-

clusion. Long-term synchronization is done through a

condition variable for which an additional �eld must

be explicitly declared.

Although some Java implementations, notably ear-

lier versions of Ka�e [12], take a similar approach, the

space overhead is prohibitive, since Java requires re-

cursive locking, and allows the arbitrary object to be

involved in long-term synchronization.

Krall and Probst [5] use a hash table for implement-

ing monitors in a JIT-based Java Virtual Machine.

The approach is space-e�cient, since it does not re-

quire any dedicated �eld within an object. However,

the time overhead is unacceptable, because it is nec-

essary to synchronize with the hash table each time a

thread enters and exits from a monitor.

IBM JDK 1.1.2 for the AIX operating system takes a

hybrid approach to implementing monitors [10]. It ba-

sically uses an implementation by a hash table. How-

ever, when it detects that an object enters the monitor

frequently, the IBM implementation directly stores the

reference to the monitor in the object's header.

In doing so, it takes advantage of their handles-in-

headers object layout. Each object's header consists

of two words, one of which mainly holds the hash code

and is less frequently used. The implementation stores

in the word the reference to a suspend lock (monitor)

by moving the displaced information into the suspend

lock's structure. Thus, it does not increase the header

size at all.

Bacon, Konuru, Murthy, and Serrano [2] de�ned the

�rst bimodal locking algorithm, which allows a very ef-

�cient implementation of monitors in Java. We have

already fully described that algorithm in Section 2.

Actually, their work inspired us to deeply consider is-

sues inherent in bimodal locking.

Ousterhout [11] �rst suggested hybrid suspend lock-

ing. The main issue is the strategy for determining

whether and how long a competing thread should spin

before suspending. Karlin, Li, Manasse, and Owicki

[4] empirically studied seven spinning strategies based

on the measured lock-waiting-time distributions and

elapsed times, while Lim and Agarwal [7] derived static

methods that attain or approach optimal performance,

using knowledge about likely wait-time characteristics

of di�erent synchronization types. These results can

be used in bimodal locking if the initial compare-and-

swap are tried more than once.

However, the space overhead has never been an issue

13

in hybrid suspend locking. In other words, it is totally

acceptable to add one word to a suspend lock structure

for spin locking. Indisputably, the idea of bimodal use

of a single �eld was a painful one to reach, because the

bits in an object's header are extremely precious, and

increasing the header size is simply prohibitive.

Mellor-Crummey and Scott [8] proposed a sophisti-

cated spin-locking algorithm that performs e�ciently

in shared-memory multiprocessors of arbitrary size.

The key to the algorithm is for every processor to spin

only on separate locally accessible locations, and for

some other processor to terminate the spin with a sin-

gle remote write operation. Although the algorithm

constructs a queue of waiting processors in the pres-

ence of contention, it is a spin-locking algorithm; nei-

ther hybrid nor bimodal. Our work is orthogonal to

theirs, and an interesting future direction will be to

use their algorithm for locking in the at mode in our

algorithm.

7 Concluding Remarks

We have de�ned a new bimodal locking algorithm that

allows both ination without busy-wait and deation.

The algorithm maintains an almost maximum level of

performance in the absence of contention. Two in-

triguing points in our algorithm are the way in which

the at lock contention bits are manipulated, and the

dual roles of monitors.

We have also measured real multithreaded Java ap-

plications, and shown that locality of contention does

not necessarily exist, and that in some cases objects are

actually locked for a long time. This suggests that we

should perform deation, and remove busy-wait from

ination.

In addition, we have evaluated an implementation

of our algorithm in IBM JDK 1.1.6 for AIX. In com-

parison with the original JDK, the results of micro-

benchmarks show that our algorithm achieves a con-

stant performance even in the presence of a long-time

lock holder, and recovers the highest performance in

the absence of contention even after ination has oc-

curred. They also suggest that thrashing is not a con-

cern.

Although removal of busy-wait in ination aims at

avoiding disasters, deation aims at improving per-

formance. Actually, we observed a speedup in a

computation-intensive server application. Currently,

we are working on enabling the JIT compiler to our

locking algorithm, with the expectation that perfor-

mance gains due to deation become ampli�ed in the

JIT compilation mode.

Acknowledgments

We thank David Bacon and Chet Murthy for valu-

able information on thin locks and their comments on

an earlier version of our locking algorithm. We also

thank Takao Moriyama and Kazuaki Ishizaki for mak-

ing available their expertise in the PowerPC architec-

ture.

References

[1] Thomas E. Anderson. The Performance of Spin

Lock Alternatives for Shared-Memory Multipro-

cessors. IEEE Transactions on Parallel and Dis-

tributed Systems 1(1), 6{16 (1990).

[2] David F. Bacon, Ravi Konuru, Chet Murthy, and

Mauricio Serrano. Thin Locks: Featherweight

Synchronization for Java. Proceedings of the SIG-

PLAN '98 Conference on Programming Language

Design and Implementation (1998), pp. 258{268.

[3] James Gosling, Bill Joy, and Guy Steele. The

Java Language Speci�cation. Addison-Wesley,

1996.

[4] Anna R. Karlin, Kai Li, Mark S. Manasse, and

Susan Owicki. Empirical Studies of Competi-

tive Spinning for A Shared-Memory Multiproces-

sor. Proceedings of the 13th Annual ACM Sym-

posium on Operating Systems Principles (1991),

pp. 41{55.

[5] Andreas Krall and Mark Probst. Monitors

and Exceptions: How to Implement Java E�-

ciently. ACM 1998 Workshop on Java for High-

Performance Network Computing.

[6] Butler W. Lampson and David D. Redell. Experi-

ence with Processes and Monitors in Mesa. Com-

munications of the ACM 23(2), 105{117 (1980).

14

[7] Beng-Hong Lim and Anant Agarwal. Waiting Al-

gorithms for Synchronization in Large-Scale Mul-

tiprocessors. ACM Transactions on Computer

Systems Systems 11(3), 253{294 (1993).

[8] John M. Mellor-Crummey and Michael L.

Scott. Algorithms for Scalable Synchroniza-

tion on Shared-Memory Multiprocessors. ACM

Transactions on Computer Systems Systems 9(1),

21{65 (1991).

[9] James G. Mithcell, William Maybury, and

Richard Sweet. Mesa Language Manual. CSL-79-

3, Xerox Palo Alto Research Center (April 1979).

[10] Tamiya Onodera. A Simple and Space-E�cient

Monitor Optimization for Java. Research Report

RT0259, IBM Research, Tokyo Research Labora-

tory (July 1998).

[11] John K. Ousterhout. Scheduling Techniques for

Concurrent Systems. Proceedings of the 3rd In-

ternational Conference on Distributed Computing

Systems (1982), pp. 22{30.

[12] Transvirtual Technologies, What is Ka�e

OpenVM? http://www.transvirtual.com/kaffe.html,

(current October 7, 1998).

15

