
February 26, 2001
RT0271
Computer Science 19 pages

Research Report

An XML Schema for Agent Interaction Protocols

Yuhichi Nakamura and Gaku Yamamoto

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

 1

IBM Research Report, RT0271, 1998.

An XML Schema for Agent Interaction Protocols

Yuhichi Nakamura and Gaku Yamamoto
IBM Research, Tokyo Research Laboratory

1623-14, Shimo-tsuruma, Yamato-shi, Kanagawa-ken 242-8502, Japan
e-mail: nakamury@jp.ibm.com, yamamto@jp.ibm.com

Abstract

Multi-agent systems can be viewed as agent execution environments that host
independently developed agents, enabling them to interact with each other. In
accordance with this hypothesis, we seek a framework for representing agent
interaction protocols, and propose an XML schema. Although existing XML
schema activities focus on only strong data formats, our schema also takes account
of messages so that agents can communicate with each other by expressing
intentions such as requests and responses. In addition, our schema incorporates
with a concept of sessions so as to define the order of messages, taking account of
finite state machine formalism of Knowledge Query Manipulation Language
(KQML). Accordingly, an interaction protocol defined by our schema can be
combined with KQML in a natural way.

1. Introduction
Software agents can be viewed as programs, each of which is situated within and part of
an environment, senses changes of that environment, and acts on it so as to affect what it
will sense in the future [1]. Such an environment can contain more than one agent, and
is therefore called a multi-agent system. Inherently, agents are self-serving in the sense
that they behave in pursuit of their own agendas, and can be developed independently by
different programmers who do not have a common goal. Consequently, to enable
interactions between unfamiliar agents, we need an interaction protocol, which is a set
of rules for communications. How to represent such a protocol is a central issue in the
agent research area.

Basically, an interaction protocol defines data formats for information exchange, and
such data formats are often called metadata. The importance of metadata has been
more widely recognized recently because of the exponential increase in the number of

 2

World Wide Web (WWW) servers on the Internet. XML (eXtensible Markup
Language) [2] is considered as a standard for information exchange, and provides a
means for defining metadata. Since we can expect that information on various sources,
including WWW servers, will be provided in XML, it is valuable to study how to
represent interaction protocols on the basis of XML.

In this paper, we propose an XML schema for representing agent interaction protocols.
With XML Document Type Definition (DTD) syntax, it seems possible to define
interaction protocols. However, it is difficult, because there are no data types such as
Integer, Long and Date, and no inheritance hierarchy. Consequently, some XML-based
schemas are being designed: Resource Description Framework (RDF) [3], XML-Data [4],
and Document Content Definition (DCD) [5]. Following this direction, we designed
yet another XML schema specialized for agent interactions.

Although existing XML schema activities focus on only strong data formats, our XML
schema takes account of messages so that agents can communicate with each other by
expressing intentions such as requests and responses. In addition, our schema
incorporates a concept of sessions so as to define an order of messages, taking account
of finite-state machine formalism of Knowledge Query Manipulation Language (KQML)
[6]. Accordingly, an interaction protocol defined by our schema can be combined with
KQML in a natural way.

The idea described here is derived from our experience in the development of a real
application. We have developed an electronic marketplace framework, called
e-Marketplace, which has a system construct for defining interaction protocols [7]. A
travel information service called TabiCan [8] has been developed on top of the
framework, and we are running it as a business. Although interaction protocols are
currently represented in a proprietary format, they are all translated into our new XML
schema representation.

In Section 2, we give an example of a multi-agent system, to show the key entities for
our XML schema. Section 3 overviews the XML schema, and describes representation
constructs with examples. Section 4 describes the implementation of e-Marketplace,
focusing on the use of interaction protocols. Section 5 compares the e-Marketplace
framework with other agent systems in terms of protocols, and discusses the relation
between our XML Schema and KQML. Finally, Section 6 describes the current status
of our work, and outlines our future plans.

 3

2. A Typical Application Scenario
Here, to illustrate the kind of multi-agent system we are addressing, we describe an
electronic marketplace application, and identify key entities that serve as a basis for
considering interaction protocols. The scenario described here is a revised version of
TabiCan [8], which is a commercial travel service that we developed. Although the
application incorporates mobile agents, mobility is not crucial to the discussion in this
paper. Rather we intend to describe a situation in which unfamiliar agents interact with
each other.

Figure 1 shows an overview of an electronic marketplace for travel products such as
package tours*, and car rental services. A consumer agent issues a query about package
tours, specifying conditions such as "The destination is Honolulu, the airline should be
Japan Airlines (JAL), and the price should be equal to or less than $600." The query is
then delivered to merchant agents, each of which returns product information based on
its own selling policy. For example, Shop A returns an exactly matched product, Shop
B returns a product that does not meet the consumer's requirement but is cheaper, and
Shop C returns information on car rental services. In addition, there is a bulletin board
for specially priced products. Assume that a consumer agent has posted his
requirement to the bulletin board. As soon as a shop agent offers a product that meets
the consumer's requirement, the consumer agent will receive a notice from the bulletin
board. One possible activity of a consumer agent is to send e-mail to its owner to
notify him or her that a product has become available.

*A package tour includes hotel stays and air travels. Products of this kind are reasonably priced, and

very common in Japan.

Multiple marketplaces can be linked by means of a special agent, namely, an advertising
agent (see Figure 1). The advertising agent is created in one marketplace and
dispatched to another marketplace. When a consumer agent issues a query, the
advertising agent introduces its home marketplace to the consumer agent, showing
where it is located (e.g., in the form of a URL). Then, the consumer agent may go to
that marketplace, issue a query, and obtain further information on products.

The scenario here suggests that there are two kinds of key entities: agents and market
resources. Consumer, merchant, and advertising agents are obviously examples of one
kind of key entity, namely, agents. On the other hand, a bulletin board is a different
kind of entity from ordinary agents. It stays in a particular marketplace and provides

 4

agents with a service: we call entities of this type market resources. Our schema for
interaction protocols is designed on the basis of interactions between these two types of
entities.

Figure 1. An Electronic Marketplace for Travel Products

3. Representation Schema
3.1 XML Schema Issues

Since we expect that information sources, including WWW servers, will support XML in
the near future, we will start our discussion by considering how to represent interaction
protocols on the basis of XML. With XML DTDs, it seems possible to define an agent
interaction protocol, but it is not enough in the sense that there are no data types such as
Integer, Long and Date, and no inheritance hierarchy. Therefore, there are some
working groups and working drafts considering “schema” issues. However, these
activities focus on only stronger data validation. For example, Resource Description
Framework (RDF) [3] focuses on how to represent semantic networks; XML-Data [4]
takes account of data types such as Integer, Long, and Date; Document Content
Description (DCD) [5] is a simplification of RDF that takes account of the data types of
XML-Data.

We clarify what is missing in currently proposed schemas, taking our travel example.
For interaction between consumer and merchant agents, we obviously need to define
data a format for package tours. For example, package tours should be characterized
by properties such as “point of departure,” “destination,” “departure date,” and “price.”
With XML-Data, we can define this kind of metadata, even specifying the data types of
properties, such as String, Integer and Date. However, agents cannot interact solely on

Marketplace for Trave Products

Trading
Logic Goods

Shop Agent A

Consumer
Agent

Package Tour
 To: Honolulu
 Airline: JAL
 Price <= $600

Honolulu
 Airline: JAL
Price: $575

Trading
Logic Goods

Shop Agent C

Trading
Logic Goods

Shop Agent B

Do you have... ?
We have these.

Honolulu
Airline: UA
Price: $475

Car Rental
Price: $25/day

Bulletin Board update

notify

Advertising
Agent

Visit our
market.

go outcome in

 5

the basis of product information. Rather, it is important to notice that agents
communicate with each other by expressing intentions such as requests, responses, and
advertisements, in addition to product information. For example, a consumer agent
“requests” package tours, a merchant “recommends” a consumer collection of package
tours, and an advertising agent “advertises” its home marketplace. Since such
intentions are not considered in existing schemas, we introduce messages to represent
intentions explicitly, and let message parameters contain data such as product
information and addresses of marketplaces. Furthermore, when agents exchange
messages, the order of messages is also important. Our representation schema also
takes account of sessions that define the sequence of messages.

3.2 Overview of the Schema

In Section 2, we identified two key entities for multi-agent systems: agents and market
resources. Therefore, when designing a representation schema for agent interactions,
we classify interactions into two kinds: agent-agent interactions and agent-resource
interactions. Note that resource-resource interactions obviously do not exist. Here,
we give an overview of the schema, identifying constructs used for representing
interaction protocols.

Regarding agent-agent interactions, we pay particular attention to the distinction
between data and service, and identify the layers for protocol representation, namely,
the item, message, and session layers (Figure 2). In the item layer, we are concerned
only with data. The representation construct here is called an item, which is a unit of
information, and can be considered as an abstraction of “product.”

Figure 2. Layers for Representing Interaction Protocols

Representing services is not as straightforward as representing data. A service can be
viewed as a job that is requested by an agent, and is done for the requester by another

Session

Message

Item

Service

Data

XML

DTD

 6

agent. This indicates that there exist a service requester and a service provider, and
that one communicates its intention to another. Messages are introduced to represent
such intentions regarding services. For example, we can define a message for a request
to search for items, and another message for information passing to return items.

Obviously, the request message and the information-passing message depend on each
other in the sense that the recipient of the first message has to send the second message
to the request sender. Such a relationship between or among messages is called a
session, and should be explicitly represented. We can restate that a session defines a
rule for exchanging messages for a particular service (see Figure 2).

From the representation perspective, it is better to represent items and messages in XML,
because they are entities exchanged between agents. Therefore, metadata for items and
messages should be defined in DTD, or in a representation that can be converted into
DTD as in XML-Data. As will be explained later, we take the second approach; that is,
we provide a means for describing metadata by using XML itself. On the other hand,
sessions are used for identifying how interactions proceed within an agent system.
Since information on sessions is not exchanged between agents, we represent sessions in
XML, but do not convert them into DTD.

Regarding agent-resource interaction, we assume that agents and market resources
exchange information on items as in agent-agent interaction. Although information
exchange is performed via messages, we do not take the session layer into consideration.
We consider resources as parts of an environment, and an agent acts on them so as to
affect what it will sense in the future. Although there might be some relationship
between an action and sensed data, its causality is not sufficiently clear to be
represented. Therefore, we do not represent sessions for agent-resource interaction, but
only take account of the item and message layers.

We have identified three types of messages for agent-resource interaction: update
messages, look-up messages and events. An update message is sent from an agent to a
resource when the agent wants to update the contents of the resource. Messaging is
performed asynchronously, and therefore the actual update will take place later. A
look-up message is sent from an agent to a resource when the agent wants to look up the
contents of the resource. Messaging is performed synchronously, so that the agent can
obtain the result simultaneously. An event is sent from a resource to an agent when the
contents of the resource are changed. A typical situation is that in which a resource

 7

receives an update message from an agent, and the resource then sends events to other
agents to notify them of a change in the resource.

3.3 Examples

Here, we describe the actual representation of agent interaction protocols, taking the
travel information example described in Section 2. In Section 3.2, we described two
categories for interaction: agent-agent interaction and agent-resource interaction. In
this section, we first describe representation of item, message and session respectively
for agent-agent interaction. We then overviews messages for agent-resource
interactions, because their representation is similar to that of messages for agent-agent
interactions.

Item
Metadata for items is defined with a name and a set of properties. As in a style such as
XML-Data, data types and inheritance of properties are introduced. The predefined
data types are String, Integer, Date, and so on. In addition to these basic types,
Collection and Enumeration are also supported. Metadata for items is like class in Java,
and inheritance of properties is also provided. Note that the most abstract item is
called Thing, which is like Object in Java. As an example, in Figure 3 we show an item
definition for package tour, namely, “Tour.”

Figure 3. Item Definition

In Figure 3, the first line indicates the beginning of an item definition named “Tour,”
specifying TravelGoods as its superclass. The property definitions as follows:. The

 <ItemDef name=”Tour" super="TravelGoods">
 <PropertyDef name="ProductName" valueType="String" />
 <PropertyDef name="TourID" valueType="String" />
........
 <PropertyDef name="Destinations" valueType="Collection">
 <ValueType name="String" />
 </PropertyDef>
......
 <PropertyDef name="LeavingDate" valueType="Date" />
 <PropertyDef name="Price" valueType="Integer" />
.....
 <PropertyDef name="Status" valueType="Enumeration">
 <EnumerationDef valueType="String">
 <StringDef value="E" />
 <StringDef value="C" />
 <StringDef value="F" />
 </EnumerationDef>
 </PropertyDef>
....
 </ ItemDef>

 8

ProductName and TourID properties are defined as String, and the Destinations property
is defined as Collection of Strings, because some package tours have multiple
destination cities. The Status property is defined as Enumeration of String, and its
property value should be one of three values: E (empty), C (almost full), or F (full).

In connection with item definition, we provide queries for specifying constraints on
items. A query is represented by a class name of items and a condition body. For
example, a query about Tour can be described as follows:
 <query target=”Tour”>
 <condition>
 <and>
 <Equal>
 <left> destination </left>
 <right> ‘HNL’ </right>
 <Equal>
 <LessThanOrEqual>
 <left> price </left>
 <right> 600 </right>
 </LessThanOrEqual>
 </and>
 </condition>
 </query>

This is a query on tours, whose condition is "The destination is Honolulu (HNL), and the
price should be equal to or less than $600." In the description, “Equal” and
“GreaterThanOrEqual” are both operators, and left and right indicate their parameters.
“destination” and “price” are properties of the “Tour” class, and ‘HNL’ and 600 are
values. A query is embedded as a parameter in a message, which is explained below.

Message

Metadata for messages is defined with a name and a set of parameters. Messages for
agent-agent interactions are called utterances, in order to distinguish them from
messages for agent-resource interaction. Figure 4 shows examples of utterance
definitions used in TabiCan. The first utterance, “RequestTravelGoods,” is used when
a consumer agent issues a requirement to a merchant agent. The first element specifies
the name of the utterance, and parameter definitions follow. The first parameter,
“Requirements,” is defined as Query, and the query on Tour described in the previous
paragraph is substituted to this parameter. The second parameter indicates how may
items the sender –– in this case a consumer agent –– wants for the query.

The second utterance, “ProvideExactGoods,” is used when a merchant agent returns
exactly matched items to the consumer agent that issued the first message. Its

 9

parameter, “ExactGoods,” is defined as Collection of Things. Since Thing is the most
abstract category, this parameter can contain items of any classes. The third utterance,
“RecommendGoods,” is used when a merchant agent recommends items that do not
match the consumer’s request, but meet the selling policy of the merchant.

The last utterance definition, “AdvertiseMarket,” is used when an advertising agent in
Figure 1 gives its home address to a consumer agent. The data type for its parameter is
defined as URL, because the advertising agent gives its home address as a URL.

Figure 4. Definition of Utterances

Session

In addition to utterance definitions, we define sessions, each of which specifies a
sequence or sequences of utterances. For example, if a consumer agent issues a query
with RequestTravelGoods, a merchant agent has to return results with
ProvideExactGoods. This kind of information is defined in a session. Taking account
of KQML, we define sessions based on a finite-state machine (FSM) model, and
represent them in XML. The relation of our schema to KQML is detailed in the
Discussion section.

Figure 5 shows an FSM, which defines the order of utterances between agents. State-1
is an initial state, State-2 and State-3 are intermediate states, and State-100 is a final
state. Links indicates transitions, each of which is characterized by an utterance and
schematic variables indicating sender and receiver agents. In a typical interaction in
TabiCan, the state transits via link1, link2, and link4. More specifically, a consumer

<UtteranceDef name="RequestTravelGoods">
 <ParameterDef name="Requirements" valueType="Query" />
 <ParameterDef name="MaxSize" valueType="Integer" />
 </UtteranceDef>
 <UtteranceDef name="ProvideExactGoods">
 <ParameterDef name="ExactGoods" valueType="Collection">
 <ValueType name="Thing" />
 </ParameterDef>
 </UtteranceDef>
 <UtteranceDef name="RecommendGoods">
 <ParameterDef name="RecommendedGoods" valueType="Collection">
 <ValueType name="Thing" />
 </ParameterDef>
 </UtteranceDef>
 <UtteranceDef name="AdvertiseMarket">
 <ParameterDef name="NewMarket" valueType="URL" />
 </UtteranceDef>

 10

agent sends a request to a merchant agent with RequestTravelGoods, and the merchant
first returns exactly matched items with ProvideExactGoods, then returns recommended
items with RecommendGoods. On the other hand, transition via link1 and link3 defines
an interaction between a consumer agent and an advertising agent as in Figure 1; that is,
as soon as an advertising agent receives a RequestTravelGoods message from a
consumer agent, it returns its home URL to the consumer agent with AdvertiseMarket.

Figure 5. Finite State Machine for a Session

The FSM can be represented in XML as shown in Figure 6. The first declaration
indicates that the session to be defined is called "request." Then, states are definitions
with their names and types. State type indicates whether the state is initial, final, or
intermediate (since this is a default value, it is not explicitly shown in the figure).
Finally, transitions from link1 to link4 in Figure 5 are defined. A transition is
characterized by four attributes: “name” indicates the name of a link, “utterance”
indicates the name of the utterance, “prev” and “next” are the source and destination
states, and “sender” and “receiver” are schematic variables indicating sender and
receiver agents.

Constraints on utterance parameters can also be defined in a session. In the constraint
declaration in Figure 6, the attribute "transition" indicates when the constraint should be
checked. In this case, it will be checked at the transition "link2." The contents of the
constraint tags constitute the actual description of a constraint. This indicates that the
MaxSize value for a RequestTravelGoods message should be greater than or equal to the
number of elements in ExactGoods for a ProvideExactGoods message. Note that
message names are omitted in actual descriptions such as link1.MaxSize, because a
message can be identified by specifying a particular transition. GreaterThanOrEqual is
an operator for comparing two values, left and right indicate its parameters, and size is a
function for calculating the number of elements contained in the collection.

State-1

State-2

State-3

State-100

link1

link2

link4

link3

RequestTravelGoods[A,B]

ProvideExactGoods[B,A]

RecommendGoods[B,A]

AdvertizeMarket[B,A]

 11

Figure 6. Representation of a Session

Agent-Resource Interaction

In addition to a schema for agent-agent interaction, we also provide a schema for
representing agent-resource interaction. Figure 7 shows examples of messages.
UpdateData is an update message, getCityNameByCode is a look-up message, and
NotifyUpdated is an event. Its description format is almost the same as that of utterances
for agent-agent interaction: The only difference is that a look-up message has a return
value indicated by a "ReturnDef" element.

<session name="request">
<state name=”State-1” type=“initial” />
<state name=”State-2” />
<state name=”State-3” />
<state name=”State-100” type=“final” />
<transition name="link1"
 utterance="RequestTravelGoods"
 prev=”State-1" next="State-2"
 sender="A" receiver="B" />
<transition name="link2"
 utterance="ProvideExactGoods"
 prev="State-2" next="State-3"
 sender="B" receiver="A" />
<transition name="link3"
 utterance="AdvertizeMarket"
 prev="State-2" next="State-100"
 sender="B" receiver="A"
 type="terminal" />
<transition name="link4"
 utterance="RecommendGoods"
 prev="State-3" next="State-100"
 sender="B" receiver="A" />
<constraint transition="link2">
 <GreaterThanOrEqual>
 <left> link1.MaxSize </left>
 <right>
 <size> link2.ExactGoods </size>
 </right>
 </GreaterThanOrEqual>
</constraint>
</session>

 12

Figure 7. Message Definition for Agent-Resource Interaction
4. Implementation of e-Marketplace
We have already developed an electronic marketplace framework, called e-Marketplace,
incorporating the idea of agent interaction protocols (see Figure 8). The framework
was developed on top of Aglets Workbench [9], a Java-based mobile agent system
developed by our team, and applications such TabiCan have been developed on top of
e-Marketplace. Here, we overview the e-Marketplace framework, and describe some
class methods to show how interaction protocols are used in the framework.

Figure 8. Architecture of e-Marketplace Framework

Let us examine the architecture in Figure 8. In the framework, abstract classes for
participant agents and market resources are provided, and application developers
implement concrete classes such as a consumer agent, a merchant agent, and a bulletin
board, subclassing the framework classes. On the other hand, a (human) market

 <UpdateDef name="UpdateData">
 <ParameterDef name="Item" valueType="Thing" />
 </UpdateDef>
 <LookUpDef name="getCityNameByCode">
 <ReturnDef valueType="String" />
 <ParameterDef name="Code" valueType="String" />
 </LookUpDef>
 <EventDef name="NotifyUpdated">
 <Parameter name="Item" />
 </EventDef>

Aglets

Agent Scheduler

Message Monitor

Prepare/Finish Prepared/Busye-Marketplace
Framework

Participant
Agent

Market
Resource

Bulletin
Board

Consumer
Agent

Merchant
Agent

Protocol
Representation

(XML)

Application

(Subclassing) (Load)

Interaction
Protocol

(Refer)

 13

administrator prepares an XML file or files defining an interaction protocol, and loads it
or them into the framework. While agents interact with each other via messages, the
interactions should be carried out in accordance with the interaction protocol. Message
Monitor monitors every message between agents to ensure that it does not violate the
protocol. Since Message Monitor can identify which agents are taking part in a
particular interaction, more specifically a session, it can obtain information on agent
usage. Agent Scheduler receives such usage information, and activates or deactivates
agents to avoid overloading the server. In summary, the interaction protocol is used for
agent scheduling, and helps to avoid system overload. The overload issue is one that
we encountered in the development of TabiCan, because thousands of consumer agents
can be created on the TabiCan server.

The framework contains a class library for representing interaction protocols.
Although a protocol described in an XML file can be loaded, internal representation is
currently not in DTD, but a proprietary format. The class library also provides a means
for representing messages that are communicated between agents or between an agent
and a resource. Although the messages can theoretically be represented in XML, that
capability is not implemented in the current framework. The current classes for
representing messages are proprietary, but they are comprehensive because they reflect
the structure of messages well. In the next version of the framework, we will provide
three ways of representing messages: the current proprietary representation, XML which
is written in strings, and Document Object Model (DOM), which is an object model for
XML [2].

Next, we explain ParticipantAgent and MarketResource classes, which are central
classes for application development. ParticipantAgent provides the following methods
for agent-agent interaction:
say: Used when an agent sends a message to another.
shout: Used when an agent multicasts a message. Message delivery is carried
out by MessageMonitor,
advertise: Used when an agent registers what kinds of shouted messages the agent
wants to receive. MessageMonitor manages the registered information.
handleSay: Callback method for receiving a message. The body of method
is implemented in each agent.

ParticipantAgent also provides the following methods for agent-resource interaction:
lookUpResource: Used when an agent looks up the contents of a resource.

 14

updateResource: Used when an agent updates a resource.
subscribe: Used when an agent registers what kinds of event the agent
wants to receive. MessageMonitor manages the registered information.
handleResourceEvent: Callback method for receiving an event. The body of
the method is implemented in each agent.

MarketResource provides the following methods:
handleLookUp: Returns a result in response to a look-up message from an agent.
The body of the method is implemented in each resource.
handleUpdate: Updates its own contents in response to an update message from
an agent. The body of the method is implemented in each resource.
sendEvent: Used when an resource sends an event. MessageMonitor
delivers the event to agents in accordance with registered information.

MessageMonitor not only checks messages between agents and market resources in
accordance with the interaction protocol, but also dispatches messages to agents that
have been registered. This facility is not provided by the interaction protocol itself, but
is related to communication protocols. When developing this framework, we took
account of KQML facilitator messages. The relation to KQML is described in the
discussion session in more detail.

5. Discussion
5.1 Comparison with Other Marketplace Systems

There are various types of multi-agent systems. Obviously, distributed artificial
intelligence (DAI) is an area for multi-agent systems. However, it is quite different
from our system in the sense that DAI systems solve a single problem by dividing it into
several small problems and solving them on different machines. Our goal here is not to
compare our system with a broad range of multi-agent systems; rather, we specify a
narrow range of multi-agent systems to make the discussion fruitful and concrete. Our
assumption regarding multi-agent systems is as follows: “Agents that are independently
developed are situated within an environment where they interact with each other.” In
addition, we take account only of commercial or public systems, and therefore prototype
systems and experimental systems are beyond the scope of our discussion. Since
systems that meet our requirements can be found in the electronic marketplace area [10],
we take some examples from this area to compare with ours.

Auction systems should be considered, because auctions have rapidly achieved
enormous popularity on the Internet and because such systems can provide a function for

 15

developing agents that interact with them. AuctionBot [11] operated by Michigan
University is an online auction site, and provides developers with explicit support for
developing their own agents. It can be viewed as a central entity of a multi-agent
system in the sense that various agents can be developed and accessed. However,
agents interact only with AuctionBot, and not interact with each other. Furthermore, in
comparison with our system, AuctionBot incorporates a particular interaction protocol
for performing auctions, and was developed to achieve good performance in the auction
protocol.

Unlike AuctionBot, Kasbah [12, 13], which was developed and is experimented by MIT,
provides an environment in which agents can directly interact with each other. It
focuses on negotiation between agents; for example, a buying agent tries to reduce the
price quoted by a selling agent. From the perspective of interaction protocols, it
incorporates a fixed set of messages -- what-is-item, what-is-price, and accept-offer –
that should be hard-coded in each agent. Furthermore, although there must be
relationships between messages like state transitions in our sessions, they are not
explicitly represented. As a result, even if a malicious agent conveys the given
messages in the sequence, Kasbah cannot identify the agent.

In summary, there are some marketplace applications on the Internet, but to the best of
our knowledge, they merely incorporate a fixed particular protocol. The protocols are
not represented explicitly; in particular, sequences of messages are not represented in
spite of their importance. On the other hand, we provide a schema for representing
various kinds of protocols. Once a protocol is represented, our marketplace system can
detect wrong behaviors of agents, and can even achieve good performance in hosting a
huge number of agents (See [14]).

5.2 Relation to KQML

The finite state-machine (FSM) model in the session representation comes from KQML,
and the message-handling mechanism in the e-Marketplace framework is also based on
KQML facilitator messages. Here, we relate our XML schema and e-Marketplace
framework to KQML more precisely.

We take a layer model proposed in a KQML paper [6], which identifies the following
three layers:

1. A transport layer is the actual transport mechanism for transferring data from one
machine to another, such as TCP or HTTP.

 16

2. A communication layer is the medium through which the attitudes regarding the
contents of exchange are communicated. KQML is a language that defines an
attitudes such as an assertion, a request, or some form of query.

3. An interaction layer is a definition of contents to be exchanged, which specifies
vocabulary and its semantics. Our XML schema was designed to address this
layer.

KQML was designed on the basis of the speech act theory [15], which is that an
utterance can be viewed as an “act”, and may cause another “act” of the utterance
receiver. In accordance with this idea, KQML defines a set of messages, called
performatives, to explicitly indicate the attitude of the agent who utters. Labrou
defined a detailed semantics for KQML, specifying the mental states of agents that
exchange messages [6]. Apart from the semantics, he also provided a pragmatic
approach to implementing KQML agents by introducing the finite-state machine (FSMs)
formalism. In FSMs, details of KQML semantics are omitted, but elements for
implementation are only extracted. We think that although the KQML semantics is too
difficult for ordinary (non-AI) developers, the FSM formalism is acceptable for them.
Therefore, we adopted this formalism to represent sessions as FSMs.

Another advantage of KQML is that it provides a rich set of facilitation messages. For
example, the recruit-all message enables agents to multicast messages, advertise
message enables agents to register what kind of messages they want to receive, and so
on. Although facilitation messages were introduced as an extension of speech act
messages, fortunately they work even with the FSM formalism. Actually, while we
represent sessions as FSMs, we were able to implement MessageMonitor (see Figure 8)
as a built-in facilitator that supports “recruit-all” (“shout” in our terminology) and
“advertise” messages.

Although KQML provides a good basis for developing multi-agent systems, it is used in
very few real (commercial) applications as far as we know. We think there are two
reasons for this. First, it is difficult for ordinary (non-AI) developers to understand the
KQML semantics based on the speech act theory. What is worse, some developers
cannot understand even why the communication layer is necessary. We believe that the
FSM formalism is more comprehensive, and solves such problems to some extent.

Second, there is no adequate means of representing interaction protocols. When
KQML is discussed in the literature, KIF (Knowledge Interchange Format) [16] and
Ontolingua [17] are often introduced as languages for the interaction layer. However,

 17

since these languages are based on predicate logic, non-AI developers cannot use them,
or at least never try to use them. We have a further problem regarding these languages
in the development of multi-agent systems: Since we assume that agents are developed
independently, knowledge sharing among agents is an important issue. Once we adopt
a language with strong high expressive power, we will soon face a knowledge-sharing
problem that has been struggled with in the ontology area [18]. In our approach, we
did not try to solve the big problem. Rather, we extended currently accepted concepts
as little as possible. More specifically, we took a metadata concept that is broadly
accepted in the database area, and an Interface Definition Language (IDL) concept that
is broadly accepted in the distributed objects area, and organized them into an XML
schema, incorporating the FSM formalism from KQML. Obviously, even if we provide
a simple representation schema, we still have a knowledge-sharing issue. However, our
approach is reasonable, because the sharing issue here is just an interface-sharing issue
that developers always encounter in ordinary system development.

6. Conclusions
In this paper, we have proposed an XML schema for representing agent interaction
protocols. We have already been working on the protocol issue for more than one year,
and have developed commercial applications. In actual development, we created a
middleware application, called the e-Marketplace framework, and directed the
development of applications on top of the framework. One crucial problem was that it
was difficult for the programmers to define interaction protocols. However, once an
interaction protocol was defined, they were able to develop agent programs as in an
ordinary development.

How can we benefit from XML in our work? Obviously, one benefit is comprehensive
representation. We can expect that developers who are familiar to XML will be able to
learn our XML schema easily. The second, and more important, benefit is that
metadata is being recognized as a key concept for combining various systems. So far,
the importance of interaction protocols has not been recognized outside the agent
community. However, there is no need for us to discuss why protocols are important,
because XML has already been broadly accepted. We want to take this opportunity to
propose an XML schema that will serve as a basis for work on standardization.

Currently, we are working on two research issues: the schema issue addressed in this
paper, and a performance issue. As explained in Section 4, our framework
implementation is a special usage of KQML messages; in other words, MessageMonitor

 18

is viewed as a built-in facilitator. This architecture derives from our second goal which
is to achieve high performance. In other words, adopting KQML whole makes it
difficult to optimize performance. Furthermore, we are not sure whether all KQML
messages are needed for real applications. Therefore, we are going to take other
messages in KQML step by step, clarifying the real need for application development.

Acknowledgements
We would like to thanks our project manager, Mr. Kazuya Kosaka, and the other
members of the Aglets team at IBM Tokyo Research Laboratory, who have all
contributed to this work. We also thank Mr. Michael McDonald for checking the
wording of this paper.

References
1. J. Bradshow (ed.): Software Agents, AAAI Press / MIT Press, Cambridge,

Massachusetts, 1997.

2. Extensible Markup Language (XML). http://w3c.org/TR/1998/REC-xml-19980210

3. Resource Description Framework (RDF) Schema Specification
http://www.w3.org/TR/WD-rdf-schema/

4. XML-Data. http://www.w3.org/TR/1998/NOTE-XML-data

5. Document Content Description for XML. http://www.w3.org/TR/NOTE-dcd

6. Y. Labrou: Semantics for an Agent Communication Language. Doctoral Dissertation,
University of Maryland Graduate School Baltimore, 1996.

7. Y. Nakamura and G. Yamamoto: Aglets-Based e-Marketplace: Concept, Architecture
and Applications. IBM Research, Tokyo Research Laboratory, Research Report,
RT-0253, 1998. (http://aglets.trl.ibm.co.jp/RT0253/RT0253.html)

8. TabiCan. http://www.tabican.ne.jp/ (Japanese)

9. Aglets Workbench. http://www.trl.co.jp/aglets/

10. R. Guttman, A. Moukas, and P. Maes: Agent-Mediated Electronic Commerce: A
Survey. To appear, Knowledge Engineering Review Journal, June 1998.

11. P. Wurman, M. P. Wellman and W. Walsh: The Michigan Internet AuctionBot: A

 19

Configurable Auction Sever for Human and Software Agents, in Proc. of the Second
International Conference on Autonomous Agents (Agent ’98), Minneapolis, MN,
USA, 1998.

12. A. Chavez and P. Maes: Kasbah: An Agent Marketplace for Buying and Selling
Goods. Proceedings of the First International Conference on the Practical
Application of Intelligent Agents and Multi-Agent Technology (PAAM '96),
pp.75-90. London, UK. April 1996.

13. R. Guttman, P. Maes, A. Chavez and D. Dreilinger: Results from a Multi-Agent
Electronic Marketplace Experiment. Proceedings of the Second International
Conference on the Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM '97), pp.75-90. London, UK. April 1997.

14. G. Yamamoto and Y. Nakamura: Architecture and Performance Evaluation of a
Massive Multi-Agent System. IBM Research, Tokyo Research Laboratory, Research
Report, RT-0272, 1998.

15. P. Cohen and H. Levesque: Intention is choice with commitment. Artificial
Intelligence, Vol. 42, pp. 213-261, 1990.

16. KIF Knowledge Interchange Format. http://www.csee.umbc.edu/agents/kse/kif/

17. Ontolingua. http://www.cs.umbc.edu/agents/kse/ontology

18. Knowledge Sharing Effort. http://www.cs.umbc.edu/agents/kse.shtml

