
October 19, 1998
RT0280
Computer Science 8 pages

Research Report

A Secure Key Registration System Based on Proactive
Secret-Sharing Scheme

Masayuki Numao

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

A Secure Key Registration System Based on Proactive Secret-Sharing Scheme

Masayuki Numao
Tokyo Research Laboratory, IBM Japan, Ltd.

numao@jp.ibm.com

Abstract
We designed a secure key registration system based on
the proactive secret-sharing scheme. A user can register
important data such as a session key to a distributed
system in a (t, n)-threshold scheme, which means that the
data can be recovered if t servers cooperate (in other
words, that the data cannot be revealed unless t servers
collude). The proactive scheme provides stronger security
against an active adversary. We designed the protocol to
generate an implicit secret, to distribute shares of it, and
to reconstruct the secret for proactive secret-sharing
without a dealer.
We also developed a prototype of a data archiving
service framework on the Internet. To allow users to
access the system via a Web browser, we implemented a
system based on the PKI (public key infrastructure),
where the client/server authentication is done by means of
X.509 certification. We also used the publish/subscribe
communication model to realize interaction between key
management servers, because it is easy to implement the
broadcasting channels used in the share update phase.

1. Introduction

As the number of Internet users explodes, many real-
life activities are coming to be conducted over the
Internet; for example, electronic commerce enable
consumers to buy anything at any time from anywhere in
the world. Since the Internet is an open network,
maintaining confidentiality, privacy, authentication, and
so on is becoming a big issue. One approach to resolving
this issue is through the use of cryptographic technology,
for example, SSL is a popular cryptographic protocol for
authenticating the server (and the client) and creating a
secure communication channel. These authentication and
digital signature technologies rely on the key, which
consists of a bit string. Key management is therefore a
very important issue for the user, because if the user’s
private key is revealed, an adversary can impersonate him
or her.

This paper presents a secure key registration system
based on a distributed secret sharing mechanism called
“proactive secret sharing” [OY91] [HJKY95]. Key

registration is a basic technology for key recovery
[Denning96] [Maher96] [Walker96], in which the session
key is encrypted by using the public key of a key recovery
agent and attached to the encrypted message as a key
recovery field. When a message need to be recovered - for
example, by the government for the purpose of law
enforcement, or by an owner who has lost his master key -
the key recovery field is sent to the key recovery agent,
who then decrypts the session key by using his private
key.

In this case, the key recovery agent becomes a single
point of attack for an adversary intent on getting the
private key; therefore secret sharing is used in order to
distribute the attack points. As Maher mentioned
[Maher96], it is securer if the private key is distributed
and only constructed during the recovery phase. Such a
key pair generation technique is realized by naïve
application of the ElGamal scheme [Ped91] and by the
sophisticated method developed by Boneh and Franklin
[BF97] for RSA crypto.

The method of generating an implicit secret and
distributing the share is naturally integrated into the
proactive secret-sharing scheme. By applying Desmedt
and Frankel’s protocol [DF89], we also show that the
secret is reusable in the sense that the user can send
messages to multiple receivers, each of whom can decrypt
only the messages addressed to him. We also extend the
scheme to maintain multiple secrets for multiple users
based on the (c, d; k, n)-multi-secret sharing scheme
defined by Franklin and Yung [FY92]. This scheme is
quite useful for the long-term key management, because it
is possible to invalidate some of the keys without
affecting other keys.

In summary, our distributed key registration system
has the following features:
l A public key is constructed from periodically

refreshed random seeds (shares) by the user as a
key-encryption key.

l The private key (secret) is generated implicitly
without a dealer; thus no one knows it until it is
actually reconstructed.

l The secret is maintained in a (t, n)-threshold
proactive scheme. At least t servers are necessary to

recover the secret, and no t-1 servers can deduce
anything.

l The message can be decrypted without revealing the
secret. Thus the public key is used to encrypt
messages for multiple receivers.

In Section 2, we will explain the share update protocol
of proactive secret-sharing, which constitutes the basic
technology of our application. Then in Section 3, we will
explain the key registry framework as a target application
and describe how existing secret-sharing schemes are
used for this application. In Section 4, we will describe
the protocol for the key generation, secret update, and
message decryption based on proactive secret-sharing
scheme. We also describe an Internet-based data
archiving service framework as an application of our
protocol in Section 5. Finally we summarize in Section 6.

2. Proactive Secret Sharing

Proactive secret-sharing [HJKY95] provides strong
security for a secret-sharing scheme against the active
attacker. The technology is especially useful in
applications such as certificate authority (CA) and key
recovery (KR), since private keys in these applications
need to be very securely maintained for long periods. It
combines the secret-sharing technology [Shamir79] with a
periodical share update process to ensure the overall
security of a system. Through the use of this refreshment
mechanism, old shares become useless; thus, to steal a
secret, an attacker needs to intrude on at least t servers in
the same time frame if security is maintained in a t-
threshold secret-sharing scheme.

Proactive schemes have been applied to various
security technologies such as secret sharing, signature
sharing, and secure communication by using crypto
scheme such as ElGamal, RSA, and DSA, which were
surveyed by Canetti et al. [CGHN97]. Here we will
explain proactive secret-sharing, which was introduced
by Herzberg et al. [HJKY95]. The technology is based on
Verifiable Secret Sharing (VSS) [CGMA85]. Suppose that

a secret s is defined over a prime field *qZ , where q is a

prime number, that p = mq+1 is also prime with a small
integer m, and that a total of n servers maintain the secret.

[Initialize]
The dealer generates a polynomial of degree t-1 using
random numbers d1, .. , dt-1:

Then, the dealer sends the share si = f(i) mod q to the
server i. Since this is Shamir’s secret-sharing scheme
[Shamir79], any t servers can reconstruct the secret by
using Lagrange interpolation, while t-1 cannot get any
information.

[Share Update]
Each server i generates a polynomial of degree t-1 by
using random numbers d1, .., dt-1:

This satisfies fi(0)=0. Server i then sends the value sij =
fi(j) mod q to server j, which updates its new share sj

(new)

as follows:
sj

(new) = sj
(old) + s1j + … + snj mod q.

Since the new shares lie on the polynomial f(new)(x) =
f(old)(x) + f1(x) + … + fn(x), the new polynomial still
maintains the secret value s at x=0 , because f(new)(0) =
s + 0 + … + 0 = s.
In both the [Initialize] and [Share Update] phases,

the dealer and the servers generate polynomials satisfying
constraints f(0)=s and fi(0)=0, respectively. To prevent
the dealer and servers from distributing wrong shares,
Feldman’s verifiable secret sharing (VSS) [Feldman87] is
applied: When the dealer or servers generate a polynomial
whose coefficients are d0, .., dt-1, they first broadcast

110 ,...,, −tddd ggg where g is an element of *
pZ of order

q.
When the server i receives his share si = f(i) , he can

verify the value by checking:

If this holds, server j announces i-correct, otherwise, it
announces i-wrong. If more than t i-corrects are
announced, server i is included in the good set of servers.
Subsequently, proactive secret sharing performs a share
recovery protocol for servers in which VSS fails.

[Share Recovery]
Suppose that r is a server in which VSS failed. Each
VSS-verified server i generates a polynomial of order t-
1 by using random numbers d0 ,d1,..,dt-1:

which satisfies fi(r)=0 . Server i then sends the value sij

= fi(j) mod q to the other VSS-verified server j, which
generates a share for r as follows:
sj

(for r) = sj + s1j + … + snj mod q.
Server j then sends sj

(for r) to the server r.
Server r interpolates the polynomial f’(x) to recover its
share at f’(r)=f(r) . Note that since the f’(0) is
randomized, server r does not get the secret s.

3. Key Registration and Secret Sharing

Key registration is a service for providing public keys
with which users encrypt their data (usually session keys).
This service is first required by key recovery [Denning96]
[Maher96] [Walker96]: whenever a message is encrypted
by using a session key, the session key itself is encrypted

1
11 ...)(−

−+++= t
t xdxdsxf

1
11 ...)(−

−++= t
ti xdxdxf

)(mod)...()())((
1

1
2

210

?

pggggg
t

ti idididds −
−=

1
110 ...)(−

−+++= t
ti xdxddxf

under the public key of the key recovery agent and
attached to the encrypted message as the key recovery
field. The message format is {Ek(M), PKRec(k), PKKRA(k)},
where Ek() is symmetric encryption by the key k, and
PKr() is public key encryption by means of the key r. The
first term is a message encrypted by a session key k, the
second term is the session key encrypted by the receiver’s
public key, and the third term is a key recovery field,
which is the session key encrypted by means of the public
key of the key recovery agent. Compared with the key
escrow scheme, in which the user’s master key must be
actually sent to the escrow agent, key recovery is safer
from the viewpoint of the user’s privacy, because only the
session key is escrowed and the escrow is performed on
the user’s side.

To distribute the attack points, multiple agents are
introduced and the secret is divided into pieces and
distributed to the agents. Verheul designed an ElGamal
key-sharing technique [VT97]: The server i has a private

share si and a public share pgy is
i mod= , and the user

can construct a new public key ∏=
i

iyY 　by selecting

any subset of servers. The corresponding private key is

∑
i

is , but it does not exist until the selected servers’

secrets are summed. This scheme is very secure, because
of the following points:
(1) The user has control over the public key construction.
(2) The private key never needs to be constructed until

the recovery phase.
(3) The servers have no information on the public key or

private key
In this scheme, there is no interaction among the

servers and between the servers and user in the key
generation phase, and therefore the servers are
autonomous. But one big disadvantage is that it is a
fragile (t, t)-threshold scheme, and thus if one of the
selected servers breaks down, then the secret is lost.

Thus, we need some protocols for migrating from (t,
t)-threshold into (t, n)-threshold proactive scheme. We
will apply the some of the protocols that aim at generating
an implicit secret without the assistance of a mutually
trusted party (MTP): Ingermarson and Simmons first
pointed out the importance of such implicit secret
generation [IS90]. Pedersen then applied the idea to
verifiable secret sharing [Pedersen91]. Jackson et al. later
generalized the idea to support any monotone access
structure in the perfect secret-sharing scheme [JMOK95].
The basic idea is to have t servers first generate shares of
a unanimous (t, t)-threshold scheme, then each server acts
as a dealer as if the secret were its own private share,
computes the shares for the other servers, and distributes
the shares to other n servers.

It needs an interaction between the user and the
servers; that is, the user tells the servers about which

servers are selected, and interaction among the servers to
perform share distribution. Thus, from the security point
of view, (1) and (2) are satisfied, and (3) is slightly
modified, but robustness (4) can be realized as follows:
(3)’ t-1 servers have no information on the private key
(secret).
(4) Any k servers can recover the secret.

From the practical point of view, the system is desired
to serve to multiple users, which means that multiple
secrets can be registered and retrieved independently. We
will apply a multi-secret sharing scheme defined by
Franklin and Yung [FY92] to extend our scheme to
handle multiple secrets. They defined (c, d; k, n)-multi-
secret scheme, which is a protocol between a dealer and n
servers with the distribution phase in which the dealer
distributes the shares of k secrets to the servers, and the
recovery phase where any subset of at least d servers can
reconstruct all k secrets and no subset of at most c servers
can deduce anything. And they provided an
implementation of a (t-k+1, t+1, k, n)-multi-secret
sharing scheme based on Shamir’s secret-sharing (where

tk ≤) : Let s1,.., sk be the secrets. Assume that a1,.., an

and e1,…, ek are pre-selected element of Zp that are known
to the dealer and all servers. The dealer first generates a
polynomial f of the degree t which satisfies the equations
f(ei)=sI for ki ≤≤1 , then distribute the value f(aj) to the

server j (nj ≤≤1) as his share. Any t+1 servers can

interpolate their shares to recover f(x), and hence get all k
secrets. We modified the protocol to enables k users to
request servers to generate the secrets and to recover them
independently.

4. Key Management Protocol Based on
Proactive Secret Sharing

4.1. Model and Definition

We assume a system of n servers P={P1, .., Pn} that
will share k secrets X={x1, .., xk} through a (t-k+1, t+1; k,
n)-multi-secret-sharing scheme. The goal of the scheme is
for k users U={u1, .., uk} to register the secrets (keys) in or
retrieve them from the system in a (t+1, n)-threshold
scheme without relying on a trusted dealer, which means
that if the t+1 servers are honest, then all users can
retrieve their registered secrets confidentially, and no
subsets of at most t-k+1 dishonest servers can destroy or
steal any secrets.

Here, we will distinguish the security level of users
and dealers as follows: the dealer knows the secrets
before they are distributed to the servers, whereas a user
can use only the public part of the secrets to encrypt his
own secret (key) without knowing the actual secrets.
Therefore, in our scheme, no one knows the secrets until
t+1 servers reconstruct them.

In the following subsections, p and q denote large
primes such that p=mq+1, where m is a small integer, and

*
qZg ∈ is a generator of order q. Assume that a1, .., an

and e1, …, ek are pre-selected elements of Zp that
represent the positions of the servers and secrets,
respectively. We can assume that 22 +−≥ ktn , which
means that the system allows at most t-k+1 cheating
servers but that at least t+1 are still honest.

4.2. Outline of the Protocols

We illustrate how our protocol is used to the key
registry in figure 1. Every server i (ni ≤≤1) maintains

a secret share si and public share pgy is
i mod= , and

broadcasts the public share. At [Initialization] described
in section 4.3, all the implicit secrets maintained in the
system are set to 0. By means of periodical [Share
Update] described in section 4.4, all the servers’ shares
are updated, while all the secrets are unchanged.

In some time frame, when user j (kj ≤≤1) chooses

l servers out of n servers (where 22 +−≥≥ ktln) and
constructs the public key by multiplying the public shares
of selected servers, he informs all the servers about the
selection SELj={ i j1, .. ijl}. Then, each selected server Pi

jSELi ∈ distributes his share to other servers by [Share

Distribution] described in section 4.5, to register the sum
of the shares as the j-th secret. The corresponding public
key is also constructed and published. Thus the user can
encrypt his message by the public key as described in
section 4.6 [Message Encryption].

For all the other time frame, all the servers update
their shares by [Share Update].

Now, when user j wants to decrypt his message, he

requests reconstruction of the j-th secret to at least t+1
servers. Then the servers authenticate the request and if it
is validated, the servers send the shares for the j-th secret
to the user by [Message Decryption] described in section
4.7. After getting the shares, the user can decrypt the
message.

4.3. Initialization

1. Each server Pi generates a polynomial fi of degree t,
which satisfies the condition fi(el) = 0 for kl ≤≤1 .

2. For all other servers Pj, Pi sends sij = fi(aj) (mod q) to
Pj via a secure channel. At the same time, Pi

broadcasts tiii ddd ggg ,1,0, ,...,, .

3. After receiving sij , Pj first checks the correctness of
its share as

And the validity of the polynomial as

for kl ≤≤1 .
4. If above VSS is verified, Pj computes its initial share

as sj = s1j + … + snj (mod q).

After this initialization protocol is completed, the
shares interpolate a polynomial which satisfies f(el) = 0
for kl ≤≤1 .

4.4. Share Update

This protocol is applied to all the servers in the normal

UserUserUserUser

P1P1P1P1 PtPtPtPt Pt+1Pt+1Pt+1Pt+1 PnPnPnPn

Update

Initialize

Share
Distribution

Se
le
ct
io
n
&

En
cr
yp
ti
on

De
cr
yp
ti
on

)(mod)...()())((,
2

2,1,0,
?

pggggg
t

jtijijiiij adadadds =

)(mod)...()())((1 ,
2

2,1,0,
?

pgggg
t

ltililii edededd=

t
tiiii xdxddxf ,1,0, ...)(+++=

Figure 1. Outline of the Protocols

update phase. The protocol is the same as the initialization
protocol up to 3.

4. If the above VSS is verified, Pj computes its new share
as sj(,new) = sj(old) +s1j + … + snj (mod q).

4.5. Share Distribution

This protocol is applied to the servers when user j
interacts with the servers to generate an implicit secret
and to register it as the j-th secret. We assume that all the
servers are informed of the selection SELj via a public
channel.

1. Each selected server Pi (jSELi ∈) generates a

polynomial fi of degree t:

that satisfies the condition fi(ej) = si, and fi(el) = 0
for l=1,.., j-1, j+1,.., k.
At the same time, other unselected server Pi’

(jSELi ∉') generates a polynomial fi’ of the degree

t which satisfies the condition fi(el) = 0 for
kl ≤≤1 .

2. For all other servers Pj, Pi sends sij = fi(aj) (mod q)
to Pj via a secure channel. At the same time, Pi

broadcasts tiii ddd ggg ,1,0, ,...,, .

3. After receiving sij , Pj first checks the correctness of
 his share by:

Pj then checks that the local secret was correctly

transferred from the selected server jSELi ∈ :

(Remember isg was already published as a public

share of the server.)
Pj also checks that the local secret of zero was
correctly transferred from the unselected server

jSELi ∉' :

4. If above VSS is verified, Pj computes its new share
as sj(,new) = sj(old) +s1j + … + snj (mod q).

After this protocol is complete, the new shares interpolate
a polynomial that satisfies ∑

∈
=

jSELi
ij sef)(and fi(el) = 0

for l=1,.., j-1, j+1,.., k.

4.6. Message Encryption

In section 4.5, the j-th secret key is constructed as

∑
∈

=
jSELi

ij sx and set as the value of f(ej) . The

corresponding public key is publicly calculated from the

VSS public values as: ∏
∈

=
j

i

SELi

s
j gY .

Thus the user can encrypt a message M with Yj by

using random pZr ∈ , (A, B)=(gr mod p, M*Yr mod p).

4.7 Message Decryption

When decryption of the encrypted message (A, B) is
necessary, the user (or a receiver of the encrypted
message) requests t+1 servers to reconstruct the secret.
Only the first part of the encrypted message (A=gr) needs
to be attached to the request. If the servers agree to the
request, they send the partial decryption to the user. They
can be used only to decrypt the message containing gr ,
and give no information on the secret maintained in the
system. Desmedt and Frankel constructed a protocol for
implementing a reusable shared secret [DF89] and we
extended it to obtain partial decryption for the j-th secret:
Any polynomial f(x) of degree t can be represented by
using its t+1 points: f(i), i=1, .., t+1, as

Thus, if we represent server i ’s modified shadow for
the j-th secret as

 then the j-th secret can be represented by:

Thus the partial decryption for A from server i is

pA
j

ia mod
)(

and the user can reconstruct a message M

as

∏
+

=

=
1

1

)(
t

i

a j
iA

B
M .

t
tiiii xdxddxf ,1,0, ...)(+++=

)(mod)...()())((,
2

2,1,0,
?

pggggg
t

jtijijiiij adadadds =

∑
+

=
==

1

1

)()(
t

i

j
ijj aefx

∏
+

≠= −
−

=
1

,1

)(
t

ikk

j

i
j

i ki

ke
sa

∑ ∏
+

=

+

≠= −
−=

1

1

1

,1

)()(
t

i

t

ijj ji

jx
ifxf

)(mod)...()())((,
2

2,1,0,
?

pggggg
t

jtijijiii edededds =

)(mod)...()())((1 ,'
2

2,'1,'0,'
?

pgggg
t

ltililii edededd=

5. Implementation

On the basis of the key management protocol, we
designed an Internet-based secure data archiving service,
in which the key recovery function is designed for
individual users who lose the decryption key, and for the
corporate users in cases where confidential data may only
be accessed by authorized employees. We designed the
system on top of current industry-standard Internet
architectures, such as the public key infrastructure (PKI),
Java, HTTP, and SSL/X.509, in order to fully utilize
WWW tools such as Web servers that support SSL and
Servlets, and Web browsers that support SSL and
Applets.

5.1 Archiving Server Framework

An Internet archiving server framework is shown in
figure 2. It consists of a certificate authority (CA), an
archiving center (AC), multiple key management servers
(KMS), and user’s PC, all of which are connected to the
Internet. The KMSs and the user’s PC are also
interconnected by the InfoBus Repeater Publish/Subscribe
environment [InfoBus98] [MU98], which we will
describe in section 5.2.

The function and trust models of each party are as
follows:
l CA issues the user’s and server’s certificates, which

are necessary for mutual authentication. CA
guarantees the uniqueness of the user’s name, which
means that it does not issue certificates with the
same name to other users. Thus, if it becomes
necessary to reissue the certificate, the CA checks

the identity of the owner by examining physical
credentials such as the owner’s driver’s license. The
certificate format is based on X.509.

l AC is a kind of file server that is responsible for
maintaining the data only from the physical point of
view. Since the data has already been encrypted at
the user’s site, AC does not need to maintain
confidentiality.

l KMSs are key recovery agents that maintain the
key-recovery key in a (t, n)-threshold scheme. As
described in section 4, KMSs collectively generate
the public key and maintain the corresponding secret
key. They also provide a message decryption
service.

l The user’s PC runs Web browser which supports
SSL client authentication. Every service is available
only when the client certificate is valid. Message
encryption with a key-recovery field is also
performed at the user’s PC, and the encrypted
message is then sent to AC.

The data and the key require different maintenance
policies, and therefore they are maintained by different
servers: AC and KMSs.

5.2 Key Management Framework

Since communication among multiple servers is
necessary for the key management protocol, it is
inefficient to establish peer-to-peer connections one by
one. Publish/subscribe is a programming model whereby
a message sender does not need to specify the address of a
receiver; instead, the sender publishes an event with a
subject, and the receivers who are subscribing to the
subject receive an asynchronous event.

InfoBus

Internet

Key Management
Server: P2

Key Management
Server: P1

Archiving Center
(AC)

Data
Registration

User PC

Data Retrieval

Key

Generatio
n

Mess
age

Decryp
tio

n

Certificate
Authority(CA)

IssueCertificate

Figure 2. Internet Archiving Service Framework

InfoBus Repeater [MU98] is a Java middleware
program that support the publish/subscribe model. It is
based on the InfoBus API [InfoBus98]. We designed our
key management framework by using the InfoBus
Repeater as shown in figure 3. The InfoBus API consists
of three Java classes: Producer, Consumer, and InfoBus.
When a producer (an instance of Producer) generates a
new event, it notifies the bus (InfoBus), which in turn
announces the event to every consumer (Consumer).
Repeater is an additional class defined by [MU98] for
connecting local InfoBuses over the Internet. This is a
kind of gateway to the Internet: when an event occurs,
Repeater sends it to a remote InfoBus. A hub server is
also introduced for broadcasting events to other
InfoBuses. For an uplink to send a message to the hub, an
HTTP/SSL connection is used, and for a downlink to
broadcast a message from the hab, the Reliable Multicast
Transport Protocol [SSTYYK97] is used.

We now describe how messages are exchanged
between the key management servers. The typical
verifiable-secret-sharing (VSS) message from server i at
time t is:

()
iSIGijijti etiVSS }{},{,, ', α= ,

where niij ≤≤1,α is a secret share encrypted by

the public key of server j, and tjeij ≤≤ '0, are public

values for VSS checking. The entire message is signed
with the private key of server i to maintain consistency
and non-repudiency. Thus, at in each update phase, each

server broadcasts one message, and a total of n messages
are exchanged.

The publish/subscribe model makes it easy for a user

to join in the framework. Since a user can see ije public

values broadcast by server i, he can choose them and
construct a public key as a key-recovery key, as described
in section 4.5 and 4.6.

6. Summary

We have described a secure and robust protocol for
key registration based on the proactive secret-sharing
scheme. Through combination of implicit key generation
of an ElGamal-based encryption scheme with the share
update protocol of proactive secret sharing, a public key
can be determined through interaction with the user, while
the corresponding secret key is implicitly maintained in a
(t, n)-threshold scheme. We also enhanced the system to
support (1) multiple-secret-sharing for multiple users and
(2) reusability of secrets. These two features are very
useful for actual operational systems because (1) enables
some secrets to be revoked without affecting other
secrets, and (2) ensures that the secrets themselves are
never revealed even at decryption phase, which enhances
the total security of the system.

We also presented an Internet-based system
architecture for a data-archiving service. Since it uses
multi-casting technology, our protocol can be easily
implemented on HTTP, and the user can access the
system via Web browser, which makes it very practical.

Producer
Consum

er

InfoBus-2

Repeater

Key Management
Program

Producer
Consum

er

InfoBus-1

Repeater

Key Management
Program

Producer
Consum

er

InfoBus-n

Repeater

Key Management
Program

HTTP/
SSL RMTP

Key Management Server 1

Key Management Server n

HubServer

SSL

RMTP
RMTP

Key Management Server 2

Figure 3. Key Management Framework

7. References

[BF97] Boneh, D. and Franklin, M., “Efficient Generation
of RSA Keys,” CRYPTO ’97, 1997.
[BSCGV94] Blundo, C., De Santis, A., Di Grescenzo, G.,
Gaggia, A. G. and Vaccaro, U., “Multi-Secret Sharing
Schemes,” CRYPTO ’94, LNCS 839, 1994.
[CGHN97] Canetti, R., Gennaro, R., Herzberg, A., and
Naor, D., “Proactive Security: Long-term protection
against break-ins,” CRYPTOBYTES, RSADSA, 1997.
[CGNA85] Chor, B., Goldwasser, S., Micali, S. and
Awerbuch, B, “Verifiable Secret Sharing and Achieving
Simultaneity in the Presence of Faults,” 22th FOCS,
IEEE, 1985.
[Denning96] Denning, E. D., “A Taxonomy for Key
Escrow Encryption Systems,” CACM, Vol.39, No.3,
1996.
[DF89] Desmedt, Y., and Frankel, Y., “Threshold
Cryptosystems,” CRYPTO ’89, LNCS 435, 1989.
[DH76] Diffie, W., and Hellman, M., “New Directions in
Cryptography,” IEEE Trans. Information Theory, Vol. 22,
1976.
[Feldman89] Feldman, P., “A Practical Scheme for Non-
interactive Verifiable Secret Sharing,” IEEE FOCS ’87,
1987.
[FY92] Franklin, M. and Yung, M., “Communication
Complexity of Secure Computation,” ACM STOC ’92,
1992.
[HJKY95] Herzberg, A., Jarecki, S., Krawczyk, H. and
Yung, M., “Proactive Secret Sharing or: How to Copy
With Perpetual Leakage,” CRYPTO ’95, LNCS 963,
1995.
[InfoBus98] InfoBus 1.1.1 Specification, available from:
http: www.javasoft.com/beans/infobus
[IS90] Ingemarsson, I. And Simmons, G. J., “A Protocol
to Set up Shared Secret Schemes without the Assistance
of a Mutually Trusted Party,” EUROCRYPT ’90, LNCS
473, 1990.
[JMOK95] Jackson, W-A., Martin, K. M. and O’Keefe,
C. M., “Efficient Secret Sharing without a Mutually
Trusted Authority,” EUROCRYPT ’95, LNCS 921, 1995.
[Maher96] Maher, D. P., “Crypto Backup and Key
Escrow,” CACM, Vol. 39, No. 3, 1996.
[MU98] Maruyama, H. and Uramoto, N., “InfoBus
Repeater: A Java-Based Publish/Subscribe Middleware,”
IBM Research Report RT0245, 1998.
[OY91] Ostrovsky, R. and Yung, M., “How to Withstand
Mobile Virus Attacks,” 10th PDOC, ACM, 1991.
[Pedersen91] Pedersen, T. P., “A Threshold Cryptosystem
without a Trusted Party,” EUROCRYPT ’91, LNCS 547,
1991.
[Ped91] Pedersen, T., “A Threshold Cryptosystem
without a Trusted Party,” EUROCRYPT ’91, LNCS 547.
[Shamir79] Shamir, A., “How to Share a Secret,” CACM
Vol. 22, No. 11, 1979.

[VT97] Verheul, E.R., and van Tilborg, H. C. A.,
“Binding ElGamal: A Fraud-Detectable Alternative to
Key-Escrow Proposals,” EUROCRYPT ’97, LNCS1233,
1997
[Walker96] Walder, S. T. et al, “Commercial Key
Recovery”, CACM, Vol. 39, No. 3, 1996.
[SSTYYK97] Shiroshita, T. et al., “Performance
Evaluation of Reliable Multicast Transport Protocol for
Large-scale Delivery,” Proc. of IFIP 5th International
Workshop on Protocol for High Speed Networks, 1996.

