
October 29, 1998
RT0284
Engineering Technology 6 pages

Research Report

Event Processing For Complicated Routes In VRML 2.0

Masaaki Taniguchi

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or copies
of the article legally obtained (for example, by payment of royalities).

Event Processing For Complicated Routes In VRML 2.0

Masaaki Taniguchi*

Tokyo Research Laboratory, IBM Japan

Abstract
VRML 2.0 allows a content creator to dynamically control state

changes in a virtual reality world by defining routes of events over
VRML 2.0 nodes.

In the conceptual execution model defined in the VRML 2.0
specification, an event should be delivered to its destinations
instantaneously. However it makes browser implementation
difficult in routing connections that involve complicated
requirements such as simultaneous events in multiple fields of a
node, or cyclic dependencies between nodes.

This paper describes an event processing method we have
implemented in our VRML browser, which is designed to handle
complicated route connections.

CR Categories and Subject Descriptors: I.3.6 [Methodology
and Techniques] Graphics data structures and data types; I.3.7
[Three-Dimensional Graphics and Realism] Virtual Reality.

Additional Keywords: VRML, ROUTEs, event notification.

1 INTRODUCTION

One of the most important features of VRML 2.0 is the
capability it provides for dynamically changing the state of the
scene graph. This capability is made possible by events and
routes, which are among the major advances over VRML 1.0.

An initial event, which can be generated when the user interacts
with an object, or when a specified time has elapsed, is sent to
subsequent nodes through route connections. Nodes receiving
events may respond by generating other events. This flow of
events is expressed by a directed graph, which we refer to as a

route graph in this paper.1

In the ideal event model, events are propagated instantaneously.
However, in a real implementations there are the following
considerations:
1. unpredictability of event generation by a node,
2. multiple eventIns,
3. loop prevention,
4. cyclic dependency,
5. direct outputs.

This paper describes the event-processing method used by our
VRML 2.0 browser which addresses these considerations.

There are two basic approaches that a browser may take to
process events over the route graph.

The first approach is to propagate an event upon its generation
following the direction of the event flow, which is defined by the
ROUTE statement.

The second approach is not to propagate events until they are
required by receivers. This can be achieved by traversing the route
graph in reverse until the source of an event is reached.

Daniel J. Woods et al. described a pull-and-push model, which
is a combination of these two approaches [4]. A message is
processed in two phases, the first of which is the notification
phase. When a field value is updated, the browser merely
invalidates fields in its route graph. The second phase is the
transmission phase. The recipient requires valid data, which is
obtained from the source of an event. The design of this model is
intended to allow very efficient processing of events, but their
paper did not describe how the browser handles more complicated
cases.

Unlike the method presented by Woods et al., this method
propagates events according to the first of the two approaches
mentioned above. In order to propagate events, first the route
graph is examined. Then a feasible order of node evaluation is
generated, and events are propagated in that order. This approach
exploits some fundamental graph algorithms that can be
effectively used with complicated route connections.

The next section briefly describes the basics of event-
processing. In section 3, the design considerations of the event
processing implementation is discussed. Section 4 explains the
event-processing method, and section 5 details our
implementation. Section 6 gives a discussion on the VRML Script
Clarification Working Group’s resolutions relating to this
implementation.

All discussions made by the present paper is based on the
VRML 97 specification [1].

1 It is also called the event cascade in the VRML 2.0 specification.

*1623-14 Shimotsuruma Yamato, Kanagawa, 242, Japan
taniguti@trl.ibm.co.jp

Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

2 EVENT-PROCESSING BASICS

Nodes are the fundamental components of the VRML 97
specification. Each node has a certain number of fields, which
express its properties or attributes.

Fields that can receive events are called eventIns, while fields
that can send events are called eventOuts. Fields that have
properties of both eventIns and eventOuts are called
exposedFields. ExposedFields can be treated as either eventIns or
eventOuts, and are not discussed in this paper.

A route is a connection established from an eventOut field to an
eventIn field, where both the field types match exactly.

The value of a field is sent through a route as an event, which is
then evaluated by the receiving node and may result in the
generation of other events. Event propagation proceeds in this
manner. In the conceptual definition of the event execution model
given in the VRML 97 specification, events generated during
their propagation are considered to occur instantaneously, and a
browser implementation needs to simulate this. Without serious
consideration, however, it might lead to unexpected results.

3 DESIGN CONSIDERATIONS

Realization of event processing by a browser involves several
considerations, which will be discussed in this section.

3.1 Unpredictability Of Event Generation
By A Node

Events received by a node will be evaluated in order to change
the status of that node and/or to generate additional events.

How a node responds to a received event depends on the type
and status of the node, as well as the message and timestamp of
the event, and it is generally unpredictable until the event is
evaluated.

A Script node is a good example of such unpredictability, since
it is difficult for a browser to predict how the scripting language

will evaluate events.
A TimeSensor node is another example. It generates a

fraction_changed eventOut only when the condition occurs such
that startTime is less than or equal to the current time, the current
time is less than or equal to stopTime, and enabled is TRUE.

3.2 Multiple EventIns

In the ideal event process definition, all events are propagated
instantaneously. This allows a node to receive different kinds of
events at the same time within the same event cascade.

This is not trivial if the paths of the event flow are different. For
example, suppose there are three nodes, A, B, and C. Route
connections are established as follows:

ROUTE A.out1 TO C.in1
ROUTE A.out2 TO B.in
ROUTE B.out TO C.in2.

If node A generates events from eventOut out1 and eventOut
out2 at the same time, then node C will receive multiple events at
eventIn in1 and eventIn in2. In that case, node C should be
evaluated based on values from multiple eventIns, thus node B
should be evaluated prior to node C. Therefore the browser
implementation must take into account the route graph topology,
so that the evaluation produces a unique result.

Node B

Node A Node C

in1

in2

out1

out2

in out

Figure 2: Example of multiple events being sent to a node
simultaneously.

3.3 Loop Prevention

The VRML 97 specification defines the condition for the
occurrence of loops, and specifies how a browser can break loops.
A browser can prevent loops by checking fields to ensure that
fields are not sending events with identical timestamps. Because
of the way in which a node responds to the events it receives,
whether an event loop is present or not can not be confirmed from
the route graph topology, and a browser is required to detect loops
at run time.

eventIn
1

Evaluation

Node

field 1

field 2

eventIn
2

eventOut
1

eventOut
3

eventOut
2

Figure 1: Schematic of event generation by a node.

3.4 Cyclic Dependency

Routes can be connected in such a way that a cyclic
dependency is generated between nodes.

Loop-preventing rule does not prevent a node from being
evaluated again, since a node can respond through a different
eventOut.

For example, three nodes A, B, and C have the following route
connections:

ROUTE A.out1 TO C.in
ROUTE A.out2 TO B.in
ROUTE B.out TO A.in2

If an event is processed in this order:
A.in1 -> A.out2 -> B.in -> B.out

 -> A.in2 -> A.out1 -> C.in -> C.out
then it is not a loop, since it does not visit the same field twice.
However, in this case, there is a cyclic dependency between nodes
A and B, since the evaluation of node A depends on the
evaluation of node B, and vise versa.

Cyclic dependency is inconsistent with multiple eventIns. In the
previous example, node A needs to send an event through
eventOut out2 before it receives an event at eventIn in2, therefore
multiple eventIns is not possible.

3.5 Direct Outputs

A Script node has direct outputs when its directOutput field is
TRUE, at which time it can access other nodes and establish or
destroy route connections or send events directly to their eventIns
without establishing routes. Processing events which involves
direct outputs is difficult, since it results in dynamic event cascade
modifications at the event propagation stage. Such modifications
are unpredictable and it is generally not possible to determine an
event evaluation order in advance. Therefore special treatments
are needed to deal with direct outputs.

Node B
(Script Node)

out1

out2

in1

in2

Node A

Script

in2

in1 out1

out2

referencing

direct output

Figure 5: Schematic of direct output, where the Script node B
sends an event to node A without an established route connection.

4 EVENT-PROCESSING METHOD

The event-processing method that we implemented in our
VRML 2.0 browser propagates events as they flow through the
event cascade. This is not only consistent with the event execution
design of the VRML 97 specification, but is also suitable for
propagating all events generated over the route graph.

However, processing all events is thought to be inefficient. The
main purpose of event processing is to update the values of fields.
With our browser implementation, time-consuming executions of
invisible objects such as MovieTexture and AudioClip will be
avoided by viewing frustum culling. Moreover, we can expect that
not all of the event network will be active. There are ways to
avoid generating unnecessary events. For example, a
ProximitySensor node can be used to avoid generating events
when objects are viewed from a distance, and a TouchSensor node
can be used to avoid generating events until they are invoked by a
viewer. As a result, even without any optimization of event
processing, we anticipate that the processing cost will not be high.

Node BNode A Node C

in out in outin out

Figure 3: Example of route connections in which a loop exists
at node B.

Node B
Node A

in out

Node C

out1

out2in2

in1

outin

Figure 4: Example of route connections in which a cyclic
dependency exists.

For events to be processed, nodes in the route network need to
be evaluated. Since we can evaluate one node at a time, we need
to serialize the evaluation of nodes in such a way that it is not
inconsistent with the route connection semantics; for instance,
certain nodes should be evaluated before other nodes. In the
example described in section 3.2, node B should not be evaluated
after node C, since an event generated from node B will not be
handled unless node C is evaluated again. However, evaluating
node C twice might give different results.

To avoid such situations, the event processing is done by
carefully determining the evaluation order in advance, then
evaluating every node in that evaluation order. This simulates
instantaneous event propagation.

4.1 Determine The Order Of Evaluation

If a graph does not contain loops or cyclic dependencies, it is
called a directed acyclic graph (dag) .

Assuming that the route graph is a dag, we can obtain the order
of the evaluation by topological sorting. The result is ordered in
such a way that all nodes are evaluated after they receive all
eventIns from the route graph.

Unfortunately, route graphs are generally not dags, since they
contain loops and cyclic dependencies. We therefore need a
technique that allows us to treat them as dags.

Strongly connected components are sets of nodes in a directed
graph with the property that all the nodes in a set are mutually
accessible. In other words, nodes inside a loop or nodes that
create a cyclic dependency are strongly connected components.

Figure 6 illustrates how the cyclic dependency in the route
graph is removed by dividing the graph into components. Since
nodes A and B have a cyclic dependency, they are in the same

component: component 1. Note that a node itself is a component.
Therefore, node C is the only element of component 2. It is easy
to see that component 1 should be evaluated before component 2.
The order of evaluation will be:

Node A -> Node B -> Node A -> Node C.
However, if we apply topological sorting without separating

nodes into components, the evaluation order
Node A -> Node C -> Node B -> Node A

will also be a valid topological ordering. In this case, an event
will not propagate properly.

To obtain the order of evaluation, the route graph is first
separated by detecting the strongly connected components. The
derived set of route connections among the components is a dag.
Next, the order in which the components are processed is obtained
by topological sorting. Finally, the evaluation order inside the
components is decided.

4.1.1 Generating A Dag
The first step in deciding the order of evaluation is to divide a

route graph by the strongly connected components. The route
graph formed by the components is a dag.

The strongly connected components in the route graph are
obtained by the algorithm proposed by R. E. Tarjan in 1972 [3].
Since the algorithm is a variant of depth-first search, the
computation cost is linearly proportional to the number of nodes
and routes in the route graph.

4.1.2 Sorting Components
Once a dag has been created, the next step is to obtain the

evaluation order of the components, which is done by applying
topological sorting to the components.

The topological sorting algorithm is also a variant of depth-first
search. The computation cost is linearly proportional to the
number of components and the number of routes connecting the
components.

4.1.3 Sorting Inside A Component
The final step in deciding the order of evaluation is to sort the

nodes inside a component, so that the order will yield a correct
result when the component is evaluated.

As explained in Section 3.1, a node is unpredictable with
regards to event generation. In general, there are many possible
orders of evaluation.

Figure 7 shows a more complicated case of the example in
Figure 6. There are two node evaluation orders. In most cases,
node A generates events from eventOut out2 and eventOut out3
when it receives an event at eventIn in1. Then, node B generates
events from eventOut out1 and eventOut out2. Finally, node A
generates an event from eventOut out1. The node evaluation order
inside the component 1 is

A -> B -> A.
However, in some cases, node A will only generate an event

from eventOut out2. In this case, one expected event flow is:
A.out2 -> B.in1 -> B.out1 -> A.in2 -> A.out3

-> B.in2 -> B.out2 -> A.in3 -> A.out1 -> C.in.
The node evaluation order is

A -> B -> A -> B -> A.
In general, it is impossible to decide a single ordering before

evaluating nodes, since the order may vary from case to case.

Node B
Node A

in out

out1

out2

in1

in2

Component 1

in out

Component 2

Node C

Figure 6: Strongly connected components generate a dag from
a route graph.

One solution to the problem is to decide the evaluation order by
topological sorting, which gives a fair result. This process is
repeated until no node remains to be evaluated.

In the previous case, the topological sorting of the nodes inside
component 1 is

A -> B.
The process will repeated two or three times, depending on the
events generated by nodes A and B.

4.2 Propagating Events

If the route graph is separated into strongly connected
components, events are propagated in an organized way by
evaluating its components. A component is evaluated according to
its internal nodes.

The order in which components and nodes are evaluated has
already been decided. As explained in section 4.1.3, evaluation of
nodes inside a component is repeated until there are no more
nodes to be evaluated. Infinite loops are avoided by two event-
processing strategies. One is to apply the same rule as for
avoiding loops in event propagation, which was described in
section 3.3. A node cannot send more than one event through the
same eventOut. The second strategy is to skip node evaluation if
the node does not receive any eventIns.

5 IMPLEMENTATION

To improve the performance, evaluation orders are created the
first time evaluation of a route graph is requested, and are then
repeatedly used until a change is made to the graph.

The evaluation order is generated before the browser actually
evaluates events. The order is created on the assumption that a
node generates all eventOuts when it receives an event. This may

result in unnecessary nodes being included in the order. To
minimize unnecessary evaluations, every node has an
modification flag to indicate whether it has actually received
events.

Given that direct outputs modify the route network
dynamically, and since this method does not handle dynamic
modifications, they are handled in another way. Requests to
modify route connections made during the route graph evaluation
are stored in a queue, and then processed after the evaluation is
finished.

Similarly, events directly sent to other nodes by scripts are
handled as different event cascades.

In addition to a timestamp, an event ID, which is a unique
number to the initial event, is propagated over the route graph.
Instead of using a timestamp, that ID is used for loop detection,
since the time information obtained from the operating system
may not be precise enough to distinguish between different event
propagation.

A prototype is a declaration of a new node type composed of
VRML 97 built-in nodes. Fields of a prototype are used as
interfaces for access to internal node fields, which is enabled by
the IS declaration. In our implementation, an IS is enabled by a
pointer reference, and fields of a prototype are used to store
values. The evaluation order when the route network includes
prototypes is determined in such a way that it includes nodes
inside prototypes.

6 DISCUSSION AND CONCLUSION

The method proposed in this paper provides a feasible event-
processing implementation that allows users to create complicated
route connections. This method properly handles route
connections which include multiple eventIns and cyclic
dependencies, by first determining the evaluation order and then
propagating the events accordingly.

After the VRML 97 specification was released, the VRML
Script Clarification Working Group was formed [2]. They have
been discussing about script and event related issues. Among the
issues that the group has reached conclusion on, “Timestamp
Event Evaluation Ordering,” and “Fan In Clarification” are
related to event processing implementations and are discussed
here.

The problem regarding the “Timestamp Event Evaluation
Ordering” issue was how events should be propagated when the
propagation results in the modification of the route graph, such as
addition and removal of a route connection, a node creation and
deletion. The resolution they have reached defines the order of
handling tasks which can not be included in a event cascade
evaluation. As a result, a route graph will not be modified during
the graph evaluation. Addition and removal of route
connections are handled after the graph is evaluated. This is
consistent with our event processing implementation. As
mentioned in the previous section, our method decides the order
of nodes evaluation prior to the start of event propagation.
Therefore changes to the route graph will not be handled during
the graph evaluation. The method can handle those requests after
the graph evaluation is finished. This corresponds to the way the
resolution handles the modification of a route graph.

Node BNode A

Com p onent 1

in out

Com p onent 2

Node C

out1

out2

out3

in1

in2

in3

out1in1

out2in2

Figure 7: Example of complicated cyclic dependency.

The problem of regarding the “Fan In Clarification” issue was
that handing of more than one event received by a field within the
same timestamp was not clearly specified. Whether all the events
received are used by the node evaluation or not varies from one
implementation to another. The Scripting WG resolution is that a
browser needs to process all fan-in events. Our method resolves
dependencies among nodes in the route graph by topological
sorting. It assures that all events will be sent to a field before the
node will be evaluated. Therefore, our implementation complies
to the fan-in handling described in the resolution .

7 ACKNOWLEDGEMENTS

This work was supported by grants from the Information-
Technology Promotion Agency, Japan (IPA).

I would like to thank Akio Koide, Tatsuo Miyazawa, Ryo
Yoshida, Takaaki Murao, and Michael McDonald for their advice
and for reviewing of this paper.

References
[1] “The Virtual Reality Modeling Language Specification,”

ISO/IEC DIS 14772-1 April 4, 1997. Available as
“http://www.vrml.org/Specifications/VRML97/DIS/”.

[2] “VRML Script Working Group Clarifications,” Available as
“http://www.vlc.com.au/~justin/vrml/script-wg/”.

[3] Robert Tarjan, “Depth-First Search And Linear Graph
Algorithms,” SIAM Journal on Computing, Vol. 1, No. 2, June
1972, pages 146-160.

[4] Daniel J. Woods, Alan Norton, and Gavin Bell, “Wired For
Speed: Efficient Routes In VRML 2.0,” in proceedings of
VRML 97, pages 133-138.

